blob: fd70b57b72edb67d97762169dd344859af83f5fe [file] [log] [blame]
/**************************************************************************
*
* Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
* Copyright 2009 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
#include "main/glheader.h"
#include "main/context.h"
#include "main/state.h"
#include "main/api_validate.h"
#include "main/api_noop.h"
#include "main/varray.h"
#include "main/bufferobj.h"
#include "main/enums.h"
#include "main/macros.h"
#include "glapi/dispatch.h"
#include "vbo_context.h"
/**
* Compute min and max elements for glDraw[Range]Elements() calls.
*/
void
vbo_get_minmax_index(GLcontext *ctx,
const struct _mesa_prim *prim,
const struct _mesa_index_buffer *ib,
GLuint *min_index, GLuint *max_index)
{
GLuint i;
GLsizei count = prim->count;
const void *indices;
if (_mesa_is_bufferobj(ib->obj)) {
const GLvoid *map =
ctx->Driver.MapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB,
GL_READ_ONLY, ib->obj);
indices = ADD_POINTERS(map, ib->ptr);
} else {
indices = ib->ptr;
}
switch (ib->type) {
case GL_UNSIGNED_INT: {
const GLuint *ui_indices = (const GLuint *)indices;
GLuint max_ui = ui_indices[count-1];
GLuint min_ui = ui_indices[0];
for (i = 0; i < count; i++) {
if (ui_indices[i] > max_ui) max_ui = ui_indices[i];
if (ui_indices[i] < min_ui) min_ui = ui_indices[i];
}
*min_index = min_ui;
*max_index = max_ui;
break;
}
case GL_UNSIGNED_SHORT: {
const GLushort *us_indices = (const GLushort *)indices;
GLuint max_us = us_indices[count-1];
GLuint min_us = us_indices[0];
for (i = 0; i < count; i++) {
if (us_indices[i] > max_us) max_us = us_indices[i];
if (us_indices[i] < min_us) min_us = us_indices[i];
}
*min_index = min_us;
*max_index = max_us;
break;
}
case GL_UNSIGNED_BYTE: {
const GLubyte *ub_indices = (const GLubyte *)indices;
GLuint max_ub = ub_indices[count-1];
GLuint min_ub = ub_indices[0];
for (i = 0; i < count; i++) {
if (ub_indices[i] > max_ub) max_ub = ub_indices[i];
if (ub_indices[i] < min_ub) min_ub = ub_indices[i];
}
*min_index = min_ub;
*max_index = max_ub;
break;
}
default:
assert(0);
break;
}
if (_mesa_is_bufferobj(ib->obj)) {
ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB, ib->obj);
}
}
/**
* Check that element 'j' of the array has reasonable data.
* Map VBO if needed.
*/
static void
check_array_data(GLcontext *ctx, struct gl_client_array *array,
GLuint attrib, GLuint j)
{
if (array->Enabled) {
const void *data = array->Ptr;
if (_mesa_is_bufferobj(array->BufferObj)) {
if (!array->BufferObj->Pointer) {
/* need to map now */
array->BufferObj->Pointer =
ctx->Driver.MapBuffer(ctx, GL_ARRAY_BUFFER_ARB,
GL_READ_ONLY, array->BufferObj);
}
data = ADD_POINTERS(data, array->BufferObj->Pointer);
}
switch (array->Type) {
case GL_FLOAT:
{
GLfloat *f = (GLfloat *) ((GLubyte *) data + array->StrideB * j);
GLuint k;
for (k = 0; k < array->Size; k++) {
if (IS_INF_OR_NAN(f[k]) ||
f[k] >= 1.0e20 || f[k] <= -1.0e10) {
_mesa_printf("Bad array data:\n");
_mesa_printf(" Element[%u].%u = %f\n", j, k, f[k]);
_mesa_printf(" Array %u at %p\n", attrib, (void* ) array);
_mesa_printf(" Type 0x%x, Size %d, Stride %d\n",
array->Type, array->Size, array->Stride);
_mesa_printf(" Address/offset %p in Buffer Object %u\n",
array->Ptr, array->BufferObj->Name);
f[k] = 1.0; /* XXX replace the bad value! */
}
//assert(!IS_INF_OR_NAN(f[k]));
}
}
break;
default:
;
}
}
}
/**
* Unmap the buffer object referenced by given array, if mapped.
