blob: e07185b7783375e7bb23920b379451d18e7aae31 [file] [log] [blame]
/*
* Copyright 2008 Corbin Simpson <MostAwesomeDude@gmail.com>
* Copyright 2009 Marek Olšák <maraeo@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE. */
/* r300_emit: Functions for emitting state. */
#include "util/u_format.h"
#include "util/u_math.h"
#include "util/u_simple_list.h"
#include "r300_context.h"
#include "r300_cs.h"
#include "r300_emit.h"
#include "r300_fs.h"
#include "r300_screen.h"
#include "r300_state_derived.h"
#include "r300_state_inlines.h"
#include "r300_texture.h"
#include "r300_vs.h"
void r300_emit_blend_state(struct r300_context* r300, void* state)
{
struct r300_blend_state* blend = (struct r300_blend_state*)state;
CS_LOCALS(r300);
BEGIN_CS(8);
OUT_CS_REG(R300_RB3D_ROPCNTL, blend->rop);
OUT_CS_REG_SEQ(R300_RB3D_CBLEND, 3);
if (r300->framebuffer_state.nr_cbufs) {
OUT_CS(blend->blend_control);
OUT_CS(blend->alpha_blend_control);
OUT_CS(blend->color_channel_mask);
} else {
OUT_CS(0);
OUT_CS(0);
OUT_CS(0);
/* XXX also disable fastfill here once it's supported */
}
OUT_CS_REG(R300_RB3D_DITHER_CTL, blend->dither);
END_CS;
}
void r300_emit_blend_color_state(struct r300_context* r300, void* state)
{
struct r300_blend_color_state* bc = (struct r300_blend_color_state*)state;
struct r300_screen* r300screen = r300_screen(r300->context.screen);
CS_LOCALS(r300);
if (r300screen->caps->is_r500) {
BEGIN_CS(3);
OUT_CS_REG_SEQ(R500_RB3D_CONSTANT_COLOR_AR, 2);
OUT_CS(bc->blend_color_red_alpha);
OUT_CS(bc->blend_color_green_blue);
END_CS;
} else {
BEGIN_CS(2);
OUT_CS_REG(R300_RB3D_BLEND_COLOR, bc->blend_color);
END_CS;
}
}
void r300_emit_clip_state(struct r300_context* r300, void* state)
{
struct pipe_clip_state* clip = (struct pipe_clip_state*)state;
int i;
struct r300_screen* r300screen = r300_screen(r300->context.screen);
CS_LOCALS(r300);
if (r300screen->caps->has_tcl) {
BEGIN_CS(5 + (6 * 4));
OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
(r300screen->caps->is_r500 ?
R500_PVS_UCP_START : R300_PVS_UCP_START));
OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, 6 * 4);
for (i = 0; i < 6; i++) {
OUT_CS_32F(clip->ucp[i][0]);
OUT_CS_32F(clip->ucp[i][1]);
OUT_CS_32F(clip->ucp[i][2]);
OUT_CS_32F(clip->ucp[i][3]);
}
OUT_CS_REG(R300_VAP_CLIP_CNTL, ((1 << clip->nr) - 1) |
R300_PS_UCP_MODE_CLIP_AS_TRIFAN);
END_CS;
} else {
BEGIN_CS(2);
OUT_CS_REG(R300_VAP_CLIP_CNTL, R300_CLIP_DISABLE);
END_CS;
}
}
void r300_emit_dsa_state(struct r300_context* r300, void* state)
{
struct r300_dsa_state* dsa = (struct r300_dsa_state*)state;
struct r300_screen* r300screen = r300_screen(r300->context.screen);
CS_LOCALS(r300);
BEGIN_CS(r300screen->caps->is_r500 ? 8 : 6);
OUT_CS_REG(R300_FG_ALPHA_FUNC, dsa->alpha_function);
/* not needed since we use the 8bit alpha ref */
/*if (r300screen->caps->is_r500) {
OUT_CS_REG(R500_FG_ALPHA_VALUE, dsa->alpha_reference);
}*/
OUT_CS_REG_SEQ(R300_ZB_CNTL, 3);
if (r300->framebuffer_state.zsbuf) {
OUT_CS(dsa->z_buffer_control);
OUT_CS(dsa->z_stencil_control);
} else {
OUT_CS(0);
OUT_CS(0);
}
OUT_CS(dsa->stencil_ref_mask);
/* XXX it seems r3xx doesn't support STENCILREFMASK_BF */
if (r300screen->caps->is_r500) {
OUT_CS_REG(R500_ZB_STENCILREFMASK_BF, dsa->stencil_ref_bf);
}
END_CS;
}
static const float * get_shader_constant(
struct r300_context * r300,
struct rc_constant * constant,
struct r300_constant_buffer * externals)
{
struct r300_viewport_state* viewport =
(struct r300_viewport_state*)r300->viewport_state.state;
static float vec[4] = { 0.0, 0.0, 0.0, 1.0 };
struct pipe_texture *tex;
switch(constant->Type) {
case RC_CONSTANT_EXTERNAL:
return externals->constants[constant->u.External];
case RC_CONSTANT_IMMEDIATE:
return constant->u.Immediate;
case RC_CONSTANT_STATE:
switch (constant->u.State[0]) {
/* Factor for converting rectangle coords to
* normalized coords. Should only show up on non-r500. */
case RC_STATE_R300_TEXRECT_FACTOR:
tex = &r300->textures[constant->u.State[1]]->tex;
vec[0] = 1.0 / tex->width0;
vec[1] = 1.0 / tex->height0;
break;
/* Texture compare-fail value. */
/* XXX Since Gallium doesn't support GL_ARB_shadow_ambient,
* this is always (0,0,0,0), right? */
case RC_STATE_SHADOW_AMBIENT:
vec[3] = 0;
break;
case RC_STATE_R300_VIEWPORT_SCALE:
if (r300->tcl_bypass) {
vec[0] = 1;
vec[1] = 1;
vec[2] = 1;
} else {
vec[0] = viewport->xscale;
vec[1] = viewport->yscale;
vec[2] = viewport->zscale;
}
break;
case RC_STATE_R300_VIEWPORT_OFFSET:
if (!r300->tcl_bypass) {
vec[0] = viewport->xoffset;
vec[1] = viewport->yoffset;
vec[2] = viewport->zoffset;
}
break;
default:
debug_printf("r300: Implementation error: "
"Unknown RC_CONSTANT type %d\n", constant->u.State[0]);
}
break;
default:
debug_printf("r300: Implementation error: "
"Unhandled constant type %d\n", constant->Type);
}
/* This should either be (0, 0, 0, 1), which should be a relatively safe
* RGBA or STRQ value, or it could be one of the RC_CONSTANT_STATE
* state factors. */
return vec;
}
/* Convert a normal single-precision float into the 7.16 format
* used by the R300 fragment shader.
