| The Android Open Source Project | 02fb0ac | 2009-03-03 19:30:07 -0800 | [diff] [blame] | 1 | #ifdef HAVE_CONFIG_H |
| 2 | #include <config.h> |
| 3 | #endif |
| 4 | |
| 5 | #ifdef WANT_XTI |
| 6 | #ifndef lint |
| 7 | char nettest_xti_id[]="\ |
| 8 | @(#)nettest_xti.c (c) Copyright 1995-2007 Hewlett-Packard Co. Version 2.4.3"; |
| 9 | #else |
| 10 | #define DIRTY |
| 11 | #define WANT_HISTOGRAM |
| 12 | #define WANT_INTERVALS |
| 13 | #endif /* lint */ |
| 14 | /****************************************************************/ |
| 15 | /* */ |
| 16 | /* nettest_xti.c */ |
| 17 | /* */ |
| 18 | /* the XTI args parsing routine... */ |
| 19 | /* */ |
| 20 | /* scan_xti_args() */ |
| 21 | /* */ |
| 22 | /* the actual test routines... */ |
| 23 | /* */ |
| 24 | /* send_xti_tcp_stream() perform a tcp stream test */ |
| 25 | /* recv_xti_tcp_stream() */ |
| 26 | /* send_xti_tcp_rr() perform a tcp request/response */ |
| 27 | /* recv_xti_tcp_rr() */ |
| 28 | /* send_xti_tcp_conn_rr() an RR test including connect */ |
| 29 | /* recv_xti_tcp_conn_rr() */ |
| 30 | /* send_xti_udp_stream() perform a udp stream test */ |
| 31 | /* recv_xti_udp_stream() */ |
| 32 | /* send_xti_udp_rr() perform a udp request/response */ |
| 33 | /* recv_xti_udp_rr() */ |
| 34 | /* */ |
| 35 | /****************************************************************/ |
| 36 | |
| 37 | #ifdef HAVE_CONFIG_H |
| 38 | #include <config.h> |
| 39 | #endif |
| 40 | |
| 41 | #include <sys/types.h> |
| 42 | #include <fcntl.h> |
| 43 | #ifndef WIN32 |
| 44 | #include <sys/ipc.h> |
| 45 | #include <sys/socket.h> |
| 46 | #include <netinet/in.h> |
| 47 | #include <netdb.h> |
| 48 | #include <errno.h> |
| 49 | #include <signal.h> |
| 50 | #else /* WIN32 */ |
| 51 | #include <process.h> |
| 52 | #include <winsock2.h> |
| 53 | #include <windows.h> |
| 54 | #endif /* WIN32 */ |
| 55 | #include <stdio.h> |
| 56 | #include <time.h> |
| 57 | #include <malloc.h> |
| 58 | /* xti.h should be included *after* in.h because there are name */ |
| 59 | /* conflicts!( Silly standards people... raj 2/95 fortuenately, the */ |
| 60 | /* confilcts are on IP_TOP and IP_TTL, whcih netperf does not yet use */ |
| 61 | #include <xti.h> |
| 62 | |
| 63 | #include "netlib.h" |
| 64 | #include "netsh.h" |
| 65 | #include "nettest_xti.h" |
| 66 | |
| 67 | #ifdef WANT_HISTOGRAM |
| 68 | #ifdef __sgi |
| 69 | #include <sys/time.h> |
| 70 | #endif /* __sgi */ |
| 71 | #include "hist.h" |
| 72 | #endif /* WANT_HISTOGRAM */ |
| 73 | |
| 74 | |
| 75 | |
| 76 | /* these variables are specific to the XTI sockets tests. declare */ |
| 77 | /* them static to make them global only to this file. */ |
| 78 | |
| 79 | static int |
| 80 | rss_size, /* remote socket send buffer size */ |
| 81 | rsr_size, /* remote socket recv buffer size */ |
| 82 | lss_size, /* local socket send buffer size */ |
| 83 | lsr_size, /* local socket recv buffer size */ |
| 84 | req_size = 1, /* request size */ |
| 85 | rsp_size = 1, /* response size */ |
| 86 | send_size, /* how big are individual sends */ |
| 87 | recv_size; /* how big are individual receives */ |
| 88 | |
| 89 | static int confidence_iteration; |
| 90 | static char local_cpu_method; |
| 91 | static char remote_cpu_method; |
| 92 | |
| 93 | /* different options for the xti */ |
| 94 | |
| 95 | static int |
| 96 | loc_nodelay, /* don't/do use NODELAY locally */ |
| 97 | rem_nodelay, /* don't/do use NODELAY remotely */ |
| 98 | loc_sndavoid, /* avoid send copies locally */ |
| 99 | loc_rcvavoid, /* avoid recv copies locally */ |
| 100 | rem_sndavoid, /* avoid send copies remotely */ |
| 101 | rem_rcvavoid; /* avoid recv_copies remotely */ |
| 102 | |
| 103 | static struct t_info info_struct; |
| 104 | |
| 105 | #ifdef WANT_HISTOGRAM |
| 106 | #ifdef HAVE_GETHRTIME |
| 107 | hrtime_t time_one; |
| 108 | hrtime_t time_two; |
| 109 | #else |
| 110 | static struct timeval time_one; |
| 111 | static struct timeval time_two; |
| 112 | #endif /* HAVE_GETHRTIME */ |
| 113 | static HIST time_hist; |
| 114 | #endif /* WANT_HISTOGRAM */ |
| 115 | |
| 116 | static char loc_xti_device[32] = "/dev/tcp"; |
| 117 | static char rem_xti_device[32] = "/dev/tcp"; |
| 118 | |
| 119 | static int xti_flags = 0; |
| 120 | |
| 121 | char xti_usage[] = "\n\ |
| 122 | Usage: netperf [global options] -- [test options] \n\ |
| 123 | \n\ |
| 124 | TCP/UDP XTI API Test Options:\n\ |
| 125 | -D [L][,R] Set XTI_TCP_NODELAY locally and/or remotely (XTI_TCP_*)\n\ |
| 126 | -h Display this text\n\ |
| 127 | -m bytes Set the send size (XTI_TCP_STREAM, XTI_UDP_STREAM)\n\ |
| 128 | -M bytes Set the recv size (XTI_TCP_STREAM, XTI_UDP_STREAM)\n\ |
| 129 | -r bytes Set request size (XTI_TCP_RR, XTI_UDP_RR)\n\ |
| 130 | -R bytes Set response size (XTI_TCP_RR, XTI_UDP_RR)\n\ |
| 131 | -s send[,recv] Set local socket send/recv buffer sizes\n\ |
| 132 | -S send[,recv] Set remote socket send/recv buffer sizes\n\ |
| 133 | -X dev[,dev] Set the local/remote XTI device file name\n\ |
| 134 | \n\ |
| 135 | For those options taking two parms, at least one must be specified;\n\ |
| 136 | specifying one value without a comma will set both parms to that\n\ |
| 137 | value, specifying a value with a leading comma will set just the second\n\ |
| 138 | parm, a value with a trailing comma will set just the first. To set\n\ |
| 139 | each parm to unique values, specify both and separate them with a\n\ |
| 140 | comma.\n"; |
| 141 | |
| 142 | |
| 143 | /* This routine is intended to retrieve interesting aspects of tcp */ |
| 144 | /* for the data connection. at first, it attempts to retrieve the */ |
| 145 | /* maximum segment size. later, it might be modified to retrieve */ |
| 146 | /* other information, but it must be information that can be */ |
| 147 | /* retrieved quickly as it is called during the timing of the test. */ |
| 148 | /* for that reason, a second routine may be created that can be */ |
| 149 | /* called outside of the timing loop */ |
| 150 | void |
| 151 | get_xti_info(socket, info_struct) |
| 152 | int socket; |
| 153 | struct t_info *info_struct; |
| 154 | { |
| 155 | |
| 156 | } |
| 157 | |
| 158 | |
| 159 | /* This routine will create a data (listen) socket with the apropriate */ |
| 160 | /* options set and return it to the caller. this replaces all the */ |
| 161 | /* duplicate code in each of the test routines and should help make */ |
| 162 | /* things a little easier to understand. since this routine can be */ |
| 163 | /* called by either the netperf or netserver programs, all output */ |
| 164 | /* should be directed towards "where." family is generally AF_INET, */ |
| 165 | /* and type will be either SOCK_STREAM or SOCK_DGRAM */ |
| 166 | SOCKET |
| 167 | create_xti_endpoint(char *name) |
| 168 | { |
| 169 | |
| 170 | SOCKET temp_socket; |
| 171 | |
| 172 | struct t_optmgmt *opt_req; /* we request an option */ |
| 173 | struct t_optmgmt *opt_ret; /* it tells us what we got */ |
| 174 | |
| 175 | /* we use this to pass-in BSD-like socket options through t_optmgmt. */ |
| 176 | /* it ends up being about as clear as mud. raj 2/95 */ |
| 177 | struct sock_option { |
| 178 | struct t_opthdr myopthdr; |
| 179 | long value; |
| 180 | } *sock_option; |
| 181 | |
| 182 | if (debug) { |
| 183 | fprintf(where,"create_xti_endpoint: attempting to open %s\n", |
| 184 | name); |
| 185 | fflush(where); |
| 186 | } |
| 187 | |
| 188 | /*set up the data socket */ |
| 189 | temp_socket = t_open(name,O_RDWR,NULL); |
| 190 | |
| 191 | if (temp_socket == INVALID_SOCKET){ |
| 192 | fprintf(where, |
| 193 | "netperf: create_xti_endpoint: t_open %s: errno %d t_errno %d\n", |
| 194 | name, |
| 195 | errno, |
| 196 | t_errno); |
| 197 | fflush(where); |
| 198 | exit(1); |
| 199 | } |
| 200 | |
| 201 | if (debug) { |
| 202 | fprintf(where,"create_xti_endpoint: socket %d obtained...\n",temp_socket); |
| 203 | fflush(where); |
| 204 | } |
| 205 | |
| 206 | /* allocate what we need for option mgmt */ |
| 207 | if ((opt_req = (struct t_optmgmt *)t_alloc(temp_socket,T_OPTMGMT,T_ALL)) == |
| 208 | NULL) { |
| 209 | fprintf(where, |
| 210 | "netperf: create_xti_endpoint: t_alloc: opt_req errno %d\n", |
| 211 | errno); |
| 212 | fflush(where); |
| 213 | exit(1); |
| 214 | } |
| 215 | |
| 216 | if (debug) { |
| 217 | fprintf(where, |
| 218 | "create_xti_endpoint: opt_req->opt.buf %x maxlen %d len %d\n", |
| 219 | opt_req->opt.buf, |
| 220 | opt_req->opt.maxlen, |
| 221 | opt_req->opt.len); |
| 222 | |
| 223 | fflush(where); |
| 224 | } |
| 225 | |
| 226 | if ((opt_ret = (struct t_optmgmt *) t_alloc(temp_socket,T_OPTMGMT,T_ALL)) == |
| 227 | NULL) { |
| 228 | fprintf(where, |
| 229 | "netperf: create_xti_endpoint: t_alloc: opt_ret errno %d\n", |
| 230 | errno); |
| 231 | fflush(where); |
| 232 | exit(1); |
| 233 | } |
| 234 | |
| 235 | if (debug) { |
| 236 | fprintf(where, |
| 237 | "create_xti_endpoint: opt_ret->opt.buf %x maxlen %d len %d\n", |
| 238 | opt_ret->opt.buf, |
| 239 | opt_ret->opt.maxlen, |
| 240 | opt_ret->opt.len); |
| 241 | fflush(where); |
| 242 | } |
| 243 | |
| 244 | /* Modify the local socket size. The reason we alter the send buffer */ |
| 245 | /* size here rather than when the connection is made is to take care */ |
| 246 | /* of decreases in buffer size. Decreasing the window size after */ |
| 247 | /* connection establishment is a TCP no-no. Also, by setting the */ |
| 248 | /* buffer (window) size before the connection is established, we can */ |
| 249 | /* control the TCP MSS (segment size). The MSS is never more that 1/2 */ |
| 250 | /* the minimum receive buffer size at each half of the connection. */ |
| 251 | /* This is why we are altering the receive buffer size on the sending */ |
| 252 | /* size of a unidirectional transfer. If the user has not requested */ |
| 253 | /* that the socket buffers be altered, we will try to find-out what */ |
| 254 | /* their values are. If we cannot touch the socket buffer in any way, */ |
| 255 | /* we will set the values to -1 to indicate that. */ |
| 256 | |
| 257 | #ifdef XTI_SNDBUF |
| 258 | if (lss_size > 0) { |
| 259 | /* we want to "negotiate" the option */ |
| 260 | opt_req->flags = T_NEGOTIATE; |
| 261 | } |
| 262 | else { |
| 263 | /* we want to accept the default, and know what it is. I assume */ |
| 264 | /* that when nothing has been changed, that T_CURRENT will return */ |
| 265 | /* the same as T_DEFAULT raj 3/95 */ |
| 266 | opt_req->flags = T_CURRENT; |
| 267 | } |
| 268 | |
| 269 | /* the first part is for the netbuf that holds the option we want */ |
| 270 | /* to negotiate or check */ |
| 271 | /* the buffer of the netbuf points at the socket options structure */ |
| 272 | |
| 273 | /* we assume that the t_alloc call allocated a buffer that started */ |
| 274 | /* on a proper alignment */ |
| 275 | sock_option = (struct sock_option *)opt_req->opt.buf; |
| 276 | |
| 277 | /* and next, set the fields in the sock_option structure */ |
| 278 | sock_option->myopthdr.level = XTI_GENERIC; |
| 279 | sock_option->myopthdr.name = XTI_SNDBUF; |
| 280 | sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long); |
| 281 | sock_option->value = lss_size; |
| 282 | |
| 283 | opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long); |
| 284 | |
| 285 | /* now, set-up the stuff to return the value in the end */ |
| 286 | /* we assume that the t_alloc call allocated a buffer that started */ |
| 287 | /* on a proper alignment */ |
| 288 | sock_option = (struct sock_option *)opt_ret->opt.buf; |
| 289 | |
| 290 | /* finally, call t_optmgmt. clear as mud. */ |
| 291 | if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) { |
| 292 | fprintf(where, |
| 293 | "netperf: create_xti_endpoint: XTI_SNDBUF option: t_errno %d\n", |
| 294 | t_errno); |
| 295 | fflush(where); |
| 296 | exit(1); |
| 297 | } |
| 298 | |
| 299 | if (sock_option->myopthdr.status == T_SUCCESS) { |
| 300 | lss_size = sock_option->value; |
| 301 | } |
| 302 | else { |
| 303 | fprintf(where,"create_xti_endpoint: XTI_SNDBUF option status 0x%.4x", |
| 304 | sock_option->myopthdr.status); |
| 305 | fprintf(where," value %d\n", |
| 306 | sock_option->value); |
| 307 | fflush(where); |
| 308 | lss_size = -1; |
| 309 | } |
| 310 | |
| 311 | if (lsr_size > 0) { |
| 312 | /* we want to "negotiate" the option */ |
| 313 | opt_req->flags = T_NEGOTIATE; |
| 314 | } |
| 315 | else { |
| 316 | /* we want to accept the default, and know what it is. I assume */ |
| 317 | /* that when nothing has been changed, that T_CURRENT will return */ |
| 318 | /* the same as T_DEFAULT raj 3/95 */ |
| 319 | opt_req->flags = T_CURRENT; |
| 320 | } |
| 321 | |
| 322 | /* the first part is for the netbuf that holds the option we want */ |
| 323 | /* to negotiate or check */ |
| 324 | /* the buffer of the netbuf points at the socket options structure */ |
| 325 | |
| 326 | /* we assume that the t_alloc call allocated a buffer that started */ |
| 327 | /* on a proper alignment */ |
| 328 | sock_option = (struct sock_option *)opt_req->opt.buf; |
| 329 | |
| 330 | /* and next, set the fields in the sock_option structure */ |
| 331 | sock_option->myopthdr.level = XTI_GENERIC; |
| 332 | sock_option->myopthdr.name = XTI_RCVBUF; |
| 333 | sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long); |
| 334 | sock_option->value = lsr_size; |
| 335 | |
| 336 | opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long); |
| 337 | |
| 338 | /* now, set-up the stuff to return the value in the end */ |
| 339 | /* we assume that the t_alloc call allocated a buffer that started */ |
| 340 | /* on a proper alignment */ |
| 341 | sock_option = (struct sock_option *)opt_ret->opt.buf; |
| 342 | |
| 343 | /* finally, call t_optmgmt. clear as mud. */ |
| 344 | if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) { |
| 345 | fprintf(where, |
| 346 | "netperf: create_xti_endpoint: XTI_RCVBUF option: t_errno %d\n", |
| 347 | t_errno); |
| 348 | fflush(where); |
| 349 | exit(1); |
| 350 | } |
| 351 | lsr_size = sock_option->value; |
| 352 | |
| 353 | /* this needs code */ |
| 354 | |
| 355 | if (debug) { |
| 356 | fprintf(where,"netperf: create_xti_endpoint: socket sizes determined...\n"); |
| 357 | fprintf(where," send: %d recv: %d\n", |
| 358 | lss_size,lsr_size); |
| 359 | fflush(where); |
| 360 | } |
| 361 | |
| 362 | #else /* XTI_SNDBUF */ |
| 363 | |
| 364 | lss_size = -1; |
| 365 | lsr_size = -1; |
| 366 | |
| 367 | #endif /* XTI_SNDBUF */ |
| 368 | |
| 369 | /* now, we may wish to enable the copy avoidance features on the */ |
| 370 | /* local system. of course, this may not be possible... */ |
| 371 | |
| 372 | if (loc_rcvavoid) { |
| 373 | fprintf(where, |
| 374 | "netperf: create_xti_endpoint: Could not enable receive copy avoidance"); |
| 375 | fflush(where); |
| 376 | loc_rcvavoid = 0; |
| 377 | } |
| 378 | |
| 379 | if (loc_sndavoid) { |
| 380 | fprintf(where, |
| 381 | "netperf: create_xti_endpoint: Could not enable send copy avoidance"); |
| 382 | fflush(where); |
| 383 | loc_sndavoid = 0; |
| 384 | } |
| 385 | |
| 386 | /* Now, we will see about setting the TCP_NODELAY flag on the local */ |
| 387 | /* socket. We will only do this for those systems that actually */ |
| 388 | /* support the option. If it fails, note the fact, but keep going. */ |
| 389 | /* If the user tries to enable TCP_NODELAY on a UDP socket, this */ |
| 390 | /* will cause an error to be displayed */ |
| 391 | |
| 392 | #ifdef TCP_NODELAY |
| 393 | if ((strcmp(test_name,"XTI_TCP_STREAM") == 0) || |
| 394 | (strcmp(test_name,"XTI_TCP_RR") == 0) || |
| 395 | (strcmp(test_name,"XTI_TCP_CRR") == 0)) { |
| 396 | if (loc_nodelay) { |
| 397 | /* we want to "negotiate" the option */ |
| 398 | opt_req->flags = T_NEGOTIATE; |
| 399 | } |
| 400 | else { |
| 401 | /* we want to accept the default, and know what it is. I assume */ |
| 402 | /* that when nothing has been changed, that T_CURRENT will return */ |
| 403 | /* the same as T_DEFAULT raj 3/95 */ |
| 404 | opt_req->flags = T_CURRENT; |
| 405 | } |
| 406 | |
| 407 | /* the first part is for the netbuf that holds the option we want */ |
| 408 | /* to negotiate or check the buffer of the netbuf points at the */ |
| 409 | /* socket options structure */ |
| 410 | |
| 411 | /* we assume that the t_alloc call allocated a buffer that started */ |
| 412 | /* on a proper alignment */ |
| 413 | sock_option = (struct sock_option *)opt_req->opt.buf; |
| 414 | |
| 415 | /* and next, set the fields in the sock_option structure */ |
| 416 | sock_option->myopthdr.level = INET_TCP; |
| 417 | sock_option->myopthdr.name = TCP_NODELAY; |
| 418 | sock_option->myopthdr.len = sizeof(struct t_opthdr) + sizeof(long); |
| 419 | sock_option->value = T_YES; |
| 420 | |
| 421 | opt_req->opt.len = sizeof(struct t_opthdr) + sizeof(long); |
| 422 | |
| 423 | /* now, set-up the stuff to return the value in the end */ |
| 424 | /* we assume that the t_alloc call allocated a buffer that started */ |
| 425 | /* on a proper alignment */ |
| 426 | sock_option = (struct sock_option *)opt_ret->opt.buf; |
| 427 | |
| 428 | /* finally, call t_optmgmt. clear as mud. */ |
| 429 | if (t_optmgmt(temp_socket,opt_req,opt_ret) == -1) { |
| 430 | fprintf(where, |
| 431 | "create_xti_endpoint: TCP_NODELAY option: errno %d t_errno %d\n", |
| 432 | errno, |
| 433 | t_errno); |
| 434 | fflush(where); |
| 435 | exit(1); |
| 436 | } |
| 437 | loc_nodelay = sock_option->value; |
| 438 | } |
| 439 | #else /* TCP_NODELAY */ |
| 440 | |
| 441 | loc_nodelay = 0; |
| 442 | |
| 443 | #endif /* TCP_NODELAY */ |
| 444 | |
| 445 | return(temp_socket); |
| 446 | |
| 447 | } |
| 448 | |
| 449 | |
| 450 | /* This routine implements the TCP unidirectional data transfer test */ |
| 451 | /* (a.k.a. stream) for the xti interface. It receives its */ |
| 452 | /* parameters via global variables from the shell and writes its */ |
| 453 | /* output to the standard output. */ |
| 454 | |
| 455 | |
| 456 | void |
| 457 | send_xti_tcp_stream(char remote_host[]) |
| 458 | { |
| 459 | |
| 460 | char *tput_title = "\ |
| 461 | Recv Send Send \n\ |
| 462 | Socket Socket Message Elapsed \n\ |
| 463 | Size Size Size Time Throughput \n\ |
| 464 | bytes bytes bytes secs. %s/sec \n\n"; |
| 465 | |
| 466 | char *tput_fmt_0 = |
| 467 | "%7.2f\n"; |
| 468 | |
| 469 | char *tput_fmt_1 = |
| 470 | "%6d %6d %6d %-6.2f %7.2f \n"; |
| 471 | |
| 472 | char *cpu_title = "\ |
| 473 | Recv Send Send Utilization Service Demand\n\ |
| 474 | Socket Socket Message Elapsed Send Recv Send Recv\n\ |
| 475 | Size Size Size Time Throughput local remote local remote\n\ |
| 476 | bytes bytes bytes secs. %-8.8s/s %% %c %% %c us/KB us/KB\n\n"; |
| 477 | |
| 478 | char *cpu_fmt_0 = |
| 479 | "%6.3f %c\n"; |
| 480 | |
| 481 | char *cpu_fmt_1 = |
| 482 | "%6d %6d %6d %-6.2f %7.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; |
| 483 | |
| 484 | char *ksink_fmt = "\n\ |
| 485 | Alignment Offset %-8.8s %-8.8s Sends %-8.8s Recvs\n\ |
| 486 | Local Remote Local Remote Xfered Per Per\n\ |
| 487 | Send Recv Send Recv Send (avg) Recv (avg)\n\ |
| 488 | %5d %5d %5d %5d %6.4g %6.2f %6d %6.2f %6d\n"; |
| 489 | |
| 490 | char *ksink_fmt2 = "\n\ |
| 491 | Maximum\n\ |
| 492 | Segment\n\ |
| 493 | Size (bytes)\n\ |
| 494 | %6d\n"; |
| 495 | |
| 496 | |
| 497 | float elapsed_time; |
| 498 | |
| 499 | #ifdef WANT_INTERVALS |
| 500 | int interval_count; |
| 501 | sigset_t signal_set; |
| 502 | #endif |
| 503 | |
| 504 | /* what we want is to have a buffer space that is at least one */ |
| 505 | /* send-size greater than our send window. this will insure that we */ |
| 506 | /* are never trying to re-use a buffer that may still be in the hands */ |
| 507 | /* of the transport. This buffer will be malloc'd after we have found */ |
| 508 | /* the size of the local senc socket buffer. We will want to deal */ |
| 509 | /* with alignment and offset concerns as well. */ |
| 510 | |
| 511 | int *message_int_ptr; |
| 512 | |
| 513 | struct ring_elt *send_ring; |
| 514 | |
| 515 | int len; |
| 516 | unsigned int nummessages; |
| 517 | SOCKET send_socket; |
| 518 | int bytes_remaining; |
| 519 | int tcp_mss = -1; /* possibly uninitialized on printf far below */ |
| 520 | |
| 521 | /* with links like fddi, one can send > 32 bits worth of bytes */ |
| 522 | /* during a test... ;-) at some point, this should probably become a */ |
| 523 | /* 64bit integral type, but those are not entirely common yet */ |
| 524 | |
| 525 | double bytes_sent; |
| 526 | |
| 527 | float local_cpu_utilization; |
| 528 | float local_service_demand; |
| 529 | float remote_cpu_utilization; |
| 530 | float remote_service_demand; |
| 531 | |
| 532 | double thruput; |
| 533 | |
| 534 | /* some addressing information */ |
| 535 | struct hostent *hp; |
| 536 | struct sockaddr_in server; |
| 537 | unsigned int addr; |
| 538 | |
| 539 | struct t_call server_call; |
| 540 | |
| 541 | struct xti_tcp_stream_request_struct *xti_tcp_stream_request; |
| 542 | struct xti_tcp_stream_response_struct *xti_tcp_stream_response; |
| 543 | struct xti_tcp_stream_results_struct *xti_tcp_stream_result; |
| 544 | |
| 545 | xti_tcp_stream_request = |
| 546 | (struct xti_tcp_stream_request_struct *)netperf_request.content.test_specific_data; |
| 547 | xti_tcp_stream_response = |
| 548 | (struct xti_tcp_stream_response_struct *)netperf_response.content.test_specific_data; |
| 549 | xti_tcp_stream_result = |
| 550 | (struct xti_tcp_stream_results_struct *)netperf_response.content.test_specific_data; |
| 551 | |
| 552 | #ifdef WANT_HISTOGRAM |
| 553 | time_hist = HIST_new(); |
| 554 | #endif /* WANT_HISTOGRAM */ |
| 555 | /* since we are now disconnected from the code that established the */ |
| 556 | /* control socket, and since we want to be able to use different */ |
| 557 | /* protocols and such, we are passed the name of the remote host and */ |
| 558 | /* must turn that into the test specific addressing information. */ |
| 559 | |
| 560 | bzero((char *)&server, |
| 561 | sizeof(server)); |
| 562 | |
| 563 | /* it would seem that while HP-UX will allow an IP address (as a */ |
| 564 | /* string) in a call to gethostbyname, other, less enlightened */ |
| 565 | /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ |
| 566 | /* order changed to check for IP address first. raj 7/96 */ |
| 567 | |
| 568 | if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { |
| 569 | /* it was not an IP address, try it as a name */ |
| 570 | if ((hp = gethostbyname(remote_host)) == NULL) { |
| 571 | /* we have no idea what it is */ |
| 572 | fprintf(where, |
| 573 | "establish_control: could not resolve the destination %s\n", |
| 574 | remote_host); |
| 575 | fflush(where); |
| 576 | exit(1); |
| 577 | } |
| 578 | else { |
| 579 | /* it was a valid remote_host */ |
| 580 | bcopy(hp->h_addr, |
| 581 | (char *)&server.sin_addr, |
| 582 | hp->h_length); |
| 583 | server.sin_family = hp->h_addrtype; |
| 584 | } |
| 585 | } |
| 586 | else { |
| 587 | /* it was a valid IP address */ |
| 588 | server.sin_addr.s_addr = addr; |
| 589 | server.sin_family = AF_INET; |
| 590 | } |
| 591 | |
| 592 | if ( print_headers ) { |
| 593 | /* we want to have some additional, interesting information in */ |
| 594 | /* the headers. we know some of it here, but not all, so we will */ |
| 595 | /* only print the test title here and will print the results */ |
| 596 | /* titles after the test is finished */ |
| 597 | fprintf(where,"XTI TCP STREAM TEST"); |
| 598 | fprintf(where," to %s", remote_host); |
| 599 | if (iteration_max > 1) { |
| 600 | fprintf(where, |
| 601 | " : +/-%3.1f%% @ %2d%% conf.", |
| 602 | interval/0.02, |
| 603 | confidence_level); |
| 604 | } |
| 605 | if (loc_nodelay || rem_nodelay) { |
| 606 | fprintf(where," : nodelay"); |
| 607 | } |
| 608 | if (loc_sndavoid || |
| 609 | loc_rcvavoid || |
| 610 | rem_sndavoid || |
| 611 | rem_rcvavoid) { |
| 612 | fprintf(where," : copy avoidance"); |
| 613 | } |
| 614 | #ifdef WANT_HISTOGRAM |
| 615 | fprintf(where," : histogram"); |
| 616 | #endif /* WANT_HISTOGRAM */ |
| 617 | #ifdef WANT_INTERVALS |
| 618 | fprintf(where," : interval"); |
| 619 | #endif /* WANT_INTERVALS */ |
| 620 | #ifdef DIRTY |
| 621 | fprintf(where," : dirty data"); |
| 622 | #endif /* DIRTY */ |
| 623 | fprintf(where,"\n"); |
| 624 | } |
| 625 | |
| 626 | send_ring = NULL; |
| 627 | confidence_iteration = 1; |
| 628 | init_stat(); |
| 629 | |
| 630 | /* we have a great-big while loop which controls the number of times */ |
| 631 | /* we run a particular test. this is for the calculation of a */ |
| 632 | /* confidence interval (I really should have stayed awake during */ |
| 633 | /* probstats :). If the user did not request confidence measurement */ |
| 634 | /* (no confidence is the default) then we will only go though the */ |
| 635 | /* loop once. the confidence stuff originates from the folks at IBM */ |
| 636 | |
| 637 | while (((confidence < 0) && (confidence_iteration < iteration_max)) || |
| 638 | (confidence_iteration <= iteration_min)) { |
| 639 | |
| 640 | /* initialize a few counters. we have to remember that we might be */ |
| 641 | /* going through the loop more than once. */ |
| 642 | |
| 643 | nummessages = 0; |
| 644 | bytes_sent = 0.0; |
| 645 | times_up = 0; |
| 646 | |
| 647 | /*set up the data socket */ |
| 648 | send_socket = create_xti_endpoint(loc_xti_device); |
| 649 | |
| 650 | if (send_socket == INVALID_SOCKET) { |
| 651 | perror("netperf: send_xti_tcp_stream: tcp stream data socket"); |
| 652 | exit(1); |
| 653 | } |
| 654 | |
| 655 | if (debug) { |
| 656 | fprintf(where,"send_xti_tcp_stream: send_socket obtained...\n"); |
| 657 | } |
| 658 | |
| 659 | /* it would seem that with XTI, there is no implicit bind on a */ |
| 660 | /* connect, so we have to make a call to t_bind. this is not */ |
| 661 | /* terribly convenient, but I suppose that "standard is better */ |
| 662 | /* than better" :) raj 2/95 */ |
| 663 | |
| 664 | if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) { |
| 665 | t_error("send_xti_tcp_stream: t_bind"); |
| 666 | exit(1); |
| 667 | } |
| 668 | |
| 669 | /* at this point, we have either retrieved the socket buffer sizes, */ |
| 670 | /* or have tried to set them, so now, we may want to set the send */ |
| 671 | /* size based on that (because the user either did not use a -m */ |
| 672 | /* option, or used one with an argument of 0). If the socket buffer */ |
| 673 | /* size is not available, we will set the send size to 4KB - no */ |
| 674 | /* particular reason, just arbitrary... */ |
| 675 | if (send_size == 0) { |
| 676 | if (lss_size > 0) { |
| 677 | send_size = lss_size; |
| 678 | } |
| 679 | else { |
| 680 | send_size = 4096; |
| 681 | } |
| 682 | } |
| 683 | |
| 684 | /* set-up the data buffer ring with the requested alignment and offset. */ |
| 685 | /* note also that we have allocated a quantity */ |
| 686 | /* of memory that is at least one send-size greater than our socket */ |
| 687 | /* buffer size. We want to be sure that there are at least two */ |
| 688 | /* buffers allocated - this can be a bit of a problem when the */ |
| 689 | /* send_size is bigger than the socket size, so we must check... the */ |
| 690 | /* user may have wanted to explicitly set the "width" of our send */ |
| 691 | /* buffers, we should respect that wish... */ |
| 692 | |
| 693 | if (send_width == 0) { |
| 694 | send_width = (lss_size/send_size) + 1; |
| 695 | if (send_width == 1) send_width++; |
| 696 | } |
| 697 | |
| 698 | if (send_ring == NULL) { |
| 699 | /* only allocate the send ring once. this is a networking test, */ |
| 700 | /* not a memory allocation test. this way, we do not need a */ |
| 701 | /* deallocate_buffer_ring() routine, and I don't feel like */ |
| 702 | /* writing one anyway :) raj 11/94 */ |
| 703 | send_ring = allocate_buffer_ring(send_width, |
| 704 | send_size, |
| 705 | local_send_align, |
| 706 | local_send_offset); |
| 707 | } |
| 708 | |
| 709 | /* If the user has requested cpu utilization measurements, we must */ |
| 710 | /* calibrate the cpu(s). We will perform this task within the tests */ |
| 711 | /* themselves. If the user has specified the cpu rate, then */ |
| 712 | /* calibrate_local_cpu will return rather quickly as it will have */ |
| 713 | /* nothing to do. If local_cpu_rate is zero, then we will go through */ |
| 714 | /* all the "normal" calibration stuff and return the rate back. */ |
| 715 | |
| 716 | if (local_cpu_usage) { |
| 717 | local_cpu_rate = calibrate_local_cpu(local_cpu_rate); |
| 718 | } |
| 719 | |
| 720 | /* Tell the remote end to do a listen. The server alters the socket */ |
| 721 | /* paramters on the other side at this point, hence the reason for */ |
| 722 | /* all the values being passed in the setup message. If the user did */ |
| 723 | /* not specify any of the parameters, they will be passed as 0, which */ |
| 724 | /* will indicate to the remote that no changes beyond the system's */ |
| 725 | /* default should be used. Alignment is the exception, it will */ |
| 726 | /* default to 1, which will be no alignment alterations. */ |
| 727 | |