*/
static void
unmap_array_buffer(GLcontext *ctx, struct gl_client_array *array)
{
if (array->Enabled &&
_mesa_is_bufferobj(array->BufferObj) &&
_mesa_bufferobj_mapped(array->BufferObj)) {
ctx->Driver.UnmapBuffer(ctx, GL_ARRAY_BUFFER_ARB, array->BufferObj);
}
}
/**
* Examine the array's data for NaNs, etc.
*/
static void
check_draw_elements_data(GLcontext *ctx, GLsizei count, GLenum elemType,
const void *elements, GLint basevertex)
{
struct gl_array_object *arrayObj = ctx->Array.ArrayObj;
const void *elemMap;
GLint i, k;
if (_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj)) {
elemMap = ctx->Driver.MapBuffer(ctx,
GL_ELEMENT_ARRAY_BUFFER_ARB,
GL_READ_ONLY,
ctx->Array.ElementArrayBufferObj);
elements = ADD_POINTERS(elements, elemMap);
}
for (i = 0; i < count; i++) {
GLuint j;
/* j = element[i] */
switch (elemType) {
case GL_UNSIGNED_BYTE:
j = ((const GLubyte *) elements)[i];
break;
case GL_UNSIGNED_SHORT:
j = ((const GLushort *) elements)[i];
break;
case GL_UNSIGNED_INT:
j = ((const GLuint *) elements)[i];
break;
default:
assert(0);
}
/* check element j of each enabled array */
check_array_data(ctx, &arrayObj->Vertex, VERT_ATTRIB_POS, j);
check_array_data(ctx, &arrayObj->Normal, VERT_ATTRIB_NORMAL, j);
check_array_data(ctx, &arrayObj->Color, VERT_ATTRIB_COLOR0, j);
check_array_data(ctx, &arrayObj->SecondaryColor, VERT_ATTRIB_COLOR1, j);
for (k = 0; k < Elements(arrayObj->TexCoord); k++) {
check_array_data(ctx, &arrayObj->TexCoord[k], VERT_ATTRIB_TEX0 + k, j);
}
for (k = 0; k < Elements(arrayObj->VertexAttrib); k++) {
check_array_data(ctx, &arrayObj->VertexAttrib[k],
VERT_ATTRIB_GENERIC0 + k, j);
}
}
if (_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj)) {
ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB,
ctx->Array.ElementArrayBufferObj);
}
unmap_array_buffer(ctx, &arrayObj->Vertex);
unmap_array_buffer(ctx, &arrayObj->Normal);
unmap_array_buffer(ctx, &arrayObj->Color);
for (k = 0; k < Elements(arrayObj->TexCoord); k++) {
unmap_array_buffer(ctx, &arrayObj->TexCoord[k]);
}
for (k = 0; k < Elements(arrayObj->VertexAttrib); k++) {
unmap_array_buffer(ctx, &arrayObj->VertexAttrib[k]);
}
}
/**
* Check array data, looking for NaNs, etc.
*/
static void
check_draw_arrays_data(GLcontext *ctx, GLint start, GLsizei count)
{
/* TO DO */
}
/**
* Print info/data for glDrawArrays().
*/
static void
print_draw_arrays(GLcontext *ctx, struct vbo_exec_context *exec,
GLenum mode, GLint start, GLsizei count)
{
int i;
_mesa_printf("vbo_exec_DrawArrays(mode 0x%x, start %d, count %d):\n",
mode, start, count);
for (i = 0; i < 32; i++) {
GLuint bufName = exec->array.inputs[i]->BufferObj->Name;
GLint stride = exec->array.inputs[i]->Stride;
_mesa_printf("attr %2d: size %d stride %d enabled %d "
"ptr %p Bufobj %u\n",
i,
exec->array.inputs[i]->Size,
stride,
/*exec->array.inputs[i]->Enabled,*/
exec->array.legacy_array[i]->Enabled,
exec->array.inputs[i]->Ptr,
bufName);
if (bufName) {
struct gl_buffer_object *buf = _mesa_lookup_bufferobj(ctx, bufName);
GLubyte *p = ctx->Driver.MapBuffer(ctx, GL_ARRAY_BUFFER_ARB,
GL_READ_ONLY_ARB, buf);
int offset = (int) (GLintptr) exec->array.inputs[i]->Ptr;
float *f = (float *) (p + offset);
int *k = (int *) f;
int i;
int n = (count * stride) / 4;
if (n > 32)
n = 32;
_mesa_printf(" Data at offset %d:\n", offset);
for (i = 0; i < n; i++) {
_mesa_printf(" float[%d] = 0x%08x %f\n", i, k[i], f[i]);
}
ctx->Driver.UnmapBuffer(ctx, GL_ARRAY_BUFFER_ARB, buf);
}
}
}
/**
* Just translate the arrayobj into a sane layout.