*/
static uint32_t pack_float24(float f)
{
union {
float fl;
uint32_t u;
} u;
float mantissa;
int exponent;
uint32_t float24 = 0;
if (f == 0.0)
return 0;
u.fl = f;
mantissa = frexpf(f, &exponent);
/* Handle -ve */
if (mantissa < 0) {
float24 |= (1 << 23);
mantissa = mantissa * -1.0;
}
/* Handle exponent, bias of 63 */
exponent += 62;
float24 |= (exponent << 16);
/* Kill 7 LSB of mantissa */
float24 |= (u.u & 0x7FFFFF) >> 7;
return float24;
}
void r300_emit_fragment_program_code(struct r300_context* r300,
struct rX00_fragment_program_code* generic_code)
{
struct r300_fragment_program_code * code = &generic_code->code.r300;
int i;
CS_LOCALS(r300);
BEGIN_CS(15 +
code->alu.length * 4 +
(code->tex.length ? (1 + code->tex.length) : 0));
OUT_CS_REG(R300_US_CONFIG, code->config);
OUT_CS_REG(R300_US_PIXSIZE, code->pixsize);
OUT_CS_REG(R300_US_CODE_OFFSET, code->code_offset);
OUT_CS_REG_SEQ(R300_US_CODE_ADDR_0, 4);
for(i = 0; i < 4; ++i)
OUT_CS(code->code_addr[i]);
OUT_CS_REG_SEQ(R300_US_ALU_RGB_INST_0, code->alu.length);
for (i = 0; i < code->alu.length; i++)
OUT_CS(code->alu.inst[i].rgb_inst);
OUT_CS_REG_SEQ(R300_US_ALU_RGB_ADDR_0, code->alu.length);
for (i = 0; i < code->alu.length; i++)
OUT_CS(code->alu.inst[i].rgb_addr);
OUT_CS_REG_SEQ(R300_US_ALU_ALPHA_INST_0, code->alu.length);
for (i = 0; i < code->alu.length; i++)
OUT_CS(code->alu.inst[i].alpha_inst);
OUT_CS_REG_SEQ(R300_US_ALU_ALPHA_ADDR_0, code->alu.length);
for (i = 0; i < code->alu.length; i++)
OUT_CS(code->alu.inst[i].alpha_addr);
if (code->tex.length) {
OUT_CS_REG_SEQ(R300_US_TEX_INST_0, code->tex.length);
for(i = 0; i < code->tex.length; ++i)
OUT_CS(code->tex.inst[i]);
}
END_CS;
}
void r300_emit_fs_constant_buffer(struct r300_context* r300,
struct rc_constant_list* constants)
{
int i;
CS_LOCALS(r300);
if (constants->Count == 0)
return;
BEGIN_CS(constants->Count * 4 + 1);
OUT_CS_REG_SEQ(R300_PFS_PARAM_0_X, constants->Count * 4);
for(i = 0; i < constants->Count; ++i) {
const float * data = get_shader_constant(r300,
&constants->Constants[i],
&r300->shader_constants[PIPE_SHADER_FRAGMENT]);
OUT_CS(pack_float24(data[0]));
OUT_CS(pack_float24(data[1]));
OUT_CS(pack_float24(data[2]));
OUT_CS(pack_float24(data[3]));
}
END_CS;
}
static void r300_emit_fragment_depth_config(struct r300_context* r300,
struct r300_fragment_shader* fs)
{
CS_LOCALS(r300);
BEGIN_CS(4);
if (r300_fragment_shader_writes_depth(fs)) {
OUT_CS_REG(R300_FG_DEPTH_SRC, R300_FG_DEPTH_SRC_SHADER);
OUT_CS_REG(R300_US_W_FMT, R300_W_FMT_W24 | R300_W_SRC_US);
} else {
OUT_CS_REG(R300_FG_DEPTH_SRC, R300_FG_DEPTH_SRC_SCAN);
OUT_CS_REG(R300_US_W_FMT, R300_W_FMT_W0 | R300_W_SRC_US);
}
END_CS;
}
void r500_emit_fragment_program_code(struct r300_context* r300,
struct rX00_fragment_program_code* generic_code)
{
struct r500_fragment_program_code * code = &generic_code->code.r500;
int i;
CS_LOCALS(r300);
BEGIN_CS(13 +
((code->inst_end + 1) * 6));
OUT_CS_REG(R500_US_CONFIG, R500_ZERO_TIMES_ANYTHING_EQUALS_ZERO);
OUT_CS_REG(R500_US_PIXSIZE, code->max_temp_idx);
OUT_CS_REG(R500_US_CODE_RANGE,
R500_US_CODE_RANGE_ADDR(0) | R500_US_CODE_RANGE_SIZE(code->inst_end));
OUT_CS_REG(R500_US_CODE_OFFSET, 0);
OUT_CS_REG(R500_US_CODE_ADDR,
R500_US_CODE_START_ADDR(0) | R500_US_CODE_END_ADDR(code->inst_end));
OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_INSTR);
OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, (code->inst_end + 1) * 6);
for (i = 0; i <= code->inst_end; i++) {
OUT_CS(code->inst[i].inst0);
OUT_CS(code->inst[i].inst1);
OUT_CS(code->inst[i].inst2);
OUT_CS(code->inst[i].inst3);