| 728 | netperf_request.content.request_type = DO_XTI_TCP_STREAM; |
| 729 | xti_tcp_stream_request->send_buf_size = rss_size; |
| 730 | xti_tcp_stream_request->recv_buf_size = rsr_size; |
| 731 | xti_tcp_stream_request->receive_size = recv_size; |
| 732 | xti_tcp_stream_request->no_delay = rem_nodelay; |
| 733 | xti_tcp_stream_request->recv_alignment = remote_recv_align; |
| 734 | xti_tcp_stream_request->recv_offset = remote_recv_offset; |
| 735 | xti_tcp_stream_request->measure_cpu = remote_cpu_usage; |
| 736 | xti_tcp_stream_request->cpu_rate = remote_cpu_rate; |
| 737 | if (test_time) { |
| 738 | xti_tcp_stream_request->test_length = test_time; |
| 739 | } |
| 740 | else { |
| 741 | xti_tcp_stream_request->test_length = test_bytes; |
| 742 | } |
| 743 | xti_tcp_stream_request->so_rcvavoid = rem_rcvavoid; |
| 744 | xti_tcp_stream_request->so_sndavoid = rem_sndavoid; |
| 745 | |
| 746 | strcpy(xti_tcp_stream_request->xti_device, rem_xti_device); |
| 747 | |
| 748 | #ifdef __alpha |
| 749 | |
| 750 | /* ok - even on a DEC box, strings are strings. I didn't really want */ |
| 751 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 752 | /* send_ and recv_ _request and _response routines about the types, */ |
| 753 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 754 | /* solution would be to use XDR, but I am still leary of being able */ |
| 755 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 756 | { |
| 757 | int *charword; |
| 758 | int *initword; |
| 759 | int *lastword; |
| 760 | |
| 761 | initword = (int *) xti_tcp_stream_request->xti_device; |
| 762 | lastword = initword + ((strlen(rem_xti_device) + 3) / 4); |
| 763 | |
| 764 | for (charword = initword; |
| 765 | charword < lastword; |
| 766 | charword++) { |
| 767 | |
| 768 | *charword = ntohl(*charword); |
| 769 | } |
| 770 | } |
| 771 | #endif /* __alpha */ |
| 772 | |
| 773 | #ifdef DIRTY |
| 774 | xti_tcp_stream_request->dirty_count = rem_dirty_count; |
| 775 | xti_tcp_stream_request->clean_count = rem_clean_count; |
| 776 | #endif /* DIRTY */ |
| 777 | |
| 778 | |
| 779 | if (debug > 1) { |
| 780 | fprintf(where, |
| 781 | "netperf: send_xti_tcp_stream: requesting TCP stream test\n"); |
| 782 | } |
| 783 | |
| 784 | send_request(); |
| 785 | |
| 786 | /* The response from the remote will contain all of the relevant */ |
| 787 | /* socket parameters for this test type. We will put them back into */ |
| 788 | /* the variables here so they can be displayed if desired. The */ |
| 789 | /* remote will have calibrated CPU if necessary, and will have done */ |
| 790 | /* all the needed set-up we will have calibrated the cpu locally */ |
| 791 | /* before sending the request, and will grab the counter value right*/ |
| 792 | /* after the connect returns. The remote will grab the counter right*/ |
| 793 | /* after the accept call. This saves the hassle of extra messages */ |
| 794 | /* being sent for the TCP tests. */ |
| 795 | |
| 796 | recv_response(); |
| 797 | |
| 798 | if (!netperf_response.content.serv_errno) { |
| 799 | if (debug) |
| 800 | fprintf(where,"remote listen done.\n"); |
| 801 | rsr_size = xti_tcp_stream_response->recv_buf_size; |
| 802 | rss_size = xti_tcp_stream_response->send_buf_size; |
| 803 | rem_nodelay = xti_tcp_stream_response->no_delay; |
| 804 | remote_cpu_usage = xti_tcp_stream_response->measure_cpu; |
| 805 | remote_cpu_rate = xti_tcp_stream_response->cpu_rate; |
| 806 | |
| 807 | /* we have to make sure that the server port number is in */ |
| 808 | /* network order */ |
| 809 | server.sin_port = (short)xti_tcp_stream_response->data_port_number; |
| 810 | server.sin_port = htons(server.sin_port); |
| 811 | rem_rcvavoid = xti_tcp_stream_response->so_rcvavoid; |
| 812 | rem_sndavoid = xti_tcp_stream_response->so_sndavoid; |
| 813 | } |
| 814 | else { |
| 815 | Set_errno(netperf_response.content.serv_errno); |
| 816 | perror("netperf: remote error"); |
| 817 | |
| 818 | exit(1); |
| 819 | } |
| 820 | |
| 821 | /*Connect up to the remote port on the data socket */ |
| 822 | memset (&server_call, 0, sizeof(server_call)); |
| 823 | server_call.addr.maxlen = sizeof(struct sockaddr_in); |
| 824 | server_call.addr.len = sizeof(struct sockaddr_in); |
| 825 | server_call.addr.buf = (char *)&server; |
| 826 | |
| 827 | if (t_connect(send_socket, |
| 828 | &server_call, |
| 829 | NULL) == INVALID_SOCKET){ |
| 830 | t_error("netperf: send_xti_tcp_stream: data socket connect failed"); |
| 831 | printf(" port: %d\n",ntohs(server.sin_port)); |
| 832 | exit(1); |
| 833 | } |
| 834 | |
| 835 | /* Data Socket set-up is finished. If there were problems, either */ |
| 836 | /* the connect would have failed, or the previous response would */ |
| 837 | /* have indicated a problem. I failed to see the value of the */ |
| 838 | /* extra message after the accept on the remote. If it failed, */ |
| 839 | /* we'll see it here. If it didn't, we might as well start pumping */ |
| 840 | /* data. */ |
| 841 | |
| 842 | /* Set-up the test end conditions. For a stream test, they can be */ |
| 843 | /* either time or byte-count based. */ |
| 844 | |
| 845 | if (test_time) { |
| 846 | /* The user wanted to end the test after a period of time. */ |
| 847 | times_up = 0; |
| 848 | bytes_remaining = 0; |
| 849 | /* in previous revisions, we had the same code repeated throught */ |
| 850 | /* all the test suites. this was unnecessary, and meant more */ |
| 851 | /* work for me when I wanted to switch to POSIX signals, so I */ |
| 852 | /* have abstracted this out into a routine in netlib.c. if you */ |
| 853 | /* are experiencing signal problems, you might want to look */ |
| 854 | /* there. raj 11/94 */ |
| 855 | start_timer(test_time); |
| 856 | } |
| 857 | else { |
| 858 | /* The tester wanted to send a number of bytes. */ |
| 859 | bytes_remaining = test_bytes; |
| 860 | times_up = 1; |
| 861 | } |
| 862 | |
| 863 | /* The cpu_start routine will grab the current time and possibly */ |
| 864 | /* value of the idle counter for later use in measuring cpu */ |
| 865 | /* utilization and/or service demand and thruput. */ |
| 866 | |
| 867 | cpu_start(local_cpu_usage); |
| 868 | |
| 869 | #ifdef WANT_INTERVALS |
| 870 | if ((interval_burst) || (demo_mode)) { |
| 871 | /* zero means that we never pause, so we never should need the */ |
| 872 | /* interval timer, unless we are in demo_mode */ |
| 873 | start_itimer(interval_wate); |
| 874 | } |
| 875 | interval_count = interval_burst; |
| 876 | /* get the signal set for the call to sigsuspend */ |
| 877 | if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { |
| 878 | fprintf(where, |
| 879 | "send_xti_tcp_stream: unable to get sigmask errno %d\n", |
| 880 | errno); |
| 881 | fflush(where); |
| 882 | exit(1); |
| 883 | } |
| 884 | #endif /* WANT_INTERVALS */ |
| 885 | |
| 886 | /* before we start, initialize a few variables */ |
| 887 | |
| 888 | /* We use an "OR" to control test execution. When the test is */ |
| 889 | /* controlled by time, the byte count check will always return false. */ |
| 890 | /* When the test is controlled by byte count, the time test will */ |
| 891 | /* always return false. When the test is finished, the whole */ |
| 892 | /* expression will go false and we will stop sending data. */ |
| 893 | |
| 894 | while ((!times_up) || (bytes_remaining > 0)) { |
| 895 | |
| 896 | #ifdef DIRTY |
| 897 | /* we want to dirty some number of consecutive integers in the buffer */ |
| 898 | /* we are about to send. we may also want to bring some number of */ |
| 899 | /* them cleanly into the cache. The clean ones will follow any dirty */ |
| 900 | /* ones into the cache. at some point, we might want to replace */ |
| 901 | /* the rand() call with something from a table to reduce our call */ |
| 902 | /* overhead during the test, but it is not a high priority item. */ |
| 903 | access_buffer(send_ring->buffer_ptr, |
| 904 | send_size, |
| 905 | loc_dirty_count, |
| 906 | loc_clean_count); |
| 907 | #endif /* DIRTY */ |
| 908 | |
| 909 | #ifdef WANT_HISTOGRAM |
| 910 | /* timestamp just before we go into send and then again just after */ |
| 911 | /* we come out raj 8/94 */ |
| 912 | HIST_timestamp(&time_one); |
| 913 | #endif /* WANT_HISTOGRAM */ |
| 914 | |
| 915 | if((len=t_snd(send_socket, |
| 916 | send_ring->buffer_ptr, |
| 917 | send_size, |
| 918 | 0)) != send_size) { |
| 919 | if ((len >=0) || (errno == EINTR)) { |
| 920 | /* the test was interrupted, must be the end of test */ |
| 921 | break; |
| 922 | } |
| 923 | fprintf(where, |
| 924 | "send_xti_tcp_stream: t_snd: errno %d t_errno %d t_look 0x%.4x\n", |
| 925 | errno, |
| 926 | t_errno, |
| 927 | t_look(send_socket)); |
| 928 | fflush(where); |
| 929 | exit(1); |
| 930 | } |
| 931 | |
| 932 | #ifdef WANT_HISTOGRAM |
| 933 | /* timestamp the exit from the send call and update the histogram */ |
| 934 | HIST_timestamp(&time_two); |
| 935 | HIST_add(time_hist,delta_micro(&time_one,&time_two)); |
| 936 | #endif /* WANT_HISTOGRAM */ |
| 937 | |
| 938 | #ifdef WANT_INTERVALS |
| 939 | if (demo_mode) { |
| 940 | units_this_tick += send_size; |
| 941 | } |
| 942 | /* in this case, the interval count is the count-down couter */ |
| 943 | /* to decide to sleep for a little bit */ |
| 944 | if ((interval_burst) && (--interval_count == 0)) { |
| 945 | /* call sigsuspend and wait for the interval timer to get us */ |
| 946 | /* out */ |
| 947 | if (debug) { |
| 948 | fprintf(where,"about to suspend\n"); |
| 949 | fflush(where); |
| 950 | } |
| 951 | if (sigsuspend(&signal_set) == EFAULT) { |
| 952 | fprintf(where, |
| 953 | "send_xti_tcp_stream: fault with signal set!\n"); |
| 954 | fflush(where); |
| 955 | exit(1); |
| 956 | } |
| 957 | interval_count = interval_burst; |
| 958 | } |
| 959 | #endif /* WANT_INTERVALS */ |
| 960 | |
| 961 | /* now we want to move our pointer to the next position in the */ |
| 962 | /* data buffer...we may also want to wrap back to the "beginning" */ |
| 963 | /* of the bufferspace, so we will mod the number of messages sent */ |
| 964 | /* by the send width, and use that to calculate the offset to add */ |
| 965 | /* to the base pointer. */ |
| 966 | nummessages++; |
| 967 | send_ring = send_ring->next; |
| 968 | if (bytes_remaining) { |
| 969 | bytes_remaining -= send_size; |
| 970 | } |
| 971 | } |
| 972 | |
| 973 | /* The test is over. Flush the buffers to the remote end. We do a */ |
| 974 | /* graceful release to insure that all data has been taken by the */ |
| 975 | /* remote. */ |
| 976 | |
| 977 | /* but first, if the verbosity is greater than 1, find-out what */ |
| 978 | /* the TCP maximum segment_size was (if possible) */ |
| 979 | if (verbosity > 1) { |
| 980 | tcp_mss = -1; |
| 981 | get_xti_info(send_socket,info_struct); |
| 982 | } |
| 983 | |
| 984 | if (t_sndrel(send_socket) == -1) { |
| 985 | t_error("netperf: cannot shutdown tcp stream socket"); |
| 986 | exit(1); |
| 987 | } |
| 988 | |
| 989 | /* hang a t_rcvrel() off the socket to block until the remote has */ |
| 990 | /* brought all the data up into the application. it will do a */ |
| 991 | /* t_sedrel to cause a FIN to be sent our way. We will assume that */ |
| 992 | /* any exit from the t_rcvrel() call is good... raj 2/95 */ |
| 993 | |
| 994 | if (debug > 1) { |
| 995 | fprintf(where,"about to hang a receive for graceful release.\n"); |
| 996 | fflush(where); |
| 997 | } |
| 998 | |
| 999 | t_rcvrel(send_socket); |
| 1000 | |
| 1001 | /* this call will always give us the elapsed time for the test, and */ |
| 1002 | /* will also store-away the necessaries for cpu utilization */ |
| 1003 | |
| 1004 | cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */ |
| 1005 | /* measured and how */ |
| 1006 | /* long did we really */ |
| 1007 | /* run? */ |
| 1008 | |
| 1009 | /* Get the statistics from the remote end. The remote will have */ |
| 1010 | /* calculated service demand and all those interesting things. If it */ |
| 1011 | /* wasn't supposed to care, it will return obvious values. */ |
| 1012 | |
| 1013 | recv_response(); |
| 1014 | if (!netperf_response.content.serv_errno) { |
| 1015 | if (debug) |
| 1016 | fprintf(where,"remote results obtained\n"); |
| 1017 | } |
| 1018 | else { |
| 1019 | Set_errno(netperf_response.content.serv_errno); |
| 1020 | perror("netperf: remote error"); |
| 1021 | |
| 1022 | exit(1); |
| 1023 | } |
| 1024 | |
| 1025 | /* We now calculate what our thruput was for the test. In the future, */ |
| 1026 | /* we may want to include a calculation of the thruput measured by */ |
| 1027 | /* the remote, but it should be the case that for a TCP stream test, */ |
| 1028 | /* that the two numbers should be *very* close... We calculate */ |
| 1029 | /* bytes_sent regardless of the way the test length was controlled. */ |
| 1030 | /* If it was time, we needed to, and if it was by bytes, the user may */ |
| 1031 | /* have specified a number of bytes that wasn't a multiple of the */ |
| 1032 | /* send_size, so we really didn't send what he asked for ;-) */ |
| 1033 | |
| 1034 | bytes_sent = xti_tcp_stream_result->bytes_received; |
| 1035 | |
| 1036 | thruput = calc_thruput(bytes_sent); |
| 1037 | |
| 1038 | if (local_cpu_usage || remote_cpu_usage) { |
| 1039 | /* We must now do a little math for service demand and cpu */ |
| 1040 | /* utilization for the system(s) */ |
| 1041 | /* Of course, some of the information might be bogus because */ |
| 1042 | /* there was no idle counter in the kernel(s). We need to make */ |
| 1043 | /* a note of this for the user's benefit...*/ |
| 1044 | if (local_cpu_usage) { |
| 1045 | |
| 1046 | local_cpu_utilization = calc_cpu_util(0.0); |
| 1047 | local_service_demand = calc_service_demand(bytes_sent, |
| 1048 | 0.0, |
| 1049 | 0.0, |
| 1050 | 0); |
| 1051 | } |
| 1052 | else { |
| 1053 | local_cpu_utilization = -1.0; |
| 1054 | local_service_demand = -1.0; |
| 1055 | } |
| 1056 | |
| 1057 | if (remote_cpu_usage) { |
| 1058 | |
| 1059 | remote_cpu_utilization = xti_tcp_stream_result->cpu_util; |
| 1060 | remote_service_demand = calc_service_demand(bytes_sent, |
| 1061 | 0.0, |
| 1062 | remote_cpu_utilization, |
| 1063 | xti_tcp_stream_result->num_cpus); |
| 1064 | } |
| 1065 | else { |
| 1066 | remote_cpu_utilization = -1.0; |
| 1067 | remote_service_demand = -1.0; |
| 1068 | } |
| 1069 | } |
| 1070 | else { |
| 1071 | /* we were not measuring cpu, for the confidence stuff, we */ |
| 1072 | /* should make it -1.0 */ |
| 1073 | local_cpu_utilization = -1.0; |
| 1074 | local_service_demand = -1.0; |
| 1075 | remote_cpu_utilization = -1.0; |
| 1076 | remote_service_demand = -1.0; |
| 1077 | } |
| 1078 | |
| 1079 | /* at this point, we want to calculate the confidence information. */ |
| 1080 | /* if debugging is on, calculate_confidence will print-out the */ |
| 1081 | /* parameters we pass it */ |
| 1082 | |
| 1083 | calculate_confidence(confidence_iteration, |
| 1084 | elapsed_time, |
| 1085 | thruput, |
| 1086 | local_cpu_utilization, |
| 1087 | remote_cpu_utilization, |
| 1088 | local_service_demand, |
| 1089 | remote_service_demand); |
| 1090 | |
| 1091 | |
| 1092 | confidence_iteration++; |
| 1093 | } |
| 1094 | |
| 1095 | /* at this point, we have finished making all the runs that we */ |
| 1096 | /* will be making. so, we should extract what the calcuated values */ |
| 1097 | /* are for all the confidence stuff. we could make the values */ |
| 1098 | /* global, but that seemed a little messy, and it did not seem worth */ |
| 1099 | /* all the mucking with header files. so, we create a routine much */ |
| 1100 | /* like calcualte_confidence, which just returns the mean values. */ |
| 1101 | /* raj 11/94 */ |
| 1102 | |
| 1103 | retrieve_confident_values(&elapsed_time, |
| 1104 | &thruput, |
| 1105 | &local_cpu_utilization, |
| 1106 | &remote_cpu_utilization, |
| 1107 | &local_service_demand, |
| 1108 | &remote_service_demand); |
| 1109 | |
| 1110 | /* We are now ready to print all the information. If the user */ |
| 1111 | /* has specified zero-level verbosity, we will just print the */ |
| 1112 | /* local service demand, or the remote service demand. If the */ |
| 1113 | /* user has requested verbosity level 1, he will get the basic */ |
| 1114 | /* "streamperf" numbers. If the user has specified a verbosity */ |
| 1115 | /* of greater than 1, we will display a veritable plethora of */ |
| 1116 | /* background information from outside of this block as it it */ |
| 1117 | /* not cpu_measurement specific... */ |
| 1118 | |
| 1119 | if (confidence < 0) { |
| 1120 | /* we did not hit confidence, but were we asked to look for it? */ |
| 1121 | if (iteration_max > 1) { |
| 1122 | display_confidence(); |
| 1123 | } |
| 1124 | } |
| 1125 | |
| 1126 | if (local_cpu_usage || remote_cpu_usage) { |
| 1127 | local_cpu_method = format_cpu_method(cpu_method); |
| 1128 | remote_cpu_method = format_cpu_method(xti_tcp_stream_result->cpu_method); |
| 1129 | |
| 1130 | switch (verbosity) { |
| 1131 | case 0: |
| 1132 | if (local_cpu_usage) { |
| 1133 | fprintf(where, |
| 1134 | cpu_fmt_0, |
| 1135 | local_service_demand, |
| 1136 | local_cpu_method); |
| 1137 | } |
| 1138 | else { |
| 1139 | fprintf(where, |
| 1140 | cpu_fmt_0, |
| 1141 | remote_service_demand, |
| 1142 | remote_cpu_method); |
| 1143 | } |
| 1144 | break; |
| 1145 | case 1: |
| 1146 | case 2: |
| 1147 | if (print_headers) { |
| 1148 | fprintf(where, |
| 1149 | cpu_title, |
| 1150 | format_units(), |
| 1151 | local_cpu_method, |
| 1152 | remote_cpu_method); |
| 1153 | } |
| 1154 | |
| 1155 | fprintf(where, |
| 1156 | cpu_fmt_1, /* the format string */ |
| 1157 | rsr_size, /* remote recvbuf size */ |
| 1158 | lss_size, /* local sendbuf size */ |
| 1159 | send_size, /* how large were the sends */ |
| 1160 | elapsed_time, /* how long was the test */ |
| 1161 | thruput, /* what was the xfer rate */ |
| 1162 | local_cpu_utilization, /* local cpu */ |
| 1163 | remote_cpu_utilization, /* remote cpu */ |
| 1164 | local_service_demand, /* local service demand */ |
| 1165 | remote_service_demand); /* remote service demand */ |
| 1166 | break; |
| 1167 | } |
| 1168 | } |
| 1169 | else { |
| 1170 | /* The tester did not wish to measure service demand. */ |
| 1171 | |
| 1172 | switch (verbosity) { |
| 1173 | case 0: |
| 1174 | fprintf(where, |
| 1175 | tput_fmt_0, |
| 1176 | thruput); |
| 1177 | break; |
| 1178 | case 1: |
| 1179 | case 2: |
| 1180 | if (print_headers) { |
| 1181 | fprintf(where,tput_title,format_units()); |
| 1182 | } |
| 1183 | fprintf(where, |
| 1184 | tput_fmt_1, /* the format string */ |
| 1185 | rsr_size, /* remote recvbuf size */ |
| 1186 | lss_size, /* local sendbuf size */ |
| 1187 | send_size, /* how large were the sends */ |
| 1188 | elapsed_time, /* how long did it take */ |
| 1189 | thruput);/* how fast did it go */ |
| 1190 | break; |
| 1191 | } |
| 1192 | } |
| 1193 | |
| 1194 | /* it would be a good thing to include information about some of the */ |
| 1195 | /* other parameters that may have been set for this test, but at the */ |
| 1196 | /* moment, I do not wish to figure-out all the formatting, so I will */ |
| 1197 | /* just put this comment here to help remind me that it is something */ |
| 1198 | /* that should be done at a later time. */ |
| 1199 | |
| 1200 | if (verbosity > 1) { |
| 1201 | /* The user wanted to know it all, so we will give it to him. */ |
| 1202 | /* This information will include as much as we can find about */ |
| 1203 | /* TCP statistics, the alignments of the sends and receives */ |
| 1204 | /* and all that sort of rot... */ |
| 1205 | |
| 1206 | /* this stuff needs to be worked-out in the presence of confidence */ |
| 1207 | /* intervals and multiple iterations of the test... raj 11/94 */ |
| 1208 | |
| 1209 | fprintf(where, |
| 1210 | ksink_fmt, |
| 1211 | "Bytes", |
| 1212 | "Bytes", |
| 1213 | "Bytes", |
| 1214 | local_send_align, |
| 1215 | remote_recv_align, |
| 1216 | local_send_offset, |
| 1217 | remote_recv_offset, |
| 1218 | bytes_sent, |
| 1219 | bytes_sent / (double)nummessages, |
| 1220 | nummessages, |
| 1221 | bytes_sent / (double)xti_tcp_stream_result->recv_calls, |
| 1222 | xti_tcp_stream_result->recv_calls); |
| 1223 | fprintf(where, |
| 1224 | ksink_fmt2, |
| 1225 | tcp_mss); |
| 1226 | fflush(where); |
| 1227 | #ifdef WANT_HISTOGRAM |
| 1228 | fprintf(where,"\n\nHistogram of time spent in send() call.\n"); |
| 1229 | fflush(where); |
| 1230 | HIST_report(time_hist); |
| 1231 | #endif /* WANT_HISTOGRAM */ |
| 1232 | } |
| 1233 | |
| 1234 | } |
| 1235 | |
| 1236 | |
| 1237 | /* This is the server-side routine for the tcp stream test. It is */ |
| 1238 | /* implemented as one routine. I could break things-out somewhat, but */ |
| 1239 | /* didn't feel it was necessary. */ |
| 1240 | |
| 1241 | void |
| 1242 | recv_xti_tcp_stream() |
| 1243 | { |
| 1244 | |
| 1245 | struct sockaddr_in myaddr_in, peeraddr_in; |
| 1246 | struct t_bind bind_req, bind_resp; |
| 1247 | struct t_call call_req; |
| 1248 | |
| 1249 | SOCKET s_listen,s_data; |
| 1250 | int addrlen; |
| 1251 | int len; |
| 1252 | unsigned int receive_calls; |
| 1253 | float elapsed_time; |
| 1254 | double bytes_received; |
| 1255 | |
| 1256 | struct ring_elt *recv_ring; |
| 1257 | |
| 1258 | int *message_int_ptr; |
| 1259 | int i; |
| 1260 | |
| 1261 | struct xti_tcp_stream_request_struct *xti_tcp_stream_request; |
| 1262 | struct xti_tcp_stream_response_struct *xti_tcp_stream_response; |
| 1263 | struct xti_tcp_stream_results_struct *xti_tcp_stream_results; |
| 1264 | |
| 1265 | xti_tcp_stream_request = |
| 1266 | (struct xti_tcp_stream_request_struct *)netperf_request.content.test_specific_data; |
| 1267 | xti_tcp_stream_response = |
| 1268 | (struct xti_tcp_stream_response_struct *)netperf_response.content.test_specific_data; |
| 1269 | xti_tcp_stream_results = |
| 1270 | (struct xti_tcp_stream_results_struct *)netperf_response.content.test_specific_data; |
| 1271 | |
| 1272 | if (debug) { |
| 1273 | fprintf(where,"netserver: recv_xti_tcp_stream: entered...\n"); |
| 1274 | fflush(where); |
| 1275 | } |
| 1276 | |
| 1277 | /* We want to set-up the listen socket with all the desired */ |
| 1278 | /* parameters and then let the initiator know that all is ready. If */ |
| 1279 | /* socket size defaults are to be used, then the initiator will have */ |
| 1280 | /* sent us 0's. If the socket sizes cannot be changed, then we will */ |
| 1281 | /* send-back what they are. If that information cannot be determined, */ |
| 1282 | /* then we send-back -1's for the sizes. If things go wrong for any */ |
| 1283 | /* reason, we will drop back ten yards and punt. */ |
| 1284 | |
| 1285 | /* If anything goes wrong, we want the remote to know about it. It */ |
| 1286 | /* would be best if the error that the remote reports to the user is */ |
| 1287 | /* the actual error we encountered, rather than some bogus unexpected */ |
| 1288 | /* response type message. */ |
| 1289 | |
| 1290 | if (debug) { |
| 1291 | fprintf(where,"recv_xti_tcp_stream: setting the response type...\n"); |
| 1292 | fflush(where); |
| 1293 | } |
| 1294 | |
| 1295 | netperf_response.content.response_type = XTI_TCP_STREAM_RESPONSE; |
| 1296 | |
| 1297 | if (debug) { |
| 1298 | fprintf(where,"recv_xti_tcp_stream: the response type is set...\n"); |
| 1299 | fflush(where); |
| 1300 | } |
| 1301 | |
| 1302 | /* We now alter the message_ptr variable to be at the desired */ |
| 1303 | /* alignment with the desired offset. */ |
| 1304 | |
| 1305 | if (debug) { |
| 1306 | fprintf(where,"recv_xti_tcp_stream: requested alignment of %d\n", |
| 1307 | xti_tcp_stream_request->recv_alignment); |
| 1308 | fflush(where); |
| 1309 | } |
| 1310 | |
| 1311 | /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ |
| 1312 | /* can put in OUR values !-) At some point, we may want to nail this */ |
| 1313 | /* socket to a particular network-level address, but for now, */ |
| 1314 | /* INADDR_ANY should be just fine. */ |
| 1315 | |
| 1316 | bzero((char *)&myaddr_in, |
| 1317 | sizeof(myaddr_in)); |
| 1318 | myaddr_in.sin_family = AF_INET; |
| 1319 | myaddr_in.sin_addr.s_addr = INADDR_ANY; |
| 1320 | myaddr_in.sin_port = 0; |
| 1321 | |
| 1322 | /* Grab a socket to listen on, and then listen on it. */ |
| 1323 | |
| 1324 | if (debug) { |
| 1325 | fprintf(where,"recv_xti_tcp_stream: grabbing a socket...\n"); |
| 1326 | fflush(where); |
| 1327 | } |
| 1328 | |
| 1329 | /* create_xti_endpoint expects to find some things in the global */ |
| 1330 | /* variables, so set the globals based on the values in the request. */ |
| 1331 | /* once the socket has been created, we will set the response values */ |
| 1332 | /* based on the updated value of those globals. raj 7/94 */ |
| 1333 | lss_size = xti_tcp_stream_request->send_buf_size; |
| 1334 | lsr_size = xti_tcp_stream_request->recv_buf_size; |
| 1335 | loc_nodelay = xti_tcp_stream_request->no_delay; |
| 1336 | loc_rcvavoid = xti_tcp_stream_request->so_rcvavoid; |
| 1337 | loc_sndavoid = xti_tcp_stream_request->so_sndavoid; |
| 1338 | |
| 1339 | #ifdef __alpha |
| 1340 | |
| 1341 | /* ok - even on a DEC box, strings are strings. I din't really want */ |
| 1342 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 1343 | /* send_ and recv_ _request and _response routines about the types, */ |
| 1344 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 1345 | /* solution would be to use XDR, but I am still leary of being able */ |
| 1346 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 1347 | { |
| 1348 | int *charword; |
| 1349 | int *initword; |
| 1350 | int *lastword; |
| 1351 | |
| 1352 | initword = (int *) xti_tcp_stream_request->xti_device; |
| 1353 | lastword = initword + ((xti_tcp_stream_request->dev_name_len + 3) / 4); |
| 1354 | |
| 1355 | for (charword = initword; |
| 1356 | charword < lastword; |
| 1357 | charword++) { |
| 1358 | |
| 1359 | *charword = htonl(*charword); |
| 1360 | } |
| 1361 | } |
| 1362 | |
| 1363 | #endif /* __alpha */ |
| 1364 | |
| 1365 | s_listen = create_xti_endpoint(xti_tcp_stream_request->xti_device); |
| 1366 | |
| 1367 | if (s_listen == INVALID_SOCKET) { |
| 1368 | netperf_response.content.serv_errno = errno; |
| 1369 | send_response(); |
| 1370 | exit(1); |
| 1371 | } |
| 1372 | |
| 1373 | /* Let's get an address assigned to this socket so we can tell the */ |
| 1374 | /* initiator how to reach the data socket. There may be a desire to */ |
| 1375 | /* nail this socket to a specific IP address in a multi-homed, */ |
| 1376 | /* multi-connection situation, but for now, we'll ignore the issue */ |
| 1377 | /* and concentrate on single connection testing. */ |
| 1378 | |
| 1379 | bind_req.addr.maxlen = sizeof(struct sockaddr_in); |
| 1380 | bind_req.addr.len = sizeof(struct sockaddr_in); |
| 1381 | bind_req.addr.buf = (char *)&myaddr_in; |
| 1382 | bind_req.qlen = 1; |
| 1383 | |
| 1384 | bind_resp.addr.maxlen = sizeof(struct sockaddr_in); |
| 1385 | bind_resp.addr.len = sizeof(struct sockaddr_in); |
| 1386 | bind_resp.addr.buf = (char *)&myaddr_in; |
| 1387 | bind_resp.qlen = 1; |
| 1388 | |
| 1389 | if (t_bind(s_listen, |
| 1390 | &bind_req, |
| 1391 | &bind_resp) == SOCKET_ERROR) { |
| 1392 | netperf_response.content.serv_errno = t_errno; |
| 1393 | close(s_listen); |
| 1394 | send_response(); |
| 1395 | |
| 1396 | exit(1); |
| 1397 | } |
| 1398 | |
| 1399 | if (debug) { |
| 1400 | fprintf(where, |
| 1401 | "recv_xti_tcp_stream: t_bind complete port %d\n", |
| 1402 | ntohs(myaddr_in.sin_port)); |
| 1403 | fflush(where); |
| 1404 | } |
| 1405 | |
| 1406 | /* what sort of sizes did we end-up with? */ |
| 1407 | if (xti_tcp_stream_request->receive_size == 0) { |
| 1408 | if (lsr_size > 0) { |
| 1409 | recv_size = lsr_size; |
| 1410 | } |
| 1411 | else { |
| 1412 | recv_size = 4096; |
| 1413 | } |
| 1414 | } |
| 1415 | else { |
| 1416 | recv_size = xti_tcp_stream_request->receive_size; |
| 1417 | } |
| 1418 | |
| 1419 | /* we want to set-up our recv_ring in a manner analagous to what we */ |
| 1420 | /* do on the sending side. this is more for the sake of symmetry */ |
| 1421 | /* than for the needs of say copy avoidance, but it might also be */ |
| 1422 | /* more realistic - this way one could conceivably go with a */ |
| 1423 | /* double-buffering scheme when taking the data an putting it into */ |
| 1424 | /* the filesystem or something like that. raj 7/94 */ |
| 1425 | |
| 1426 | if (recv_width == 0) { |
| 1427 | recv_width = (lsr_size/recv_size) + 1; |
| 1428 | if (recv_width == 1) recv_width++; |
| 1429 | } |
| 1430 | |
| 1431 | recv_ring = allocate_buffer_ring(recv_width, |
| 1432 | recv_size, |
| 1433 | xti_tcp_stream_request->recv_alignment, |
| 1434 | xti_tcp_stream_request->recv_offset); |
| 1435 | |
| 1436 | if (debug) { |
| 1437 | fprintf(where,"recv_xti_tcp_stream: recv alignment and offset set...\n"); |
| 1438 | fflush(where); |
| 1439 | } |
| 1440 | |
| 1441 | /* Now myaddr_in contains the port and the internet address this is */ |
| 1442 | /* returned to the sender also implicitly telling the sender that the */ |
| 1443 | /* socket buffer sizing has been done. */ |
| 1444 | |