*/
static void
bind_array_obj(GLcontext *ctx)
{
struct vbo_context *vbo = vbo_context(ctx);
struct vbo_exec_context *exec = &vbo->exec;
struct gl_array_object *arrayObj = ctx->Array.ArrayObj;
GLuint i;
/* TODO: Fix the ArrayObj struct to keep legacy arrays in an array
* rather than as individual named arrays. Then this function can
* go away.
*/
exec->array.legacy_array[VERT_ATTRIB_POS] = &arrayObj->Vertex;
exec->array.legacy_array[VERT_ATTRIB_WEIGHT] = &arrayObj->Weight;
exec->array.legacy_array[VERT_ATTRIB_NORMAL] = &arrayObj->Normal;
exec->array.legacy_array[VERT_ATTRIB_COLOR0] = &arrayObj->Color;
exec->array.legacy_array[VERT_ATTRIB_COLOR1] = &arrayObj->SecondaryColor;
exec->array.legacy_array[VERT_ATTRIB_FOG] = &arrayObj->FogCoord;
exec->array.legacy_array[VERT_ATTRIB_COLOR_INDEX] = &arrayObj->Index;
if (arrayObj->PointSize.Enabled) {
/* this aliases COLOR_INDEX */
exec->array.legacy_array[VERT_ATTRIB_POINT_SIZE] = &arrayObj->PointSize;
}
exec->array.legacy_array[VERT_ATTRIB_EDGEFLAG] = &arrayObj->EdgeFlag;
for (i = 0; i < Elements(arrayObj->TexCoord); i++)
exec->array.legacy_array[VERT_ATTRIB_TEX0 + i] = &arrayObj->TexCoord[i];
for (i = 0; i < Elements(arrayObj->VertexAttrib); i++) {
assert(i < Elements(exec->array.generic_array));
exec->array.generic_array[i] = &arrayObj->VertexAttrib[i];
}
exec->array.array_obj = arrayObj->Name;
}
static void
recalculate_input_bindings(GLcontext *ctx)
{
struct vbo_context *vbo = vbo_context(ctx);
struct vbo_exec_context *exec = &vbo->exec;
const struct gl_client_array **inputs = &exec->array.inputs[0];
GLbitfield const_inputs = 0x0;
GLuint i;
exec->array.program_mode = get_program_mode(ctx);
exec->array.enabled_flags = ctx->Array.ArrayObj->_Enabled;
switch (exec->array.program_mode) {
case VP_NONE:
/* When no vertex program is active (or the vertex program is generated
* from fixed-function state). We put the material values into the
* generic slots. This is the only situation where material values
* are available as per-vertex attributes.
*/
for (i = 0; i <= VERT_ATTRIB_TEX7; i++) {
if (exec->array.legacy_array[i]->Enabled)
inputs[i] = exec->array.legacy_array[i];
else {
inputs[i] = &vbo->legacy_currval[i];
const_inputs |= 1 << i;
}
}
for (i = 0; i < MAT_ATTRIB_MAX; i++) {
inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->mat_currval[i];
const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i);
}
/* Could use just about anything, just to fill in the empty
* slots:
*/
for (i = MAT_ATTRIB_MAX; i < VERT_ATTRIB_MAX - VERT_ATTRIB_GENERIC0; i++) {
inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->generic_currval[i];
const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i);
}
break;
case VP_NV:
/* NV_vertex_program - attribute arrays alias and override
* conventional, legacy arrays. No materials, and the generic
* slots are vacant.
*/
for (i = 0; i <= VERT_ATTRIB_TEX7; i++) {
if (exec->array.generic_array[i]->Enabled)
inputs[i] = exec->array.generic_array[i];
else if (exec->array.legacy_array[i]->Enabled)
inputs[i] = exec->array.legacy_array[i];
else {
inputs[i] = &vbo->legacy_currval[i];
const_inputs |= 1 << i;
}
}
/* Could use just about anything, just to fill in the empty
* slots:
*/
for (i = VERT_ATTRIB_GENERIC0; i < VERT_ATTRIB_MAX; i++) {
inputs[i] = &vbo->generic_currval[i - VERT_ATTRIB_GENERIC0];
const_inputs |= 1 << i;
}
break;
case VP_ARB:
/* GL_ARB_vertex_program or GLSL vertex shader - Only the generic[0]
* attribute array aliases and overrides the legacy position array.