OUT_CS(code->inst[i].inst4);
OUT_CS(code->inst[i].inst5);
}
END_CS;
}
void r500_emit_fs_constant_buffer(struct r300_context* r300,
struct rc_constant_list* constants)
{
int i;
CS_LOCALS(r300);
if (constants->Count == 0)
return;
BEGIN_CS(constants->Count * 4 + 3);
OUT_CS_REG(R500_GA_US_VECTOR_INDEX, R500_GA_US_VECTOR_INDEX_TYPE_CONST);
OUT_CS_ONE_REG(R500_GA_US_VECTOR_DATA, constants->Count * 4);
for (i = 0; i < constants->Count; i++) {
const float * data = get_shader_constant(r300,
&constants->Constants[i],
&r300->shader_constants[PIPE_SHADER_FRAGMENT]);
OUT_CS_32F(data[0]);
OUT_CS_32F(data[1]);
OUT_CS_32F(data[2]);
OUT_CS_32F(data[3]);
}
END_CS;
}
void r300_emit_fb_state(struct r300_context* r300,
struct pipe_framebuffer_state* fb)
{
struct r300_texture* tex;
struct pipe_surface* surf;
int i;
CS_LOCALS(r300);
/* Shouldn't fail unless there is a bug in the state tracker. */
assert(fb->nr_cbufs <= 4);
BEGIN_CS((10 * fb->nr_cbufs) + (2 * (4 - fb->nr_cbufs)) +
(fb->zsbuf ? 10 : 0) + 6);
/* Flush and free renderbuffer caches. */
OUT_CS_REG(R300_RB3D_DSTCACHE_CTLSTAT,
R300_RB3D_DSTCACHE_CTLSTAT_DC_FREE_FREE_3D_TAGS |
R300_RB3D_DSTCACHE_CTLSTAT_DC_FLUSH_FLUSH_DIRTY_3D);
OUT_CS_REG(R300_ZB_ZCACHE_CTLSTAT,
R300_ZB_ZCACHE_CTLSTAT_ZC_FLUSH_FLUSH_AND_FREE |
R300_ZB_ZCACHE_CTLSTAT_ZC_FREE_FREE);
/* Set the number of colorbuffers. */
OUT_CS_REG(R300_RB3D_CCTL, R300_RB3D_CCTL_NUM_MULTIWRITES(fb->nr_cbufs));
/* Set up colorbuffers. */
for (i = 0; i < fb->nr_cbufs; i++) {
surf = fb->cbufs[i];
tex = (struct r300_texture*)surf->texture;
assert(tex && tex->buffer && "cbuf is marked, but NULL!");
OUT_CS_REG_SEQ(R300_RB3D_COLOROFFSET0 + (4 * i), 1);
OUT_CS_RELOC(tex->buffer, surf->offset, 0, RADEON_GEM_DOMAIN_VRAM, 0);
OUT_CS_REG_SEQ(R300_RB3D_COLORPITCH0 + (4 * i), 1);
OUT_CS_RELOC(tex->buffer, tex->pitch[surf->level] |
r300_translate_colorformat(tex->tex.format) |
R300_COLOR_TILE(tex->macrotile) |
R300_COLOR_MICROTILE(tex->microtile),
0, RADEON_GEM_DOMAIN_VRAM, 0);
OUT_CS_REG(R300_US_OUT_FMT_0 + (4 * i),
r300_translate_out_fmt(surf->format));
}
/* Disable unused colorbuffers. */
for (; i < 4; i++) {
OUT_CS_REG(R300_US_OUT_FMT_0 + (4 * i), R300_US_OUT_FMT_UNUSED);
}
/* Set up a zbuffer. */
if (fb->zsbuf) {
surf = fb->zsbuf;
tex = (struct r300_texture*)surf->texture;
assert(tex && tex->buffer && "zsbuf is marked, but NULL!");
OUT_CS_REG_SEQ(R300_ZB_DEPTHOFFSET, 1);
OUT_CS_RELOC(tex->buffer, surf->offset, 0, RADEON_GEM_DOMAIN_VRAM, 0);
OUT_CS_REG(R300_ZB_FORMAT, r300_translate_zsformat(tex->tex.format));
OUT_CS_REG_SEQ(R300_ZB_DEPTHPITCH, 1);
OUT_CS_RELOC(tex->buffer, tex->pitch[surf->level] |
R300_DEPTHMACROTILE(tex->macrotile) |
R300_DEPTHMICROTILE(tex->microtile),
0, RADEON_GEM_DOMAIN_VRAM, 0);
}
END_CS;
}
static void r300_emit_query_start(struct r300_context *r300)
{
struct r300_capabilities *caps = r300_screen(r300->context.screen)->caps;
struct r300_query *query = r300->query_current;
CS_LOCALS(r300);
if (!query)
return;
BEGIN_CS(4);
if (caps->family == CHIP_FAMILY_RV530) {
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
} else {
OUT_CS_REG(R300_SU_REG_DEST, R300_RASTER_PIPE_SELECT_ALL);
}
OUT_CS_REG(R300_ZB_ZPASS_DATA, 0);
END_CS;
query->begin_emitted = TRUE;
}
static void r300_emit_query_finish(struct r300_context *r300,
struct r300_query *query)
{
struct r300_capabilities* caps = r300_screen(r300->context.screen)->caps;
CS_LOCALS(r300);
assert(caps->num_frag_pipes);
BEGIN_CS(6 * caps->num_frag_pipes + 2);
/* I'm not so sure I like this switch, but it's hard to be elegant
* when there's so many special cases...