| 1445 | xti_tcp_stream_response->data_port_number = |
| 1446 | (int) ntohs(myaddr_in.sin_port); |
| 1447 | netperf_response.content.serv_errno = 0; |
| 1448 | |
| 1449 | /* But wait, there's more. If the initiator wanted cpu measurements, */ |
| 1450 | /* then we must call the calibrate routine, which will return the max */ |
| 1451 | /* rate back to the initiator. If the CPU was not to be measured, or */ |
| 1452 | /* something went wrong with the calibration, we will return a -1 to */ |
| 1453 | /* the initiator. */ |
| 1454 | |
| 1455 | xti_tcp_stream_response->cpu_rate = 0.0; /* assume no cpu */ |
| 1456 | if (xti_tcp_stream_request->measure_cpu) { |
| 1457 | xti_tcp_stream_response->measure_cpu = 1; |
| 1458 | xti_tcp_stream_response->cpu_rate = |
| 1459 | calibrate_local_cpu(xti_tcp_stream_request->cpu_rate); |
| 1460 | } |
| 1461 | else { |
| 1462 | xti_tcp_stream_response->measure_cpu = 0; |
| 1463 | } |
| 1464 | |
| 1465 | /* before we send the response back to the initiator, pull some of */ |
| 1466 | /* the socket parms from the globals */ |
| 1467 | xti_tcp_stream_response->send_buf_size = lss_size; |
| 1468 | xti_tcp_stream_response->recv_buf_size = lsr_size; |
| 1469 | xti_tcp_stream_response->no_delay = loc_nodelay; |
| 1470 | xti_tcp_stream_response->so_rcvavoid = loc_rcvavoid; |
| 1471 | xti_tcp_stream_response->so_sndavoid = loc_sndavoid; |
| 1472 | xti_tcp_stream_response->receive_size = recv_size; |
| 1473 | |
| 1474 | send_response(); |
| 1475 | |
| 1476 | /* Now, let's set-up the socket to listen for connections. for xti, */ |
| 1477 | /* the t_listen call is blocking by default - this is different */ |
| 1478 | /* semantics from BSD - probably has to do with being able to reject */ |
| 1479 | /* a call before an accept */ |
| 1480 | call_req.addr.maxlen = sizeof(struct sockaddr_in); |
| 1481 | call_req.addr.len = sizeof(struct sockaddr_in); |
| 1482 | call_req.addr.buf = (char *)&peeraddr_in; |
| 1483 | call_req.opt.maxlen = 0; |
| 1484 | call_req.opt.len = 0; |
| 1485 | call_req.opt.buf = NULL; |
| 1486 | call_req.udata.maxlen= 0; |
| 1487 | call_req.udata.len = 0; |
| 1488 | call_req.udata.buf = 0; |
| 1489 | |
| 1490 | if (t_listen(s_listen, &call_req) == -1) { |
| 1491 | fprintf(where, |
| 1492 | "recv_xti_tcp_stream: t_listen: errno %d t_errno %d\n", |
| 1493 | errno, |
| 1494 | t_errno); |
| 1495 | fflush(where); |
| 1496 | netperf_response.content.serv_errno = t_errno; |
| 1497 | close(s_listen); |
| 1498 | send_response(); |
| 1499 | exit(1); |
| 1500 | } |
| 1501 | |
| 1502 | if (debug) { |
| 1503 | fprintf(where, |
| 1504 | "recv_xti_tcp_stream: t_listen complete t_look 0x%.4x\n", |
| 1505 | t_look(s_listen)); |
| 1506 | fflush(where); |
| 1507 | } |
| 1508 | |
| 1509 | /* now just rubber stamp the thing. we want to use the same fd? so */ |
| 1510 | /* we will just equate s_data with s_listen. this seems a little */ |
| 1511 | /* hokey to me, but then I'm a BSD biggot still. raj 2/95 */ |
| 1512 | s_data = s_listen; |
| 1513 | if (t_accept(s_listen, |
| 1514 | s_data, |
| 1515 | &call_req) == -1) { |
| 1516 | fprintf(where, |
| 1517 | "recv_xti_tcp_stream: t_accept: errno %d t_errno %d\n", |
| 1518 | errno, |
| 1519 | t_errno); |
| 1520 | fflush(where); |
| 1521 | close(s_listen); |
| 1522 | exit(1); |
| 1523 | } |
| 1524 | |
| 1525 | if (debug) { |
| 1526 | fprintf(where, |
| 1527 | "recv_xti_tcp_stream: t_accept complete t_look 0x%.4x\n", |
| 1528 | t_look(s_data)); |
| 1529 | fprintf(where, |
| 1530 | " remote is %s port %d\n", |
| 1531 | inet_ntoa(*(struct in_addr *)&peeraddr_in.sin_addr), |
| 1532 | ntohs(peeraddr_in.sin_port)); |
| 1533 | fflush(where); |
| 1534 | } |
| 1535 | |
| 1536 | /* Now it's time to start receiving data on the connection. We will */ |
| 1537 | /* first grab the apropriate counters and then start grabbing. */ |
| 1538 | |
| 1539 | cpu_start(xti_tcp_stream_request->measure_cpu); |
| 1540 | |
| 1541 | /* The loop will exit when the sender does a t_sndrel, which will */ |
| 1542 | /* return T_LOOK error from the t_recv */ |
| 1543 | |
| 1544 | #ifdef DIRTY |
| 1545 | /* we want to dirty some number of consecutive integers in the buffer */ |
| 1546 | /* we are about to recv. we may also want to bring some number of */ |
| 1547 | /* them cleanly into the cache. The clean ones will follow any dirty */ |
| 1548 | /* ones into the cache. */ |
| 1549 | |
| 1550 | access_buffer(recv_ring->buffer_ptr, |
| 1551 | recv_size, |
| 1552 | xti_tcp_stream_request->dirty_count, |
| 1553 | xti_tcp_stream_request->clean_count); |
| 1554 | |
| 1555 | #endif /* DIRTY */ |
| 1556 | |
| 1557 | bytes_received = 0; |
| 1558 | receive_calls = 0; |
| 1559 | |
| 1560 | while ((len = t_rcv(s_data, |
| 1561 | recv_ring->buffer_ptr, |
| 1562 | recv_size, |
| 1563 | &xti_flags)) != -1) { |
| 1564 | bytes_received += len; |
| 1565 | receive_calls++; |
| 1566 | |
| 1567 | /* more to the next buffer in the recv_ring */ |
| 1568 | recv_ring = recv_ring->next; |
| 1569 | |
| 1570 | #ifdef DIRTY |
| 1571 | |
| 1572 | access_buffer(recv_ring->buffer_ptr, |
| 1573 | recv_size, |
| 1574 | xti_tcp_stream_request->dirty_count, |
| 1575 | xti_tcp_stream_request->clean_count); |
| 1576 | |
| 1577 | #endif /* DIRTY */ |
| 1578 | } |
| 1579 | |
| 1580 | if (t_look(s_data) == T_ORDREL) { |
| 1581 | /* this is a normal exit path */ |
| 1582 | if (debug) { |
| 1583 | fprintf(where, |
| 1584 | "recv_xti_tcp_stream: t_rcv T_ORDREL indicated\n"); |
| 1585 | fflush(where); |
| 1586 | } |
| 1587 | } |
| 1588 | else { |
| 1589 | /* something went wrong */ |
| 1590 | fprintf(where, |
| 1591 | "recv_xti_tcp_stream: t_rcv: errno %d t_errno %d len %d", |
| 1592 | errno, |
| 1593 | t_errno, |
| 1594 | len); |
| 1595 | fprintf(where, |
| 1596 | " t_look 0x%.4x", |
| 1597 | t_look(s_data)); |
| 1598 | fflush(where); |
| 1599 | netperf_response.content.serv_errno = t_errno; |
| 1600 | send_response(); |
| 1601 | exit(1); |
| 1602 | } |
| 1603 | |
| 1604 | /* receive the release and let the initiator know that we have */ |
| 1605 | /* received all the data. raj 3/95 */ |
| 1606 | |
| 1607 | if (t_rcvrel(s_data) == -1) { |
| 1608 | netperf_response.content.serv_errno = errno; |
| 1609 | send_response(); |
| 1610 | exit(1); |
| 1611 | } |
| 1612 | |
| 1613 | if (debug) { |
| 1614 | fprintf(where, |
| 1615 | "recv_xti_tcp_stream: t_rcvrel complete\n"); |
| 1616 | fflush(where); |
| 1617 | } |
| 1618 | |
| 1619 | if (t_sndrel(s_data) == -1) { |
| 1620 | netperf_response.content.serv_errno = errno; |
| 1621 | send_response(); |
| 1622 | exit(1); |
| 1623 | } |
| 1624 | |
| 1625 | if (debug) { |
| 1626 | fprintf(where, |
| 1627 | "recv_xti_tcp_stream: t_sndrel complete\n"); |
| 1628 | fflush(where); |
| 1629 | } |
| 1630 | |
| 1631 | cpu_stop(xti_tcp_stream_request->measure_cpu,&elapsed_time); |
| 1632 | |
| 1633 | /* send the results to the sender */ |
| 1634 | |
| 1635 | if (debug) { |
| 1636 | fprintf(where, |
| 1637 | "recv_xti_tcp_stream: got %g bytes\n", |
| 1638 | bytes_received); |
| 1639 | fprintf(where, |
| 1640 | "recv_xti_tcp_stream: got %d recvs\n", |
| 1641 | receive_calls); |
| 1642 | fflush(where); |
| 1643 | } |
| 1644 | |
| 1645 | xti_tcp_stream_results->bytes_received = bytes_received; |
| 1646 | xti_tcp_stream_results->elapsed_time = elapsed_time; |
| 1647 | xti_tcp_stream_results->recv_calls = receive_calls; |
| 1648 | |
| 1649 | if (xti_tcp_stream_request->measure_cpu) { |
| 1650 | xti_tcp_stream_results->cpu_util = calc_cpu_util(0.0); |
| 1651 | }; |
| 1652 | |
| 1653 | if (debug) { |
| 1654 | fprintf(where, |
| 1655 | "recv_xti_tcp_stream: test complete, sending results.\n"); |
| 1656 | fprintf(where, |
| 1657 | " bytes_received %g receive_calls %d\n", |
| 1658 | bytes_received, |
| 1659 | receive_calls); |
| 1660 | fprintf(where, |
| 1661 | " len %d\n", |
| 1662 | len); |
| 1663 | fflush(where); |
| 1664 | } |
| 1665 | |
| 1666 | xti_tcp_stream_results->cpu_method = cpu_method; |
| 1667 | send_response(); |
| 1668 | |
| 1669 | /* we are now done with the socket */ |
| 1670 | t_close(s_data); |
| 1671 | |
| 1672 | } |
| 1673 | |
| 1674 | |
| 1675 | /* this routine implements the sending (netperf) side of the XTI_TCP_RR */ |
| 1676 | /* test. */ |
| 1677 | |
| 1678 | void |
| 1679 | send_xti_tcp_rr(char remote_host[]) |
| 1680 | { |
| 1681 | |
| 1682 | char *tput_title = "\ |
| 1683 | Local /Remote\n\ |
| 1684 | Socket Size Request Resp. Elapsed Trans.\n\ |
| 1685 | Send Recv Size Size Time Rate \n\ |
| 1686 | bytes Bytes bytes bytes secs. per sec \n\n"; |
| 1687 | |
| 1688 | char *tput_fmt_0 = |
| 1689 | "%7.2f\n"; |
| 1690 | |
| 1691 | char *tput_fmt_1_line_1 = "\ |
| 1692 | %-6d %-6d %-6d %-6d %-6.2f %7.2f \n"; |
| 1693 | char *tput_fmt_1_line_2 = "\ |
| 1694 | %-6d %-6d\n"; |
| 1695 | |
| 1696 | char *cpu_title = "\ |
| 1697 | Local /Remote\n\ |
| 1698 | Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\ |
| 1699 | Send Recv Size Size Time Rate local remote local remote\n\ |
| 1700 | bytes bytes bytes bytes secs. per sec %% %c %% %c us/Tr us/Tr\n\n"; |
| 1701 | |
| 1702 | char *cpu_fmt_0 = |
| 1703 | "%6.3f %c\n"; |
| 1704 | |
| 1705 | char *cpu_fmt_1_line_1 = "\ |
| 1706 | %-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; |
| 1707 | |
| 1708 | char *cpu_fmt_1_line_2 = "\ |
| 1709 | %-6d %-6d\n"; |
| 1710 | |
| 1711 | char *ksink_fmt = "\ |
| 1712 | Alignment Offset\n\ |
| 1713 | Local Remote Local Remote\n\ |
| 1714 | Send Recv Send Recv\n\ |
| 1715 | %5d %5d %5d %5d\n"; |
| 1716 | |
| 1717 | |
| 1718 | int timed_out = 0; |
| 1719 | float elapsed_time; |
| 1720 | |
| 1721 | int len; |
| 1722 | char *temp_message_ptr; |
| 1723 | int nummessages; |
| 1724 | SOCKET send_socket; |
| 1725 | int trans_remaining; |
| 1726 | double bytes_xferd; |
| 1727 | |
| 1728 | struct ring_elt *send_ring; |
| 1729 | struct ring_elt *recv_ring; |
| 1730 | |
| 1731 | int rsp_bytes_left; |
| 1732 | int rsp_bytes_recvd; |
| 1733 | |
| 1734 | float local_cpu_utilization; |
| 1735 | float local_service_demand; |
| 1736 | float remote_cpu_utilization; |
| 1737 | float remote_service_demand; |
| 1738 | double thruput; |
| 1739 | |
| 1740 | struct hostent *hp; |
| 1741 | struct sockaddr_in server; |
| 1742 | unsigned int addr; |
| 1743 | |
| 1744 | struct t_call server_call; |
| 1745 | |
| 1746 | struct xti_tcp_rr_request_struct *xti_tcp_rr_request; |
| 1747 | struct xti_tcp_rr_response_struct *xti_tcp_rr_response; |
| 1748 | struct xti_tcp_rr_results_struct *xti_tcp_rr_result; |
| 1749 | |
| 1750 | #ifdef WANT_INTERVALS |
| 1751 | int interval_count; |
| 1752 | sigset_t signal_set; |
| 1753 | #endif /* WANT_INTERVALS */ |
| 1754 | |
| 1755 | xti_tcp_rr_request = |
| 1756 | (struct xti_tcp_rr_request_struct *)netperf_request.content.test_specific_data; |
| 1757 | xti_tcp_rr_response= |
| 1758 | (struct xti_tcp_rr_response_struct *)netperf_response.content.test_specific_data; |
| 1759 | xti_tcp_rr_result = |
| 1760 | (struct xti_tcp_rr_results_struct *)netperf_response.content.test_specific_data; |
| 1761 | |
| 1762 | #ifdef WANT_HISTOGRAM |
| 1763 | time_hist = HIST_new(); |
| 1764 | #endif /* WANT_HISTOGRAM */ |
| 1765 | |
| 1766 | /* since we are now disconnected from the code that established the */ |
| 1767 | /* control socket, and since we want to be able to use different */ |
| 1768 | /* protocols and such, we are passed the name of the remote host and */ |
| 1769 | /* must turn that into the test specific addressing information. */ |
| 1770 | |
| 1771 | bzero((char *)&server, |
| 1772 | sizeof(server)); |
| 1773 | |
| 1774 | /* it would seem that while HP-UX will allow an IP address (as a */ |
| 1775 | /* string) in a call to gethostbyname, other, less enlightened */ |
| 1776 | /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ |
| 1777 | /* order changed to check for IP address first. raj 7/96 */ |
| 1778 | |
| 1779 | if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { |
| 1780 | /* it was not an IP address, try it as a name */ |
| 1781 | if ((hp = gethostbyname(remote_host)) == NULL) { |
| 1782 | /* we have no idea what it is */ |
| 1783 | fprintf(where, |
| 1784 | "establish_control: could not resolve the destination %s\n", |
| 1785 | remote_host); |
| 1786 | fflush(where); |
| 1787 | exit(1); |
| 1788 | } |
| 1789 | else { |
| 1790 | /* it was a valid remote_host */ |
| 1791 | bcopy(hp->h_addr, |
| 1792 | (char *)&server.sin_addr, |
| 1793 | hp->h_length); |
| 1794 | server.sin_family = hp->h_addrtype; |
| 1795 | } |
| 1796 | } |
| 1797 | else { |
| 1798 | /* it was a valid IP address */ |
| 1799 | server.sin_addr.s_addr = addr; |
| 1800 | server.sin_family = AF_INET; |
| 1801 | } |
| 1802 | |
| 1803 | if ( print_headers ) { |
| 1804 | fprintf(where,"XTI TCP REQUEST/RESPONSE TEST"); |
| 1805 | fprintf(where," to %s", remote_host); |
| 1806 | if (iteration_max > 1) { |
| 1807 | fprintf(where, |
| 1808 | " : +/-%3.1f%% @ %2d%% conf.", |
| 1809 | interval/0.02, |
| 1810 | confidence_level); |
| 1811 | } |
| 1812 | if (loc_nodelay || rem_nodelay) { |
| 1813 | fprintf(where," : nodelay"); |
| 1814 | } |
| 1815 | if (loc_sndavoid || |
| 1816 | loc_rcvavoid || |
| 1817 | rem_sndavoid || |
| 1818 | rem_rcvavoid) { |
| 1819 | fprintf(where," : copy avoidance"); |
| 1820 | } |
| 1821 | #ifdef WANT_HISTOGRAM |
| 1822 | fprintf(where," : histogram"); |
| 1823 | #endif /* WANT_HISTOGRAM */ |
| 1824 | #ifdef WANT_INTERVALS |
| 1825 | fprintf(where," : interval"); |
| 1826 | #endif /* WANT_INTERVALS */ |
| 1827 | #ifdef DIRTY |
| 1828 | fprintf(where," : dirty data"); |
| 1829 | #endif /* DIRTY */ |
| 1830 | fprintf(where,"\n"); |
| 1831 | } |
| 1832 | |
| 1833 | /* initialize a few counters */ |
| 1834 | |
| 1835 | send_ring = NULL; |
| 1836 | recv_ring = NULL; |
| 1837 | confidence_iteration = 1; |
| 1838 | init_stat(); |
| 1839 | |
| 1840 | /* we have a great-big while loop which controls the number of times */ |
| 1841 | /* we run a particular test. this is for the calculation of a */ |
| 1842 | /* confidence interval (I really should have stayed awake during */ |
| 1843 | /* probstats :). If the user did not request confidence measurement */ |
| 1844 | /* (no confidence is the default) then we will only go though the */ |
| 1845 | /* loop once. the confidence stuff originates from the folks at IBM */ |
| 1846 | |
| 1847 | while (((confidence < 0) && (confidence_iteration < iteration_max)) || |
| 1848 | (confidence_iteration <= iteration_min)) { |
| 1849 | |
| 1850 | /* initialize a few counters. we have to remember that we might be */ |
| 1851 | /* going through the loop more than once. */ |
| 1852 | |
| 1853 | nummessages = 0; |
| 1854 | bytes_xferd = 0.0; |
| 1855 | times_up = 0; |
| 1856 | timed_out = 0; |
| 1857 | trans_remaining = 0; |
| 1858 | |
| 1859 | /* set-up the data buffers with the requested alignment and offset. */ |
| 1860 | /* since this is a request/response test, default the send_width and */ |
| 1861 | /* recv_width to 1 and not two raj 7/94 */ |
| 1862 | |
| 1863 | if (send_width == 0) send_width = 1; |
| 1864 | if (recv_width == 0) recv_width = 1; |
| 1865 | |
| 1866 | if (send_ring == NULL) { |
| 1867 | send_ring = allocate_buffer_ring(send_width, |
| 1868 | req_size, |
| 1869 | local_send_align, |
| 1870 | local_send_offset); |
| 1871 | } |
| 1872 | |
| 1873 | if (recv_ring == NULL) { |
| 1874 | recv_ring = allocate_buffer_ring(recv_width, |
| 1875 | rsp_size, |
| 1876 | local_recv_align, |
| 1877 | local_recv_offset); |
| 1878 | } |
| 1879 | |
| 1880 | /*set up the data socket */ |
| 1881 | send_socket = create_xti_endpoint(loc_xti_device); |
| 1882 | |
| 1883 | if (send_socket == INVALID_SOCKET){ |
| 1884 | perror("netperf: send_xti_tcp_rr: tcp stream data socket"); |
| 1885 | exit(1); |
| 1886 | } |
| 1887 | |
| 1888 | if (debug) { |
| 1889 | fprintf(where,"send_xti_tcp_rr: send_socket obtained...\n"); |
| 1890 | } |
| 1891 | |
| 1892 | /* it would seem that with XTI, there is no implicit bind on a */ |
| 1893 | /* connect, so we have to make a call to t_bind. this is not */ |
| 1894 | /* terribly convenient, but I suppose that "standard is better */ |
| 1895 | /* than better" :) raj 2/95 */ |
| 1896 | |
| 1897 | if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) { |
| 1898 | t_error("send_xti_tcp_stream: t_bind"); |
| 1899 | exit(1); |
| 1900 | } |
| 1901 | |
| 1902 | /* If the user has requested cpu utilization measurements, we must */ |
| 1903 | /* calibrate the cpu(s). We will perform this task within the tests */ |
| 1904 | /* themselves. If the user has specified the cpu rate, then */ |
| 1905 | /* calibrate_local_cpu will return rather quickly as it will have */ |
| 1906 | /* nothing to do. If local_cpu_rate is zero, then we will go through */ |
| 1907 | /* all the "normal" calibration stuff and return the rate back.*/ |
| 1908 | |
| 1909 | if (local_cpu_usage) { |
| 1910 | local_cpu_rate = calibrate_local_cpu(local_cpu_rate); |
| 1911 | } |
| 1912 | |
| 1913 | /* Tell the remote end to do a listen. The server alters the socket */ |
| 1914 | /* paramters on the other side at this point, hence the reason for */ |
| 1915 | /* all the values being passed in the setup message. If the user did */ |
| 1916 | /* not specify any of the parameters, they will be passed as 0, which */ |
| 1917 | /* will indicate to the remote that no changes beyond the system's */ |
| 1918 | /* default should be used. Alignment is the exception, it will */ |
| 1919 | /* default to 8, which will be no alignment alterations. */ |
| 1920 | |
| 1921 | netperf_request.content.request_type = DO_XTI_TCP_RR; |
| 1922 | xti_tcp_rr_request->recv_buf_size = rsr_size; |
| 1923 | xti_tcp_rr_request->send_buf_size = rss_size; |
| 1924 | xti_tcp_rr_request->recv_alignment = remote_recv_align; |
| 1925 | xti_tcp_rr_request->recv_offset = remote_recv_offset; |
| 1926 | xti_tcp_rr_request->send_alignment = remote_send_align; |
| 1927 | xti_tcp_rr_request->send_offset = remote_send_offset; |
| 1928 | xti_tcp_rr_request->request_size = req_size; |
| 1929 | xti_tcp_rr_request->response_size = rsp_size; |
| 1930 | xti_tcp_rr_request->no_delay = rem_nodelay; |
| 1931 | xti_tcp_rr_request->measure_cpu = remote_cpu_usage; |
| 1932 | xti_tcp_rr_request->cpu_rate = remote_cpu_rate; |
| 1933 | xti_tcp_rr_request->so_rcvavoid = rem_rcvavoid; |
| 1934 | xti_tcp_rr_request->so_sndavoid = rem_sndavoid; |
| 1935 | if (test_time) { |
| 1936 | xti_tcp_rr_request->test_length = test_time; |
| 1937 | } |
| 1938 | else { |
| 1939 | xti_tcp_rr_request->test_length = test_trans * -1; |
| 1940 | } |
| 1941 | |
| 1942 | strcpy(xti_tcp_rr_request->xti_device, rem_xti_device); |
| 1943 | |
| 1944 | #ifdef __alpha |
| 1945 | |
| 1946 | /* ok - even on a DEC box, strings are strings. I didn't really want */ |
| 1947 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 1948 | /* send_ and recv_ _request and _response routines about the types, */ |
| 1949 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 1950 | /* solution would be to use XDR, but I am still leary of being able */ |
| 1951 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 1952 | { |
| 1953 | int *charword; |
| 1954 | int *initword; |
| 1955 | int *lastword; |
| 1956 | |
| 1957 | initword = (int *) xti_tcp_rr_request->xti_device; |
| 1958 | lastword = initword + ((strlen(rem_xti_device) + 3) / 4); |
| 1959 | |
| 1960 | for (charword = initword; |
| 1961 | charword < lastword; |
| 1962 | charword++) { |
| 1963 | |
| 1964 | *charword = ntohl(*charword); |
| 1965 | } |
| 1966 | } |
| 1967 | #endif /* __alpha */ |
| 1968 | |
| 1969 | if (debug > 1) { |
| 1970 | fprintf(where,"netperf: send_xti_tcp_rr: requesting TCP rr test\n"); |
| 1971 | } |
| 1972 | |
| 1973 | send_request(); |
| 1974 | |
| 1975 | /* The response from the remote will contain all of the relevant */ |
| 1976 | /* socket parameters for this test type. We will put them back into */ |
| 1977 | /* the variables here so they can be displayed if desired. The */ |
| 1978 | /* remote will have calibrated CPU if necessary, and will have done */ |
| 1979 | /* all the needed set-up we will have calibrated the cpu locally */ |
| 1980 | /* before sending the request, and will grab the counter value right*/ |
| 1981 | /* after the connect returns. The remote will grab the counter right*/ |
| 1982 | /* after the accept call. This saves the hassle of extra messages */ |
| 1983 | /* being sent for the TCP tests. */ |
| 1984 | |
| 1985 | recv_response(); |
| 1986 | |
| 1987 | if (!netperf_response.content.serv_errno) { |
| 1988 | if (debug) |
| 1989 | fprintf(where,"remote listen done.\n"); |
| 1990 | rsr_size = xti_tcp_rr_response->recv_buf_size; |
| 1991 | rss_size = xti_tcp_rr_response->send_buf_size; |
| 1992 | rem_nodelay = xti_tcp_rr_response->no_delay; |
| 1993 | remote_cpu_usage = xti_tcp_rr_response->measure_cpu; |
| 1994 | remote_cpu_rate = xti_tcp_rr_response->cpu_rate; |
| 1995 | /* make sure that port numbers are in network order */ |
| 1996 | server.sin_port = (short)xti_tcp_rr_response->data_port_number; |
| 1997 | server.sin_port = htons(server.sin_port); |
| 1998 | } |
| 1999 | else { |
| 2000 | Set_errno(netperf_response.content.serv_errno); |
| 2001 | perror("netperf: remote error"); |
| 2002 | |
| 2003 | exit(1); |
| 2004 | } |
| 2005 | |
| 2006 | /*Connect up to the remote port on the data socket */ |
| 2007 | memset (&server_call, 0, sizeof(server_call)); |
| 2008 | server_call.addr.maxlen = sizeof(struct sockaddr_in); |
| 2009 | server_call.addr.len = sizeof(struct sockaddr_in); |
| 2010 | server_call.addr.buf = (char *)&server; |
| 2011 | |
| 2012 | if (t_connect(send_socket, |
| 2013 | &server_call, |
| 2014 | NULL) == INVALID_SOCKET){ |
| 2015 | t_error("netperf: send_xti_tcp_rr: data socket connect failed"); |
| 2016 | printf(" port: %d\n",ntohs(server.sin_port)); |
| 2017 | exit(1); |
| 2018 | } |
| 2019 | |
| 2020 | /* Data Socket set-up is finished. If there were problems, either the */ |
| 2021 | /* connect would have failed, or the previous response would have */ |
| 2022 | /* indicated a problem. I failed to see the value of the extra */ |
| 2023 | /* message after the accept on the remote. If it failed, we'll see it */ |
| 2024 | /* here. If it didn't, we might as well start pumping data. */ |
| 2025 | |
| 2026 | /* Set-up the test end conditions. For a request/response test, they */ |
| 2027 | /* can be either time or transaction based. */ |
| 2028 | |
| 2029 | if (test_time) { |
| 2030 | /* The user wanted to end the test after a period of time. */ |
| 2031 | times_up = 0; |
| 2032 | trans_remaining = 0; |
| 2033 | start_timer(test_time); |
| 2034 | } |
| 2035 | else { |
| 2036 | /* The tester wanted to send a number of bytes. */ |
| 2037 | trans_remaining = test_bytes; |
| 2038 | times_up = 1; |
| 2039 | } |
| 2040 | |
| 2041 | /* The cpu_start routine will grab the current time and possibly */ |
| 2042 | /* value of the idle counter for later use in measuring cpu */ |
| 2043 | /* utilization and/or service demand and thruput. */ |
| 2044 | |
| 2045 | cpu_start(local_cpu_usage); |
| 2046 | |
| 2047 | #ifdef WANT_INTERVALS |
| 2048 | if ((interval_burst) || (demo_mode)) { |
| 2049 | /* zero means that we never pause, so we never should need the */ |
| 2050 | /* interval timer, unless we are in demo_mode */ |
| 2051 | start_itimer(interval_wate); |
| 2052 | } |
| 2053 | interval_count = interval_burst; |
| 2054 | /* get the signal set for the call to sigsuspend */ |
| 2055 | if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { |
| 2056 | fprintf(where, |
| 2057 | "send_xti_tcp_rr: unable to get sigmask errno %d\n", |
| 2058 | errno); |
| 2059 | fflush(where); |
| 2060 | exit(1); |
| 2061 | } |
| 2062 | #endif /* WANT_INTERVALS */ |
| 2063 | |
| 2064 | /* We use an "OR" to control test execution. When the test is */ |
| 2065 | /* controlled by time, the byte count check will always return false. */ |
| 2066 | /* When the test is controlled by byte count, the time test will */ |
| 2067 | /* always return false. When the test is finished, the whole */ |
| 2068 | /* expression will go false and we will stop sending data. I think I */ |
| 2069 | /* just arbitrarily decrement trans_remaining for the timed test, but */ |
| 2070 | /* will not do that just yet... One other question is whether or not */ |
| 2071 | /* the send buffer and the receive buffer should be the same buffer. */ |
| 2072 | |
| 2073 | while ((!times_up) || (trans_remaining > 0)) { |
| 2074 | /* send the request. we assume that if we use a blocking socket, */ |
| 2075 | /* the request will be sent at one shot. */ |
| 2076 | |
| 2077 | #ifdef WANT_HISTOGRAM |
| 2078 | /* timestamp just before our call to send, and then again just */ |
| 2079 | /* after the receive raj 8/94 */ |
| 2080 | HIST_timestamp(&time_one); |
| 2081 | #endif /* WANT_HISTOGRAM */ |
| 2082 | |
| 2083 | if((len=t_snd(send_socket, |
| 2084 | send_ring->buffer_ptr, |
| 2085 | req_size, |
| 2086 | 0)) != req_size) { |
| 2087 | if ((errno == EINTR) || (errno == 0)) { |
| 2088 | /* we hit the end of a */ |
| 2089 | /* timed test. */ |
| 2090 | timed_out = 1; |
| 2091 | break; |
| 2092 | } |
| 2093 | fprintf(where, |
| 2094 | "send_xti_tcp_rr: t_snd: errno %d t_errno %d t_look 0x%.4x\n", |
| 2095 | errno, |
| 2096 | t_errno, |
| 2097 | t_look(send_socket)); |
| 2098 | fflush(where); |
| 2099 | exit(1); |
| 2100 | } |
| 2101 | send_ring = send_ring->next; |
| 2102 | |
| 2103 | /* receive the response */ |
| 2104 | rsp_bytes_left = rsp_size; |
| 2105 | temp_message_ptr = recv_ring->buffer_ptr; |
| 2106 | while(rsp_bytes_left > 0) { |
| 2107 | if((rsp_bytes_recvd=t_rcv(send_socket, |
| 2108 | temp_message_ptr, |
| 2109 | rsp_bytes_left, |
| 2110 | &xti_flags)) == SOCKET_ERROR) { |
| 2111 | if (errno == EINTR) { |
| 2112 | /* We hit the end of a timed test. */ |
| 2113 | timed_out = 1; |
| 2114 | break; |
| 2115 | } |
| 2116 | fprintf(where, |
| 2117 | "send_xti_tcp_rr: t_rcv: errno %d t_errno %d t_look 0x%x\n", |
| 2118 | errno, |
| 2119 | t_errno, |
| 2120 | t_look(send_socket)); |
| 2121 | fflush(where); |
| 2122 | exit(1); |
| 2123 | } |
| 2124 | rsp_bytes_left -= rsp_bytes_recvd; |
| 2125 | temp_message_ptr += rsp_bytes_recvd; |
| 2126 | } |
| 2127 | recv_ring = recv_ring->next; |
| 2128 | |
| 2129 | if (timed_out) { |
| 2130 | /* we may have been in a nested while loop - we need */ |
| 2131 | /* another call to break. */ |
| 2132 | break; |
| 2133 | } |
| 2134 | |
| 2135 | #ifdef WANT_HISTOGRAM |
| 2136 | HIST_timestamp(&time_two); |
| 2137 | HIST_add(time_hist,delta_micro(&time_one,&time_two)); |
| 2138 | #endif /* WANT_HISTOGRAM */ |
| 2139 | #ifdef WANT_INTERVALS |
| 2140 | if (demo_mode) { |
| 2141 | units_this_tick += 1; |
| 2142 | } |
| 2143 | /* in this case, the interval count is the count-down couter */ |
| 2144 | /* to decide to sleep for a little bit */ |
| 2145 | if ((interval_burst) && (--interval_count == 0)) { |
| 2146 | /* call sigsuspend and wait for the interval timer to get us */ |
| 2147 | /* out */ |
| 2148 | if (debug) { |
| 2149 | fprintf(where,"about to suspend\n"); |
| 2150 | fflush(where); |
| 2151 | } |
| 2152 | if (sigsuspend(&signal_set) == EFAULT) { |
| 2153 | fprintf(where, |
| 2154 | "send_xti_udp_rr: fault with signal set!\n"); |
| 2155 | fflush(where); |
| 2156 | exit(1); |
| 2157 | } |
| 2158 | interval_count = interval_burst; |
| 2159 | } |
| 2160 | #endif /* WANT_INTERVALS */ |
| 2161 | |
| 2162 | nummessages++; |
| 2163 | if (trans_remaining) { |
| 2164 | trans_remaining--; |
| 2165 | } |
| 2166 | |
| 2167 | if (debug > 3) { |
| 2168 | if ((nummessages % 100) == 0) { |
| 2169 | fprintf(where, |
| 2170 | "Transaction %d completed\n", |
| 2171 | nummessages); |
| 2172 | fflush(where); |
| 2173 | } |
| 2174 | } |
| 2175 | } |
| 2176 | |
| 2177 | |
| 2178 | /* this call will always give us the elapsed time for the test, and */ |
| 2179 | /* will also store-away the necessaries for cpu utilization */ |
| 2180 | |
| 2181 | cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */ |
| 2182 | /* measured? how long */ |
| 2183 | /* did we really run? */ |
| 2184 | |
| 2185 | /* Get the statistics from the remote end. The remote will have */ |
| 2186 | /* calculated service demand and all those interesting things. If it */ |
| 2187 | /* wasn't supposed to care, it will return obvious values. */ |
| 2188 | |
| 2189 | recv_response(); |
| 2190 | if (!netperf_response.content.serv_errno) { |
| 2191 | if (debug) |
| 2192 | fprintf(where,"remote results obtained\n"); |
| 2193 | } |
| 2194 | else { |
| 2195 | Set_errno(netperf_response.content.serv_errno); |
| 2196 | perror("netperf: remote error"); |
| 2197 | |
| 2198 | exit(1); |
| 2199 | } |
| 2200 | |
| 2201 | /* We now calculate what our thruput was for the test. */ |
| 2202 | |
| 2203 | bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages); |
| 2204 | thruput = nummessages/elapsed_time; |
| 2205 | |
| 2206 | if (local_cpu_usage || remote_cpu_usage) { |
| 2207 | /* We must now do a little math for service demand and cpu */ |
| 2208 | /* utilization for the system(s) */ |