*
* Otherwise, legacy attributes available in the legacy slots,
* generic attributes in the generic slots and materials are not
* available as per-vertex attributes.
*/
if (exec->array.generic_array[0]->Enabled)
inputs[0] = exec->array.generic_array[0];
else if (exec->array.legacy_array[0]->Enabled)
inputs[0] = exec->array.legacy_array[0];
else {
inputs[0] = &vbo->legacy_currval[0];
const_inputs |= 1 << 0;
}
for (i = 1; i <= VERT_ATTRIB_TEX7; i++) {
if (exec->array.legacy_array[i]->Enabled)
inputs[i] = exec->array.legacy_array[i];
else {
inputs[i] = &vbo->legacy_currval[i];
const_inputs |= 1 << i;
}
}
for (i = 0; i < MAX_VERTEX_GENERIC_ATTRIBS; i++) {
if (exec->array.generic_array[i]->Enabled)
inputs[VERT_ATTRIB_GENERIC0 + i] = exec->array.generic_array[i];
else {
inputs[VERT_ATTRIB_GENERIC0 + i] = &vbo->generic_currval[i];
const_inputs |= 1 << (VERT_ATTRIB_GENERIC0 + i);
}
}
break;
}
_mesa_set_varying_vp_inputs( ctx, ~const_inputs );
}
static void
bind_arrays(GLcontext *ctx)
{
#if 0
if (ctx->Array.ArrayObj.Name != exec->array.array_obj) {
bind_array_obj(ctx);
recalculate_input_bindings(ctx);
}
else if (exec->array.program_mode != get_program_mode(ctx) ||
exec->array.enabled_flags != ctx->Array.ArrayObj->_Enabled) {
recalculate_input_bindings(ctx);
}
#else
bind_array_obj(ctx);
recalculate_input_bindings(ctx);
#endif
}
/***********************************************************************
* API functions.
*/
static void GLAPIENTRY
vbo_exec_DrawArrays(GLenum mode, GLint start, GLsizei count)
{
GET_CURRENT_CONTEXT(ctx);
struct vbo_context *vbo = vbo_context(ctx);
struct vbo_exec_context *exec = &vbo->exec;
struct _mesa_prim prim[1];
if (MESA_VERBOSE & VERBOSE_DRAW)
_mesa_debug(ctx, "glDrawArrays(%s, %d, %d)\n",
_mesa_lookup_enum_by_nr(mode), start, count);
if (!_mesa_validate_DrawArrays( ctx, mode, start, count ))
return;
FLUSH_CURRENT( ctx, 0 );
if (ctx->NewState)
_mesa_update_state( ctx );
if (!_mesa_valid_to_render(ctx, "glDrawArrays")) {
return;
}
#if 0
check_draw_arrays_data(ctx, start, count);
#else
(void) check_draw_arrays_data;
#endif
bind_arrays( ctx );
/* Again... because we may have changed the bitmask of per-vertex varying
* attributes. If we regenerate the fixed-function vertex program now
* we may be able to prune down the number of vertex attributes which we
* need in the shader.
*/
if (ctx->NewState)
_mesa_update_state( ctx );
prim[0].begin = 1;
prim[0].end = 1;
prim[0].weak = 0;
prim[0].pad = 0;
prim[0].mode = mode;
prim[0].start = start;
prim[0].count = count;
prim[0].indexed = 0;
prim[0].basevertex = 0;
vbo->draw_prims( ctx, exec->array.inputs, prim, 1, NULL,
GL_TRUE, start, start + count - 1 );
#if 0
print_draw_arrays(ctx, exec, mode, start, count);
#else
(void) print_draw_arrays;
#endif
}
/**
* Map GL_ELEMENT_ARRAY_BUFFER and print contents.