*
* So here's the basic idea. For each pipe, enable writes to it only,
* then put out the relocation for ZPASS_ADDR, taking into account a
* 4-byte offset for each pipe. RV380 and older are special; they have
* only two pipes, and the second pipe's enable is on bit 3, not bit 1,
* so there's a chipset cap for that. */
switch (caps->num_frag_pipes) {
case 4:
/* pipe 3 only */
OUT_CS_REG(R300_SU_REG_DEST, 1 << 3);
OUT_CS_REG_SEQ(R300_ZB_ZPASS_ADDR, 1);
OUT_CS_RELOC(r300->oqbo, query->offset + (sizeof(uint32_t) * 3),
0, RADEON_GEM_DOMAIN_GTT, 0);
case 3:
/* pipe 2 only */
OUT_CS_REG(R300_SU_REG_DEST, 1 << 2);
OUT_CS_REG_SEQ(R300_ZB_ZPASS_ADDR, 1);
OUT_CS_RELOC(r300->oqbo, query->offset + (sizeof(uint32_t) * 2),
0, RADEON_GEM_DOMAIN_GTT, 0);
case 2:
/* pipe 1 only */
/* As mentioned above, accomodate RV380 and older. */
OUT_CS_REG(R300_SU_REG_DEST,
1 << (caps->high_second_pipe ? 3 : 1));
OUT_CS_REG_SEQ(R300_ZB_ZPASS_ADDR, 1);
OUT_CS_RELOC(r300->oqbo, query->offset + (sizeof(uint32_t) * 1),
0, RADEON_GEM_DOMAIN_GTT, 0);
case 1:
/* pipe 0 only */
OUT_CS_REG(R300_SU_REG_DEST, 1 << 0);
OUT_CS_REG_SEQ(R300_ZB_ZPASS_ADDR, 1);
OUT_CS_RELOC(r300->oqbo, query->offset + (sizeof(uint32_t) * 0),
0, RADEON_GEM_DOMAIN_GTT, 0);
break;
default:
debug_printf("r300: Implementation error: Chipset reports %d"
" pixel pipes!\n", caps->num_frag_pipes);
assert(0);
}
/* And, finally, reset it to normal... */
OUT_CS_REG(R300_SU_REG_DEST, 0xF);
END_CS;
}
static void rv530_emit_query_single(struct r300_context *r300,
struct r300_query *query)
{
CS_LOCALS(r300);
BEGIN_CS(8);
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
OUT_CS_REG_SEQ(R300_ZB_ZPASS_ADDR, 1);
OUT_CS_RELOC(r300->oqbo, query->offset, 0, RADEON_GEM_DOMAIN_GTT, 0);
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
END_CS;
}
static void rv530_emit_query_double(struct r300_context *r300,
struct r300_query *query)
{
CS_LOCALS(r300);
BEGIN_CS(14);
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_0);
OUT_CS_REG_SEQ(R300_ZB_ZPASS_ADDR, 1);
OUT_CS_RELOC(r300->oqbo, query->offset, 0, RADEON_GEM_DOMAIN_GTT, 0);
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_1);
OUT_CS_REG_SEQ(R300_ZB_ZPASS_ADDR, 1);
OUT_CS_RELOC(r300->oqbo, query->offset + sizeof(uint32_t), 0, RADEON_GEM_DOMAIN_GTT, 0);
OUT_CS_REG(RV530_FG_ZBREG_DEST, RV530_FG_ZBREG_DEST_PIPE_SELECT_ALL);
END_CS;
}
void r300_emit_query_end(struct r300_context* r300)
{
struct r300_capabilities *caps = r300_screen(r300->context.screen)->caps;
struct r300_query *query = r300->query_current;
if (!query)
return;
if (query->begin_emitted == FALSE)
return;
if (caps->family == CHIP_FAMILY_RV530) {
if (caps->num_z_pipes == 2)
rv530_emit_query_double(r300, query);
else
rv530_emit_query_single(r300, query);
} else
r300_emit_query_finish(r300, query);
}
void r300_emit_rs_state(struct r300_context* r300, void* state)
{
struct r300_rs_state* rs = (struct r300_rs_state*)state;
float scale, offset;
CS_LOCALS(r300);
BEGIN_CS(20 + (rs->polygon_offset_enable ? 5 : 0));
OUT_CS_REG(R300_VAP_CNTL_STATUS, rs->vap_control_status);
OUT_CS_REG(R300_GB_AA_CONFIG, rs->antialiasing_config);
OUT_CS_REG(R300_GA_POINT_SIZE, rs->point_size);
OUT_CS_REG_SEQ(R300_GA_POINT_MINMAX, 2);
OUT_CS(rs->point_minmax);