| 2209 | /* Of course, some of the information might be bogus because */ |
| 2210 | /* there was no idle counter in the kernel(s). We need to make */ |
| 2211 | /* a note of this for the user's benefit...*/ |
| 2212 | if (local_cpu_usage) { |
| 2213 | local_cpu_utilization = calc_cpu_util(0.0); |
| 2214 | /* since calc_service demand is doing ms/Kunit we will */ |
| 2215 | /* multiply the number of transaction by 1024 to get */ |
| 2216 | /* "good" numbers */ |
| 2217 | local_service_demand = calc_service_demand((double) nummessages*1024, |
| 2218 | 0.0, |
| 2219 | 0.0, |
| 2220 | 0); |
| 2221 | } |
| 2222 | else { |
| 2223 | local_cpu_utilization = -1.0; |
| 2224 | local_service_demand = -1.0; |
| 2225 | } |
| 2226 | |
| 2227 | if (remote_cpu_usage) { |
| 2228 | remote_cpu_utilization = xti_tcp_rr_result->cpu_util; |
| 2229 | /* since calc_service demand is doing ms/Kunit we will */ |
| 2230 | /* multiply the number of transaction by 1024 to get */ |
| 2231 | /* "good" numbers */ |
| 2232 | remote_service_demand = calc_service_demand((double) nummessages*1024, |
| 2233 | 0.0, |
| 2234 | remote_cpu_utilization, |
| 2235 | xti_tcp_rr_result->num_cpus); |
| 2236 | } |
| 2237 | else { |
| 2238 | remote_cpu_utilization = -1.0; |
| 2239 | remote_service_demand = -1.0; |
| 2240 | } |
| 2241 | |
| 2242 | } |
| 2243 | else { |
| 2244 | /* we were not measuring cpu, for the confidence stuff, we */ |
| 2245 | /* should make it -1.0 */ |
| 2246 | local_cpu_utilization = -1.0; |
| 2247 | local_service_demand = -1.0; |
| 2248 | remote_cpu_utilization = -1.0; |
| 2249 | remote_service_demand = -1.0; |
| 2250 | } |
| 2251 | |
| 2252 | /* at this point, we want to calculate the confidence information. */ |
| 2253 | /* if debugging is on, calculate_confidence will print-out the */ |
| 2254 | /* parameters we pass it */ |
| 2255 | |
| 2256 | calculate_confidence(confidence_iteration, |
| 2257 | elapsed_time, |
| 2258 | thruput, |
| 2259 | local_cpu_utilization, |
| 2260 | remote_cpu_utilization, |
| 2261 | local_service_demand, |
| 2262 | remote_service_demand); |
| 2263 | |
| 2264 | |
| 2265 | confidence_iteration++; |
| 2266 | |
| 2267 | /* we are now done with the socket, so close it */ |
| 2268 | t_close(send_socket); |
| 2269 | |
| 2270 | } |
| 2271 | |
| 2272 | retrieve_confident_values(&elapsed_time, |
| 2273 | &thruput, |
| 2274 | &local_cpu_utilization, |
| 2275 | &remote_cpu_utilization, |
| 2276 | &local_service_demand, |
| 2277 | &remote_service_demand); |
| 2278 | |
| 2279 | /* We are now ready to print all the information. If the user */ |
| 2280 | /* has specified zero-level verbosity, we will just print the */ |
| 2281 | /* local service demand, or the remote service demand. If the */ |
| 2282 | /* user has requested verbosity level 1, he will get the basic */ |
| 2283 | /* "streamperf" numbers. If the user has specified a verbosity */ |
| 2284 | /* of greater than 1, we will display a veritable plethora of */ |
| 2285 | /* background information from outside of this block as it it */ |
| 2286 | /* not cpu_measurement specific... */ |
| 2287 | |
| 2288 | if (confidence < 0) { |
| 2289 | /* we did not hit confidence, but were we asked to look for it? */ |
| 2290 | if (iteration_max > 1) { |
| 2291 | display_confidence(); |
| 2292 | } |
| 2293 | } |
| 2294 | |
| 2295 | if (local_cpu_usage || remote_cpu_usage) { |
| 2296 | local_cpu_method = format_cpu_method(cpu_method); |
| 2297 | remote_cpu_method = format_cpu_method(xti_tcp_rr_result->cpu_method); |
| 2298 | |
| 2299 | switch (verbosity) { |
| 2300 | case 0: |
| 2301 | if (local_cpu_usage) { |
| 2302 | fprintf(where, |
| 2303 | cpu_fmt_0, |
| 2304 | local_service_demand, |
| 2305 | local_cpu_method); |
| 2306 | } |
| 2307 | else { |
| 2308 | fprintf(where, |
| 2309 | cpu_fmt_0, |
| 2310 | remote_service_demand, |
| 2311 | remote_cpu_method); |
| 2312 | } |
| 2313 | break; |
| 2314 | case 1: |
| 2315 | case 2: |
| 2316 | if (print_headers) { |
| 2317 | fprintf(where, |
| 2318 | cpu_title, |
| 2319 | local_cpu_method, |
| 2320 | remote_cpu_method); |
| 2321 | } |
| 2322 | |
| 2323 | fprintf(where, |
| 2324 | cpu_fmt_1_line_1, /* the format string */ |
| 2325 | lss_size, /* local sendbuf size */ |
| 2326 | lsr_size, |
| 2327 | req_size, /* how large were the requests */ |
| 2328 | rsp_size, /* guess */ |
| 2329 | elapsed_time, /* how long was the test */ |
| 2330 | thruput, |
| 2331 | local_cpu_utilization, /* local cpu */ |
| 2332 | remote_cpu_utilization, /* remote cpu */ |
| 2333 | local_service_demand, /* local service demand */ |
| 2334 | remote_service_demand); /* remote service demand */ |
| 2335 | fprintf(where, |
| 2336 | cpu_fmt_1_line_2, |
| 2337 | rss_size, |
| 2338 | rsr_size); |
| 2339 | break; |
| 2340 | } |
| 2341 | } |
| 2342 | else { |
| 2343 | /* The tester did not wish to measure service demand. */ |
| 2344 | |
| 2345 | switch (verbosity) { |
| 2346 | case 0: |
| 2347 | fprintf(where, |
| 2348 | tput_fmt_0, |
| 2349 | thruput); |
| 2350 | break; |
| 2351 | case 1: |
| 2352 | case 2: |
| 2353 | if (print_headers) { |
| 2354 | fprintf(where,tput_title,format_units()); |
| 2355 | } |
| 2356 | |
| 2357 | fprintf(where, |
| 2358 | tput_fmt_1_line_1, /* the format string */ |
| 2359 | lss_size, |
| 2360 | lsr_size, |
| 2361 | req_size, /* how large were the requests */ |
| 2362 | rsp_size, /* how large were the responses */ |
| 2363 | elapsed_time, /* how long did it take */ |
| 2364 | thruput); |
| 2365 | fprintf(where, |
| 2366 | tput_fmt_1_line_2, |
| 2367 | rss_size, /* remote recvbuf size */ |
| 2368 | rsr_size); |
| 2369 | |
| 2370 | break; |
| 2371 | } |
| 2372 | } |
| 2373 | |
| 2374 | /* it would be a good thing to include information about some of the */ |
| 2375 | /* other parameters that may have been set for this test, but at the */ |
| 2376 | /* moment, I do not wish to figure-out all the formatting, so I will */ |
| 2377 | /* just put this comment here to help remind me that it is something */ |
| 2378 | /* that should be done at a later time. */ |
| 2379 | |
| 2380 | /* how to handle the verbose information in the presence of */ |
| 2381 | /* confidence intervals is yet to be determined... raj 11/94 */ |
| 2382 | if (verbosity > 1) { |
| 2383 | /* The user wanted to know it all, so we will give it to him. */ |
| 2384 | /* This information will include as much as we can find about */ |
| 2385 | /* TCP statistics, the alignments of the sends and receives */ |
| 2386 | /* and all that sort of rot... */ |
| 2387 | |
| 2388 | fprintf(where, |
| 2389 | ksink_fmt, |
| 2390 | local_send_align, |
| 2391 | remote_recv_offset, |
| 2392 | local_send_offset, |
| 2393 | remote_recv_offset); |
| 2394 | |
| 2395 | #ifdef WANT_HISTOGRAM |
| 2396 | fprintf(where,"\nHistogram of request/response times\n"); |
| 2397 | fflush(where); |
| 2398 | HIST_report(time_hist); |
| 2399 | #endif /* WANT_HISTOGRAM */ |
| 2400 | |
| 2401 | } |
| 2402 | |
| 2403 | } |
| 2404 | |
| 2405 | void |
| 2406 | send_xti_udp_stream(char remote_host[]) |
| 2407 | { |
| 2408 | /**********************************************************************/ |
| 2409 | /* */ |
| 2410 | /* UDP Unidirectional Send Test */ |
| 2411 | /* */ |
| 2412 | /**********************************************************************/ |
| 2413 | char *tput_title = "\ |
| 2414 | Socket Message Elapsed Messages \n\ |
| 2415 | Size Size Time Okay Errors Throughput\n\ |
| 2416 | bytes bytes secs # # %s/sec\n\n"; |
| 2417 | |
| 2418 | char *tput_fmt_0 = |
| 2419 | "%7.2f\n"; |
| 2420 | |
| 2421 | char *tput_fmt_1 = "\ |
| 2422 | %6d %6d %-7.2f %7d %6d %7.2f\n\ |
| 2423 | %6d %-7.2f %7d %7.2f\n\n"; |
| 2424 | |
| 2425 | |
| 2426 | char *cpu_title = "\ |
| 2427 | Socket Message Elapsed Messages CPU Service\n\ |
| 2428 | Size Size Time Okay Errors Throughput Util Demand\n\ |
| 2429 | bytes bytes secs # # %s/sec %% %c%c us/KB\n\n"; |
| 2430 | |
| 2431 | char *cpu_fmt_0 = |
| 2432 | "%6.2f %c\n"; |
| 2433 | |
| 2434 | char *cpu_fmt_1 = "\ |
| 2435 | %6d %6d %-7.2f %7d %6d %7.1f %-6.2f %-6.3f\n\ |
| 2436 | %6d %-7.2f %7d %7.1f %-6.2f %-6.3f\n\n"; |
| 2437 | |
| 2438 | unsigned int messages_recvd; |
| 2439 | unsigned int messages_sent; |
| 2440 | unsigned int failed_sends; |
| 2441 | |
| 2442 | float elapsed_time, |
| 2443 | recv_elapsed, |
| 2444 | local_cpu_utilization, |
| 2445 | remote_cpu_utilization; |
| 2446 | |
| 2447 | float local_service_demand, remote_service_demand; |
| 2448 | double local_thruput, remote_thruput; |
| 2449 | double bytes_sent; |
| 2450 | double bytes_recvd; |
| 2451 | |
| 2452 | |
| 2453 | int len; |
| 2454 | int *message_int_ptr; |
| 2455 | struct ring_elt *send_ring; |
| 2456 | SOCKET data_socket; |
| 2457 | |
| 2458 | unsigned int sum_messages_sent; |
| 2459 | unsigned int sum_messages_recvd; |
| 2460 | unsigned int sum_failed_sends; |
| 2461 | double sum_local_thruput; |
| 2462 | |
| 2463 | #ifdef WANT_INTERVALS |
| 2464 | int interval_count; |
| 2465 | sigset_t signal_set; |
| 2466 | #endif /* WANT_INTERVALS */ |
| 2467 | |
| 2468 | struct hostent *hp; |
| 2469 | struct sockaddr_in server; |
| 2470 | unsigned int addr; |
| 2471 | |
| 2472 | struct t_unitdata unitdata; |
| 2473 | |
| 2474 | struct xti_udp_stream_request_struct *xti_udp_stream_request; |
| 2475 | struct xti_udp_stream_response_struct *xti_udp_stream_response; |
| 2476 | struct xti_udp_stream_results_struct *xti_udp_stream_results; |
| 2477 | |
| 2478 | xti_udp_stream_request = |
| 2479 | (struct xti_udp_stream_request_struct *)netperf_request.content.test_specific_data; |
| 2480 | xti_udp_stream_response = |
| 2481 | (struct xti_udp_stream_response_struct *)netperf_response.content.test_specific_data; |
| 2482 | xti_udp_stream_results = |
| 2483 | (struct xti_udp_stream_results_struct *)netperf_response.content.test_specific_data; |
| 2484 | |
| 2485 | #ifdef WANT_HISTOGRAM |
| 2486 | time_hist = HIST_new(); |
| 2487 | #endif /* WANT_HISTOGRAM */ |
| 2488 | |
| 2489 | /* since we are now disconnected from the code that established the */ |
| 2490 | /* control socket, and since we want to be able to use different */ |
| 2491 | /* protocols and such, we are passed the name of the remote host and */ |
| 2492 | /* must turn that into the test specific addressing information. */ |
| 2493 | |
| 2494 | bzero((char *)&server, |
| 2495 | sizeof(server)); |
| 2496 | |
| 2497 | /* it would seem that while HP-UX will allow an IP address (as a */ |
| 2498 | /* string) in a call to gethostbyname, other, less enlightened */ |
| 2499 | /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ |
| 2500 | /* order changed to check for IP address first. raj 7/96 */ |
| 2501 | |
| 2502 | if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { |
| 2503 | /* it was not an IP address, try it as a name */ |
| 2504 | if ((hp = gethostbyname(remote_host)) == NULL) { |
| 2505 | /* we have no idea what it is */ |
| 2506 | fprintf(where, |
| 2507 | "establish_control: could not resolve the destination %s\n", |
| 2508 | remote_host); |
| 2509 | fflush(where); |
| 2510 | exit(1); |
| 2511 | } |
| 2512 | else { |
| 2513 | /* it was a valid remote_host */ |
| 2514 | bcopy(hp->h_addr, |
| 2515 | (char *)&server.sin_addr, |
| 2516 | hp->h_length); |
| 2517 | server.sin_family = hp->h_addrtype; |
| 2518 | } |
| 2519 | } |
| 2520 | else { |
| 2521 | /* it was a valid IP address */ |
| 2522 | server.sin_addr.s_addr = addr; |
| 2523 | server.sin_family = AF_INET; |
| 2524 | } |
| 2525 | |
| 2526 | if ( print_headers ) { |
| 2527 | fprintf(where,"UDP UNIDIRECTIONAL SEND TEST"); |
| 2528 | fprintf(where," to %s", remote_host); |
| 2529 | if (iteration_max > 1) { |
| 2530 | fprintf(where, |
| 2531 | " : +/-%3.1f%% @ %2d%% conf.", |
| 2532 | interval/0.02, |
| 2533 | confidence_level); |
| 2534 | } |
| 2535 | if (loc_sndavoid || |
| 2536 | loc_rcvavoid || |
| 2537 | rem_sndavoid || |
| 2538 | rem_rcvavoid) { |
| 2539 | fprintf(where," : copy avoidance"); |
| 2540 | } |
| 2541 | #ifdef WANT_HISTOGRAM |
| 2542 | fprintf(where," : histogram"); |
| 2543 | #endif /* WANT_HISTOGRAM */ |
| 2544 | #ifdef WANT_INTERVALS |
| 2545 | fprintf(where," : interval"); |
| 2546 | #endif /* WANT_INTERVALS */ |
| 2547 | #ifdef DIRTY |
| 2548 | fprintf(where," : dirty data"); |
| 2549 | #endif /* DIRTY */ |
| 2550 | fprintf(where,"\n"); |
| 2551 | } |
| 2552 | |
| 2553 | send_ring = NULL; |
| 2554 | confidence_iteration = 1; |
| 2555 | init_stat(); |
| 2556 | sum_messages_sent = 0; |
| 2557 | sum_messages_recvd = 0; |
| 2558 | sum_failed_sends = 0; |
| 2559 | sum_local_thruput = 0.0; |
| 2560 | |
| 2561 | /* we have a great-big while loop which controls the number of times */ |
| 2562 | /* we run a particular test. this is for the calculation of a */ |
| 2563 | /* confidence interval (I really should have stayed awake during */ |
| 2564 | /* probstats :). If the user did not request confidence measurement */ |
| 2565 | /* (no confidence is the default) then we will only go though the */ |
| 2566 | /* loop once. the confidence stuff originates from the folks at IBM */ |
| 2567 | |
| 2568 | while (((confidence < 0) && (confidence_iteration < iteration_max)) || |
| 2569 | (confidence_iteration <= iteration_min)) { |
| 2570 | |
| 2571 | /* initialize a few counters. we have to remember that we might be */ |
| 2572 | /* going through the loop more than once. */ |
| 2573 | messages_sent = 0; |
| 2574 | messages_recvd = 0; |
| 2575 | failed_sends = 0; |
| 2576 | times_up = 0; |
| 2577 | |
| 2578 | /*set up the data socket */ |
| 2579 | data_socket = create_xti_endpoint(loc_xti_device); |
| 2580 | |
| 2581 | if (data_socket == INVALID_SOCKET) { |
| 2582 | perror("send_xti_udp_stream: create_xti_endpoint"); |
| 2583 | exit(1); |
| 2584 | } |
| 2585 | |
| 2586 | if (t_bind(data_socket, NULL, NULL) == SOCKET_ERROR) { |
| 2587 | t_error("send_xti_udp_stream: t_bind"); |
| 2588 | exit(1); |
| 2589 | } |
| 2590 | |
| 2591 | /* now, we want to see if we need to set the send_size */ |
| 2592 | if (send_size == 0) { |
| 2593 | if (lss_size > 0) { |
| 2594 | send_size = lss_size; |
| 2595 | } |
| 2596 | else { |
| 2597 | send_size = 4096; |
| 2598 | } |
| 2599 | } |
| 2600 | |
| 2601 | /* set-up the data buffer with the requested alignment and offset, */ |
| 2602 | /* most of the numbers here are just a hack to pick something nice */ |
| 2603 | /* and big in an attempt to never try to send a buffer a second time */ |
| 2604 | /* before it leaves the node...unless the user set the width */ |
| 2605 | /* explicitly. */ |
| 2606 | if (send_width == 0) send_width = 32; |
| 2607 | |
| 2608 | if (send_ring == NULL ) { |
| 2609 | send_ring = allocate_buffer_ring(send_width, |
| 2610 | send_size, |
| 2611 | local_send_align, |
| 2612 | local_send_offset); |
| 2613 | } |
| 2614 | |
| 2615 | |
| 2616 | /* if the user supplied a cpu rate, this call will complete rather */ |
| 2617 | /* quickly, otherwise, the cpu rate will be retured to us for */ |
| 2618 | /* possible display. The Library will keep it's own copy of this data */ |
| 2619 | /* for use elsewhere. We will only display it. (Does that make it */ |
| 2620 | /* "opaque" to us?) */ |
| 2621 | |
| 2622 | if (local_cpu_usage) |
| 2623 | local_cpu_rate = calibrate_local_cpu(local_cpu_rate); |
| 2624 | |
| 2625 | /* Tell the remote end to set up the data connection. The server */ |
| 2626 | /* sends back the port number and alters the socket parameters there. */ |
| 2627 | /* Of course this is a datagram service so no connection is actually */ |
| 2628 | /* set up, the server just sets up the socket and binds it. */ |
| 2629 | |
| 2630 | netperf_request.content.request_type = DO_XTI_UDP_STREAM; |
| 2631 | xti_udp_stream_request->recv_buf_size = rsr_size; |
| 2632 | xti_udp_stream_request->message_size = send_size; |
| 2633 | xti_udp_stream_request->recv_alignment = remote_recv_align; |
| 2634 | xti_udp_stream_request->recv_offset = remote_recv_offset; |
| 2635 | xti_udp_stream_request->measure_cpu = remote_cpu_usage; |
| 2636 | xti_udp_stream_request->cpu_rate = remote_cpu_rate; |
| 2637 | xti_udp_stream_request->test_length = test_time; |
| 2638 | xti_udp_stream_request->so_rcvavoid = rem_rcvavoid; |
| 2639 | xti_udp_stream_request->so_sndavoid = rem_sndavoid; |
| 2640 | |
| 2641 | strcpy(xti_udp_stream_request->xti_device, rem_xti_device); |
| 2642 | |
| 2643 | #ifdef __alpha |
| 2644 | |
| 2645 | /* ok - even on a DEC box, strings are strings. I didn't really want */ |
| 2646 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 2647 | /* send_ and recv_ _request and _response routines about the types, */ |
| 2648 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 2649 | /* solution would be to use XDR, but I am still leary of being able */ |
| 2650 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 2651 | { |
| 2652 | int *charword; |
| 2653 | int *initword; |
| 2654 | int *lastword; |
| 2655 | |
| 2656 | initword = (int *) xti_udp_stream_request->xti_device; |
| 2657 | lastword = initword + ((strlen(rem_xti_device) + 3) / 4); |
| 2658 | |
| 2659 | for (charword = initword; |
| 2660 | charword < lastword; |
| 2661 | charword++) { |
| 2662 | |
| 2663 | *charword = ntohl(*charword); |
| 2664 | } |
| 2665 | } |
| 2666 | #endif /* __alpha */ |
| 2667 | |
| 2668 | send_request(); |
| 2669 | |
| 2670 | recv_response(); |
| 2671 | |
| 2672 | if (!netperf_response.content.serv_errno) { |
| 2673 | if (debug) |
| 2674 | fprintf(where,"send_xti_udp_stream: remote data connection done.\n"); |
| 2675 | } |
| 2676 | else { |
| 2677 | Set_errno(netperf_response.content.serv_errno); |
| 2678 | perror("send_xti_udp_stream: error on remote"); |
| 2679 | exit(1); |
| 2680 | } |
| 2681 | |
| 2682 | /* Place the port number returned by the remote into the sockaddr */ |
| 2683 | /* structure so our sends can be sent to the correct place. Also get */ |
| 2684 | /* some of the returned socket buffer information for user display. */ |
| 2685 | |
| 2686 | /* make sure that port numbers are in the proper order */ |
| 2687 | server.sin_port = (short)xti_udp_stream_response->data_port_number; |
| 2688 | server.sin_port = htons(server.sin_port); |
| 2689 | rsr_size = xti_udp_stream_response->recv_buf_size; |
| 2690 | rss_size = xti_udp_stream_response->send_buf_size; |
| 2691 | remote_cpu_rate = xti_udp_stream_response->cpu_rate; |
| 2692 | |
| 2693 | /* it would seem that XTI does not allow the expedient of */ |
| 2694 | /* "connecting" a UDP end-point the way BSD does. so, we will do */ |
| 2695 | /* everything with t_sndudata and t_rcvudata. Our "virtual" */ |
| 2696 | /* connect here will be to assign the destination portion of the */ |
| 2697 | /* t_unitdata struct here, where we would have otherwise called */ |
| 2698 | /* t_connect() raj 3/95 */ |
| 2699 | |
| 2700 | memset (&unitdata, 0, sizeof(unitdata)); |
| 2701 | unitdata.addr.maxlen = sizeof(struct sockaddr_in); |
| 2702 | unitdata.addr.len = sizeof(struct sockaddr_in); |
| 2703 | unitdata.addr.buf = (char *)&server; |
| 2704 | |
| 2705 | /* we don't use any options, so might as well set that part here */ |
| 2706 | /* too */ |
| 2707 | |
| 2708 | unitdata.opt.maxlen = 0; |
| 2709 | unitdata.opt.len = 0; |
| 2710 | unitdata.opt.buf = NULL; |
| 2711 | |
| 2712 | /* we need to initialize the send buffer for the first time as */ |
| 2713 | /* well since we move to the next pointer after the send call. */ |
| 2714 | |
| 2715 | unitdata.udata.maxlen = send_size; |
| 2716 | unitdata.udata.len = send_size; |
| 2717 | unitdata.udata.buf = send_ring->buffer_ptr; |
| 2718 | |
| 2719 | /* set up the timer to call us after test_time. one of these days, */ |
| 2720 | /* it might be nice to figure-out a nice reliable way to have the */ |
| 2721 | /* test controlled by a byte count as well, but since UDP is not */ |
| 2722 | /* reliable, that could prove difficult. so, in the meantime, we */ |
| 2723 | /* only allow a XTI_UDP_STREAM test to be a timed test. */ |
| 2724 | |
| 2725 | if (test_time) { |
| 2726 | times_up = 0; |
| 2727 | start_timer(test_time); |
| 2728 | } |
| 2729 | else { |
| 2730 | fprintf(where,"Sorry, XTI_UDP_STREAM tests must be timed.\n"); |
| 2731 | fflush(where); |
| 2732 | exit(1); |
| 2733 | } |
| 2734 | |
| 2735 | /* Get the start count for the idle counter and the start time */ |
| 2736 | |
| 2737 | cpu_start(local_cpu_usage); |
| 2738 | |
| 2739 | #ifdef WANT_INTERVALS |
| 2740 | if ((interval_burst) || (demo_mode)) { |
| 2741 | /* zero means that we never pause, so we never should need the */ |
| 2742 | /* interval timer, unless we are in demo_mode */ |
| 2743 | start_itimer(interval_wate); |
| 2744 | } |
| 2745 | interval_count = interval_burst; |
| 2746 | /* get the signal set for the call to sigsuspend */ |
| 2747 | if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { |
| 2748 | fprintf(where, |
| 2749 | "send_xti_udp_stream: unable to get sigmask errno %d\n", |
| 2750 | errno); |
| 2751 | fflush(where); |
| 2752 | exit(1); |
| 2753 | } |
| 2754 | #endif /* WANT_INTERVALS */ |
| 2755 | |
| 2756 | /* Send datagrams like there was no tomorrow. at somepoint it might */ |
| 2757 | /* be nice to set this up so that a quantity of bytes could be sent, */ |
| 2758 | /* but we still need some sort of end of test trigger on the receive */ |
| 2759 | /* side. that could be a select with a one second timeout, but then */ |
| 2760 | /* if there is a test where none of the data arrives for awile and */ |
| 2761 | /* then starts again, we would end the test too soon. something to */ |
| 2762 | /* think about... */ |
| 2763 | while (!times_up) { |
| 2764 | |
| 2765 | #ifdef DIRTY |
| 2766 | /* we want to dirty some number of consecutive integers in the buffer */ |
| 2767 | /* we are about to send. we may also want to bring some number of */ |
| 2768 | /* them cleanly into the cache. The clean ones will follow any dirty */ |
| 2769 | /* ones into the cache. */ |
| 2770 | |
| 2771 | access_buffer(send_ring->buffer_ptr, |
| 2772 | send_size, |
| 2773 | loc_dirty_count, |
| 2774 | loc_clean_count); |
| 2775 | |
| 2776 | #endif /* DIRTY */ |
| 2777 | |
| 2778 | #ifdef WANT_HISTOGRAM |
| 2779 | HIST_timestamp(&time_one); |
| 2780 | #endif /* WANT_HISTOGRAM */ |
| 2781 | |
| 2782 | if ((t_sndudata(data_socket, |
| 2783 | &unitdata)) != 0) { |
| 2784 | if (errno == EINTR) |
| 2785 | break; |
| 2786 | if (errno == ENOBUFS) { |
| 2787 | failed_sends++; |
| 2788 | continue; |
| 2789 | } |
| 2790 | perror("xti_udp_send: data send error"); |
| 2791 | t_error("xti_udp_send: data send error"); |
| 2792 | exit(1); |
| 2793 | } |
| 2794 | messages_sent++; |
| 2795 | |
| 2796 | /* now we want to move our pointer to the next position in the */ |
| 2797 | /* data buffer...and update the unitdata structure */ |
| 2798 | |
| 2799 | send_ring = send_ring->next; |
| 2800 | unitdata.udata.buf = send_ring->buffer_ptr; |
| 2801 | |
| 2802 | #ifdef WANT_HISTOGRAM |
| 2803 | /* get the second timestamp */ |
| 2804 | HIST_timestamp(&time_two); |
| 2805 | HIST_add(time_hist,delta_micro(&time_one,&time_two)); |
| 2806 | #endif /* WANT_HISTOGRAM */ |
| 2807 | #ifdef WANT_INTERVALS |
| 2808 | if (demo_mode) { |
| 2809 | units_this_tick += send_size; |
| 2810 | } |
| 2811 | /* in this case, the interval count is the count-down couter */ |
| 2812 | /* to decide to sleep for a little bit */ |
| 2813 | if ((interval_burst) && (--interval_count == 0)) { |
| 2814 | /* call sigsuspend and wait for the interval timer to get us */ |
| 2815 | /* out */ |
| 2816 | if (debug) { |
| 2817 | fprintf(where,"about to suspend\n"); |
| 2818 | fflush(where); |
| 2819 | } |
| 2820 | if (sigsuspend(&signal_set) == EFAULT) { |
| 2821 | fprintf(where, |
| 2822 | "send_xti_udp_stream: fault with signal set!\n"); |
| 2823 | fflush(where); |
| 2824 | exit(1); |
| 2825 | } |
| 2826 | interval_count = interval_burst; |
| 2827 | } |
| 2828 | #endif /* WANT_INTERVALS */ |
| 2829 | |
| 2830 | } |
| 2831 | |
| 2832 | /* This is a timed test, so the remote will be returning to us after */ |
| 2833 | /* a time. We should not need to send any "strange" messages to tell */ |
| 2834 | /* the remote that the test is completed, unless we decide to add a */ |
| 2835 | /* number of messages to the test. */ |
| 2836 | |
| 2837 | /* the test is over, so get stats and stuff */ |
| 2838 | cpu_stop(local_cpu_usage, |
| 2839 | &elapsed_time); |
| 2840 | |
| 2841 | /* Get the statistics from the remote end */ |
| 2842 | recv_response(); |
| 2843 | if (!netperf_response.content.serv_errno) { |
| 2844 | if (debug) |
| 2845 | fprintf(where,"send_xti_udp_stream: remote results obtained\n"); |
| 2846 | } |
| 2847 | else { |
| 2848 | Set_errno(netperf_response.content.serv_errno); |
| 2849 | perror("send_xti_udp_stream: error on remote"); |
| 2850 | exit(1); |
| 2851 | } |
| 2852 | |
| 2853 | bytes_sent = (double) send_size * (double) messages_sent; |
| 2854 | local_thruput = calc_thruput(bytes_sent); |
| 2855 | |
| 2856 | messages_recvd = xti_udp_stream_results->messages_recvd; |
| 2857 | bytes_recvd = (double) send_size * (double) messages_recvd; |
| 2858 | |
| 2859 | /* we asume that the remote ran for as long as we did */ |
| 2860 | |
| 2861 | remote_thruput = calc_thruput(bytes_recvd); |
| 2862 | |
| 2863 | /* print the results for this socket and message size */ |
| 2864 | |
| 2865 | if (local_cpu_usage || remote_cpu_usage) { |
| 2866 | /* We must now do a little math for service demand and cpu */ |
| 2867 | /* utilization for the system(s) We pass zeros for the local */ |
| 2868 | /* cpu utilization and elapsed time to tell the routine to use */ |
| 2869 | /* the libraries own values for those. */ |
| 2870 | if (local_cpu_usage) { |
| 2871 | local_cpu_utilization = calc_cpu_util(0.0); |
| 2872 | /* shouldn't this really be based on bytes_recvd, since that is */ |
| 2873 | /* the effective throughput of the test? I think that it should, */ |
| 2874 | /* so will make the change raj 11/94 */ |
| 2875 | local_service_demand = calc_service_demand(bytes_recvd, |
| 2876 | 0.0, |
| 2877 | 0.0, |
| 2878 | 0); |
| 2879 | } |
| 2880 | else { |
| 2881 | local_cpu_utilization = -1.0; |
| 2882 | local_service_demand = -1.0; |
| 2883 | } |
| 2884 | |
| 2885 | /* The local calculations could use variables being kept by */ |
| 2886 | /* the local netlib routines. The remote calcuations need to */ |
| 2887 | /* have a few things passed to them. */ |
| 2888 | if (remote_cpu_usage) { |
| 2889 | remote_cpu_utilization = xti_udp_stream_results->cpu_util; |
| 2890 | remote_service_demand = calc_service_demand(bytes_recvd, |
| 2891 | 0.0, |
| 2892 | remote_cpu_utilization, |
| 2893 | xti_udp_stream_results->num_cpus); |
| 2894 | } |
| 2895 | else { |
| 2896 | remote_cpu_utilization = -1.0; |
| 2897 | remote_service_demand = -1.0; |
| 2898 | } |
| 2899 | } |
| 2900 | else { |
| 2901 | /* we were not measuring cpu, for the confidence stuff, we */ |
| 2902 | /* should make it -1.0 */ |
| 2903 | local_cpu_utilization = -1.0; |
| 2904 | local_service_demand = -1.0; |
| 2905 | remote_cpu_utilization = -1.0; |
| 2906 | remote_service_demand = -1.0; |
| 2907 | } |
| 2908 | |
| 2909 | /* at this point, we want to calculate the confidence information. */ |
| 2910 | /* if debugging is on, calculate_confidence will print-out the */ |
| 2911 | /* parameters we pass it */ |
| 2912 | |
| 2913 | calculate_confidence(confidence_iteration, |
| 2914 | elapsed_time, |
| 2915 | remote_thruput, |
| 2916 | local_cpu_utilization, |
| 2917 | remote_cpu_utilization, |
| 2918 | local_service_demand, |
| 2919 | remote_service_demand); |
| 2920 | |
| 2921 | /* since the routine calculate_confidence is rather generic, and */ |
| 2922 | /* we have a few other parms of interest, we will do a little work */ |
| 2923 | /* here to caclulate their average. */ |
| 2924 | sum_messages_sent += messages_sent; |
| 2925 | sum_messages_recvd += messages_recvd; |
| 2926 | sum_failed_sends += failed_sends; |
| 2927 | sum_local_thruput += local_thruput; |
| 2928 | |
| 2929 | confidence_iteration++; |
| 2930 | |
| 2931 | /* this datapoint is done, so we don't need the socket any longer */ |
| 2932 | close(data_socket); |
| 2933 | |
| 2934 | } |
| 2935 | |
| 2936 | /* we should reach this point once the test is finished */ |
| 2937 | |
| 2938 | retrieve_confident_values(&elapsed_time, |
| 2939 | &remote_thruput, |
| 2940 | &local_cpu_utilization, |
| 2941 | &remote_cpu_utilization, |
| 2942 | &local_service_demand, |
| 2943 | &remote_service_demand); |
| 2944 | |
| 2945 | /* some of the interesting values aren't covered by the generic */ |
| 2946 | /* confidence routine */ |
| 2947 | messages_sent = sum_messages_sent / (confidence_iteration -1); |
| 2948 | messages_recvd = sum_messages_recvd / (confidence_iteration -1); |
| 2949 | failed_sends = sum_failed_sends / (confidence_iteration -1); |
| 2950 | local_thruput = sum_local_thruput / (confidence_iteration -1); |
| 2951 | |
| 2952 | /* We are now ready to print all the information. If the user */ |
| 2953 | /* has specified zero-level verbosity, we will just print the */ |