*/
static void
dump_element_buffer(GLcontext *ctx, GLenum type)
{
const GLvoid *map = ctx->Driver.MapBuffer(ctx,
GL_ELEMENT_ARRAY_BUFFER_ARB,
GL_READ_ONLY,
ctx->Array.ElementArrayBufferObj);
switch (type) {
case GL_UNSIGNED_BYTE:
{
const GLubyte *us = (const GLubyte *) map;
GLuint i;
for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size; i++) {
_mesa_printf("%02x ", us[i]);
if (i % 32 == 31)
_mesa_printf("\n");
}
_mesa_printf("\n");
}
break;
case GL_UNSIGNED_SHORT:
{
const GLushort *us = (const GLushort *) map;
GLuint i;
for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size / 2; i++) {
_mesa_printf("%04x ", us[i]);
if (i % 16 == 15)
_mesa_printf("\n");
}
_mesa_printf("\n");
}
break;
case GL_UNSIGNED_INT:
{
const GLuint *us = (const GLuint *) map;
GLuint i;
for (i = 0; i < ctx->Array.ElementArrayBufferObj->Size / 4; i++) {
_mesa_printf("%08x ", us[i]);
if (i % 8 == 7)
_mesa_printf("\n");
}
_mesa_printf("\n");
}
break;
default:
;
}
ctx->Driver.UnmapBuffer(ctx, GL_ELEMENT_ARRAY_BUFFER_ARB,
ctx->Array.ElementArrayBufferObj);
}
/* Inner support for both _mesa_DrawElements and _mesa_DrawRangeElements */
static void
vbo_validated_drawrangeelements(GLcontext *ctx, GLenum mode,
GLboolean index_bounds_valid,
GLuint start, GLuint end,
GLsizei count, GLenum type,
const GLvoid *indices,
GLint basevertex)
{
struct vbo_context *vbo = vbo_context(ctx);
struct vbo_exec_context *exec = &vbo->exec;
struct _mesa_index_buffer ib;
struct _mesa_prim prim[1];
FLUSH_CURRENT( ctx, 0 );
if (ctx->NewState)
_mesa_update_state( ctx );
if (!_mesa_valid_to_render(ctx, "glDraw[Range]Elements")) {
return;
}
if (ctx->NewState)
_mesa_update_state( ctx );
bind_arrays( ctx );
ib.count = count;
ib.type = type;
ib.obj = ctx->Array.ElementArrayBufferObj;
ib.ptr = indices;
prim[0].begin = 1;
prim[0].end = 1;
prim[0].weak = 0;
prim[0].pad = 0;
prim[0].mode = mode;
prim[0].start = 0;
prim[0].count = count;
prim[0].indexed = 1;
prim[0].basevertex = basevertex;
/* Need to give special consideration to rendering a range of
* indices starting somewhere above zero. Typically the
* application is issuing multiple DrawRangeElements() to draw
* successive primitives layed out linearly in the vertex arrays.
* Unless the vertex arrays are all in a VBO (or locked as with
* CVA), the OpenGL semantics imply that we need to re-read or
* re-upload the vertex data on each draw call.
*
* In the case of hardware tnl, we want to avoid starting the
* upload at zero, as it will mean every draw call uploads an
* increasing amount of not-used vertex data. Worse - in the
* software tnl module, all those vertices might be transformed and
* lit but never rendered.
*
* If we just upload or transform the vertices in start..end,
* however, the indices will be incorrect.
*
* At this level, we don't know exactly what the requirements of
* the backend are going to be, though it will likely boil down to
* either:
*
* 1) Do nothing, everything is in a VBO and is processed once
* only.
*
* 2) Adjust the indices and vertex arrays so that start becomes
* zero.
*
* Rather than doing anything here, I'll provide a helper function
* for the latter case elsewhere.
*/
vbo->draw_prims( ctx, exec->array.inputs, prim, 1, &ib,
index_bounds_valid, start, end );
}
static void GLAPIENTRY
vbo_exec_DrawRangeElementsBaseVertex(GLenum mode,
GLuint start, GLuint end,
GLsizei count, GLenum type,
const GLvoid *indices,
GLint basevertex)
{
static GLuint warnCount = 0;
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_DRAW)
_mesa_debug(ctx,
"glDrawRangeElementsBaseVertex(%s, %u, %u, %d, %s, %p, %d)\n",
_mesa_lookup_enum_by_nr(mode), start, end, count,
_mesa_lookup_enum_by_nr(type), indices, basevertex);
if (!_mesa_validate_DrawRangeElements( ctx, mode, start, end, count,
type, indices, basevertex ))
return;
/* NOTE: It's important that 'end' is a reasonable value.
* in _tnl_draw_prims(), we use end to determine how many vertices
* to transform. If it's too large, we can unnecessarily split prims
* or we can read/write out of memory in several different places!