OUT_CS(rs->line_control);
if (rs->polygon_offset_enable) {
scale = rs->depth_scale * 12;
offset = rs->depth_offset;
switch (r300->zbuffer_bpp) {
case 16:
offset *= 4;
break;
case 24:
offset *= 2;
break;
}
OUT_CS_REG_SEQ(R300_SU_POLY_OFFSET_FRONT_SCALE, 4);
OUT_CS_32F(scale);
OUT_CS_32F(offset);
OUT_CS_32F(scale);
OUT_CS_32F(offset);
}
OUT_CS_REG_SEQ(R300_SU_POLY_OFFSET_ENABLE, 2);
OUT_CS(rs->polygon_offset_enable);
OUT_CS(rs->cull_mode);
OUT_CS_REG(R300_GA_LINE_STIPPLE_CONFIG, rs->line_stipple_config);
OUT_CS_REG(R300_GA_LINE_STIPPLE_VALUE, rs->line_stipple_value);
OUT_CS_REG(R300_GA_COLOR_CONTROL, rs->color_control);
OUT_CS_REG(R300_GA_POLY_MODE, rs->polygon_mode);
END_CS;
}
void r300_emit_rs_block_state(struct r300_context* r300,
struct r300_rs_block* rs)
{
int i;
struct r300_screen* r300screen = r300_screen(r300->context.screen);
CS_LOCALS(r300);
DBG(r300, DBG_DRAW, "r300: RS emit:\n");
BEGIN_CS(21);
if (r300screen->caps->is_r500) {
OUT_CS_REG_SEQ(R500_RS_IP_0, 8);
} else {
OUT_CS_REG_SEQ(R300_RS_IP_0, 8);
}
for (i = 0; i < 8; i++) {
OUT_CS(rs->ip[i]);
DBG(r300, DBG_DRAW, " : ip %d: 0x%08x\n", i, rs->ip[i]);
}
OUT_CS_REG_SEQ(R300_RS_COUNT, 2);
OUT_CS(rs->count);
OUT_CS(rs->inst_count);
if (r300screen->caps->is_r500) {
OUT_CS_REG_SEQ(R500_RS_INST_0, 8);
} else {
OUT_CS_REG_SEQ(R300_RS_INST_0, 8);
}
for (i = 0; i < 8; i++) {
OUT_CS(rs->inst[i]);
DBG(r300, DBG_DRAW, " : inst %d: 0x%08x\n", i, rs->inst[i]);
}
DBG(r300, DBG_DRAW, " : count: 0x%08x inst_count: 0x%08x\n",
rs->count, rs->inst_count);
END_CS;
}
void r300_emit_scissor_state(struct r300_context* r300, void* state)
{
unsigned minx, miny, maxx, maxy;
uint32_t top_left, bottom_right;
struct r300_screen* r300screen = r300_screen(r300->context.screen);
struct pipe_scissor_state* scissor = (struct pipe_scissor_state*)state;
CS_LOCALS(r300);
minx = miny = 0;
maxx = r300->framebuffer_state.width;
maxy = r300->framebuffer_state.height;
if (((struct r300_rs_state*)r300->rs_state.state)->rs.scissor) {
minx = MAX2(minx, scissor->minx);
miny = MAX2(miny, scissor->miny);
maxx = MIN2(maxx, scissor->maxx);
maxy = MIN2(maxy, scissor->maxy);
}
if (r300screen->caps->is_r500) {
top_left =
(minx << R300_SCISSORS_X_SHIFT) |
(miny << R300_SCISSORS_Y_SHIFT);
bottom_right =
((maxx - 1) << R300_SCISSORS_X_SHIFT) |
((maxy - 1) << R300_SCISSORS_Y_SHIFT);
} else {
/* Offset of 1440 in non-R500 chipsets. */
top_left =
((minx + 1440) << R300_SCISSORS_X_SHIFT) |
((miny + 1440) << R300_SCISSORS_Y_SHIFT);
bottom_right =
(((maxx - 1) + 1440) << R300_SCISSORS_X_SHIFT) |
(((maxy - 1) + 1440) << R300_SCISSORS_Y_SHIFT);
}
BEGIN_CS(3);
OUT_CS_REG_SEQ(R300_SC_SCISSORS_TL, 2);
OUT_CS(top_left);
OUT_CS(bottom_right);
END_CS;
}
void r300_emit_texture(struct r300_context* r300,
struct r300_sampler_state* sampler,
struct r300_texture* tex,
unsigned offset)
{
uint32_t filter0 = sampler->filter0;
uint32_t format0 = tex->state.format0;
unsigned min_level, max_level;
CS_LOCALS(r300);
/* to emulate 1D textures through 2D ones correctly */
if (tex->tex.target == PIPE_TEXTURE_1D) {
filter0 &= ~R300_TX_WRAP_T_MASK;
filter0 |= R300_TX_WRAP_T(R300_TX_CLAMP_TO_EDGE);
}
if (tex->is_npot) {
/* NPOT textures don't support mip filter, unfortunately.