| 2954 | /* local service demand, or the remote service demand. If the */ |
| 2955 | /* user has requested verbosity level 1, he will get the basic */ |
| 2956 | /* "streamperf" numbers. If the user has specified a verbosity */ |
| 2957 | /* of greater than 1, we will display a veritable plethora of */ |
| 2958 | /* background information from outside of this block as it it */ |
| 2959 | /* not cpu_measurement specific... */ |
| 2960 | |
| 2961 | |
| 2962 | if (confidence < 0) { |
| 2963 | /* we did not hit confidence, but were we asked to look for it? */ |
| 2964 | if (iteration_max > 1) { |
| 2965 | display_confidence(); |
| 2966 | } |
| 2967 | } |
| 2968 | |
| 2969 | if (local_cpu_usage || remote_cpu_usage) { |
| 2970 | local_cpu_method = format_cpu_method(cpu_method); |
| 2971 | remote_cpu_method = format_cpu_method(xti_udp_stream_results->cpu_method); |
| 2972 | |
| 2973 | switch (verbosity) { |
| 2974 | case 0: |
| 2975 | if (local_cpu_usage) { |
| 2976 | fprintf(where, |
| 2977 | cpu_fmt_0, |
| 2978 | local_service_demand, |
| 2979 | local_cpu_method); |
| 2980 | } |
| 2981 | else { |
| 2982 | fprintf(where, |
| 2983 | cpu_fmt_0, |
| 2984 | remote_service_demand, |
| 2985 | local_cpu_method); |
| 2986 | } |
| 2987 | break; |
| 2988 | case 1: |
| 2989 | case 2: |
| 2990 | if (print_headers) { |
| 2991 | fprintf(where, |
| 2992 | cpu_title, |
| 2993 | format_units(), |
| 2994 | local_cpu_method, |
| 2995 | remote_cpu_method); |
| 2996 | } |
| 2997 | |
| 2998 | fprintf(where, |
| 2999 | cpu_fmt_1, /* the format string */ |
| 3000 | lss_size, /* local sendbuf size */ |
| 3001 | send_size, /* how large were the sends */ |
| 3002 | elapsed_time, /* how long was the test */ |
| 3003 | messages_sent, |
| 3004 | failed_sends, |
| 3005 | local_thruput, /* what was the xfer rate */ |
| 3006 | local_cpu_utilization, /* local cpu */ |
| 3007 | local_service_demand, /* local service demand */ |
| 3008 | rsr_size, |
| 3009 | elapsed_time, |
| 3010 | messages_recvd, |
| 3011 | remote_thruput, |
| 3012 | remote_cpu_utilization, /* remote cpu */ |
| 3013 | remote_service_demand); /* remote service demand */ |
| 3014 | break; |
| 3015 | } |
| 3016 | } |
| 3017 | else { |
| 3018 | /* The tester did not wish to measure service demand. */ |
| 3019 | switch (verbosity) { |
| 3020 | case 0: |
| 3021 | fprintf(where, |
| 3022 | tput_fmt_0, |
| 3023 | local_thruput); |
| 3024 | break; |
| 3025 | case 1: |
| 3026 | case 2: |
| 3027 | if (print_headers) { |
| 3028 | fprintf(where,tput_title,format_units()); |
| 3029 | } |
| 3030 | fprintf(where, |
| 3031 | tput_fmt_1, /* the format string */ |
| 3032 | lss_size, /* local sendbuf size */ |
| 3033 | send_size, /* how large were the sends */ |
| 3034 | elapsed_time, /* how long did it take */ |
| 3035 | messages_sent, |
| 3036 | failed_sends, |
| 3037 | local_thruput, |
| 3038 | rsr_size, /* remote recvbuf size */ |
| 3039 | elapsed_time, |
| 3040 | messages_recvd, |
| 3041 | remote_thruput); |
| 3042 | break; |
| 3043 | } |
| 3044 | } |
| 3045 | |
| 3046 | fflush(where); |
| 3047 | #ifdef WANT_HISTOGRAM |
| 3048 | if (verbosity > 1) { |
| 3049 | fprintf(where,"\nHistogram of time spent in send() call\n"); |
| 3050 | fflush(where); |
| 3051 | HIST_report(time_hist); |
| 3052 | } |
| 3053 | #endif /* WANT_HISTOGRAM */ |
| 3054 | |
| 3055 | } |
| 3056 | |
| 3057 | |
| 3058 | /* this routine implements the receive side (netserver) of the */ |
| 3059 | /* XTI_UDP_STREAM performance test. */ |
| 3060 | |
| 3061 | void |
| 3062 | recv_xti_udp_stream() |
| 3063 | { |
| 3064 | struct ring_elt *recv_ring; |
| 3065 | |
| 3066 | struct t_bind bind_req, bind_resp; |
| 3067 | struct t_unitdata unitdata; |
| 3068 | int flags = 0; |
| 3069 | |
| 3070 | struct sockaddr_in myaddr_in; |
| 3071 | struct sockaddr_in fromaddr_in; |
| 3072 | |
| 3073 | SOCKET s_data; |
| 3074 | int addrlen; |
| 3075 | unsigned int bytes_received = 0; |
| 3076 | float elapsed_time; |
| 3077 | |
| 3078 | unsigned int message_size; |
| 3079 | unsigned int messages_recvd = 0; |
| 3080 | |
| 3081 | struct xti_udp_stream_request_struct *xti_udp_stream_request; |
| 3082 | struct xti_udp_stream_response_struct *xti_udp_stream_response; |
| 3083 | struct xti_udp_stream_results_struct *xti_udp_stream_results; |
| 3084 | |
| 3085 | xti_udp_stream_request = |
| 3086 | (struct xti_udp_stream_request_struct *)netperf_request.content.test_specific_data; |
| 3087 | xti_udp_stream_response = |
| 3088 | (struct xti_udp_stream_response_struct *)netperf_response.content.test_specific_data; |
| 3089 | xti_udp_stream_results = |
| 3090 | (struct xti_udp_stream_results_struct *)netperf_response.content.test_specific_data; |
| 3091 | |
| 3092 | if (debug) { |
| 3093 | fprintf(where,"netserver: recv_xti_udp_stream: entered...\n"); |
| 3094 | fflush(where); |
| 3095 | } |
| 3096 | |
| 3097 | /* We want to set-up the listen socket with all the desired */ |
| 3098 | /* parameters and then let the initiator know that all is ready. If */ |
| 3099 | /* socket size defaults are to be used, then the initiator will have */ |
| 3100 | /* sent us 0's. If the socket sizes cannot be changed, then we will */ |
| 3101 | /* send-back what they are. If that information cannot be determined, */ |
| 3102 | /* then we send-back -1's for the sizes. If things go wrong for any */ |
| 3103 | /* reason, we will drop back ten yards and punt. */ |
| 3104 | |
| 3105 | /* If anything goes wrong, we want the remote to know about it. It */ |
| 3106 | /* would be best if the error that the remote reports to the user is */ |
| 3107 | /* the actual error we encountered, rather than some bogus unexpected */ |
| 3108 | /* response type message. */ |
| 3109 | |
| 3110 | if (debug > 1) { |
| 3111 | fprintf(where,"recv_xti_udp_stream: setting the response type...\n"); |
| 3112 | fflush(where); |
| 3113 | } |
| 3114 | |
| 3115 | netperf_response.content.response_type = XTI_UDP_STREAM_RESPONSE; |
| 3116 | |
| 3117 | if (debug > 2) { |
| 3118 | fprintf(where,"recv_xti_udp_stream: the response type is set...\n"); |
| 3119 | fflush(where); |
| 3120 | } |
| 3121 | |
| 3122 | /* We now alter the message_ptr variable to be at the desired */ |
| 3123 | /* alignment with the desired offset. */ |
| 3124 | |
| 3125 | if (debug > 1) { |
| 3126 | fprintf(where,"recv_xti_udp_stream: requested alignment of %d\n", |
| 3127 | xti_udp_stream_request->recv_alignment); |
| 3128 | fflush(where); |
| 3129 | } |
| 3130 | |
| 3131 | if (recv_width == 0) recv_width = 1; |
| 3132 | |
| 3133 | recv_ring = allocate_buffer_ring(recv_width, |
| 3134 | xti_udp_stream_request->message_size, |
| 3135 | xti_udp_stream_request->recv_alignment, |
| 3136 | xti_udp_stream_request->recv_offset); |
| 3137 | |
| 3138 | if (debug > 1) { |
| 3139 | fprintf(where,"recv_xti_udp_stream: receive alignment and offset set...\n"); |
| 3140 | fflush(where); |
| 3141 | } |
| 3142 | |
| 3143 | /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ |
| 3144 | /* can put in OUR values !-) At some point, we may want to nail this */ |
| 3145 | /* socket to a particular network-level address, but for now, */ |
| 3146 | /* INADDR_ANY should be just fine. */ |
| 3147 | |
| 3148 | bzero((char *)&myaddr_in, |
| 3149 | sizeof(myaddr_in)); |
| 3150 | myaddr_in.sin_family = AF_INET; |
| 3151 | myaddr_in.sin_addr.s_addr = INADDR_ANY; |
| 3152 | myaddr_in.sin_port = 0; |
| 3153 | |
| 3154 | /* Grab a socket to listen on, and then listen on it. */ |
| 3155 | |
| 3156 | if (debug > 1) { |
| 3157 | fprintf(where,"recv_xti_udp_stream: grabbing a socket...\n"); |
| 3158 | fflush(where); |
| 3159 | } |
| 3160 | |
| 3161 | /* create_xti_endpoint expects to find some things in the global */ |
| 3162 | /* variables, so set the globals based on the values in the request. */ |
| 3163 | /* once the socket has been created, we will set the response values */ |
| 3164 | /* based on the updated value of those globals. raj 7/94 */ |
| 3165 | lsr_size = xti_udp_stream_request->recv_buf_size; |
| 3166 | loc_rcvavoid = xti_udp_stream_request->so_rcvavoid; |
| 3167 | loc_sndavoid = xti_udp_stream_request->so_sndavoid; |
| 3168 | |
| 3169 | #ifdef __alpha |
| 3170 | |
| 3171 | /* ok - even on a DEC box, strings are strings. I din't really want */ |
| 3172 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 3173 | /* send_ and recv_ _request and _response routines about the types, */ |
| 3174 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 3175 | /* solution would be to use XDR, but I am still leary of being able */ |
| 3176 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 3177 | { |
| 3178 | int *charword; |
| 3179 | int *initword; |
| 3180 | int *lastword; |
| 3181 | |
| 3182 | initword = (int *) xti_udp_stream_request->xti_device; |
| 3183 | lastword = initword + ((xti_udp_stream_request->dev_name_len + 3) / 4); |
| 3184 | |
| 3185 | for (charword = initword; |
| 3186 | charword < lastword; |
| 3187 | charword++) { |
| 3188 | |
| 3189 | *charword = htonl(*charword); |
| 3190 | } |
| 3191 | } |
| 3192 | |
| 3193 | #endif /* __alpha */ |
| 3194 | |
| 3195 | s_data = create_xti_endpoint(xti_udp_stream_request->xti_device); |
| 3196 | |
| 3197 | if (s_data == INVALID_SOCKET) { |
| 3198 | netperf_response.content.serv_errno = errno; |
| 3199 | send_response(); |
| 3200 | exit(1); |
| 3201 | } |
| 3202 | |
| 3203 | /* Let's get an address assigned to this socket so we can tell the */ |
| 3204 | /* initiator how to reach the data socket. There may be a desire to */ |
| 3205 | /* nail this socket to a specific IP address in a multi-homed, */ |
| 3206 | /* multi-connection situation, but for now, we'll ignore the issue */ |
| 3207 | /* and concentrate on single connection testing. */ |
| 3208 | |
| 3209 | bind_req.addr.maxlen = sizeof(struct sockaddr_in); |
| 3210 | bind_req.addr.len = sizeof(struct sockaddr_in); |
| 3211 | bind_req.addr.buf = (char *)&myaddr_in; |
| 3212 | bind_req.qlen = 1; |
| 3213 | |
| 3214 | bind_resp.addr.maxlen = sizeof(struct sockaddr_in); |
| 3215 | bind_resp.addr.len = sizeof(struct sockaddr_in); |
| 3216 | bind_resp.addr.buf = (char *)&myaddr_in; |
| 3217 | bind_resp.qlen = 1; |
| 3218 | |
| 3219 | if (t_bind(s_data, |
| 3220 | &bind_req, |
| 3221 | &bind_resp) == SOCKET_ERROR) { |
| 3222 | netperf_response.content.serv_errno = t_errno; |
| 3223 | send_response(); |
| 3224 | |
| 3225 | exit(1); |
| 3226 | } |
| 3227 | |
| 3228 | xti_udp_stream_response->test_length = |
| 3229 | xti_udp_stream_request->test_length; |
| 3230 | |
| 3231 | /* Now myaddr_in contains the port and the internet address this is */ |
| 3232 | /* returned to the sender also implicitly telling the sender that the */ |
| 3233 | /* socket buffer sizing has been done. */ |
| 3234 | |
| 3235 | xti_udp_stream_response->data_port_number = |
| 3236 | (int) ntohs(myaddr_in.sin_port); |
| 3237 | netperf_response.content.serv_errno = 0; |
| 3238 | |
| 3239 | /* But wait, there's more. If the initiator wanted cpu measurements, */ |
| 3240 | /* then we must call the calibrate routine, which will return the max */ |
| 3241 | /* rate back to the initiator. If the CPU was not to be measured, or */ |
| 3242 | /* something went wrong with the calibration, we will return a -1 to */ |
| 3243 | /* the initiator. */ |
| 3244 | |
| 3245 | xti_udp_stream_response->cpu_rate = 0.0; /* assume no cpu */ |
| 3246 | xti_udp_stream_response->measure_cpu = 0; |
| 3247 | if (xti_udp_stream_request->measure_cpu) { |
| 3248 | /* We will pass the rate into the calibration routine. If the */ |
| 3249 | /* user did not specify one, it will be 0.0, and we will do a */ |
| 3250 | /* "real" calibration. Otherwise, all it will really do is */ |
| 3251 | /* store it away... */ |
| 3252 | xti_udp_stream_response->measure_cpu = 1; |
| 3253 | xti_udp_stream_response->cpu_rate = |
| 3254 | calibrate_local_cpu(xti_udp_stream_request->cpu_rate); |
| 3255 | } |
| 3256 | |
| 3257 | message_size = xti_udp_stream_request->message_size; |
| 3258 | test_time = xti_udp_stream_request->test_length; |
| 3259 | |
| 3260 | /* before we send the response back to the initiator, pull some of */ |
| 3261 | /* the socket parms from the globals */ |
| 3262 | xti_udp_stream_response->send_buf_size = lss_size; |
| 3263 | xti_udp_stream_response->recv_buf_size = lsr_size; |
| 3264 | xti_udp_stream_response->so_rcvavoid = loc_rcvavoid; |
| 3265 | xti_udp_stream_response->so_sndavoid = loc_sndavoid; |
| 3266 | |
| 3267 | /* since we are going to call t_rcvudata() instead of t_rcv() we */ |
| 3268 | /* need to init the unitdata structure raj 3/95 */ |
| 3269 | |
| 3270 | unitdata.addr.maxlen = sizeof(fromaddr_in); |
| 3271 | unitdata.addr.len = sizeof(fromaddr_in); |
| 3272 | unitdata.addr.buf = (char *)&fromaddr_in; |
| 3273 | |
| 3274 | unitdata.opt.maxlen = 0; |
| 3275 | unitdata.opt.len = 0; |
| 3276 | unitdata.opt.buf = NULL; |
| 3277 | |
| 3278 | unitdata.udata.maxlen = xti_udp_stream_request->message_size; |
| 3279 | unitdata.udata.len = xti_udp_stream_request->message_size; |
| 3280 | unitdata.udata.buf = recv_ring->buffer_ptr; |
| 3281 | |
| 3282 | send_response(); |
| 3283 | |
| 3284 | /* Now it's time to start receiving data on the connection. We will */ |
| 3285 | /* first grab the apropriate counters and then start grabbing. */ |
| 3286 | |
| 3287 | cpu_start(xti_udp_stream_request->measure_cpu); |
| 3288 | |
| 3289 | /* The loop will exit when the timer pops, or if we happen to recv a */ |
| 3290 | /* message of less than send_size bytes... */ |
| 3291 | |
| 3292 | times_up = 0; |
| 3293 | start_timer(test_time + PAD_TIME); |
| 3294 | |
| 3295 | if (debug) { |
| 3296 | fprintf(where,"recv_xti_udp_stream: about to enter inner sanctum.\n"); |
| 3297 | fflush(where); |
| 3298 | } |
| 3299 | |
| 3300 | while (!times_up) { |
| 3301 | #ifdef RAJ_DEBUG |
| 3302 | if (debug) { |
| 3303 | fprintf(where,"t_rcvudata, errno %d, t_errno %d", |
| 3304 | errno, |
| 3305 | t_errno); |
| 3306 | fprintf(where," after %d messages\n",messages_recvd); |
| 3307 | fprintf(where,"addrmax %d addrlen %d addrbuf %x\n", |
| 3308 | unitdata.addr.maxlen, |
| 3309 | unitdata.addr.len, |
| 3310 | unitdata.addr.buf); |
| 3311 | fprintf(where,"optmax %d optlen %d optbuf %x\n", |
| 3312 | unitdata.opt.maxlen, |
| 3313 | unitdata.opt.len, |
| 3314 | unitdata.opt.buf); |
| 3315 | fprintf(where,"udatamax %d udatalen %d udatabuf %x\n", |
| 3316 | unitdata.udata.maxlen, |
| 3317 | unitdata.udata.len, |
| 3318 | unitdata.udata.buf); |
| 3319 | fflush(where); |
| 3320 | } |
| 3321 | #endif /* RAJ_DEBUG */ |
| 3322 | if (t_rcvudata(s_data, |
| 3323 | &unitdata, |
| 3324 | &flags) != 0) { |
| 3325 | if (errno == TNODATA) { |
| 3326 | continue; |
| 3327 | } |
| 3328 | if (errno != EINTR) { |
| 3329 | netperf_response.content.serv_errno = t_errno; |
| 3330 | send_response(); |
| 3331 | exit(1); |
| 3332 | } |
| 3333 | break; |
| 3334 | } |
| 3335 | messages_recvd++; |
| 3336 | recv_ring = recv_ring->next; |
| 3337 | unitdata.udata.buf = recv_ring->buffer_ptr; |
| 3338 | } |
| 3339 | |
| 3340 | if (debug) { |
| 3341 | fprintf(where,"recv_xti_udp_stream: got %d messages.\n",messages_recvd); |
| 3342 | fflush(where); |
| 3343 | } |
| 3344 | |
| 3345 | |
| 3346 | /* The loop now exits due timer or < send_size bytes received. */ |
| 3347 | |
| 3348 | cpu_stop(xti_udp_stream_request->measure_cpu,&elapsed_time); |
| 3349 | |
| 3350 | if (times_up) { |
| 3351 | /* we ended on a timer, subtract the PAD_TIME */ |
| 3352 | elapsed_time -= (float)PAD_TIME; |
| 3353 | } |
| 3354 | else { |
| 3355 | stop_timer(); |
| 3356 | } |
| 3357 | |
| 3358 | if (debug) { |
| 3359 | fprintf(where,"recv_xti_udp_stream: test ended in %f seconds.\n",elapsed_time); |
| 3360 | fflush(where); |
| 3361 | } |
| 3362 | |
| 3363 | bytes_received = (messages_recvd * message_size); |
| 3364 | |
| 3365 | /* send the results to the sender */ |
| 3366 | |
| 3367 | if (debug) { |
| 3368 | fprintf(where, |
| 3369 | "recv_xti_udp_stream: got %d bytes\n", |
| 3370 | bytes_received); |
| 3371 | fflush(where); |
| 3372 | } |
| 3373 | |
| 3374 | netperf_response.content.response_type = XTI_UDP_STREAM_RESULTS; |
| 3375 | xti_udp_stream_results->bytes_received = bytes_received; |
| 3376 | xti_udp_stream_results->messages_recvd = messages_recvd; |
| 3377 | xti_udp_stream_results->elapsed_time = elapsed_time; |
| 3378 | xti_udp_stream_results->cpu_method = cpu_method; |
| 3379 | if (xti_udp_stream_request->measure_cpu) { |
| 3380 | xti_udp_stream_results->cpu_util = calc_cpu_util(elapsed_time); |
| 3381 | } |
| 3382 | else { |
| 3383 | xti_udp_stream_results->cpu_util = -1.0; |
| 3384 | } |
| 3385 | |
| 3386 | if (debug > 1) { |
| 3387 | fprintf(where, |
| 3388 | "recv_xti_udp_stream: test complete, sending results.\n"); |
| 3389 | fflush(where); |
| 3390 | } |
| 3391 | |
| 3392 | send_response(); |
| 3393 | |
| 3394 | } |
| 3395 | |
| 3396 | void send_xti_udp_rr(char remote_host[]) |
| 3397 | { |
| 3398 | |
| 3399 | char *tput_title = "\ |
| 3400 | Local /Remote\n\ |
| 3401 | Socket Size Request Resp. Elapsed Trans.\n\ |
| 3402 | Send Recv Size Size Time Rate \n\ |
| 3403 | bytes Bytes bytes bytes secs. per sec \n\n"; |
| 3404 | |
| 3405 | char *tput_fmt_0 = |
| 3406 | "%7.2f\n"; |
| 3407 | |
| 3408 | char *tput_fmt_1_line_1 = "\ |
| 3409 | %-6d %-6d %-6d %-6d %-6.2f %7.2f \n"; |
| 3410 | char *tput_fmt_1_line_2 = "\ |
| 3411 | %-6d %-6d\n"; |
| 3412 | |
| 3413 | char *cpu_title = "\ |
| 3414 | Local /Remote\n\ |
| 3415 | Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\ |
| 3416 | Send Recv Size Size Time Rate local remote local remote\n\ |
| 3417 | bytes bytes bytes bytes secs. per sec %% %c %% %c us/Tr us/Tr\n\n"; |
| 3418 | |
| 3419 | char *cpu_fmt_0 = |
| 3420 | "%6.3f %c\n"; |
| 3421 | |
| 3422 | char *cpu_fmt_1_line_1 = "\ |
| 3423 | %-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; |
| 3424 | |
| 3425 | char *cpu_fmt_1_line_2 = "\ |
| 3426 | %-6d %-6d\n"; |
| 3427 | |
| 3428 | char *ksink_fmt = "\ |
| 3429 | Alignment Offset\n\ |
| 3430 | Local Remote Local Remote\n\ |
| 3431 | Send Recv Send Recv\n\ |
| 3432 | %5d %5d %5d %5d\n"; |
| 3433 | |
| 3434 | |
| 3435 | float elapsed_time; |
| 3436 | |
| 3437 | struct ring_elt *send_ring; |
| 3438 | struct ring_elt *recv_ring; |
| 3439 | |
| 3440 | struct t_bind bind_req, bind_resp; |
| 3441 | struct t_unitdata unitdata; |
| 3442 | struct t_unitdata send_unitdata; |
| 3443 | struct t_unitdata recv_unitdata; |
| 3444 | int flags = 0; |
| 3445 | |
| 3446 | int len; |
| 3447 | int nummessages; |
| 3448 | SOCKET send_socket; |
| 3449 | int trans_remaining; |
| 3450 | int bytes_xferd; |
| 3451 | |
| 3452 | int rsp_bytes_recvd; |
| 3453 | |
| 3454 | float local_cpu_utilization; |
| 3455 | float local_service_demand; |
| 3456 | float remote_cpu_utilization; |
| 3457 | float remote_service_demand; |
| 3458 | double thruput; |
| 3459 | |
| 3460 | struct hostent *hp; |
| 3461 | struct sockaddr_in server, myaddr_in; |
| 3462 | unsigned int addr; |
| 3463 | int addrlen; |
| 3464 | |
| 3465 | struct xti_udp_rr_request_struct *xti_udp_rr_request; |
| 3466 | struct xti_udp_rr_response_struct *xti_udp_rr_response; |
| 3467 | struct xti_udp_rr_results_struct *xti_udp_rr_result; |
| 3468 | |
| 3469 | #ifdef WANT_INTERVALS |
| 3470 | int interval_count; |
| 3471 | sigset_t signal_set; |
| 3472 | #endif /* WANT_INTERVALS */ |
| 3473 | |
| 3474 | xti_udp_rr_request = |
| 3475 | (struct xti_udp_rr_request_struct *)netperf_request.content.test_specific_data; |
| 3476 | xti_udp_rr_response = |
| 3477 | (struct xti_udp_rr_response_struct *)netperf_response.content.test_specific_data; |
| 3478 | xti_udp_rr_result = |
| 3479 | (struct xti_udp_rr_results_struct *)netperf_response.content.test_specific_data; |
| 3480 | |
| 3481 | #ifdef WANT_HISTOGRAM |
| 3482 | time_hist = HIST_new(); |
| 3483 | #endif |
| 3484 | |
| 3485 | /* since we are now disconnected from the code that established the */ |
| 3486 | /* control socket, and since we want to be able to use different */ |
| 3487 | /* protocols and such, we are passed the name of the remote host and */ |
| 3488 | /* must turn that into the test specific addressing information. */ |
| 3489 | |
| 3490 | bzero((char *)&server, |
| 3491 | sizeof(server)); |
| 3492 | |
| 3493 | /* it would seem that while HP-UX will allow an IP address (as a */ |
| 3494 | /* string) in a call to gethostbyname, other, less enlightened */ |
| 3495 | /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ |
| 3496 | /* order changed to check for IP address first. raj 7/96 */ |
| 3497 | |
| 3498 | if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { |
| 3499 | /* it was not an IP address, try it as a name */ |
| 3500 | if ((hp = gethostbyname(remote_host)) == NULL) { |
| 3501 | /* we have no idea what it is */ |
| 3502 | fprintf(where, |
| 3503 | "establish_control: could not resolve the destination %s\n", |
| 3504 | remote_host); |
| 3505 | fflush(where); |
| 3506 | exit(1); |
| 3507 | } |
| 3508 | else { |
| 3509 | /* it was a valid remote_host */ |
| 3510 | bcopy(hp->h_addr, |
| 3511 | (char *)&server.sin_addr, |
| 3512 | hp->h_length); |
| 3513 | server.sin_family = hp->h_addrtype; |
| 3514 | } |
| 3515 | } |
| 3516 | else { |
| 3517 | /* it was a valid IP address */ |
| 3518 | server.sin_addr.s_addr = addr; |
| 3519 | server.sin_family = AF_INET; |
| 3520 | } |
| 3521 | |
| 3522 | if ( print_headers ) { |
| 3523 | fprintf(where,"XTI UDP REQUEST/RESPONSE TEST"); |
| 3524 | fprintf(where," to %s", remote_host); |
| 3525 | if (iteration_max > 1) { |
| 3526 | fprintf(where, |
| 3527 | " : +/-%3.1f%% @ %2d%% conf.", |
| 3528 | interval/0.02, |
| 3529 | confidence_level); |
| 3530 | } |
| 3531 | if (loc_sndavoid || |
| 3532 | loc_rcvavoid || |
| 3533 | rem_sndavoid || |
| 3534 | rem_rcvavoid) { |
| 3535 | fprintf(where," : copy avoidance"); |
| 3536 | } |
| 3537 | #ifdef WANT_HISTOGRAM |
| 3538 | fprintf(where," : histogram"); |
| 3539 | #endif /* WANT_HISTOGRAM */ |
| 3540 | #ifdef WANT_INTERVALS |
| 3541 | fprintf(where," : interval"); |
| 3542 | #endif /* WANT_INTERVALS */ |
| 3543 | #ifdef DIRTY |
| 3544 | fprintf(where," : dirty data"); |
| 3545 | #endif /* DIRTY */ |
| 3546 | fprintf(where,"\n"); |
| 3547 | } |
| 3548 | |
| 3549 | /* initialize a few counters */ |
| 3550 | |
| 3551 | send_ring = NULL; |
| 3552 | recv_ring = NULL; |
| 3553 | nummessages = 0; |
| 3554 | bytes_xferd = 0; |
| 3555 | times_up = 0; |
| 3556 | confidence_iteration = 1; |
| 3557 | init_stat(); |
| 3558 | |
| 3559 | |
| 3560 | /* we have a great-big while loop which controls the number of times */ |
| 3561 | /* we run a particular test. this is for the calculation of a */ |
| 3562 | /* confidence interval (I really should have stayed awake during */ |
| 3563 | /* probstats :). If the user did not request confidence measurement */ |
| 3564 | /* (no confidence is the default) then we will only go though the */ |
| 3565 | /* loop once. the confidence stuff originates from the folks at IBM */ |
| 3566 | |
| 3567 | while (((confidence < 0) && (confidence_iteration < iteration_max)) || |
| 3568 | (confidence_iteration <= iteration_min)) { |
| 3569 | |
| 3570 | nummessages = 0; |
| 3571 | bytes_xferd = 0.0; |
| 3572 | times_up = 0; |
| 3573 | trans_remaining = 0; |
| 3574 | |
| 3575 | /* set-up the data buffers with the requested alignment and offset */ |
| 3576 | |
| 3577 | if (send_width == 0) send_width = 1; |
| 3578 | if (recv_width == 0) recv_width = 1; |
| 3579 | |
| 3580 | if (send_ring == NULL) { |
| 3581 | send_ring = allocate_buffer_ring(send_width, |
| 3582 | req_size, |
| 3583 | local_send_align, |
| 3584 | local_send_offset); |
| 3585 | } |
| 3586 | |
| 3587 | if (recv_ring == NULL) { |
| 3588 | recv_ring = allocate_buffer_ring(recv_width, |
| 3589 | rsp_size, |
| 3590 | local_recv_align, |
| 3591 | local_recv_offset); |
| 3592 | } |
| 3593 | |
| 3594 | /* since we are going to call t_rcvudata() instead of t_rcv() we */ |
| 3595 | /* need to init the unitdata structure raj 8/95 */ |
| 3596 | |
| 3597 | memset (&recv_unitdata, 0, sizeof(recv_unitdata)); |
| 3598 | recv_unitdata.addr.maxlen = sizeof(struct sockaddr_in); |
| 3599 | recv_unitdata.addr.len = sizeof(struct sockaddr_in); |
| 3600 | recv_unitdata.addr.buf = (char *)&server; |
| 3601 | |
| 3602 | recv_unitdata.opt.maxlen = 0; |
| 3603 | recv_unitdata.opt.len = 0; |
| 3604 | recv_unitdata.opt.buf = NULL; |
| 3605 | |
| 3606 | recv_unitdata.udata.maxlen = rsp_size; |
| 3607 | recv_unitdata.udata.len = rsp_size; |
| 3608 | recv_unitdata.udata.buf = recv_ring->buffer_ptr; |
| 3609 | |
| 3610 | /* since we are going to call t_sndudata() instead of t_snd() we */ |
| 3611 | /* need to init the unitdata structure raj 8/95 */ |
| 3612 | |
| 3613 | memset (&send_unitdata, 0, sizeof(send_unitdata)); |
| 3614 | send_unitdata.addr.maxlen = sizeof(struct sockaddr_in); |
| 3615 | send_unitdata.addr.len = sizeof(struct sockaddr_in); |
| 3616 | send_unitdata.addr.buf = (char *)&server; |
| 3617 | |
| 3618 | send_unitdata.opt.maxlen = 0; |
| 3619 | send_unitdata.opt.len = 0; |
| 3620 | send_unitdata.opt.buf = NULL; |
| 3621 | |
| 3622 | send_unitdata.udata.maxlen = req_size; |
| 3623 | send_unitdata.udata.len = req_size; |
| 3624 | send_unitdata.udata.buf = send_ring->buffer_ptr; |
| 3625 | |
| 3626 | /*set up the data socket */ |
| 3627 | send_socket = create_xti_endpoint(loc_xti_device); |
| 3628 | |
| 3629 | if (send_socket == INVALID_SOCKET){ |
| 3630 | perror("netperf: send_xti_udp_rr: udp rr data socket"); |
| 3631 | exit(1); |
| 3632 | } |
| 3633 | |
| 3634 | if (debug) { |
| 3635 | fprintf(where,"send_xti_udp_rr: send_socket obtained...\n"); |
| 3636 | } |
| 3637 | |
| 3638 | /* it would seem that with XTI, there is no implicit bind */ |
| 3639 | /* so we have to make a call to t_bind. this is not */ |
| 3640 | /* terribly convenient, but I suppose that "standard is better */ |
| 3641 | /* than better" :) raj 2/95 */ |
| 3642 | |
| 3643 | if (t_bind(send_socket, NULL, NULL) == SOCKET_ERROR) { |
| 3644 | t_error("send_xti_tcp_stream: t_bind"); |
| 3645 | exit(1); |
| 3646 | } |
| 3647 | |
| 3648 | /* If the user has requested cpu utilization measurements, we must */ |
| 3649 | /* calibrate the cpu(s). We will perform this task within the tests */ |
| 3650 | /* themselves. If the user has specified the cpu rate, then */ |
| 3651 | /* calibrate_local_cpu will return rather quickly as it will have */ |
| 3652 | /* nothing to do. If local_cpu_rate is zero, then we will go through */ |
| 3653 | /* all the "normal" calibration stuff and return the rate back. If */ |
| 3654 | /* there is no idle counter in the kernel idle loop, the */ |
| 3655 | /* local_cpu_rate will be set to -1. */ |
| 3656 | |
| 3657 | if (local_cpu_usage) { |
| 3658 | local_cpu_rate = calibrate_local_cpu(local_cpu_rate); |
| 3659 | } |
| 3660 | |
| 3661 | /* Tell the remote end to do a listen. The server alters the socket */ |
| 3662 | /* paramters on the other side at this point, hence the reason for */ |
| 3663 | /* all the values being passed in the setup message. If the user did */ |
| 3664 | /* not specify any of the parameters, they will be passed as 0, which */ |
| 3665 | /* will indicate to the remote that no changes beyond the system's */ |
| 3666 | /* default should be used. Alignment is the exception, it will */ |
| 3667 | /* default to 8, which will be no alignment alterations. */ |
| 3668 | |
| 3669 | netperf_request.content.request_type = DO_XTI_UDP_RR; |
| 3670 | xti_udp_rr_request->recv_buf_size = rsr_size; |
| 3671 | xti_udp_rr_request->send_buf_size = rss_size; |
| 3672 | xti_udp_rr_request->recv_alignment = remote_recv_align; |
| 3673 | xti_udp_rr_request->recv_offset = remote_recv_offset; |
| 3674 | xti_udp_rr_request->send_alignment = remote_send_align; |
| 3675 | xti_udp_rr_request->send_offset = remote_send_offset; |
| 3676 | xti_udp_rr_request->request_size = req_size; |
| 3677 | xti_udp_rr_request->response_size = rsp_size; |
| 3678 | xti_udp_rr_request->measure_cpu = remote_cpu_usage; |
| 3679 | xti_udp_rr_request->cpu_rate = remote_cpu_rate; |
| 3680 | xti_udp_rr_request->so_rcvavoid = rem_rcvavoid; |
| 3681 | xti_udp_rr_request->so_sndavoid = rem_sndavoid; |
| 3682 | if (test_time) { |
| 3683 | xti_udp_rr_request->test_length = test_time; |
| 3684 | } |
| 3685 | else { |
| 3686 | xti_udp_rr_request->test_length = test_trans * -1; |
| 3687 | } |
| 3688 | |
| 3689 | strcpy(xti_udp_rr_request->xti_device, rem_xti_device); |
| 3690 | |
| 3691 | #ifdef __alpha |
| 3692 | |
| 3693 | /* ok - even on a DEC box, strings are strings. I didn't really want */ |
| 3694 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 3695 | /* send_ and recv_ _request and _response routines about the types, */ |
| 3696 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 3697 | /* solution would be to use XDR, but I am still leary of being able */ |
| 3698 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 3699 | { |
| 3700 | int *charword; |
| 3701 | int *initword; |
| 3702 | int *lastword; |
| 3703 | |
| 3704 | initword = (int *) xti_udp_rr_request->xti_device; |