*/
if (end >= ctx->Array.ArrayObj->_MaxElement) {
/* the max element is out of bounds of one or more enabled arrays */
warnCount++;
if (warnCount < 10) {
_mesa_warning(ctx, "glDraw[Range]Elements(start %u, end %u, count %d, "
"type 0x%x, indices=%p)\n"
"\tend is out of bounds (max=%u) "
"Element Buffer %u (size %d)\n"
"\tThis should probably be fixed in the application.",
start, end, count, type, indices,
ctx->Array.ArrayObj->_MaxElement - 1,
ctx->Array.ElementArrayBufferObj->Name,
ctx->Array.ElementArrayBufferObj->Size);
}
if (0)
dump_element_buffer(ctx, type);
if (0)
_mesa_print_arrays(ctx);
#ifdef DEBUG
/* 'end' was out of bounds, but now let's check the actual array
* indexes to see if any of them are out of bounds. If so, warn
* and skip the draw to avoid potential segfault, etc.
*/
{
GLuint max = _mesa_max_buffer_index(ctx, count, type, indices,
ctx->Array.ElementArrayBufferObj);
if (max >= ctx->Array.ArrayObj->_MaxElement) {
if (warnCount < 10) {
_mesa_warning(ctx, "glDraw[Range]Elements(start %u, end %u, "
"count %d, type 0x%x, indices=%p)\n"
"\tindex=%u is out of bounds (max=%u) "
"Element Buffer %u (size %d)\n"
"\tSkipping the glDrawRangeElements() call",
start, end, count, type, indices, max,
ctx->Array.ArrayObj->_MaxElement - 1,
ctx->Array.ElementArrayBufferObj->Name,
ctx->Array.ElementArrayBufferObj->Size);
}
return;
}
/* XXX we could also find the min index and compare to 'start'
* to see if start is correct. But it's more likely to get the
* upper bound wrong.
*/
}
#endif
}
else if (0) {
_mesa_printf("glDraw[Range]Elements{,BaseVertex}"
"(start %u, end %u, type 0x%x, count %d) ElemBuf %u, "
"base %d\n",
start, end, type, count,
ctx->Array.ElementArrayBufferObj->Name,
basevertex);
}
#if 0
check_draw_elements_data(ctx, count, type, indices);
#else
(void) check_draw_elements_data;
#endif
vbo_validated_drawrangeelements(ctx, mode, GL_TRUE, start, end,
count, type, indices, basevertex);
}
static void GLAPIENTRY
vbo_exec_DrawRangeElements(GLenum mode, GLuint start, GLuint end,
GLsizei count, GLenum type, const GLvoid *indices)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_DRAW)
_mesa_debug(ctx,
"glDrawRangeElements(%s, %u, %u, %d, %s, %p)\n",
_mesa_lookup_enum_by_nr(mode), start, end, count,
_mesa_lookup_enum_by_nr(type), indices);
vbo_exec_DrawRangeElementsBaseVertex(mode, start, end, count, type,
indices, 0);
}
static void GLAPIENTRY
vbo_exec_DrawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_DRAW)
_mesa_debug(ctx, "glDrawElements(%s, %u, %s, %p)\n",
_mesa_lookup_enum_by_nr(mode), count,
_mesa_lookup_enum_by_nr(type), indices);
if (!_mesa_validate_DrawElements( ctx, mode, count, type, indices, 0 ))
return;
vbo_validated_drawrangeelements(ctx, mode, GL_FALSE, ~0, ~0,
count, type, indices, 0);
}
static void GLAPIENTRY
vbo_exec_DrawElementsBaseVertex(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices, GLint basevertex)
{
GET_CURRENT_CONTEXT(ctx);
if (MESA_VERBOSE & VERBOSE_DRAW)
_mesa_debug(ctx, "glDrawElementsBaseVertex(%s, %d, %s, %p, %d)\n",
_mesa_lookup_enum_by_nr(mode), count,
_mesa_lookup_enum_by_nr(type), indices, basevertex);
if (!_mesa_validate_DrawElements( ctx, mode, count, type, indices,
basevertex ))
return;
vbo_validated_drawrangeelements(ctx, mode, GL_FALSE, ~0, ~0,
count, type, indices, basevertex);
}
/** Inner support for both _mesa_DrawElements and _mesa_DrawRangeElements */
static void
vbo_validated_multidrawelements(GLcontext *ctx, GLenum mode,
const GLsizei *count, GLenum type,
const GLvoid **indices, GLsizei primcount,
const GLint *basevertex)
{
struct vbo_context *vbo = vbo_context(ctx);
struct vbo_exec_context *exec = &vbo->exec;
struct _mesa_index_buffer ib;
struct _mesa_prim *prim;
unsigned int index_type_size = 0;
uintptr_t min_index_ptr, max_index_ptr;
GLboolean fallback = GL_FALSE;
int i;
if (primcount == 0)
return;
FLUSH_CURRENT( ctx, 0 );
if (ctx->NewState)
_mesa_update_state( ctx );
if (!_mesa_valid_to_render(ctx, "glMultiDrawElements")) {
return;
}
if (ctx->NewState)
_mesa_update_state( ctx );
prim = _mesa_calloc(primcount * sizeof(*prim));
if (prim == NULL) {
_mesa_error(ctx, GL_OUT_OF_MEMORY, "glMultiDrawElements");
return;
}
/* Decide if we can do this all as one set of primitives sharing the
* same index buffer, or if we have to reset the index pointer per primitive.