* This prevents incorrect rendering. */
filter0 &= ~R300_TX_MIN_FILTER_MIP_MASK;
} else {
/* determine min/max levels */
/* the MAX_MIP level is the largest (finest) one */
max_level = MIN2(sampler->max_lod, tex->tex.last_level);
min_level = MIN2(sampler->min_lod, max_level);
format0 |= R300_TX_NUM_LEVELS(max_level);
filter0 |= R300_TX_MAX_MIP_LEVEL(min_level);
}
BEGIN_CS(16);
OUT_CS_REG(R300_TX_FILTER0_0 + (offset * 4), filter0 |
(offset << 28));
OUT_CS_REG(R300_TX_FILTER1_0 + (offset * 4), sampler->filter1);
OUT_CS_REG(R300_TX_BORDER_COLOR_0 + (offset * 4), sampler->border_color);
OUT_CS_REG(R300_TX_FORMAT0_0 + (offset * 4), format0);
OUT_CS_REG(R300_TX_FORMAT1_0 + (offset * 4), tex->state.format1);
OUT_CS_REG(R300_TX_FORMAT2_0 + (offset * 4), tex->state.format2);
OUT_CS_REG_SEQ(R300_TX_OFFSET_0 + (offset * 4), 1);
OUT_CS_RELOC(tex->buffer,
R300_TXO_MACRO_TILE(tex->macrotile) |
R300_TXO_MICRO_TILE(tex->microtile),
RADEON_GEM_DOMAIN_GTT | RADEON_GEM_DOMAIN_VRAM, 0, 0);
END_CS;
}
static boolean r300_validate_aos(struct r300_context *r300)
{
struct pipe_vertex_buffer *vbuf = r300->vertex_buffer;
struct pipe_vertex_element *velem = r300->vertex_element;
int i;
/* Check if formats and strides are aligned to the size of DWORD. */
for (i = 0; i < r300->vertex_element_count; i++) {
if (vbuf[velem[i].vertex_buffer_index].stride % 4 != 0 ||
util_format_get_blocksize(velem[i].src_format) % 4 != 0) {
return FALSE;
}
}
return TRUE;
}
void r300_emit_aos(struct r300_context* r300, unsigned offset)
{
struct pipe_vertex_buffer *vb1, *vb2, *vbuf = r300->vertex_buffer;
struct pipe_vertex_element *velem = r300->vertex_element;
int i;
unsigned size1, size2, aos_count = r300->vertex_element_count;
unsigned packet_size = (aos_count * 3 + 1) / 2;
CS_LOCALS(r300);
/* XXX Move this checking to a more approriate place. */
if (!r300_validate_aos(r300)) {
/* XXX We should fallback using Draw. */
assert(0);
}
BEGIN_CS(2 + packet_size + aos_count * 2);
OUT_CS_PKT3(R300_PACKET3_3D_LOAD_VBPNTR, packet_size);
OUT_CS(aos_count);
for (i = 0; i < aos_count - 1; i += 2) {
vb1 = &vbuf[velem[i].vertex_buffer_index];
vb2 = &vbuf[velem[i+1].vertex_buffer_index];
size1 = util_format_get_blocksize(velem[i].src_format);
size2 = util_format_get_blocksize(velem[i+1].src_format);
OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride) |
R300_VBPNTR_SIZE1(size2) | R300_VBPNTR_STRIDE1(vb2->stride));
OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
OUT_CS(vb2->buffer_offset + velem[i+1].src_offset + offset * vb2->stride);
}
if (aos_count & 1) {
vb1 = &vbuf[velem[i].vertex_buffer_index];
size1 = util_format_get_blocksize(velem[i].src_format);
OUT_CS(R300_VBPNTR_SIZE0(size1) | R300_VBPNTR_STRIDE0(vb1->stride));
OUT_CS(vb1->buffer_offset + velem[i].src_offset + offset * vb1->stride);
}
for (i = 0; i < aos_count; i++) {
OUT_CS_RELOC_NO_OFFSET(vbuf[velem[i].vertex_buffer_index].buffer,
RADEON_GEM_DOMAIN_GTT, 0, 0);
}
END_CS;
}
void r300_emit_vertex_format_state(struct r300_context* r300)
{
int i;
CS_LOCALS(r300);
DBG(r300, DBG_DRAW, "r300: VAP/PSC emit:\n");
BEGIN_CS(26);
OUT_CS_REG(R300_VAP_VTX_SIZE, r300->vertex_info->vinfo.size);
OUT_CS_REG_SEQ(R300_VAP_VTX_STATE_CNTL, 2);
OUT_CS(r300->vertex_info->vinfo.hwfmt[0]);
OUT_CS(r300->vertex_info->vinfo.hwfmt[1]);
OUT_CS_REG_SEQ(R300_VAP_OUTPUT_VTX_FMT_0, 2);
OUT_CS(r300->vertex_info->vinfo.hwfmt[2]);
OUT_CS(r300->vertex_info->vinfo.hwfmt[3]);
for (i = 0; i < 4; i++) {
DBG(r300, DBG_DRAW, " : hwfmt%d: 0x%08x\n", i,
r300->vertex_info->vinfo.hwfmt[i]);
}
OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_0, 8);
for (i = 0; i < 8; i++) {
OUT_CS(r300->vertex_info->vap_prog_stream_cntl[i]);
DBG(r300, DBG_DRAW, " : prog_stream_cntl%d: 0x%08x\n", i,
r300->vertex_info->vap_prog_stream_cntl[i]);
}
OUT_CS_REG_SEQ(R300_VAP_PROG_STREAM_CNTL_EXT_0, 8);
for (i = 0; i < 8; i++) {
OUT_CS(r300->vertex_info->vap_prog_stream_cntl_ext[i]);
DBG(r300, DBG_DRAW, " : prog_stream_cntl_ext%d: 0x%08x\n", i,
r300->vertex_info->vap_prog_stream_cntl_ext[i]);
}
END_CS;
}
void r300_emit_vertex_program_code(struct r300_context* r300,
struct r300_vertex_program_code* code)
{
int i;
struct r300_screen* r300screen = r300_screen(r300->context.screen);
unsigned instruction_count = code->length / 4;
int vtx_mem_size = r300screen->caps->is_r500 ? 128 : 72;
int input_count = MAX2(util_bitcount(code->InputsRead), 1);
int output_count = MAX2(util_bitcount(code->OutputsWritten), 1);