| 3705 | lastword = initword + ((strlen(rem_xti_device) + 3) / 4); |
| 3706 | |
| 3707 | for (charword = initword; |
| 3708 | charword < lastword; |
| 3709 | charword++) { |
| 3710 | |
| 3711 | *charword = ntohl(*charword); |
| 3712 | } |
| 3713 | } |
| 3714 | #endif /* __alpha */ |
| 3715 | |
| 3716 | if (debug > 1) { |
| 3717 | fprintf(where,"netperf: send_xti_udp_rr: requesting UDP r/r test\n"); |
| 3718 | } |
| 3719 | |
| 3720 | send_request(); |
| 3721 | |
| 3722 | /* The response from the remote will contain all of the relevant */ |
| 3723 | /* socket parameters for this test type. We will put them back into */ |
| 3724 | /* the variables here so they can be displayed if desired. The */ |
| 3725 | /* remote will have calibrated CPU if necessary, and will have done */ |
| 3726 | /* all the needed set-up we will have calibrated the cpu locally */ |
| 3727 | /* before sending the request, and will grab the counter value right*/ |
| 3728 | /* after the connect returns. The remote will grab the counter right*/ |
| 3729 | /* after the accept call. This saves the hassle of extra messages */ |
| 3730 | /* being sent for the UDP tests. */ |
| 3731 | |
| 3732 | recv_response(); |
| 3733 | |
| 3734 | if (!netperf_response.content.serv_errno) { |
| 3735 | if (debug) |
| 3736 | fprintf(where,"remote listen done.\n"); |
| 3737 | rsr_size = xti_udp_rr_response->recv_buf_size; |
| 3738 | rss_size = xti_udp_rr_response->send_buf_size; |
| 3739 | remote_cpu_usage = xti_udp_rr_response->measure_cpu; |
| 3740 | remote_cpu_rate = xti_udp_rr_response->cpu_rate; |
| 3741 | /* port numbers in proper order */ |
| 3742 | server.sin_port = (short)xti_udp_rr_response->data_port_number; |
| 3743 | server.sin_port = htons(server.sin_port); |
| 3744 | } |
| 3745 | else { |
| 3746 | Set_errno(netperf_response.content.serv_errno); |
| 3747 | perror("netperf: remote error"); |
| 3748 | |
| 3749 | exit(1); |
| 3750 | } |
| 3751 | |
| 3752 | /* Data Socket set-up is finished. If there were problems, either the */ |
| 3753 | /* connect would have failed, or the previous response would have */ |
| 3754 | /* indicated a problem. I failed to see the value of the extra */ |
| 3755 | /* message after the accept on the remote. If it failed, we'll see it */ |
| 3756 | /* here. If it didn't, we might as well start pumping data. */ |
| 3757 | |
| 3758 | /* Set-up the test end conditions. For a request/response test, they */ |
| 3759 | /* can be either time or transaction based. */ |
| 3760 | |
| 3761 | if (test_time) { |
| 3762 | /* The user wanted to end the test after a period of time. */ |
| 3763 | times_up = 0; |
| 3764 | trans_remaining = 0; |
| 3765 | start_timer(test_time); |
| 3766 | } |
| 3767 | else { |
| 3768 | /* The tester wanted to send a number of bytes. */ |
| 3769 | trans_remaining = test_bytes; |
| 3770 | times_up = 1; |
| 3771 | } |
| 3772 | |
| 3773 | /* The cpu_start routine will grab the current time and possibly */ |
| 3774 | /* value of the idle counter for later use in measuring cpu */ |
| 3775 | /* utilization and/or service demand and thruput. */ |
| 3776 | |
| 3777 | cpu_start(local_cpu_usage); |
| 3778 | |
| 3779 | #ifdef WANT_INTERVALS |
| 3780 | if ((interval_burst) || (demo_mode)) { |
| 3781 | /* zero means that we never pause, so we never should need the */ |
| 3782 | /* interval timer, unless we are in demo_mode */ |
| 3783 | start_itimer(interval_wate); |
| 3784 | } |
| 3785 | interval_count = interval_burst; |
| 3786 | /* get the signal set for the call to sigsuspend */ |
| 3787 | if (sigprocmask(SIG_BLOCK, (sigset_t *)NULL, &signal_set) != 0) { |
| 3788 | fprintf(where, |
| 3789 | "send_xti_udp_rr: unable to get sigmask errno %d\n", |
| 3790 | errno); |
| 3791 | fflush(where); |
| 3792 | exit(1); |
| 3793 | } |
| 3794 | #endif /* WANT_INTERVALS */ |
| 3795 | |
| 3796 | /* We use an "OR" to control test execution. When the test is */ |
| 3797 | /* controlled by time, the byte count check will always return */ |
| 3798 | /* false. When the test is controlled by byte count, the time test */ |
| 3799 | /* will always return false. When the test is finished, the whole */ |
| 3800 | /* expression will go false and we will stop sending data. I think */ |
| 3801 | /* I just arbitrarily decrement trans_remaining for the timed */ |
| 3802 | /* test, but will not do that just yet... One other question is */ |
| 3803 | /* whether or not the send buffer and the receive buffer should be */ |
| 3804 | /* the same buffer. */ |
| 3805 | |
| 3806 | while ((!times_up) || (trans_remaining > 0)) { |
| 3807 | /* send the request */ |
| 3808 | #ifdef WANT_HISTOGRAM |
| 3809 | HIST_timestamp(&time_one); |
| 3810 | #endif |
| 3811 | if((t_sndudata(send_socket, |
| 3812 | &send_unitdata)) != 0) { |
| 3813 | if (errno == EINTR) { |
| 3814 | /* We likely hit */ |
| 3815 | /* test-end time. */ |
| 3816 | break; |
| 3817 | } |
| 3818 | fprintf(where, |
| 3819 | "send_xti_udp_rr: t_sndudata: errno %d t_errno %d t_look 0x%.4x\n", |
| 3820 | errno, |
| 3821 | t_errno, |
| 3822 | t_look(send_socket)); |
| 3823 | fflush(where); |
| 3824 | exit(1); |
| 3825 | } |
| 3826 | send_ring = send_ring->next; |
| 3827 | |
| 3828 | /* receive the response. with UDP we will get it all, or nothing */ |
| 3829 | |
| 3830 | if((t_rcvudata(send_socket, |
| 3831 | &recv_unitdata, |
| 3832 | &flags)) != 0) { |
| 3833 | if (errno == TNODATA) { |
| 3834 | continue; |
| 3835 | } |
| 3836 | if (errno == EINTR) { |
| 3837 | /* Again, we have likely hit test-end time */ |
| 3838 | break; |
| 3839 | } |
| 3840 | fprintf(where, |
| 3841 | "send_xti_udp_rr: t_rcvudata: errno %d t_errno %d t_look 0x%x\n", |
| 3842 | errno, |
| 3843 | t_errno, |
| 3844 | t_look(send_socket)); |
| 3845 | fprintf(where, |
| 3846 | "recv_unitdata.udata.buf %x\n",recv_unitdata.udata.buf); |
| 3847 | fprintf(where, |
| 3848 | "recv_unitdata.udata.maxlen %x\n",recv_unitdata.udata.maxlen); |
| 3849 | fprintf(where, |
| 3850 | "recv_unitdata.udata.len %x\n",recv_unitdata.udata.len); |
| 3851 | fprintf(where, |
| 3852 | "recv_unitdata.addr.buf %x\n",recv_unitdata.addr.buf); |
| 3853 | fprintf(where, |
| 3854 | "recv_unitdata.addr.maxlen %x\n",recv_unitdata.addr.maxlen); |
| 3855 | fprintf(where, |
| 3856 | "recv_unitdata.addr.len %x\n",recv_unitdata.addr.len); |
| 3857 | fflush(where); |
| 3858 | exit(1); |
| 3859 | } |
| 3860 | recv_ring = recv_ring->next; |
| 3861 | |
| 3862 | #ifdef WANT_HISTOGRAM |
| 3863 | HIST_timestamp(&time_two); |
| 3864 | HIST_add(time_hist,delta_micro(&time_one,&time_two)); |
| 3865 | |
| 3866 | /* at this point, we may wish to sleep for some period of */ |
| 3867 | /* time, so we see how long that last transaction just took, */ |
| 3868 | /* and sleep for the difference of that and the interval. We */ |
| 3869 | /* will not sleep if the time would be less than a */ |
| 3870 | /* millisecond. */ |
| 3871 | #endif |
| 3872 | #ifdef WANT_INTERVALS |
| 3873 | if (demo_mode) { |
| 3874 | units_this_tick += 1; |
| 3875 | } |
| 3876 | /* in this case, the interval count is the count-down couter */ |
| 3877 | /* to decide to sleep for a little bit */ |
| 3878 | if ((interval_burst) && (--interval_count == 0)) { |
| 3879 | /* call sigsuspend and wait for the interval timer to get us */ |
| 3880 | /* out */ |
| 3881 | if (debug) { |
| 3882 | fprintf(where,"about to suspend\n"); |
| 3883 | fflush(where); |
| 3884 | } |
| 3885 | if (sigsuspend(&signal_set) == EFAULT) { |
| 3886 | fprintf(where, |
| 3887 | "send_xti_udp_rr: fault with signal set!\n"); |
| 3888 | fflush(where); |
| 3889 | exit(1); |
| 3890 | } |
| 3891 | interval_count = interval_burst; |
| 3892 | } |
| 3893 | #endif /* WANT_INTERVALS */ |
| 3894 | |
| 3895 | nummessages++; |
| 3896 | if (trans_remaining) { |
| 3897 | trans_remaining--; |
| 3898 | } |
| 3899 | |
| 3900 | if (debug > 3) { |
| 3901 | if ((nummessages % 100) == 0) { |
| 3902 | fprintf(where,"Transaction %d completed\n",nummessages); |
| 3903 | fflush(where); |
| 3904 | } |
| 3905 | } |
| 3906 | |
| 3907 | } |
| 3908 | |
| 3909 | /* this call will always give us the elapsed time for the test, and */ |
| 3910 | /* will also store-away the necessaries for cpu utilization */ |
| 3911 | |
| 3912 | cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being */ |
| 3913 | /* measured? how long */ |
| 3914 | /* did we really run? */ |
| 3915 | |
| 3916 | /* Get the statistics from the remote end. The remote will have */ |
| 3917 | /* calculated service demand and all those interesting things. If */ |
| 3918 | /* it wasn't supposed to care, it will return obvious values. */ |
| 3919 | |
| 3920 | recv_response(); |
| 3921 | if (!netperf_response.content.serv_errno) { |
| 3922 | if (debug) |
| 3923 | fprintf(where,"remote results obtained\n"); |
| 3924 | } |
| 3925 | else { |
| 3926 | Set_errno(netperf_response.content.serv_errno); |
| 3927 | perror("netperf: remote error"); |
| 3928 | |
| 3929 | exit(1); |
| 3930 | } |
| 3931 | |
| 3932 | /* We now calculate what our thruput was for the test. In the */ |
| 3933 | /* future, we may want to include a calculation of the thruput */ |
| 3934 | /* measured by the remote, but it should be the case that for a */ |
| 3935 | /* UDP rr test, that the two numbers should be *very* close... */ |
| 3936 | /* We calculate bytes_sent regardless of the way the test length */ |
| 3937 | /* was controlled. */ |
| 3938 | |
| 3939 | bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages); |
| 3940 | thruput = nummessages / elapsed_time; |
| 3941 | |
| 3942 | if (local_cpu_usage || remote_cpu_usage) { |
| 3943 | |
| 3944 | /* We must now do a little math for service demand and cpu */ |
| 3945 | /* utilization for the system(s) Of course, some of the */ |
| 3946 | /* information might be bogus because there was no idle counter */ |
| 3947 | /* in the kernel(s). We need to make a note of this for the */ |
| 3948 | /* user's benefit by placing a code for the metod used in the */ |
| 3949 | /* test banner */ |
| 3950 | |
| 3951 | if (local_cpu_usage) { |
| 3952 | local_cpu_utilization = calc_cpu_util(0.0); |
| 3953 | |
| 3954 | /* since calc_service demand is doing ms/Kunit we will */ |
| 3955 | /* multiply the number of transaction by 1024 to get */ |
| 3956 | /* "good" numbers */ |
| 3957 | |
| 3958 | local_service_demand = calc_service_demand((double) nummessages*1024, |
| 3959 | 0.0, |
| 3960 | 0.0, |
| 3961 | 0); |
| 3962 | } |
| 3963 | else { |
| 3964 | local_cpu_utilization = -1.0; |
| 3965 | local_service_demand = -1.0; |
| 3966 | } |
| 3967 | |
| 3968 | if (remote_cpu_usage) { |
| 3969 | remote_cpu_utilization = xti_udp_rr_result->cpu_util; |
| 3970 | |
| 3971 | /* since calc_service demand is doing ms/Kunit we will */ |
| 3972 | /* multiply the number of transaction by 1024 to get */ |
| 3973 | /* "good" numbers */ |
| 3974 | |
| 3975 | remote_service_demand = calc_service_demand((double) nummessages*1024, |
| 3976 | 0.0, |
| 3977 | remote_cpu_utilization, |
| 3978 | xti_udp_rr_result->num_cpus); |
| 3979 | } |
| 3980 | else { |
| 3981 | remote_cpu_utilization = -1.0; |
| 3982 | remote_service_demand = -1.0; |
| 3983 | } |
| 3984 | } |
| 3985 | else { |
| 3986 | /* we were not measuring cpu, for the confidence stuff, we */ |
| 3987 | /* should make it -1.0 */ |
| 3988 | local_cpu_utilization = -1.0; |
| 3989 | local_service_demand = -1.0; |
| 3990 | remote_cpu_utilization = -1.0; |
| 3991 | remote_service_demand = -1.0; |
| 3992 | } |
| 3993 | |
| 3994 | /* at this point, we want to calculate the confidence information. */ |
| 3995 | /* if debugging is on, calculate_confidence will print-out the */ |
| 3996 | /* parameters we pass it */ |
| 3997 | |
| 3998 | calculate_confidence(confidence_iteration, |
| 3999 | elapsed_time, |
| 4000 | thruput, |
| 4001 | local_cpu_utilization, |
| 4002 | remote_cpu_utilization, |
| 4003 | local_service_demand, |
| 4004 | remote_service_demand); |
| 4005 | |
| 4006 | |
| 4007 | confidence_iteration++; |
| 4008 | |
| 4009 | /* we are done with the socket */ |
| 4010 | t_close(send_socket); |
| 4011 | } |
| 4012 | |
| 4013 | /* at this point, we have made all the iterations we are going to */ |
| 4014 | /* make. */ |
| 4015 | retrieve_confident_values(&elapsed_time, |
| 4016 | &thruput, |
| 4017 | &local_cpu_utilization, |
| 4018 | &remote_cpu_utilization, |
| 4019 | &local_service_demand, |
| 4020 | &remote_service_demand); |
| 4021 | |
| 4022 | /* We are now ready to print all the information. If the user */ |
| 4023 | /* has specified zero-level verbosity, we will just print the */ |
| 4024 | /* local service demand, or the remote service demand. If the */ |
| 4025 | /* user has requested verbosity level 1, he will get the basic */ |
| 4026 | /* "streamperf" numbers. If the user has specified a verbosity */ |
| 4027 | /* of greater than 1, we will display a veritable plethora of */ |
| 4028 | /* background information from outside of this block as it it */ |
| 4029 | /* not cpu_measurement specific... */ |
| 4030 | |
| 4031 | if (confidence < 0) { |
| 4032 | /* we did not hit confidence, but were we asked to look for it? */ |
| 4033 | if (iteration_max > 1) { |
| 4034 | display_confidence(); |
| 4035 | } |
| 4036 | } |
| 4037 | |
| 4038 | if (local_cpu_usage || remote_cpu_usage) { |
| 4039 | local_cpu_method = format_cpu_method(cpu_method); |
| 4040 | remote_cpu_method = format_cpu_method(xti_udp_rr_result->cpu_method); |
| 4041 | |
| 4042 | switch (verbosity) { |
| 4043 | case 0: |
| 4044 | if (local_cpu_usage) { |
| 4045 | fprintf(where, |
| 4046 | cpu_fmt_0, |
| 4047 | local_service_demand, |
| 4048 | local_cpu_method); |
| 4049 | } |
| 4050 | else { |
| 4051 | fprintf(where, |
| 4052 | cpu_fmt_0, |
| 4053 | remote_service_demand, |
| 4054 | remote_cpu_method); |
| 4055 | } |
| 4056 | break; |
| 4057 | case 1: |
| 4058 | case 2: |
| 4059 | if (print_headers) { |
| 4060 | fprintf(where, |
| 4061 | cpu_title, |
| 4062 | local_cpu_method, |
| 4063 | remote_cpu_method); |
| 4064 | } |
| 4065 | |
| 4066 | fprintf(where, |
| 4067 | cpu_fmt_1_line_1, /* the format string */ |
| 4068 | lss_size, /* local sendbuf size */ |
| 4069 | lsr_size, |
| 4070 | req_size, /* how large were the requests */ |
| 4071 | rsp_size, /* guess */ |
| 4072 | elapsed_time, /* how long was the test */ |
| 4073 | nummessages/elapsed_time, |
| 4074 | local_cpu_utilization, /* local cpu */ |
| 4075 | remote_cpu_utilization, /* remote cpu */ |
| 4076 | local_service_demand, /* local service demand */ |
| 4077 | remote_service_demand); /* remote service demand */ |
| 4078 | fprintf(where, |
| 4079 | cpu_fmt_1_line_2, |
| 4080 | rss_size, |
| 4081 | rsr_size); |
| 4082 | break; |
| 4083 | } |
| 4084 | } |
| 4085 | else { |
| 4086 | /* The tester did not wish to measure service demand. */ |
| 4087 | switch (verbosity) { |
| 4088 | case 0: |
| 4089 | fprintf(where, |
| 4090 | tput_fmt_0, |
| 4091 | nummessages/elapsed_time); |
| 4092 | break; |
| 4093 | case 1: |
| 4094 | case 2: |
| 4095 | if (print_headers) { |
| 4096 | fprintf(where,tput_title,format_units()); |
| 4097 | } |
| 4098 | |
| 4099 | fprintf(where, |
| 4100 | tput_fmt_1_line_1, /* the format string */ |
| 4101 | lss_size, |
| 4102 | lsr_size, |
| 4103 | req_size, /* how large were the requests */ |
| 4104 | rsp_size, /* how large were the responses */ |
| 4105 | elapsed_time, /* how long did it take */ |
| 4106 | nummessages/elapsed_time); |
| 4107 | fprintf(where, |
| 4108 | tput_fmt_1_line_2, |
| 4109 | rss_size, /* remote recvbuf size */ |
| 4110 | rsr_size); |
| 4111 | |
| 4112 | break; |
| 4113 | } |
| 4114 | } |
| 4115 | fflush(where); |
| 4116 | |
| 4117 | /* it would be a good thing to include information about some of the */ |
| 4118 | /* other parameters that may have been set for this test, but at the */ |
| 4119 | /* moment, I do not wish to figure-out all the formatting, so I will */ |
| 4120 | /* just put this comment here to help remind me that it is something */ |
| 4121 | /* that should be done at a later time. */ |
| 4122 | |
| 4123 | /* how to handle the verbose information in the presence of */ |
| 4124 | /* confidence intervals is yet to be determined... raj 11/94 */ |
| 4125 | |
| 4126 | if (verbosity > 1) { |
| 4127 | /* The user wanted to know it all, so we will give it to him. */ |
| 4128 | /* This information will include as much as we can find about */ |
| 4129 | /* UDP statistics, the alignments of the sends and receives */ |
| 4130 | /* and all that sort of rot... */ |
| 4131 | |
| 4132 | #ifdef WANT_HISTOGRAM |
| 4133 | fprintf(where,"\nHistogram of request/reponse times.\n"); |
| 4134 | fflush(where); |
| 4135 | HIST_report(time_hist); |
| 4136 | #endif /* WANT_HISTOGRAM */ |
| 4137 | } |
| 4138 | } |
| 4139 | |
| 4140 | /* this routine implements the receive side (netserver) of a XTI_UDP_RR */ |
| 4141 | /* test. */ |
| 4142 | void |
| 4143 | recv_xti_udp_rr() |
| 4144 | { |
| 4145 | |
| 4146 | struct ring_elt *recv_ring; |
| 4147 | struct ring_elt *send_ring; |
| 4148 | |
| 4149 | struct t_bind bind_req, bind_resp; |
| 4150 | struct t_unitdata send_unitdata; |
| 4151 | struct t_unitdata recv_unitdata; |
| 4152 | int flags = 0; |
| 4153 | |
| 4154 | struct sockaddr_in myaddr_in, peeraddr_in; |
| 4155 | SOCKET s_data; |
| 4156 | int addrlen; |
| 4157 | int trans_received; |
| 4158 | int trans_remaining; |
| 4159 | float elapsed_time; |
| 4160 | |
| 4161 | struct xti_udp_rr_request_struct *xti_udp_rr_request; |
| 4162 | struct xti_udp_rr_response_struct *xti_udp_rr_response; |
| 4163 | struct xti_udp_rr_results_struct *xti_udp_rr_results; |
| 4164 | |
| 4165 | |
| 4166 | /* a little variable initialization */ |
| 4167 | memset (&myaddr_in, 0, sizeof(struct sockaddr_in)); |
| 4168 | myaddr_in.sin_family = AF_INET; |
| 4169 | myaddr_in.sin_addr.s_addr = INADDR_ANY; |
| 4170 | myaddr_in.sin_port = 0; |
| 4171 | memset (&peeraddr_in, 0, sizeof(struct sockaddr_in)); |
| 4172 | |
| 4173 | /* and some not so paranoid :) */ |
| 4174 | xti_udp_rr_request = |
| 4175 | (struct xti_udp_rr_request_struct *)netperf_request.content.test_specific_data; |
| 4176 | xti_udp_rr_response = |
| 4177 | (struct xti_udp_rr_response_struct *)netperf_response.content.test_specific_data; |
| 4178 | xti_udp_rr_results = |
| 4179 | (struct xti_udp_rr_results_struct *)netperf_response.content.test_specific_data; |
| 4180 | |
| 4181 | if (debug) { |
| 4182 | fprintf(where,"netserver: recv_xti_udp_rr: entered...\n"); |
| 4183 | fflush(where); |
| 4184 | } |
| 4185 | |
| 4186 | /* We want to set-up the listen socket with all the desired */ |
| 4187 | /* parameters and then let the initiator know that all is ready. If */ |
| 4188 | /* socket size defaults are to be used, then the initiator will have */ |
| 4189 | /* sent us 0's. If the socket sizes cannot be changed, then we will */ |
| 4190 | /* send-back what they are. If that information cannot be determined, */ |
| 4191 | /* then we send-back -1's for the sizes. If things go wrong for any */ |
| 4192 | /* reason, we will drop back ten yards and punt. */ |
| 4193 | |
| 4194 | /* If anything goes wrong, we want the remote to know about it. It */ |
| 4195 | /* would be best if the error that the remote reports to the user is */ |
| 4196 | /* the actual error we encountered, rather than some bogus unexpected */ |
| 4197 | /* response type message. */ |
| 4198 | |
| 4199 | if (debug) { |
| 4200 | fprintf(where,"recv_xti_udp_rr: setting the response type...\n"); |
| 4201 | fflush(where); |
| 4202 | } |
| 4203 | |
| 4204 | netperf_response.content.response_type = XTI_UDP_RR_RESPONSE; |
| 4205 | |
| 4206 | if (debug) { |
| 4207 | fprintf(where,"recv_xti_udp_rr: the response type is set...\n"); |
| 4208 | fflush(where); |
| 4209 | } |
| 4210 | |
| 4211 | /* We now alter the message_ptr variables to be at the desired */ |
| 4212 | /* alignments with the desired offsets. */ |
| 4213 | |
| 4214 | if (debug) { |
| 4215 | fprintf(where,"recv_xti_udp_rr: requested recv alignment of %d offset %d\n", |
| 4216 | xti_udp_rr_request->recv_alignment, |
| 4217 | xti_udp_rr_request->recv_offset); |
| 4218 | fprintf(where,"recv_xti_udp_rr: requested send alignment of %d offset %d\n", |
| 4219 | xti_udp_rr_request->send_alignment, |
| 4220 | xti_udp_rr_request->send_offset); |
| 4221 | fflush(where); |
| 4222 | } |
| 4223 | |
| 4224 | if (send_width == 0) send_width = 1; |
| 4225 | if (recv_width == 0) recv_width = 1; |
| 4226 | |
| 4227 | recv_ring = allocate_buffer_ring(recv_width, |
| 4228 | xti_udp_rr_request->request_size, |
| 4229 | xti_udp_rr_request->recv_alignment, |
| 4230 | xti_udp_rr_request->recv_offset); |
| 4231 | |
| 4232 | send_ring = allocate_buffer_ring(send_width, |
| 4233 | xti_udp_rr_request->response_size, |
| 4234 | xti_udp_rr_request->send_alignment, |
| 4235 | xti_udp_rr_request->send_offset); |
| 4236 | |
| 4237 | if (debug) { |
| 4238 | fprintf(where,"recv_xti_udp_rr: receive alignment and offset set...\n"); |
| 4239 | fflush(where); |
| 4240 | } |
| 4241 | |
| 4242 | /* create_xti_endpoint expects to find some things in the global */ |
| 4243 | /* variables, so set the globals based on the values in the request. */ |
| 4244 | /* once the socket has been created, we will set the response values */ |
| 4245 | /* based on the updated value of those globals. raj 7/94 */ |
| 4246 | lss_size = xti_udp_rr_request->send_buf_size; |
| 4247 | lsr_size = xti_udp_rr_request->recv_buf_size; |
| 4248 | loc_rcvavoid = xti_udp_rr_request->so_rcvavoid; |
| 4249 | loc_sndavoid = xti_udp_rr_request->so_sndavoid; |
| 4250 | |
| 4251 | #ifdef __alpha |
| 4252 | |
| 4253 | /* ok - even on a DEC box, strings are strings. I din't really want */ |
| 4254 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 4255 | /* send_ and recv_ _request and _response routines about the types, */ |
| 4256 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 4257 | /* solution would be to use XDR, but I am still leary of being able */ |
| 4258 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 4259 | { |
| 4260 | int *charword; |
| 4261 | int *initword; |
| 4262 | int *lastword; |
| 4263 | |
| 4264 | initword = (int *) xti_udp_rr_request->xti_device; |
| 4265 | lastword = initword + ((xti_udp_rr_request->dev_name_len + 3) / 4); |
| 4266 | |
| 4267 | for (charword = initword; |
| 4268 | charword < lastword; |
| 4269 | charword++) { |
| 4270 | |
| 4271 | *charword = htonl(*charword); |
| 4272 | } |
| 4273 | } |
| 4274 | |
| 4275 | #endif /* __alpha */ |
| 4276 | |
| 4277 | s_data = create_xti_endpoint(xti_udp_rr_request->xti_device); |
| 4278 | |
| 4279 | if (s_data == INVALID_SOCKET) { |
| 4280 | netperf_response.content.serv_errno = errno; |
| 4281 | send_response(); |
| 4282 | exit(1); |
| 4283 | } |
| 4284 | |
| 4285 | if (debug) { |
| 4286 | fprintf(where,"recv_xti_udp_rr: endpoint created...\n"); |
| 4287 | fflush(where); |
| 4288 | } |
| 4289 | |
| 4290 | /* Let's get an address assigned to this socket so we can tell the */ |
| 4291 | /* initiator how to reach the data socket. There may be a desire to */ |
| 4292 | /* nail this socket to a specific IP address in a multi-homed, */ |
| 4293 | /* multi-connection situation, but for now, we'll ignore the issue */ |
| 4294 | /* and concentrate on single connection testing. */ |
| 4295 | |
| 4296 | bind_req.addr.maxlen = sizeof(struct sockaddr_in); |
| 4297 | bind_req.addr.len = sizeof(struct sockaddr_in); |
| 4298 | bind_req.addr.buf = (char *)&myaddr_in; |
| 4299 | bind_req.qlen = 1; |
| 4300 | |
| 4301 | bind_resp.addr.maxlen = sizeof(struct sockaddr_in); |
| 4302 | bind_resp.addr.len = sizeof(struct sockaddr_in); |
| 4303 | bind_resp.addr.buf = (char *)&myaddr_in; |
| 4304 | bind_resp.qlen = 1; |
| 4305 | |
| 4306 | if (t_bind(s_data, |
| 4307 | &bind_req, |
| 4308 | &bind_resp) == SOCKET_ERROR) { |
| 4309 | if (debug) { |
| 4310 | fprintf(where, |
| 4311 | "recv_xti_udp_rr: t_bind failed, t_errno %d errno %d\n", |
| 4312 | t_errno, |
| 4313 | errno); |
| 4314 | fflush(where); |
| 4315 | } |
| 4316 | |
| 4317 | netperf_response.content.serv_errno = t_errno; |
| 4318 | send_response(); |
| 4319 | |
| 4320 | exit(1); |
| 4321 | } |
| 4322 | |
| 4323 | if (debug) { |
| 4324 | fprintf(where, |
| 4325 | "recv_xti_udp_rr: endpoint bound to port %d...\n", |
| 4326 | ntohs(myaddr_in.sin_port)); |
| 4327 | fflush(where); |
| 4328 | } |
| 4329 | |
| 4330 | xti_udp_rr_response->test_length = |
| 4331 | xti_udp_rr_request->test_length; |
| 4332 | |
| 4333 | |
| 4334 | /* Now myaddr_in contains the port and the internet address this is */ |
| 4335 | /* returned to the sender also implicitly telling the sender that the */ |
| 4336 | /* socket buffer sizing has been done. */ |
| 4337 | |
| 4338 | xti_udp_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port); |
| 4339 | netperf_response.content.serv_errno = 0; |
| 4340 | |
| 4341 | fprintf(where,"recv port number %d\n",myaddr_in.sin_port); |
| 4342 | fflush(where); |
| 4343 | |
| 4344 | /* But wait, there's more. If the initiator wanted cpu measurements, */ |
| 4345 | /* then we must call the calibrate routine, which will return the max */ |
| 4346 | /* rate back to the initiator. If the CPU was not to be measured, or */ |
| 4347 | /* something went wrong with the calibration, we will return a 0.0 to */ |
| 4348 | /* the initiator. */ |
| 4349 | |
| 4350 | xti_udp_rr_response->cpu_rate = 0.0; /* assume no cpu */ |
| 4351 | xti_udp_rr_response->measure_cpu = 0; |
| 4352 | if (xti_udp_rr_request->measure_cpu) { |
| 4353 | xti_udp_rr_response->measure_cpu = 1; |
| 4354 | xti_udp_rr_response->cpu_rate = |
| 4355 | calibrate_local_cpu(xti_udp_rr_request->cpu_rate); |
| 4356 | } |
| 4357 | |
| 4358 | /* before we send the response back to the initiator, pull some of */ |
| 4359 | /* the socket parms from the globals */ |
| 4360 | xti_udp_rr_response->send_buf_size = lss_size; |
| 4361 | xti_udp_rr_response->recv_buf_size = lsr_size; |
| 4362 | xti_udp_rr_response->so_rcvavoid = loc_rcvavoid; |
| 4363 | xti_udp_rr_response->so_sndavoid = loc_sndavoid; |
| 4364 | |
| 4365 | /* since we are going to call t_rcvudata() instead of t_rcv() we */ |
| 4366 | /* need to init the unitdata structure raj 3/95 */ |
| 4367 | |
| 4368 | memset (&recv_unitdata, 0, sizeof(recv_unitdata)); |
| 4369 | recv_unitdata.addr.maxlen = sizeof(struct sockaddr_in); |
| 4370 | recv_unitdata.addr.len = sizeof(struct sockaddr_in); |
| 4371 | recv_unitdata.addr.buf = (char *)&peeraddr_in; |
| 4372 | |
| 4373 | recv_unitdata.opt.maxlen = 0; |
| 4374 | recv_unitdata.opt.len = 0; |
| 4375 | recv_unitdata.opt.buf = NULL; |
| 4376 | |
| 4377 | recv_unitdata.udata.maxlen = xti_udp_rr_request->request_size; |
| 4378 | recv_unitdata.udata.len = xti_udp_rr_request->request_size; |
| 4379 | recv_unitdata.udata.buf = recv_ring->buffer_ptr; |
| 4380 | |
| 4381 | /* since we are going to call t_sndudata() instead of t_snd() we */ |
| 4382 | /* need to init the unitdata structure raj 8/95 */ |
| 4383 | |
| 4384 | memset (&send_unitdata, 0, sizeof(send_unitdata)); |
| 4385 | send_unitdata.addr.maxlen = sizeof(struct sockaddr_in); |
| 4386 | send_unitdata.addr.len = sizeof(struct sockaddr_in); |
| 4387 | send_unitdata.addr.buf = (char *)&peeraddr_in; |
| 4388 | |
| 4389 | send_unitdata.opt.maxlen = 0; |
| 4390 | send_unitdata.opt.len = 0; |
| 4391 | send_unitdata.opt.buf = NULL; |
| 4392 | |
| 4393 | send_unitdata.udata.maxlen = xti_udp_rr_request->response_size; |
| 4394 | send_unitdata.udata.len = xti_udp_rr_request->response_size; |
| 4395 | send_unitdata.udata.buf = send_ring->buffer_ptr; |
| 4396 | |
| 4397 | send_response(); |
| 4398 | |
| 4399 | |
| 4400 | /* Now it's time to start receiving data on the connection. We will */ |
| 4401 | /* first grab the apropriate counters and then start grabbing. */ |
| 4402 | |
| 4403 | cpu_start(xti_udp_rr_request->measure_cpu); |
| 4404 | |
| 4405 | if (xti_udp_rr_request->test_length > 0) { |
| 4406 | times_up = 0; |
| 4407 | trans_remaining = 0; |
| 4408 | start_timer(xti_udp_rr_request->test_length + PAD_TIME); |
| 4409 | } |
| 4410 | else { |
| 4411 | times_up = 1; |
| 4412 | trans_remaining = xti_udp_rr_request->test_length * -1; |
| 4413 | } |
| 4414 | |
| 4415 | addrlen = sizeof(peeraddr_in); |
| 4416 | bzero((char *)&peeraddr_in, addrlen); |
| 4417 | |
| 4418 | trans_received = 0; |
| 4419 | |
| 4420 | while ((!times_up) || (trans_remaining > 0)) { |
| 4421 | |
| 4422 | /* receive the request from the other side */ |
| 4423 | if (t_rcvudata(s_data, |
| 4424 | &recv_unitdata, |
| 4425 | &flags) != 0) { |
| 4426 | if (errno == TNODATA) { |
| 4427 | continue; |
| 4428 | } |
| 4429 | if (errno == EINTR) { |
| 4430 | /* we must have hit the end of test time. */ |
| 4431 | break; |
| 4432 | } |
| 4433 | if (debug) { |
| 4434 | fprintf(where, |
| 4435 | "recv_xti_udp_rr: t_rcvudata failed, t_errno %d errno %d\n", |
| 4436 | t_errno, |
| 4437 | errno); |
| 4438 | fflush(where); |
| 4439 | } |
| 4440 | netperf_response.content.serv_errno = t_errno; |
| 4441 | send_response(); |
| 4442 | exit(1); |
| 4443 | } |