*/
bind_arrays( ctx );
switch (type) {
case GL_UNSIGNED_INT:
index_type_size = 4;
break;
case GL_UNSIGNED_SHORT:
index_type_size = 2;
break;
case GL_UNSIGNED_BYTE:
index_type_size = 1;
break;
default:
assert(0);
}
min_index_ptr = (uintptr_t)indices[0];
max_index_ptr = 0;
for (i = 0; i < primcount; i++) {
min_index_ptr = MIN2(min_index_ptr, (uintptr_t)indices[i]);
max_index_ptr = MAX2(max_index_ptr, (uintptr_t)indices[i] +
index_type_size * count[i]);
}
/* Check if we can handle this thing as a bunch of index offsets from the
* same index pointer. If we can't, then we have to fall back to doing
* a draw_prims per primitive.
*/
if (index_type_size != 1) {
for (i = 0; i < primcount; i++) {
if ((((uintptr_t)indices[i] - min_index_ptr) % index_type_size) != 0) {
fallback = GL_TRUE;
break;
}
}
}
/* If the index buffer isn't in a VBO, then treating the application's
* subranges of the index buffer as one large index buffer may lead to
* us reading unmapped memory.
*/
if (!_mesa_is_bufferobj(ctx->Array.ElementArrayBufferObj))
fallback = GL_TRUE;
if (!fallback) {
ib.count = (max_index_ptr - min_index_ptr) / index_type_size;
ib.type = type;
ib.obj = ctx->Array.ElementArrayBufferObj;
ib.ptr = (void *)min_index_ptr;
for (i = 0; i < primcount; i++) {
prim[i].begin = (i == 0);
prim[i].end = (i == primcount - 1);
prim[i].weak = 0;
prim[i].pad = 0;
prim[i].mode = mode;
prim[i].start = ((uintptr_t)indices[i] - min_index_ptr) / index_type_size;
prim[i].count = count[i];
prim[i].indexed = 1;
if (basevertex != NULL)
prim[i].basevertex = basevertex[i];
else
prim[i].basevertex = 0;
}
vbo->draw_prims(ctx, exec->array.inputs, prim, primcount, &ib,
GL_FALSE, ~0, ~0);
} else {
for (i = 0; i < primcount; i++) {
ib.count = count[i];
ib.type = type;
ib.obj = ctx->Array.ElementArrayBufferObj;
ib.ptr = indices[i];
prim[0].begin = 1;
prim[0].end = 1;
prim[0].weak = 0;
prim[0].pad = 0;
prim[0].mode = mode;
prim[0].start = 0;
prim[0].count = count[i];
prim[0].indexed = 1;
if (basevertex != NULL)
prim[0].basevertex = basevertex[i];
else
prim[0].basevertex = 0;
}
vbo->draw_prims(ctx, exec->array.inputs, prim, 1, &ib,
GL_FALSE, ~0, ~0);
}
_mesa_free(prim);
}
static void GLAPIENTRY
vbo_exec_MultiDrawElements(GLenum mode,
const GLsizei *count, GLenum type,
const GLvoid **indices,
GLsizei primcount)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
for (i = 0; i < primcount; i++) {
if (!_mesa_validate_DrawElements(ctx, mode, count[i], type, indices[i],
0))
return;
}
vbo_validated_multidrawelements(ctx, mode, count, type, indices, primcount,
NULL);
}
static void GLAPIENTRY
vbo_exec_MultiDrawElementsBaseVertex(GLenum mode,
const GLsizei *count, GLenum type,
const GLvoid **indices,
GLsizei primcount,
const GLsizei *basevertex)
{
GET_CURRENT_CONTEXT(ctx);
GLint i;
ASSERT_OUTSIDE_BEGIN_END_AND_FLUSH(ctx);
for (i = 0; i < primcount; i++) {
if (!_mesa_validate_DrawElements(ctx, mode, count[i], type, indices[i],