int temp_count = MAX2(code->num_temporaries, 1);
int pvs_num_slots = MIN3(vtx_mem_size / input_count,
vtx_mem_size / output_count, 10);
int pvs_num_controllers = MIN2(vtx_mem_size / temp_count, 6);
CS_LOCALS(r300);
if (!r300screen->caps->has_tcl) {
debug_printf("r300: Implementation error: emit_vertex_shader called,"
" but has_tcl is FALSE!\n");
return;
}
BEGIN_CS(9 + code->length);
/* R300_VAP_PVS_CODE_CNTL_0
* R300_VAP_PVS_CONST_CNTL
* R300_VAP_PVS_CODE_CNTL_1
* See the r5xx docs for instructions on how to use these. */
OUT_CS_REG_SEQ(R300_VAP_PVS_CODE_CNTL_0, 3);
OUT_CS(R300_PVS_FIRST_INST(0) |
R300_PVS_XYZW_VALID_INST(instruction_count - 1) |
R300_PVS_LAST_INST(instruction_count - 1));
OUT_CS(R300_PVS_MAX_CONST_ADDR(code->constants.Count - 1));
OUT_CS(instruction_count - 1);
OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG, 0);
OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, code->length);
for (i = 0; i < code->length; i++)
OUT_CS(code->body.d[i]);
OUT_CS_REG(R300_VAP_CNTL, R300_PVS_NUM_SLOTS(pvs_num_slots) |
R300_PVS_NUM_CNTLRS(pvs_num_controllers) |
R300_PVS_NUM_FPUS(r300screen->caps->num_vert_fpus) |
R300_PVS_VF_MAX_VTX_NUM(12) |
(r300screen->caps->is_r500 ? R500_TCL_STATE_OPTIMIZATION : 0));
END_CS;
}
void r300_emit_vertex_shader(struct r300_context* r300,
struct r300_vertex_shader* vs)
{
r300_emit_vertex_program_code(r300, &vs->code);
}
void r300_emit_vs_constant_buffer(struct r300_context* r300,
struct rc_constant_list* constants)
{
int i;
struct r300_screen* r300screen = r300_screen(r300->context.screen);
CS_LOCALS(r300);
if (!r300screen->caps->has_tcl) {
debug_printf("r300: Implementation error: emit_vertex_shader called,"
" but has_tcl is FALSE!\n");
return;
}
if (constants->Count == 0)
return;
BEGIN_CS(constants->Count * 4 + 3);
OUT_CS_REG(R300_VAP_PVS_VECTOR_INDX_REG,
(r300screen->caps->is_r500 ?
R500_PVS_CONST_START : R300_PVS_CONST_START));
OUT_CS_ONE_REG(R300_VAP_PVS_UPLOAD_DATA, constants->Count * 4);
for (i = 0; i < constants->Count; i++) {
const float * data = get_shader_constant(r300,
&constants->Constants[i],
&r300->shader_constants[PIPE_SHADER_VERTEX]);
OUT_CS_32F(data[0]);
OUT_CS_32F(data[1]);
OUT_CS_32F(data[2]);
OUT_CS_32F(data[3]);
}
END_CS;
}
void r300_emit_viewport_state(struct r300_context* r300, void* state)
{
struct r300_viewport_state* viewport = (struct r300_viewport_state*)state;
CS_LOCALS(r300);
if (r300->tcl_bypass) {
BEGIN_CS(2);
OUT_CS_REG(R300_VAP_VTE_CNTL, 0);
END_CS;
} else {
BEGIN_CS(9);
OUT_CS_REG_SEQ(R300_SE_VPORT_XSCALE, 6);
OUT_CS_32F(viewport->xscale);
OUT_CS_32F(viewport->xoffset);
OUT_CS_32F(viewport->yscale);
OUT_CS_32F(viewport->yoffset);
OUT_CS_32F(viewport->zscale);
OUT_CS_32F(viewport->zoffset);
OUT_CS_REG(R300_VAP_VTE_CNTL, viewport->vte_control);
END_CS;
}
}
void r300_emit_texture_count(struct r300_context* r300)
{
uint32_t tx_enable = 0;
int i;
CS_LOCALS(r300);
/* Notice that texture_count and sampler_count are just sizes
* of the respective arrays. We still have to check for the individual
* elements. */
for (i = 0; i < MIN2(r300->sampler_count, r300->texture_count); i++) {
if (r300->textures[i]) {
tx_enable |= 1 << i;
}
}
BEGIN_CS(2);
OUT_CS_REG(R300_TX_ENABLE, tx_enable);
END_CS;
}
void r300_emit_ztop_state(struct r300_context* r300, void* state)
{
struct r300_ztop_state* ztop = (struct r300_ztop_state*)state;
CS_LOCALS(r300);
BEGIN_CS(2);
OUT_CS_REG(R300_ZB_ZTOP, ztop->z_buffer_top);
END_CS;
}
void r300_flush_textures(struct r300_context* r300)
{
CS_LOCALS(r300);
BEGIN_CS(2);
OUT_CS_REG(R300_TX_INVALTAGS, 0);
END_CS;
}
static void r300_flush_pvs(struct r300_context* r300)
{
CS_LOCALS(r300);
BEGIN_CS(2);
OUT_CS_REG(R300_VAP_PVS_STATE_FLUSH_REG, 0x0);
END_CS;
}
void r300_emit_buffer_validate(struct r300_context *r300)
{
struct r300_texture* tex;
unsigned i;
boolean invalid = FALSE;
/* Clean out BOs. */
r300->winsys->reset_bos(r300->winsys);
validate:
/* Color buffers... */
for (i = 0; i < r300->framebuffer_state.nr_cbufs; i++) {
tex = (struct r300_texture*)r300->framebuffer_state.cbufs[i]->texture;
assert(tex && tex->buffer && "cbuf is marked, but NULL!");
if (!r300->winsys->add_buffer(r300->winsys, tex->buffer,
0, RADEON_GEM_DOMAIN_VRAM)) {
r300->context.flush(&r300->context, 0, NULL);
goto validate;
}
}
/* ...depth buffer... */
if (r300->framebuffer_state.zsbuf) {
tex = (struct r300_texture*)r300->framebuffer_state.zsbuf->texture;