| 4444 | recv_ring = recv_ring->next; |
| 4445 | recv_unitdata.udata.buf = recv_ring->buffer_ptr; |
| 4446 | |
| 4447 | /* Now, send the response to the remote */ |
| 4448 | if (t_sndudata(s_data, |
| 4449 | &send_unitdata) != 0) { |
| 4450 | if (errno == EINTR) { |
| 4451 | /* we have hit end of test time. */ |
| 4452 | break; |
| 4453 | } |
| 4454 | if (debug) { |
| 4455 | fprintf(where, |
| 4456 | "recv_xti_udp_rr: t_sndudata failed, t_errno %d errno %d\n", |
| 4457 | t_errno, |
| 4458 | errno); |
| 4459 | fflush(where); |
| 4460 | } |
| 4461 | netperf_response.content.serv_errno = errno; |
| 4462 | send_response(); |
| 4463 | exit(1); |
| 4464 | } |
| 4465 | send_ring = send_ring->next; |
| 4466 | send_unitdata.udata.buf = send_ring->buffer_ptr; |
| 4467 | |
| 4468 | trans_received++; |
| 4469 | if (trans_remaining) { |
| 4470 | trans_remaining--; |
| 4471 | } |
| 4472 | |
| 4473 | if (debug) { |
| 4474 | fprintf(where, |
| 4475 | "recv_xti_udp_rr: Transaction %d complete.\n", |
| 4476 | trans_received); |
| 4477 | fflush(where); |
| 4478 | } |
| 4479 | |
| 4480 | } |
| 4481 | |
| 4482 | |
| 4483 | /* The loop now exits due to timeout or transaction count being */ |
| 4484 | /* reached */ |
| 4485 | |
| 4486 | cpu_stop(xti_udp_rr_request->measure_cpu,&elapsed_time); |
| 4487 | |
| 4488 | if (times_up) { |
| 4489 | /* we ended the test by time, which was at least 2 seconds */ |
| 4490 | /* longer than we wanted to run. so, we want to subtract */ |
| 4491 | /* PAD_TIME from the elapsed_time. */ |
| 4492 | elapsed_time -= PAD_TIME; |
| 4493 | } |
| 4494 | /* send the results to the sender */ |
| 4495 | |
| 4496 | if (debug) { |
| 4497 | fprintf(where, |
| 4498 | "recv_xti_udp_rr: got %d transactions\n", |
| 4499 | trans_received); |
| 4500 | fflush(where); |
| 4501 | } |
| 4502 | |
| 4503 | xti_udp_rr_results->bytes_received = (trans_received * |
| 4504 | (xti_udp_rr_request->request_size + |
| 4505 | xti_udp_rr_request->response_size)); |
| 4506 | xti_udp_rr_results->trans_received = trans_received; |
| 4507 | xti_udp_rr_results->elapsed_time = elapsed_time; |
| 4508 | xti_udp_rr_results->cpu_method = cpu_method; |
| 4509 | if (xti_udp_rr_request->measure_cpu) { |
| 4510 | xti_udp_rr_results->cpu_util = calc_cpu_util(elapsed_time); |
| 4511 | } |
| 4512 | |
| 4513 | if (debug) { |
| 4514 | fprintf(where, |
| 4515 | "recv_xti_udp_rr: test complete, sending results.\n"); |
| 4516 | fflush(where); |
| 4517 | } |
| 4518 | |
| 4519 | send_response(); |
| 4520 | |
| 4521 | /* we are done with the socket now */ |
| 4522 | close(s_data); |
| 4523 | |
| 4524 | } |
| 4525 | |
| 4526 | /* this routine implements the receive (netserver) side of a XTI_TCP_RR */ |
| 4527 | /* test */ |
| 4528 | void |
| 4529 | recv_xti_tcp_rr() |
| 4530 | { |
| 4531 | |
| 4532 | struct ring_elt *send_ring; |
| 4533 | struct ring_elt *recv_ring; |
| 4534 | |
| 4535 | struct sockaddr_in myaddr_in, peeraddr_in; |
| 4536 | struct t_bind bind_req, bind_resp; |
| 4537 | struct t_call call_req; |
| 4538 | |
| 4539 | SOCKET s_listen,s_data; |
| 4540 | int addrlen; |
| 4541 | char *temp_message_ptr; |
| 4542 | int trans_received; |
| 4543 | int trans_remaining; |
| 4544 | int bytes_sent; |
| 4545 | int request_bytes_recvd; |
| 4546 | int request_bytes_remaining; |
| 4547 | int timed_out = 0; |
| 4548 | float elapsed_time; |
| 4549 | |
| 4550 | struct xti_tcp_rr_request_struct *xti_tcp_rr_request; |
| 4551 | struct xti_tcp_rr_response_struct *xti_tcp_rr_response; |
| 4552 | struct xti_tcp_rr_results_struct *xti_tcp_rr_results; |
| 4553 | |
| 4554 | xti_tcp_rr_request = |
| 4555 | (struct xti_tcp_rr_request_struct *)netperf_request.content.test_specific_data; |
| 4556 | xti_tcp_rr_response = |
| 4557 | (struct xti_tcp_rr_response_struct *)netperf_response.content.test_specific_data; |
| 4558 | xti_tcp_rr_results = |
| 4559 | (struct xti_tcp_rr_results_struct *)netperf_response.content.test_specific_data; |
| 4560 | |
| 4561 | if (debug) { |
| 4562 | fprintf(where,"netserver: recv_xti_tcp_rr: entered...\n"); |
| 4563 | fflush(where); |
| 4564 | } |
| 4565 | |
| 4566 | /* We want to set-up the listen socket with all the desired */ |
| 4567 | /* parameters and then let the initiator know that all is ready. If */ |
| 4568 | /* socket size defaults are to be used, then the initiator will have */ |
| 4569 | /* sent us 0's. If the socket sizes cannot be changed, then we will */ |
| 4570 | /* send-back what they are. If that information cannot be determined, */ |
| 4571 | /* then we send-back -1's for the sizes. If things go wrong for any */ |
| 4572 | /* reason, we will drop back ten yards and punt. */ |
| 4573 | |
| 4574 | /* If anything goes wrong, we want the remote to know about it. It */ |
| 4575 | /* would be best if the error that the remote reports to the user is */ |
| 4576 | /* the actual error we encountered, rather than some bogus unexpected */ |
| 4577 | /* response type message. */ |
| 4578 | |
| 4579 | if (debug) { |
| 4580 | fprintf(where,"recv_xti_tcp_rr: setting the response type...\n"); |
| 4581 | fflush(where); |
| 4582 | } |
| 4583 | |
| 4584 | netperf_response.content.response_type = XTI_TCP_RR_RESPONSE; |
| 4585 | |
| 4586 | if (debug) { |
| 4587 | fprintf(where,"recv_xti_tcp_rr: the response type is set...\n"); |
| 4588 | fflush(where); |
| 4589 | } |
| 4590 | |
| 4591 | /* allocate the recv and send rings with the requested alignments */ |
| 4592 | /* and offsets. raj 7/94 */ |
| 4593 | if (debug) { |
| 4594 | fprintf(where,"recv_xti_tcp_rr: requested recv alignment of %d offset %d\n", |
| 4595 | xti_tcp_rr_request->recv_alignment, |
| 4596 | xti_tcp_rr_request->recv_offset); |
| 4597 | fprintf(where,"recv_xti_tcp_rr: requested send alignment of %d offset %d\n", |
| 4598 | xti_tcp_rr_request->send_alignment, |
| 4599 | xti_tcp_rr_request->send_offset); |
| 4600 | fflush(where); |
| 4601 | } |
| 4602 | |
| 4603 | /* at some point, these need to come to us from the remote system */ |
| 4604 | if (send_width == 0) send_width = 1; |
| 4605 | if (recv_width == 0) recv_width = 1; |
| 4606 | |
| 4607 | send_ring = allocate_buffer_ring(send_width, |
| 4608 | xti_tcp_rr_request->response_size, |
| 4609 | xti_tcp_rr_request->send_alignment, |
| 4610 | xti_tcp_rr_request->send_offset); |
| 4611 | |
| 4612 | recv_ring = allocate_buffer_ring(recv_width, |
| 4613 | xti_tcp_rr_request->request_size, |
| 4614 | xti_tcp_rr_request->recv_alignment, |
| 4615 | xti_tcp_rr_request->recv_offset); |
| 4616 | |
| 4617 | |
| 4618 | /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ |
| 4619 | /* can put in OUR values !-) At some point, we may want to nail this */ |
| 4620 | /* socket to a particular network-level address, but for now, */ |
| 4621 | /* INADDR_ANY should be just fine. */ |
| 4622 | |
| 4623 | bzero((char *)&myaddr_in, |
| 4624 | sizeof(myaddr_in)); |
| 4625 | myaddr_in.sin_family = AF_INET; |
| 4626 | myaddr_in.sin_addr.s_addr = INADDR_ANY; |
| 4627 | myaddr_in.sin_port = 0; |
| 4628 | |
| 4629 | /* Grab a socket to listen on, and then listen on it. */ |
| 4630 | |
| 4631 | if (debug) { |
| 4632 | fprintf(where,"recv_xti_tcp_rr: grabbing a socket...\n"); |
| 4633 | fflush(where); |
| 4634 | } |
| 4635 | |
| 4636 | /* create_xti_endpoint expects to find some things in the global */ |
| 4637 | /* variables, so set the globals based on the values in the request. */ |
| 4638 | /* once the socket has been created, we will set the response values */ |
| 4639 | /* based on the updated value of those globals. raj 7/94 */ |
| 4640 | lss_size = xti_tcp_rr_request->send_buf_size; |
| 4641 | lsr_size = xti_tcp_rr_request->recv_buf_size; |
| 4642 | loc_nodelay = xti_tcp_rr_request->no_delay; |
| 4643 | loc_rcvavoid = xti_tcp_rr_request->so_rcvavoid; |
| 4644 | loc_sndavoid = xti_tcp_rr_request->so_sndavoid; |
| 4645 | |
| 4646 | #ifdef __alpha |
| 4647 | |
| 4648 | /* ok - even on a DEC box, strings are strings. I din't really want */ |
| 4649 | /* to ntohl the words of a string. since I don't want to teach the */ |
| 4650 | /* send_ and recv_ _request and _response routines about the types, */ |
| 4651 | /* I will put "anti-ntohl" calls here. I imagine that the "pure" */ |
| 4652 | /* solution would be to use XDR, but I am still leary of being able */ |
| 4653 | /* to find XDR libs on all platforms I want running netperf. raj */ |
| 4654 | { |
| 4655 | int *charword; |
| 4656 | int *initword; |
| 4657 | int *lastword; |
| 4658 | |
| 4659 | initword = (int *) xti_tcp_rr_request->xti_device; |
| 4660 | lastword = initword + ((xti_tcp_rr_request->dev_name_len + 3) / 4); |
| 4661 | |
| 4662 | for (charword = initword; |
| 4663 | charword < lastword; |
| 4664 | charword++) { |
| 4665 | |
| 4666 | *charword = htonl(*charword); |
| 4667 | } |
| 4668 | } |
| 4669 | |
| 4670 | #endif /* __alpha */ |
| 4671 | |
| 4672 | s_listen = create_xti_endpoint(xti_tcp_rr_request->xti_device); |
| 4673 | |
| 4674 | if (s_listen == INVALID_SOCKET) { |
| 4675 | netperf_response.content.serv_errno = errno; |
| 4676 | send_response(); |
| 4677 | |
| 4678 | exit(1); |
| 4679 | } |
| 4680 | |
| 4681 | /* Let's get an address assigned to this socket so we can tell the */ |
| 4682 | /* initiator how to reach the data socket. There may be a desire to */ |
| 4683 | /* nail this socket to a specific IP address in a multi-homed, */ |
| 4684 | /* multi-connection situation, but for now, we'll ignore the issue */ |
| 4685 | /* and concentrate on single connection testing. */ |
| 4686 | |
| 4687 | bind_req.addr.maxlen = sizeof(struct sockaddr_in); |
| 4688 | bind_req.addr.len = sizeof(struct sockaddr_in); |
| 4689 | bind_req.addr.buf = (char *)&myaddr_in; |
| 4690 | bind_req.qlen = 1; |
| 4691 | |
| 4692 | bind_resp.addr.maxlen = sizeof(struct sockaddr_in); |
| 4693 | bind_resp.addr.len = sizeof(struct sockaddr_in); |
| 4694 | bind_resp.addr.buf = (char *)&myaddr_in; |
| 4695 | bind_resp.qlen = 1; |
| 4696 | |
| 4697 | if (t_bind(s_listen, |
| 4698 | &bind_req, |
| 4699 | &bind_resp) == SOCKET_ERROR) { |
| 4700 | netperf_response.content.serv_errno = t_errno; |
| 4701 | close(s_listen); |
| 4702 | send_response(); |
| 4703 | |
| 4704 | exit(1); |
| 4705 | } |
| 4706 | |
| 4707 | if (debug) { |
| 4708 | fprintf(where, |
| 4709 | "recv_xti_tcp_rr: t_bind complete port %d\n", |
| 4710 | ntohs(myaddr_in.sin_port)); |
| 4711 | fflush(where); |
| 4712 | } |
| 4713 | |
| 4714 | /* Now myaddr_in contains the port and the internet address this is */ |
| 4715 | /* returned to the sender also implicitly telling the sender that the */ |
| 4716 | /* socket buffer sizing has been done. */ |
| 4717 | |
| 4718 | xti_tcp_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port); |
| 4719 | netperf_response.content.serv_errno = 0; |
| 4720 | |
| 4721 | /* But wait, there's more. If the initiator wanted cpu measurements, */ |
| 4722 | /* then we must call the calibrate routine, which will return the max */ |
| 4723 | /* rate back to the initiator. If the CPU was not to be measured, or */ |
| 4724 | /* something went wrong with the calibration, we will return a 0.0 to */ |
| 4725 | /* the initiator. */ |
| 4726 | |
| 4727 | xti_tcp_rr_response->cpu_rate = 0.0; /* assume no cpu */ |
| 4728 | xti_tcp_rr_response->measure_cpu = 0; |
| 4729 | |
| 4730 | if (xti_tcp_rr_request->measure_cpu) { |
| 4731 | xti_tcp_rr_response->measure_cpu = 1; |
| 4732 | xti_tcp_rr_response->cpu_rate = calibrate_local_cpu(xti_tcp_rr_request->cpu_rate); |
| 4733 | } |
| 4734 | |
| 4735 | |
| 4736 | /* before we send the response back to the initiator, pull some of */ |
| 4737 | /* the socket parms from the globals */ |
| 4738 | xti_tcp_rr_response->send_buf_size = lss_size; |
| 4739 | xti_tcp_rr_response->recv_buf_size = lsr_size; |
| 4740 | xti_tcp_rr_response->no_delay = loc_nodelay; |
| 4741 | xti_tcp_rr_response->so_rcvavoid = loc_rcvavoid; |
| 4742 | xti_tcp_rr_response->so_sndavoid = loc_sndavoid; |
| 4743 | xti_tcp_rr_response->test_length = xti_tcp_rr_request->test_length; |
| 4744 | send_response(); |
| 4745 | |
| 4746 | /* Now, let's set-up the socket to listen for connections. for xti, */ |
| 4747 | /* the t_listen call is blocking by default - this is different */ |
| 4748 | /* semantics from BSD - probably has to do with being able to reject */ |
| 4749 | /* a call before an accept */ |
| 4750 | call_req.addr.maxlen = sizeof(struct sockaddr_in); |
| 4751 | call_req.addr.len = sizeof(struct sockaddr_in); |
| 4752 | call_req.addr.buf = (char *)&peeraddr_in; |
| 4753 | call_req.opt.maxlen = 0; |
| 4754 | call_req.opt.len = 0; |
| 4755 | call_req.opt.buf = NULL; |
| 4756 | call_req.udata.maxlen= 0; |
| 4757 | call_req.udata.len = 0; |
| 4758 | call_req.udata.buf = 0; |
| 4759 | |
| 4760 | if (t_listen(s_listen, &call_req) == -1) { |
| 4761 | fprintf(where, |
| 4762 | "recv_xti_tcp_rr: t_listen: errno %d t_errno %d\n", |
| 4763 | errno, |
| 4764 | t_errno); |
| 4765 | fflush(where); |
| 4766 | netperf_response.content.serv_errno = t_errno; |
| 4767 | close(s_listen); |
| 4768 | send_response(); |
| 4769 | exit(1); |
| 4770 | } |
| 4771 | |
| 4772 | if (debug) { |
| 4773 | fprintf(where, |
| 4774 | "recv_xti_tcp_rr: t_listen complete t_look 0x%.4x\n", |
| 4775 | t_look(s_listen)); |
| 4776 | fflush(where); |
| 4777 | } |
| 4778 | |
| 4779 | /* now just rubber stamp the thing. we want to use the same fd? so */ |
| 4780 | /* we will just equate s_data with s_listen. this seems a little */ |
| 4781 | /* hokey to me, but then I'm a BSD biggot still. raj 2/95 */ |
| 4782 | s_data = s_listen; |
| 4783 | if (t_accept(s_listen, |
| 4784 | s_data, |
| 4785 | &call_req) == -1) { |
| 4786 | fprintf(where, |
| 4787 | "recv_xti_tcp_rr: t_accept: errno %d t_errno %d\n", |
| 4788 | errno, |
| 4789 | t_errno); |
| 4790 | fflush(where); |
| 4791 | close(s_listen); |
| 4792 | exit(1); |
| 4793 | } |
| 4794 | |
| 4795 | if (debug) { |
| 4796 | fprintf(where, |
| 4797 | "recv_xti_tcp_rr: t_accept complete t_look 0x%.4x", |
| 4798 | t_look(s_data)); |
| 4799 | fprintf(where, |
| 4800 | " remote is %s port %d\n", |
| 4801 | inet_ntoa(*(struct in_addr *)&peeraddr_in.sin_addr), |
| 4802 | ntohs(peeraddr_in.sin_port)); |
| 4803 | fflush(where); |
| 4804 | } |
| 4805 | |
| 4806 | /* Now it's time to start receiving data on the connection. We will */ |
| 4807 | /* first grab the apropriate counters and then start grabbing. */ |
| 4808 | |
| 4809 | cpu_start(xti_tcp_rr_request->measure_cpu); |
| 4810 | |
| 4811 | if (xti_tcp_rr_request->test_length > 0) { |
| 4812 | times_up = 0; |
| 4813 | trans_remaining = 0; |
| 4814 | start_timer(xti_tcp_rr_request->test_length + PAD_TIME); |
| 4815 | } |
| 4816 | else { |
| 4817 | times_up = 1; |
| 4818 | trans_remaining = xti_tcp_rr_request->test_length * -1; |
| 4819 | } |
| 4820 | |
| 4821 | trans_received = 0; |
| 4822 | |
| 4823 | while ((!times_up) || (trans_remaining > 0)) { |
| 4824 | temp_message_ptr = recv_ring->buffer_ptr; |
| 4825 | request_bytes_remaining = xti_tcp_rr_request->request_size; |
| 4826 | while(request_bytes_remaining > 0) { |
| 4827 | if((request_bytes_recvd=t_rcv(s_data, |
| 4828 | temp_message_ptr, |
| 4829 | request_bytes_remaining, |
| 4830 | &xti_flags)) == SOCKET_ERROR) { |
| 4831 | if (errno == EINTR) { |
| 4832 | /* the timer popped */ |
| 4833 | timed_out = 1; |
| 4834 | break; |
| 4835 | } |
| 4836 | fprintf(where, |
| 4837 | "recv_xti_tcp_rr: t_rcv: errno %d t_errno %d len %d", |
| 4838 | errno, |
| 4839 | t_errno, |
| 4840 | request_bytes_recvd); |
| 4841 | fprintf(where, |
| 4842 | " t_look 0x%x", |
| 4843 | t_look(s_data)); |
| 4844 | fflush(where); |
| 4845 | netperf_response.content.serv_errno = t_errno; |
| 4846 | send_response(); |
| 4847 | exit(1); |
| 4848 | } |
| 4849 | else { |
| 4850 | request_bytes_remaining -= request_bytes_recvd; |
| 4851 | temp_message_ptr += request_bytes_recvd; |
| 4852 | } |
| 4853 | } |
| 4854 | |
| 4855 | recv_ring = recv_ring->next; |
| 4856 | |
| 4857 | if (timed_out) { |
| 4858 | /* we hit the end of the test based on time - lets */ |
| 4859 | /* bail out of here now... */ |
| 4860 | if (debug) { |
| 4861 | fprintf(where,"yo5\n"); |
| 4862 | fflush(where); |
| 4863 | } |
| 4864 | break; |
| 4865 | } |
| 4866 | |
| 4867 | /* Now, send the response to the remote */ |
| 4868 | if((bytes_sent=t_snd(s_data, |
| 4869 | send_ring->buffer_ptr, |
| 4870 | xti_tcp_rr_request->response_size, |
| 4871 | 0)) == -1) { |
| 4872 | if (errno == EINTR) { |
| 4873 | /* the test timer has popped */ |
| 4874 | timed_out = 1; |
| 4875 | if (debug) { |
| 4876 | fprintf(where,"yo6\n"); |
| 4877 | fflush(where); |
| 4878 | } |
| 4879 | break; |
| 4880 | } |
| 4881 | fprintf(where, |
| 4882 | "recv_xti_tcp_rr: t_rcv: errno %d t_errno %d len %d", |
| 4883 | errno, |
| 4884 | t_errno, |
| 4885 | bytes_sent); |
| 4886 | fprintf(where, |
| 4887 | " t_look 0x%x", |
| 4888 | t_look(s_data)); |
| 4889 | fflush(where); |
| 4890 | netperf_response.content.serv_errno = t_errno; |
| 4891 | send_response(); |
| 4892 | exit(1); |
| 4893 | } |
| 4894 | |
| 4895 | send_ring = send_ring->next; |
| 4896 | |
| 4897 | trans_received++; |
| 4898 | if (trans_remaining) { |
| 4899 | trans_remaining--; |
| 4900 | } |
| 4901 | } |
| 4902 | |
| 4903 | |
| 4904 | /* The loop now exits due to timeout or transaction count being */ |
| 4905 | /* reached */ |
| 4906 | |
| 4907 | cpu_stop(xti_tcp_rr_request->measure_cpu,&elapsed_time); |
| 4908 | |
| 4909 | stop_timer(); /* this is probably unnecessary, but it shouldn't hurt */ |
| 4910 | |
| 4911 | if (timed_out) { |
| 4912 | /* we ended the test by time, which was at least 2 seconds */ |
| 4913 | /* longer than we wanted to run. so, we want to subtract */ |
| 4914 | /* PAD_TIME from the elapsed_time. */ |
| 4915 | elapsed_time -= PAD_TIME; |
| 4916 | } |
| 4917 | |
| 4918 | /* send the results to the sender */ |
| 4919 | |
| 4920 | if (debug) { |
| 4921 | fprintf(where, |
| 4922 | "recv_xti_tcp_rr: got %d transactions\n", |
| 4923 | trans_received); |
| 4924 | fflush(where); |
| 4925 | } |
| 4926 | |
| 4927 | xti_tcp_rr_results->bytes_received = (trans_received * |
| 4928 | (xti_tcp_rr_request->request_size + |
| 4929 | xti_tcp_rr_request->response_size)); |
| 4930 | xti_tcp_rr_results->trans_received = trans_received; |
| 4931 | xti_tcp_rr_results->elapsed_time = elapsed_time; |
| 4932 | xti_tcp_rr_results->cpu_method = cpu_method; |
| 4933 | if (xti_tcp_rr_request->measure_cpu) { |
| 4934 | xti_tcp_rr_results->cpu_util = calc_cpu_util(elapsed_time); |
| 4935 | } |
| 4936 | |
| 4937 | if (debug) { |
| 4938 | fprintf(where, |
| 4939 | "recv_xti_tcp_rr: test complete, sending results.\n"); |
| 4940 | fflush(where); |
| 4941 | } |
| 4942 | |
| 4943 | /* we are done with the socket, free it */ |
| 4944 | t_close(s_data); |
| 4945 | |
| 4946 | send_response(); |
| 4947 | |
| 4948 | } |
| 4949 | |
| 4950 | |
| 4951 | |
| 4952 | /* this test is intended to test the performance of establishing a */ |
| 4953 | /* connection, exchanging a request/response pair, and repeating. it */ |
| 4954 | /* is expected that this would be a good starting-point for */ |
| 4955 | /* comparision of T/TCP with classic TCP for transactional workloads. */ |
| 4956 | /* it will also look (can look) much like the communication pattern */ |
| 4957 | /* of http for www access. */ |
| 4958 | |
| 4959 | void |
| 4960 | send_xti_tcp_conn_rr(char remote_host[]) |
| 4961 | { |
| 4962 | |
| 4963 | char *tput_title = "\ |
| 4964 | Local /Remote\n\ |
| 4965 | Socket Size Request Resp. Elapsed Trans.\n\ |
| 4966 | Send Recv Size Size Time Rate \n\ |
| 4967 | bytes Bytes bytes bytes secs. per sec \n\n"; |
| 4968 | |
| 4969 | char *tput_fmt_0 = |
| 4970 | "%7.2f\n"; |
| 4971 | |
| 4972 | char *tput_fmt_1_line_1 = "\ |
| 4973 | %-6d %-6d %-6d %-6d %-6.2f %7.2f \n"; |
| 4974 | char *tput_fmt_1_line_2 = "\ |
| 4975 | %-6d %-6d\n"; |
| 4976 | |
| 4977 | char *cpu_title = "\ |
| 4978 | Local /Remote\n\ |
| 4979 | Socket Size Request Resp. Elapsed Trans. CPU CPU S.dem S.dem\n\ |
| 4980 | Send Recv Size Size Time Rate local remote local remote\n\ |
| 4981 | bytes bytes bytes bytes secs. per sec %% %% us/Tr us/Tr\n\n"; |
| 4982 | |
| 4983 | char *cpu_fmt_0 = |
| 4984 | "%6.3f\n"; |
| 4985 | |
| 4986 | char *cpu_fmt_1_line_1 = "\ |
| 4987 | %-6d %-6d %-6d %-6d %-6.2f %-6.2f %-6.2f %-6.2f %-6.3f %-6.3f\n"; |
| 4988 | |
| 4989 | char *cpu_fmt_1_line_2 = "\ |
| 4990 | %-6d %-6d\n"; |
| 4991 | |
| 4992 | char *ksink_fmt = "\ |
| 4993 | Alignment Offset\n\ |
| 4994 | Local Remote Local Remote\n\ |
| 4995 | Send Recv Send Recv\n\ |
| 4996 | %5d %5d %5d %5d\n"; |
| 4997 | |
| 4998 | |
| 4999 | int one = 1; |
| 5000 | int timed_out = 0; |
| 5001 | float elapsed_time; |
| 5002 | |
| 5003 | int len; |
| 5004 | struct ring_elt *send_ring; |
| 5005 | struct ring_elt *recv_ring; |
| 5006 | char *temp_message_ptr; |
| 5007 | int nummessages; |
| 5008 | SOCKET send_socket; |
| 5009 | int trans_remaining; |
| 5010 | double bytes_xferd; |
| 5011 | int sock_opt_len = sizeof(int); |
| 5012 | int rsp_bytes_left; |
| 5013 | int rsp_bytes_recvd; |
| 5014 | |
| 5015 | float local_cpu_utilization; |
| 5016 | float local_service_demand; |
| 5017 | float remote_cpu_utilization; |
| 5018 | float remote_service_demand; |
| 5019 | double thruput; |
| 5020 | |
| 5021 | struct hostent *hp; |
| 5022 | struct sockaddr_in server; |
| 5023 | struct sockaddr_in *myaddr; |
| 5024 | unsigned int addr; |
| 5025 | int myport; |
| 5026 | |
| 5027 | struct xti_tcp_conn_rr_request_struct *xti_tcp_conn_rr_request; |
| 5028 | struct xti_tcp_conn_rr_response_struct *xti_tcp_conn_rr_response; |
| 5029 | struct xti_tcp_conn_rr_results_struct *xti_tcp_conn_rr_result; |
| 5030 | |
| 5031 | xti_tcp_conn_rr_request = |
| 5032 | (struct xti_tcp_conn_rr_request_struct *)netperf_request.content.test_specific_data; |
| 5033 | xti_tcp_conn_rr_response = |
| 5034 | (struct xti_tcp_conn_rr_response_struct *)netperf_response.content.test_specific_data; |
| 5035 | xti_tcp_conn_rr_result = |
| 5036 | (struct xti_tcp_conn_rr_results_struct *)netperf_response.content.test_specific_data; |
| 5037 | |
| 5038 | /* since we are now disconnected from the code that established the */ |
| 5039 | /* control socket, and since we want to be able to use different */ |
| 5040 | /* protocols and such, we are passed the name of the remote host and */ |
| 5041 | /* must turn that into the test specific addressing information. */ |
| 5042 | |
| 5043 | myaddr = (struct sockaddr_in *)malloc(sizeof(struct sockaddr_in)); |
| 5044 | if (myaddr == NULL) { |
| 5045 | printf("malloc(%d) failed!\n", sizeof(struct sockaddr_in)); |
| 5046 | exit(1); |
| 5047 | } |
| 5048 | |
| 5049 | bzero((char *)&server, |
| 5050 | sizeof(server)); |
| 5051 | bzero((char *)myaddr, |
| 5052 | sizeof(struct sockaddr_in)); |
| 5053 | myaddr->sin_family = AF_INET; |
| 5054 | |
| 5055 | /* it would seem that while HP-UX will allow an IP address (as a */ |
| 5056 | /* string) in a call to gethostbyname, other, less enlightened */ |
| 5057 | /* systems do not. fix from awjacks@ca.sandia.gov raj 10/95 */ |
| 5058 | /* order changed to check for IP address first. raj 7/96 */ |
| 5059 | |
| 5060 | if ((addr = inet_addr(remote_host)) == SOCKET_ERROR) { |
| 5061 | /* it was not an IP address, try it as a name */ |
| 5062 | if ((hp = gethostbyname(remote_host)) == NULL) { |
| 5063 | /* we have no idea what it is */ |
| 5064 | fprintf(where, |
| 5065 | "establish_control: could not resolve the destination %s\n", |
| 5066 | remote_host); |
| 5067 | fflush(where); |
| 5068 | exit(1); |
| 5069 | } |
| 5070 | else { |
| 5071 | /* it was a valid remote_host */ |
| 5072 | bcopy(hp->h_addr, |
| 5073 | (char *)&server.sin_addr, |
| 5074 | hp->h_length); |
| 5075 | server.sin_family = hp->h_addrtype; |
| 5076 | } |
| 5077 | } |
| 5078 | else { |
| 5079 | /* it was a valid IP address */ |
| 5080 | server.sin_addr.s_addr = addr; |
| 5081 | server.sin_family = AF_INET; |
| 5082 | } |
| 5083 | |
| 5084 | if ( print_headers ) { |
| 5085 | fprintf(where,"TCP Connect/Request/Response Test\n"); |
| 5086 | if (local_cpu_usage || remote_cpu_usage) |
| 5087 | fprintf(where,cpu_title,format_units()); |
| 5088 | else |
| 5089 | fprintf(where,tput_title,format_units()); |
| 5090 | } |
| 5091 | |
| 5092 | /* initialize a few counters */ |
| 5093 | |
| 5094 | nummessages = 0; |
| 5095 | bytes_xferd = 0.0; |
| 5096 | times_up = 0; |
| 5097 | |
| 5098 | /* set-up the data buffers with the requested alignment and offset */ |
| 5099 | if (send_width == 0) send_width = 1; |
| 5100 | if (recv_width == 0) recv_width = 1; |
| 5101 | |
| 5102 | send_ring = allocate_buffer_ring(send_width, |
| 5103 | req_size, |
| 5104 | local_send_align, |
| 5105 | local_send_offset); |
| 5106 | |
| 5107 | recv_ring = allocate_buffer_ring(recv_width, |
| 5108 | rsp_size, |
| 5109 | local_recv_align, |
| 5110 | local_recv_offset); |
| 5111 | |
| 5112 | |
| 5113 | if (debug) { |
| 5114 | fprintf(where,"send_xti_tcp_conn_rr: send_socket obtained...\n"); |
| 5115 | } |
| 5116 | |
| 5117 | /* If the user has requested cpu utilization measurements, we must */ |
| 5118 | /* calibrate the cpu(s). We will perform this task within the tests */ |
| 5119 | /* themselves. If the user has specified the cpu rate, then */ |
| 5120 | /* calibrate_local_cpu will return rather quickly as it will have */ |
| 5121 | /* nothing to do. If local_cpu_rate is zero, then we will go through */ |
| 5122 | /* all the "normal" calibration stuff and return the rate back.*/ |
| 5123 | |
| 5124 | if (local_cpu_usage) { |
| 5125 | local_cpu_rate = calibrate_local_cpu(local_cpu_rate); |
| 5126 | } |
| 5127 | |
| 5128 | /* Tell the remote end to do a listen. The server alters the socket */ |
| 5129 | /* paramters on the other side at this point, hence the reason for */ |
| 5130 | /* all the values being passed in the setup message. If the user did */ |
| 5131 | /* not specify any of the parameters, they will be passed as 0, which */ |
| 5132 | /* will indicate to the remote that no changes beyond the system's */ |
| 5133 | /* default should be used. Alignment is the exception, it will */ |
| 5134 | /* default to 8, which will be no alignment alterations. */ |
| 5135 | |
| 5136 | netperf_request.content.request_type = DO_XTI_TCP_CRR; |
| 5137 | xti_tcp_conn_rr_request->recv_buf_size = rsr_size; |
| 5138 | xti_tcp_conn_rr_request->send_buf_size = rss_size; |
| 5139 | xti_tcp_conn_rr_request->recv_alignment = remote_recv_align; |
| 5140 | xti_tcp_conn_rr_request->recv_offset = remote_recv_offset; |
| 5141 | xti_tcp_conn_rr_request->send_alignment = remote_send_align; |
| 5142 | xti_tcp_conn_rr_request->send_offset = remote_send_offset; |
| 5143 | xti_tcp_conn_rr_request->request_size = req_size; |
| 5144 | xti_tcp_conn_rr_request->response_size = rsp_size; |
| 5145 | xti_tcp_conn_rr_request->no_delay = rem_nodelay; |
| 5146 | xti_tcp_conn_rr_request->measure_cpu = remote_cpu_usage; |
| 5147 | xti_tcp_conn_rr_request->cpu_rate = remote_cpu_rate; |
| 5148 | xti_tcp_conn_rr_request->so_rcvavoid = rem_rcvavoid; |
| 5149 | xti_tcp_conn_rr_request->so_sndavoid = rem_sndavoid; |
| 5150 | if (test_time) { |
| 5151 | xti_tcp_conn_rr_request->test_length = test_time; |
| 5152 | } |
| 5153 | else { |
| 5154 | xti_tcp_conn_rr_request->test_length = test_trans * -1; |
| 5155 | } |
| 5156 | |
| 5157 | if (debug > 1) { |
| 5158 | fprintf(where,"netperf: send_xti_tcp_conn_rr: requesting TCP crr test\n"); |
| 5159 | } |
| 5160 | |
| 5161 | send_request(); |
| 5162 | |
| 5163 | /* The response from the remote will contain all of the relevant */ |
| 5164 | /* socket parameters for this test type. We will put them back into */ |
| 5165 | /* the variables here so they can be displayed if desired. The */ |
| 5166 | /* remote will have calibrated CPU if necessary, and will have done */ |
| 5167 | /* all the needed set-up we will have calibrated the cpu locally */ |
| 5168 | /* before sending the request, and will grab the counter value right */ |
| 5169 | /* after the connect returns. The remote will grab the counter right */ |
| 5170 | /* after the accept call. This saves the hassle of extra messages */ |
| 5171 | /* being sent for the TCP tests. */ |
| 5172 | |
| 5173 | recv_response(); |
| 5174 | |
| 5175 | if (!netperf_response.content.serv_errno) { |
| 5176 | rsr_size = xti_tcp_conn_rr_response->recv_buf_size; |
| 5177 | rss_size = xti_tcp_conn_rr_response->send_buf_size; |
| 5178 | rem_nodelay = xti_tcp_conn_rr_response->no_delay; |
| 5179 | remote_cpu_usage= xti_tcp_conn_rr_response->measure_cpu; |
| 5180 | remote_cpu_rate = xti_tcp_conn_rr_response->cpu_rate; |
| 5181 | /* make sure that port numbers are in network order */ |
| 5182 | server.sin_port = (short)xti_tcp_conn_rr_response->data_port_number; |
| 5183 | server.sin_port = htons(server.sin_port); |
| 5184 | if (debug) { |
| 5185 | fprintf(where,"remote listen done.\n"); |
| 5186 | fprintf(where,"remote port is %d\n",ntohs(server.sin_port)); |
| 5187 | fflush(where); |
| 5188 | } |
| 5189 | } |
| 5190 | else { |
| 5191 | Set_errno(netperf_response.content.serv_errno); |