basevertex[i]))
return;
}
vbo_validated_multidrawelements(ctx, mode, count, type, indices, primcount,
basevertex);
}
/***********************************************************************
* Initialization
*/
void
vbo_exec_array_init( struct vbo_exec_context *exec )
{
#if 1
exec->vtxfmt.DrawArrays = vbo_exec_DrawArrays;
exec->vtxfmt.DrawElements = vbo_exec_DrawElements;
exec->vtxfmt.DrawRangeElements = vbo_exec_DrawRangeElements;
exec->vtxfmt.MultiDrawElementsEXT = vbo_exec_MultiDrawElements;
exec->vtxfmt.DrawElementsBaseVertex = vbo_exec_DrawElementsBaseVertex;
exec->vtxfmt.DrawRangeElementsBaseVertex = vbo_exec_DrawRangeElementsBaseVertex;
exec->vtxfmt.MultiDrawElementsBaseVertex = vbo_exec_MultiDrawElementsBaseVertex;
#else
exec->vtxfmt.DrawArrays = _mesa_noop_DrawArrays;
exec->vtxfmt.DrawElements = _mesa_noop_DrawElements;
exec->vtxfmt.DrawRangeElements = _mesa_noop_DrawRangeElements;
exec->vtxfmt.MultiDrawElementsEXT = _mesa_noop_MultiDrawElements;
exec->vtxfmt.DrawElementsBaseVertex = _mesa_noop_DrawElementsBaseVertex;
exec->vtxfmt.DrawRangeElementsBaseVertex = _mesa_noop_DrawRangeElementsBaseVertex;
exec->vtxfmt.MultiDrawElementsBaseVertex = _mesa_noop_MultiDrawElementsBaseVertex;
#endif
}
void
vbo_exec_array_destroy( struct vbo_exec_context *exec )
{
/* nothing to do */
}
/* This API entrypoint is not ordinarily used */
void GLAPIENTRY
_mesa_DrawArrays(GLenum mode, GLint first, GLsizei count)
{
vbo_exec_DrawArrays(mode, first, count);
}
/* This API entrypoint is not ordinarily used */
void GLAPIENTRY
_mesa_DrawElements(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices)
{
vbo_exec_DrawElements(mode, count, type, indices);
}
void GLAPIENTRY
_mesa_DrawElementsBaseVertex(GLenum mode, GLsizei count, GLenum type,
const GLvoid *indices, GLint basevertex)
{
vbo_exec_DrawElementsBaseVertex(mode, count, type, indices, basevertex);
}
/* This API entrypoint is not ordinarily used */
void GLAPIENTRY
_mesa_DrawRangeElements(GLenum mode, GLuint start, GLuint end, GLsizei count,
GLenum type, const GLvoid *indices)
{
vbo_exec_DrawRangeElements(mode, start, end, count, type, indices);
}
void GLAPIENTRY
_mesa_DrawRangeElementsBaseVertex(GLenum mode, GLuint start, GLuint end,
GLsizei count, GLenum type,
const GLvoid *indices, GLint basevertex)
{
vbo_exec_DrawRangeElementsBaseVertex(mode, start, end, count, type,
indices, basevertex);
}
/* GL_EXT_multi_draw_arrays */
void GLAPIENTRY
_mesa_MultiDrawElementsEXT(GLenum mode, const GLsizei *count, GLenum type,
const GLvoid **indices, GLsizei primcount)
{
vbo_exec_MultiDrawElements(mode, count, type, indices, primcount);
}
void GLAPIENTRY
_mesa_MultiDrawElementsBaseVertex(GLenum mode,
const GLsizei *count, GLenum type,
const GLvoid **indices, GLsizei primcount,
const GLint *basevertex)
{
vbo_exec_MultiDrawElementsBaseVertex(mode, count, type, indices,
primcount, basevertex);
}