assert(tex && tex->buffer && "zsbuf is marked, but NULL!");
if (!r300->winsys->add_buffer(r300->winsys, tex->buffer,
0, RADEON_GEM_DOMAIN_VRAM)) {
r300->context.flush(&r300->context, 0, NULL);
goto validate;
}
}
/* ...textures... */
for (i = 0; i < r300->texture_count; i++) {
tex = r300->textures[i];
if (!tex)
continue;
if (!r300->winsys->add_buffer(r300->winsys, tex->buffer,
RADEON_GEM_DOMAIN_GTT | RADEON_GEM_DOMAIN_VRAM, 0)) {
r300->context.flush(&r300->context, 0, NULL);
goto validate;
}
}
/* ...occlusion query buffer... */
if (r300->dirty_state & R300_NEW_QUERY) {
if (!r300->winsys->add_buffer(r300->winsys, r300->oqbo,
0, RADEON_GEM_DOMAIN_GTT)) {
r300->context.flush(&r300->context, 0, NULL);
goto validate;
}
}
/* ...and vertex buffer. */
if (r300->vbo) {
if (!r300->winsys->add_buffer(r300->winsys, r300->vbo,
RADEON_GEM_DOMAIN_GTT, 0)) {
r300->context.flush(&r300->context, 0, NULL);
goto validate;
}
} else {
/* debug_printf("No VBO while emitting dirty state!\n"); */
}
if (!r300->winsys->validate(r300->winsys)) {
r300->context.flush(&r300->context, 0, NULL);
if (invalid) {
/* Well, hell. */
debug_printf("r300: Stuck in validation loop, gonna quit now.");
exit(1);
}
invalid = TRUE;
goto validate;
}
}
/* Emit all dirty state. */
void r300_emit_dirty_state(struct r300_context* r300)
{
struct r300_screen* r300screen = r300_screen(r300->context.screen);
struct r300_atom* atom;
unsigned i, dwords = 1024;
int dirty_tex = 0;
/* Check the required number of dwords against the space remaining in the
* current CS object. If we need more, then flush. */
foreach(atom, &r300->atom_list) {
if (atom->dirty || atom->always_dirty) {
dwords += atom->size;
}
}
/* Make sure we have at least 2*1024 spare dwords. */
/* XXX It would be nice to know the number of dwords we really need to
* XXX emit. */
while (!r300->winsys->check_cs(r300->winsys, dwords)) {
r300->context.flush(&r300->context, 0, NULL);
}
if (r300->dirty_state & R300_NEW_QUERY) {
r300_emit_query_start(r300);
r300->dirty_state &= ~R300_NEW_QUERY;
}
foreach(atom, &r300->atom_list) {
if (atom->dirty || atom->always_dirty) {
atom->emit(r300, atom->state);
atom->dirty = FALSE;
}
}
if (r300->dirty_state & R300_NEW_FRAGMENT_SHADER) {
r300_emit_fragment_depth_config(r300, r300->fs);
if (r300screen->caps->is_r500) {
r500_emit_fragment_program_code(r300, &r300->fs->shader->code);
} else {
r300_emit_fragment_program_code(r300, &r300->fs->shader->code);
}
r300->dirty_state &= ~R300_NEW_FRAGMENT_SHADER;
}
if (r300->dirty_state & R300_NEW_FRAGMENT_SHADER_CONSTANTS) {
if (r300screen->caps->is_r500) {
r500_emit_fs_constant_buffer(r300,
&r300->fs->shader->code.constants);
} else {
r300_emit_fs_constant_buffer(r300,
&r300->fs->shader->code.constants);
}
r300->dirty_state &= ~R300_NEW_FRAGMENT_SHADER_CONSTANTS;
}
if (r300->dirty_state & R300_NEW_FRAMEBUFFERS) {
r300_emit_fb_state(r300, &r300->framebuffer_state);
r300->dirty_state &= ~R300_NEW_FRAMEBUFFERS;
}
if (r300->dirty_state & R300_NEW_RS_BLOCK) {
r300_emit_rs_block_state(r300, r300->rs_block);
r300->dirty_state &= ~R300_NEW_RS_BLOCK;
}
/* Samplers and textures are tracked separately but emitted together. */
if (r300->dirty_state &
(R300_ANY_NEW_SAMPLERS | R300_ANY_NEW_TEXTURES)) {
r300_emit_texture_count(r300);
for (i = 0; i < MIN2(r300->sampler_count, r300->texture_count); i++) {
if (r300->dirty_state &
((R300_NEW_SAMPLER << i) | (R300_NEW_TEXTURE << i))) {
if (r300->textures[i])
r300_emit_texture(r300,
r300->sampler_states[i],
r300->textures[i],
i);
r300->dirty_state &=
~((R300_NEW_SAMPLER << i) | (R300_NEW_TEXTURE << i));
dirty_tex++;
}
}
r300->dirty_state &= ~(R300_ANY_NEW_SAMPLERS | R300_ANY_NEW_TEXTURES);
}
if (dirty_tex) {
r300_flush_textures(r300);
}
if (r300->dirty_state & R300_NEW_VERTEX_FORMAT) {
r300_emit_vertex_format_state(r300);
r300->dirty_state &= ~R300_NEW_VERTEX_FORMAT;
}
if (r300->dirty_state & (R300_NEW_VERTEX_SHADER | R300_NEW_VERTEX_SHADER_CONSTANTS)) {
r300_flush_pvs(r300);
}
if (r300->dirty_state & R300_NEW_VERTEX_SHADER) {
r300_emit_vertex_shader(r300, r300->vs);
r300->dirty_state &= ~R300_NEW_VERTEX_SHADER;
}
if (r300->dirty_state & R300_NEW_VERTEX_SHADER_CONSTANTS) {
r300_emit_vs_constant_buffer(r300, &r300->vs->code.constants);
r300->dirty_state &= ~R300_NEW_VERTEX_SHADER_CONSTANTS;
}
/* XXX
assert(r300->dirty_state == 0);
*/
/* Finally, emit the VBO. */
/* r300_emit_vertex_buffer(r300); */
r300->dirty_hw++;
}