| 5192 | perror("netperf: remote error"); |
| 5193 | |
| 5194 | exit(1); |
| 5195 | } |
| 5196 | |
| 5197 | /* Set-up the test end conditions. For a request/response test, they */ |
| 5198 | /* can be either time or transaction based. */ |
| 5199 | |
| 5200 | if (test_time) { |
| 5201 | /* The user wanted to end the test after a period of time. */ |
| 5202 | times_up = 0; |
| 5203 | trans_remaining = 0; |
| 5204 | start_timer(test_time); |
| 5205 | } |
| 5206 | else { |
| 5207 | /* The tester wanted to send a number of bytes. */ |
| 5208 | trans_remaining = test_bytes; |
| 5209 | times_up = 1; |
| 5210 | } |
| 5211 | |
| 5212 | /* The cpu_start routine will grab the current time and possibly */ |
| 5213 | /* value of the idle counter for later use in measuring cpu */ |
| 5214 | /* utilization and/or service demand and thruput. */ |
| 5215 | |
| 5216 | cpu_start(local_cpu_usage); |
| 5217 | |
| 5218 | /* We use an "OR" to control test execution. When the test is */ |
| 5219 | /* controlled by time, the byte count check will always return false. */ |
| 5220 | /* When the test is controlled by byte count, the time test will */ |
| 5221 | /* always return false. When the test is finished, the whole */ |
| 5222 | /* expression will go false and we will stop sending data. I think I */ |
| 5223 | /* just arbitrarily decrement trans_remaining for the timed test, but */ |
| 5224 | /* will not do that just yet... One other question is whether or not */ |
| 5225 | /* the send buffer and the receive buffer should be the same buffer. */ |
| 5226 | |
| 5227 | /* just for grins, start the port numbers at 65530. this should */ |
| 5228 | /* quickly flush-out those broken implementations of TCP which treat */ |
| 5229 | /* the port number as a signed 16 bit quantity. */ |
| 5230 | myport = 65530; |
| 5231 | myaddr->sin_port = htons(myport); |
| 5232 | |
| 5233 | while ((!times_up) || (trans_remaining > 0)) { |
| 5234 | |
| 5235 | /* set up the data socket */ |
| 5236 | send_socket = create_xti_endpoint(loc_xti_device); |
| 5237 | |
| 5238 | if (send_socket == INVALID_SOCKET) { |
| 5239 | perror("netperf: send_xti_tcp_conn_rr: tcp stream data socket"); |
| 5240 | exit(1); |
| 5241 | } |
| 5242 | |
| 5243 | /* we set SO_REUSEADDR on the premis that no unreserved port */ |
| 5244 | /* number on the local system is going to be already connected to */ |
| 5245 | /* the remote netserver's port number. we might still have a */ |
| 5246 | /* problem if there is a port in the unconnected state. In that */ |
| 5247 | /* case, we might want to throw-in a goto to the point where we */ |
| 5248 | /* increment the port number by one and try again. of course, this */ |
| 5249 | /* could lead to a big load of spinning. one thing that I might */ |
| 5250 | /* try later is to have the remote actually allocate a couple of */ |
| 5251 | /* port numbers and cycle through those as well. depends on if we */ |
| 5252 | /* can get through all the unreserved port numbers in less than */ |
| 5253 | /* the length of the TIME_WAIT state raj 8/94 */ |
| 5254 | one = 1; |
| 5255 | if(setsockopt(send_socket, SOL_SOCKET, SO_REUSEADDR, |
| 5256 | (char *)&one, sock_opt_len) == SOCKET_ERROR) { |
| 5257 | perror("netperf: send_xti_tcp_conn_rr: so_reuseaddr"); |
| 5258 | exit(1); |
| 5259 | } |
| 5260 | |
| 5261 | /* we want to bind our socket to a particular port number. */ |
| 5262 | if (bind(send_socket, |
| 5263 | (struct sockaddr *)myaddr, |
| 5264 | sizeof(struct sockaddr_in)) == SOCKET_ERROR) { |
| 5265 | printf("netperf: send_xti_tcp_conn_rr: tried to bind to port %d\n", |
| 5266 | ntohs(myaddr->sin_port)); |
| 5267 | perror("netperf: send_xti_tcp_conn_rr: bind"); |
| 5268 | exit(1); |
| 5269 | } |
| 5270 | |
| 5271 | /* Connect up to the remote port on the data socket */ |
| 5272 | if (connect(send_socket, |
| 5273 | (struct sockaddr *)&server, |
| 5274 | sizeof(server)) == INVALID_SOCKET){ |
| 5275 | if (errno == EINTR) { |
| 5276 | /* we hit the end of a */ |
| 5277 | /* timed test. */ |
| 5278 | timed_out = 1; |
| 5279 | break; |
| 5280 | } |
| 5281 | perror("netperf: data socket connect failed"); |
| 5282 | printf("\tattempted to connect on socket %d to port %d", |
| 5283 | send_socket, |
| 5284 | ntohs(server.sin_port)); |
| 5285 | printf(" from port %d \n",ntohs(myaddr->sin_port)); |
| 5286 | exit(1); |
| 5287 | } |
| 5288 | |
| 5289 | /* send the request */ |
| 5290 | if((len=send(send_socket, |
| 5291 | send_ring->buffer_ptr, |
| 5292 | req_size, |
| 5293 | 0)) != req_size) { |
| 5294 | if (errno == EINTR) { |
| 5295 | /* we hit the end of a */ |
| 5296 | /* timed test. */ |
| 5297 | timed_out = 1; |
| 5298 | break; |
| 5299 | } |
| 5300 | perror("send_xti_tcp_conn_rr: data send error"); |
| 5301 | exit(1); |
| 5302 | } |
| 5303 | send_ring = send_ring->next; |
| 5304 | |
| 5305 | /* receive the response */ |
| 5306 | rsp_bytes_left = rsp_size; |
| 5307 | temp_message_ptr = recv_ring->buffer_ptr; |
| 5308 | while(rsp_bytes_left > 0) { |
| 5309 | if((rsp_bytes_recvd=recv(send_socket, |
| 5310 | temp_message_ptr, |
| 5311 | rsp_bytes_left, |
| 5312 | 0)) == SOCKET_ERROR) { |
| 5313 | if (errno == EINTR) { |
| 5314 | /* We hit the end of a timed test. */ |
| 5315 | timed_out = 1; |
| 5316 | break; |
| 5317 | } |
| 5318 | perror("send_xti_tcp_conn_rr: data recv error"); |
| 5319 | exit(1); |
| 5320 | } |
| 5321 | rsp_bytes_left -= rsp_bytes_recvd; |
| 5322 | temp_message_ptr += rsp_bytes_recvd; |
| 5323 | } |
| 5324 | recv_ring = recv_ring->next; |
| 5325 | |
| 5326 | if (timed_out) { |
| 5327 | /* we may have been in a nested while loop - we need */ |
| 5328 | /* another call to break. */ |
| 5329 | break; |
| 5330 | } |
| 5331 | |
| 5332 | close(send_socket); |
| 5333 | |
| 5334 | nummessages++; |
| 5335 | if (trans_remaining) { |
| 5336 | trans_remaining--; |
| 5337 | } |
| 5338 | |
| 5339 | if (debug > 3) { |
| 5340 | fprintf(where, |
| 5341 | "Transaction %d completed on local port %d\n", |
| 5342 | nummessages, |
| 5343 | ntohs(myaddr->sin_port)); |
| 5344 | fflush(where); |
| 5345 | } |
| 5346 | |
| 5347 | newport: |
| 5348 | /* pick a new port number */ |
| 5349 | myport = ntohs(myaddr->sin_port); |
| 5350 | myport++; |
| 5351 | /* we do not want to use the port number that the server is */ |
| 5352 | /* sitting at - this would cause us to fail in a loopback test */ |
| 5353 | |
| 5354 | if (myport == ntohs(server.sin_port)) myport++; |
| 5355 | |
| 5356 | /* wrap the port number when we get to 65535. NOTE, some broken */ |
| 5357 | /* TCP's might treat the port number as a signed 16 bit quantity. */ |
| 5358 | /* we aren't interested in testing such broekn implementations :) */ |
| 5359 | /* raj 8/94 */ |
| 5360 | if (myport == 65535) { |
| 5361 | myport = 5000; |
| 5362 | } |
| 5363 | myaddr->sin_port = htons(myport); |
| 5364 | |
| 5365 | if (debug) { |
| 5366 | if ((myport % 1000) == 0) { |
| 5367 | printf("port %d\n",myport); |
| 5368 | } |
| 5369 | } |
| 5370 | |
| 5371 | } |
| 5372 | |
| 5373 | /* this call will always give us the elapsed time for the test, and */ |
| 5374 | /* will also store-away the necessaries for cpu utilization */ |
| 5375 | |
| 5376 | cpu_stop(local_cpu_usage,&elapsed_time); /* was cpu being measured? */ |
| 5377 | /* how long did we really run? */ |
| 5378 | |
| 5379 | /* Get the statistics from the remote end. The remote will have */ |
| 5380 | /* calculated service demand and all those interesting things. If it */ |
| 5381 | /* wasn't supposed to care, it will return obvious values. */ |
| 5382 | |
| 5383 | recv_response(); |
| 5384 | if (!netperf_response.content.serv_errno) { |
| 5385 | if (debug) |
| 5386 | fprintf(where,"remote results obtained\n"); |
| 5387 | } |
| 5388 | else { |
| 5389 | Set_errno(netperf_response.content.serv_errno); |
| 5390 | perror("netperf: remote error"); |
| 5391 | |
| 5392 | exit(1); |
| 5393 | } |
| 5394 | |
| 5395 | /* We now calculate what our thruput was for the test. In the future, */ |
| 5396 | /* we may want to include a calculation of the thruput measured by */ |
| 5397 | /* the remote, but it should be the case that for a TCP stream test, */ |
| 5398 | /* that the two numbers should be *very* close... We calculate */ |
| 5399 | /* bytes_sent regardless of the way the test length was controlled. */ |
| 5400 | /* If it was time, we needed to, and if it was by bytes, the user may */ |
| 5401 | /* have specified a number of bytes that wasn't a multiple of the */ |
| 5402 | /* send_size, so we really didn't send what he asked for ;-) We use */ |
| 5403 | /* Kbytes/s as the units of thruput for a TCP stream test, where K = */ |
| 5404 | /* 1024. A future enhancement *might* be to choose from a couple of */ |
| 5405 | /* unit selections. */ |
| 5406 | |
| 5407 | bytes_xferd = (req_size * nummessages) + (rsp_size * nummessages); |
| 5408 | thruput = calc_thruput(bytes_xferd); |
| 5409 | |
| 5410 | if (local_cpu_usage || remote_cpu_usage) { |
| 5411 | /* We must now do a little math for service demand and cpu */ |
| 5412 | /* utilization for the system(s) */ |
| 5413 | /* Of course, some of the information might be bogus because */ |
| 5414 | /* there was no idle counter in the kernel(s). We need to make */ |
| 5415 | /* a note of this for the user's benefit...*/ |
| 5416 | if (local_cpu_usage) { |
| 5417 | if (local_cpu_rate == 0.0) { |
| 5418 | fprintf(where,"WARNING WARNING WARNING WARNING WARNING WARNING WARNING!\n"); |
| 5419 | fprintf(where,"Local CPU usage numbers based on process information only!\n"); |
| 5420 | fflush(where); |
| 5421 | } |
| 5422 | local_cpu_utilization = calc_cpu_util(0.0); |
| 5423 | /* since calc_service demand is doing ms/Kunit we will */ |
| 5424 | /* multiply the number of transaction by 1024 to get */ |
| 5425 | /* "good" numbers */ |
| 5426 | local_service_demand = calc_service_demand((double) nummessages*1024, |
| 5427 | 0.0, |
| 5428 | 0.0, |
| 5429 | 0); |
| 5430 | } |
| 5431 | else { |
| 5432 | local_cpu_utilization = -1.0; |
| 5433 | local_service_demand = -1.0; |
| 5434 | } |
| 5435 | |
| 5436 | if (remote_cpu_usage) { |
| 5437 | if (remote_cpu_rate == 0.0) { |
| 5438 | fprintf(where,"DANGER DANGER DANGER DANGER DANGER DANGER DANGER!\n"); |
| 5439 | fprintf(where,"Remote CPU usage numbers based on process information only!\n"); |
| 5440 | fflush(where); |
| 5441 | } |
| 5442 | remote_cpu_utilization = xti_tcp_conn_rr_result->cpu_util; |
| 5443 | /* since calc_service demand is doing ms/Kunit we will */ |
| 5444 | /* multiply the number of transaction by 1024 to get */ |
| 5445 | /* "good" numbers */ |
| 5446 | remote_service_demand = calc_service_demand((double) nummessages*1024, |
| 5447 | 0.0, |
| 5448 | remote_cpu_utilization, |
| 5449 | xti_tcp_conn_rr_result->num_cpus); |
| 5450 | } |
| 5451 | else { |
| 5452 | remote_cpu_utilization = -1.0; |
| 5453 | remote_service_demand = -1.0; |
| 5454 | } |
| 5455 | |
| 5456 | /* We are now ready to print all the information. If the user */ |
| 5457 | /* has specified zero-level verbosity, we will just print the */ |
| 5458 | /* local service demand, or the remote service demand. If the */ |
| 5459 | /* user has requested verbosity level 1, he will get the basic */ |
| 5460 | /* "streamperf" numbers. If the user has specified a verbosity */ |
| 5461 | /* of greater than 1, we will display a veritable plethora of */ |
| 5462 | /* background information from outside of this block as it it */ |
| 5463 | /* not cpu_measurement specific... */ |
| 5464 | |
| 5465 | switch (verbosity) { |
| 5466 | case 0: |
| 5467 | if (local_cpu_usage) { |
| 5468 | fprintf(where, |
| 5469 | cpu_fmt_0, |
| 5470 | local_service_demand); |
| 5471 | } |
| 5472 | else { |
| 5473 | fprintf(where, |
| 5474 | cpu_fmt_0, |
| 5475 | remote_service_demand); |
| 5476 | } |
| 5477 | break; |
| 5478 | case 1: |
| 5479 | fprintf(where, |
| 5480 | cpu_fmt_1_line_1, /* the format string */ |
| 5481 | lss_size, /* local sendbuf size */ |
| 5482 | lsr_size, |
| 5483 | req_size, /* how large were the requests */ |
| 5484 | rsp_size, /* guess */ |
| 5485 | elapsed_time, /* how long was the test */ |
| 5486 | nummessages/elapsed_time, |
| 5487 | local_cpu_utilization, /* local cpu */ |
| 5488 | remote_cpu_utilization, /* remote cpu */ |
| 5489 | local_service_demand, /* local service demand */ |
| 5490 | remote_service_demand); /* remote service demand */ |
| 5491 | fprintf(where, |
| 5492 | cpu_fmt_1_line_2, |
| 5493 | rss_size, |
| 5494 | rsr_size); |
| 5495 | break; |
| 5496 | } |
| 5497 | } |
| 5498 | else { |
| 5499 | /* The tester did not wish to measure service demand. */ |
| 5500 | switch (verbosity) { |
| 5501 | case 0: |
| 5502 | fprintf(where, |
| 5503 | tput_fmt_0, |
| 5504 | nummessages/elapsed_time); |
| 5505 | break; |
| 5506 | case 1: |
| 5507 | fprintf(where, |
| 5508 | tput_fmt_1_line_1, /* the format string */ |
| 5509 | lss_size, |
| 5510 | lsr_size, |
| 5511 | req_size, /* how large were the requests */ |
| 5512 | rsp_size, /* how large were the responses */ |
| 5513 | elapsed_time, /* how long did it take */ |
| 5514 | nummessages/elapsed_time); |
| 5515 | fprintf(where, |
| 5516 | tput_fmt_1_line_2, |
| 5517 | rss_size, /* remote recvbuf size */ |
| 5518 | rsr_size); |
| 5519 | |
| 5520 | break; |
| 5521 | } |
| 5522 | } |
| 5523 | |
| 5524 | /* it would be a good thing to include information about some of the */ |
| 5525 | /* other parameters that may have been set for this test, but at the */ |
| 5526 | /* moment, I do not wish to figure-out all the formatting, so I will */ |
| 5527 | /* just put this comment here to help remind me that it is something */ |
| 5528 | /* that should be done at a later time. */ |
| 5529 | |
| 5530 | if (verbosity > 1) { |
| 5531 | /* The user wanted to know it all, so we will give it to him. */ |
| 5532 | /* This information will include as much as we can find about */ |
| 5533 | /* TCP statistics, the alignments of the sends and receives */ |
| 5534 | /* and all that sort of rot... */ |
| 5535 | |
| 5536 | fprintf(where, |
| 5537 | ksink_fmt); |
| 5538 | } |
| 5539 | |
| 5540 | } |
| 5541 | |
| 5542 | |
| 5543 | void |
| 5544 | recv_xti_tcp_conn_rr() |
| 5545 | { |
| 5546 | |
| 5547 | char *message; |
| 5548 | struct sockaddr_in myaddr_in, |
| 5549 | peeraddr_in; |
| 5550 | SOCKET s_listen,s_data; |
| 5551 | int addrlen; |
| 5552 | char *recv_message_ptr; |
| 5553 | char *send_message_ptr; |
| 5554 | char *temp_message_ptr; |
| 5555 | int trans_received; |
| 5556 | int trans_remaining; |
| 5557 | int bytes_sent; |
| 5558 | int request_bytes_recvd; |
| 5559 | int request_bytes_remaining; |
| 5560 | int timed_out = 0; |
| 5561 | float elapsed_time; |
| 5562 | |
| 5563 | struct xti_tcp_conn_rr_request_struct *xti_tcp_conn_rr_request; |
| 5564 | struct xti_tcp_conn_rr_response_struct *xti_tcp_conn_rr_response; |
| 5565 | struct xti_tcp_conn_rr_results_struct *xti_tcp_conn_rr_results; |
| 5566 | |
| 5567 | xti_tcp_conn_rr_request = |
| 5568 | (struct xti_tcp_conn_rr_request_struct *)netperf_request.content.test_specific_data; |
| 5569 | xti_tcp_conn_rr_response = |
| 5570 | (struct xti_tcp_conn_rr_response_struct *)netperf_response.content.test_specific_data; |
| 5571 | xti_tcp_conn_rr_results = |
| 5572 | (struct xti_tcp_conn_rr_results_struct *)netperf_response.content.test_specific_data; |
| 5573 | |
| 5574 | if (debug) { |
| 5575 | fprintf(where,"netserver: recv_xti_tcp_conn_rr: entered...\n"); |
| 5576 | fflush(where); |
| 5577 | } |
| 5578 | |
| 5579 | /* We want to set-up the listen socket with all the desired */ |
| 5580 | /* parameters and then let the initiator know that all is ready. If */ |
| 5581 | /* socket size defaults are to be used, then the initiator will have */ |
| 5582 | /* sent us 0's. If the socket sizes cannot be changed, then we will */ |
| 5583 | /* send-back what they are. If that information cannot be determined, */ |
| 5584 | /* then we send-back -1's for the sizes. If things go wrong for any */ |
| 5585 | /* reason, we will drop back ten yards and punt. */ |
| 5586 | |
| 5587 | /* If anything goes wrong, we want the remote to know about it. It */ |
| 5588 | /* would be best if the error that the remote reports to the user is */ |
| 5589 | /* the actual error we encountered, rather than some bogus unexpected */ |
| 5590 | /* response type message. */ |
| 5591 | |
| 5592 | if (debug) { |
| 5593 | fprintf(where,"recv_xti_tcp_conn_rr: setting the response type...\n"); |
| 5594 | fflush(where); |
| 5595 | } |
| 5596 | |
| 5597 | netperf_response.content.response_type = XTI_TCP_CRR_RESPONSE; |
| 5598 | |
| 5599 | if (debug) { |
| 5600 | fprintf(where,"recv_xti_tcp_conn_rr: the response type is set...\n"); |
| 5601 | fflush(where); |
| 5602 | } |
| 5603 | |
| 5604 | /* set-up the data buffer with the requested alignment and offset */ |
| 5605 | message = (char *)malloc(DATABUFFERLEN); |
| 5606 | if (message == NULL) { |
| 5607 | printf("malloc(%d) failed!\n", DATABUFFERLEN); |
| 5608 | exit(1); |
| 5609 | } |
| 5610 | |
| 5611 | /* We now alter the message_ptr variables to be at the desired */ |
| 5612 | /* alignments with the desired offsets. */ |
| 5613 | |
| 5614 | if (debug) { |
| 5615 | fprintf(where, |
| 5616 | "recv_xti_tcp_conn_rr: requested recv alignment of %d offset %d\n", |
| 5617 | xti_tcp_conn_rr_request->recv_alignment, |
| 5618 | xti_tcp_conn_rr_request->recv_offset); |
| 5619 | fprintf(where, |
| 5620 | "recv_xti_tcp_conn_rr: requested send alignment of %d offset %d\n", |
| 5621 | xti_tcp_conn_rr_request->send_alignment, |
| 5622 | xti_tcp_conn_rr_request->send_offset); |
| 5623 | fflush(where); |
| 5624 | } |
| 5625 | |
| 5626 | recv_message_ptr = ALIGN_BUFFER(message, xti_tcp_conn_rr_request->recv_alignment, xti_tcp_conn_rr_request->recv_offset); |
| 5627 | |
| 5628 | send_message_ptr = ALIGN_BUFFER(message, xti_tcp_conn_rr_request->send_alignment, xti_tcp_conn_rr_request->send_offset); |
| 5629 | |
| 5630 | if (debug) { |
| 5631 | fprintf(where,"recv_xti_tcp_conn_rr: receive alignment and offset set...\n"); |
| 5632 | fflush(where); |
| 5633 | } |
| 5634 | |
| 5635 | /* Let's clear-out our sockaddr for the sake of cleanlines. Then we */ |
| 5636 | /* can put in OUR values !-) At some point, we may want to nail this */ |
| 5637 | /* socket to a particular network-level address, but for now, */ |
| 5638 | /* INADDR_ANY should be just fine. */ |
| 5639 | |
| 5640 | bzero((char *)&myaddr_in, |
| 5641 | sizeof(myaddr_in)); |
| 5642 | myaddr_in.sin_family = AF_INET; |
| 5643 | myaddr_in.sin_addr.s_addr = INADDR_ANY; |
| 5644 | myaddr_in.sin_port = 0; |
| 5645 | |
| 5646 | /* Grab a socket to listen on, and then listen on it. */ |
| 5647 | |
| 5648 | if (debug) { |
| 5649 | fprintf(where,"recv_xti_tcp_conn_rr: grabbing a socket...\n"); |
| 5650 | fflush(where); |
| 5651 | } |
| 5652 | |
| 5653 | /* create_xti_endpoint expects to find some things in the global */ |
| 5654 | /* variables, so set the globals based on the values in the request. */ |
| 5655 | /* once the socket has been created, we will set the response values */ |
| 5656 | /* based on the updated value of those globals. raj 7/94 */ |
| 5657 | lss_size = xti_tcp_conn_rr_request->send_buf_size; |
| 5658 | lsr_size = xti_tcp_conn_rr_request->recv_buf_size; |
| 5659 | loc_nodelay = xti_tcp_conn_rr_request->no_delay; |
| 5660 | loc_rcvavoid = xti_tcp_conn_rr_request->so_rcvavoid; |
| 5661 | loc_sndavoid = xti_tcp_conn_rr_request->so_sndavoid; |
| 5662 | |
| 5663 | s_listen = create_xti_endpoint(loc_xti_device); |
| 5664 | |
| 5665 | if (s_listen == INVALID_SOCKET) { |
| 5666 | netperf_response.content.serv_errno = errno; |
| 5667 | send_response(); |
| 5668 | if (debug) { |
| 5669 | fprintf(where,"could not create data socket\n"); |
| 5670 | fflush(where); |
| 5671 | } |
| 5672 | exit(1); |
| 5673 | } |
| 5674 | |
| 5675 | /* Let's get an address assigned to this socket so we can tell the */ |
| 5676 | /* initiator how to reach the data socket. There may be a desire to */ |
| 5677 | /* nail this socket to a specific IP address in a multi-homed, */ |
| 5678 | /* multi-connection situation, but for now, we'll ignore the issue */ |
| 5679 | /* and concentrate on single connection testing. */ |
| 5680 | |
| 5681 | if (bind(s_listen, |
| 5682 | (struct sockaddr *)&myaddr_in, |
| 5683 | sizeof(myaddr_in)) == SOCKET_ERROR) { |
| 5684 | netperf_response.content.serv_errno = errno; |
| 5685 | close(s_listen); |
| 5686 | send_response(); |
| 5687 | if (debug) { |
| 5688 | fprintf(where,"could not bind\n"); |
| 5689 | fflush(where); |
| 5690 | } |
| 5691 | exit(1); |
| 5692 | } |
| 5693 | |
| 5694 | /* Now, let's set-up the socket to listen for connections */ |
| 5695 | if (listen(s_listen, 5) == SOCKET_ERROR) { |
| 5696 | netperf_response.content.serv_errno = errno; |
| 5697 | close(s_listen); |
| 5698 | send_response(); |
| 5699 | if (debug) { |
| 5700 | fprintf(where,"could not listen\n"); |
| 5701 | fflush(where); |
| 5702 | } |
| 5703 | exit(1); |
| 5704 | } |
| 5705 | |
| 5706 | /* now get the port number assigned by the system */ |
| 5707 | addrlen = sizeof(myaddr_in); |
| 5708 | if (getsockname(s_listen, |
| 5709 | (struct sockaddr *)&myaddr_in, |
| 5710 | &addrlen) == SOCKET_ERROR){ |
| 5711 | netperf_response.content.serv_errno = errno; |
| 5712 | close(s_listen); |
| 5713 | send_response(); |
| 5714 | if (debug) { |
| 5715 | fprintf(where,"could not geetsockname\n"); |
| 5716 | fflush(where); |
| 5717 | } |
| 5718 | exit(1); |
| 5719 | } |
| 5720 | |
| 5721 | /* Now myaddr_in contains the port and the internet address this is */ |
| 5722 | /* returned to the sender also implicitly telling the sender that the */ |
| 5723 | /* socket buffer sizing has been done. */ |
| 5724 | |
| 5725 | xti_tcp_conn_rr_response->data_port_number = (int) ntohs(myaddr_in.sin_port); |
| 5726 | if (debug) { |
| 5727 | fprintf(where,"telling the remote to call me at %d\n", |
| 5728 | xti_tcp_conn_rr_response->data_port_number); |
| 5729 | fflush(where); |
| 5730 | } |
| 5731 | netperf_response.content.serv_errno = 0; |
| 5732 | |
| 5733 | /* But wait, there's more. If the initiator wanted cpu measurements, */ |
| 5734 | /* then we must call the calibrate routine, which will return the max */ |
| 5735 | /* rate back to the initiator. If the CPU was not to be measured, or */ |
| 5736 | /* something went wrong with the calibration, we will return a 0.0 to */ |
| 5737 | /* the initiator. */ |
| 5738 | |
| 5739 | xti_tcp_conn_rr_response->cpu_rate = 0.0; /* assume no cpu */ |
| 5740 | if (xti_tcp_conn_rr_request->measure_cpu) { |
| 5741 | xti_tcp_conn_rr_response->measure_cpu = 1; |
| 5742 | xti_tcp_conn_rr_response->cpu_rate = |
| 5743 | calibrate_local_cpu(xti_tcp_conn_rr_request->cpu_rate); |
| 5744 | } |
| 5745 | |
| 5746 | |
| 5747 | |
| 5748 | /* before we send the response back to the initiator, pull some of */ |
| 5749 | /* the socket parms from the globals */ |
| 5750 | xti_tcp_conn_rr_response->send_buf_size = lss_size; |
| 5751 | xti_tcp_conn_rr_response->recv_buf_size = lsr_size; |
| 5752 | xti_tcp_conn_rr_response->no_delay = loc_nodelay; |
| 5753 | xti_tcp_conn_rr_response->so_rcvavoid = loc_rcvavoid; |
| 5754 | xti_tcp_conn_rr_response->so_sndavoid = loc_sndavoid; |
| 5755 | |
| 5756 | send_response(); |
| 5757 | |
| 5758 | addrlen = sizeof(peeraddr_in); |
| 5759 | |
| 5760 | /* Now it's time to start receiving data on the connection. We will */ |
| 5761 | /* first grab the apropriate counters and then start grabbing. */ |
| 5762 | |
| 5763 | cpu_start(xti_tcp_conn_rr_request->measure_cpu); |
| 5764 | |
| 5765 | /* The loop will exit when the sender does a shutdown, which will */ |
| 5766 | /* return a length of zero */ |
| 5767 | |
| 5768 | if (xti_tcp_conn_rr_request->test_length > 0) { |
| 5769 | times_up = 0; |
| 5770 | trans_remaining = 0; |
| 5771 | start_timer(xti_tcp_conn_rr_request->test_length + PAD_TIME); |
| 5772 | } |
| 5773 | else { |
| 5774 | times_up = 1; |
| 5775 | trans_remaining = xti_tcp_conn_rr_request->test_length * -1; |
| 5776 | } |
| 5777 | |
| 5778 | trans_received = 0; |
| 5779 | |
| 5780 | while ((!times_up) || (trans_remaining > 0)) { |
| 5781 | |
| 5782 | /* accept a connection from the remote */ |
| 5783 | if ((s_data=accept(s_listen, |
| 5784 | (struct sockaddr *)&peeraddr_in, |
| 5785 | &addrlen)) == INVALID_SOCKET) { |
| 5786 | if (errno == EINTR) { |
| 5787 | /* the timer popped */ |
| 5788 | timed_out = 1; |
| 5789 | break; |
| 5790 | } |
| 5791 | fprintf(where,"recv_xti_tcp_conn_rr: accept: errno = %d\n",errno); |
| 5792 | fflush(where); |
| 5793 | close(s_listen); |
| 5794 | |
| 5795 | exit(1); |
| 5796 | } |
| 5797 | |
| 5798 | if (debug) { |
| 5799 | fprintf(where,"recv_xti_tcp_conn_rr: accepted data connection.\n"); |
| 5800 | fflush(where); |
| 5801 | } |
| 5802 | |
| 5803 | temp_message_ptr = recv_message_ptr; |
| 5804 | request_bytes_remaining = xti_tcp_conn_rr_request->request_size; |
| 5805 | |
| 5806 | /* receive the request from the other side */ |
| 5807 | while(request_bytes_remaining > 0) { |
| 5808 | if((request_bytes_recvd=recv(s_data, |
| 5809 | temp_message_ptr, |
| 5810 | request_bytes_remaining, |
| 5811 | 0)) == SOCKET_ERROR) { |
| 5812 | if (errno == EINTR) { |
| 5813 | /* the timer popped */ |
| 5814 | timed_out = 1; |
| 5815 | break; |
| 5816 | } |
| 5817 | netperf_response.content.serv_errno = errno; |
| 5818 | send_response(); |
| 5819 | exit(1); |
| 5820 | } |
| 5821 | else { |
| 5822 | request_bytes_remaining -= request_bytes_recvd; |
| 5823 | temp_message_ptr += request_bytes_recvd; |
| 5824 | } |
| 5825 | } |
| 5826 | |
| 5827 | if (timed_out) { |
| 5828 | /* we hit the end of the test based on time - lets */ |
| 5829 | /* bail out of here now... */ |
| 5830 | fprintf(where,"yo5\n"); |
| 5831 | fflush(where); |
| 5832 | break; |
| 5833 | } |
| 5834 | |
| 5835 | /* Now, send the response to the remote */ |
| 5836 | if((bytes_sent=send(s_data, |
| 5837 | send_message_ptr, |
| 5838 | xti_tcp_conn_rr_request->response_size, |
| 5839 | 0)) == SOCKET_ERROR) { |
| 5840 | if (errno == EINTR) { |
| 5841 | /* the test timer has popped */ |
| 5842 | timed_out = 1; |
| 5843 | fprintf(where,"yo6\n"); |
| 5844 | fflush(where); |
| 5845 | break; |
| 5846 | } |
| 5847 | netperf_response.content.serv_errno = 99; |
| 5848 | send_response(); |
| 5849 | exit(1); |
| 5850 | } |
| 5851 | |
| 5852 | trans_received++; |
| 5853 | if (trans_remaining) { |
| 5854 | trans_remaining--; |
| 5855 | } |
| 5856 | |
| 5857 | if (debug) { |
| 5858 | fprintf(where, |
| 5859 | "recv_xti_tcp_conn_rr: Transaction %d complete\n", |
| 5860 | trans_received); |
| 5861 | fflush(where); |
| 5862 | } |
| 5863 | |
| 5864 | /* close the connection */ |
| 5865 | close(s_data); |
| 5866 | |
| 5867 | } |
| 5868 | |
| 5869 | |
| 5870 | /* The loop now exits due to timeout or transaction count being */ |
| 5871 | /* reached */ |
| 5872 | |
| 5873 | cpu_stop(xti_tcp_conn_rr_request->measure_cpu,&elapsed_time); |
| 5874 | |
| 5875 | if (timed_out) { |
| 5876 | /* we ended the test by time, which was at least 2 seconds */ |
| 5877 | /* longer than we wanted to run. so, we want to subtract */ |
| 5878 | /* PAD_TIME from the elapsed_time. */ |
| 5879 | elapsed_time -= PAD_TIME; |
| 5880 | } |
| 5881 | /* send the results to the sender */ |
| 5882 | |
| 5883 | if (debug) { |
| 5884 | fprintf(where, |
| 5885 | "recv_xti_tcp_conn_rr: got %d transactions\n", |
| 5886 | trans_received); |
| 5887 | fflush(where); |
| 5888 | } |
| 5889 | |
| 5890 | xti_tcp_conn_rr_results->bytes_received = (trans_received * |
| 5891 | (xti_tcp_conn_rr_request->request_size + |
| 5892 | xti_tcp_conn_rr_request->response_size)); |
| 5893 | xti_tcp_conn_rr_results->trans_received = trans_received; |
| 5894 | xti_tcp_conn_rr_results->elapsed_time = elapsed_time; |
| 5895 | if (xti_tcp_conn_rr_request->measure_cpu) { |
| 5896 | xti_tcp_conn_rr_results->cpu_util = calc_cpu_util(elapsed_time); |
| 5897 | } |
| 5898 | |
| 5899 | if (debug) { |
| 5900 | fprintf(where, |
| 5901 | "recv_xti_tcp_conn_rr: test complete, sending results.\n"); |
| 5902 | fflush(where); |
| 5903 | } |
| 5904 | |
| 5905 | send_response(); |
| 5906 | |
| 5907 | } |
| 5908 | |
| 5909 | void |
| 5910 | print_xti_usage() |
| 5911 | { |
| 5912 | |
| 5913 | fwrite(xti_usage, sizeof(char), strlen(xti_usage), stdout); |
| 5914 | exit(1); |
| 5915 | |
| 5916 | } |
| 5917 | |
| 5918 | void |
| 5919 | scan_xti_args(int argc, char *argv[]) |
| 5920 | { |
| 5921 | #define XTI_ARGS "Dhm:M:r:s:S:Vw:W:X:" |
| 5922 | extern int optind, opterrs; /* index of first unused arg */ |
| 5923 | extern char *optarg; /* pointer to option string */ |
| 5924 | |
| 5925 | int c; |
| 5926 | |
| 5927 | char |
| 5928 | arg1[BUFSIZ], /* argument holders */ |
| 5929 | arg2[BUFSIZ]; |
| 5930 | |
| 5931 | if (no_control) { |
| 5932 | fprintf(where, |
| 5933 | "The XTI tests do not know how to run with no control connection\n"); |
| 5934 | exit(-1); |
| 5935 | } |
| 5936 | |
| 5937 | /* Go through all the command line arguments and break them */ |
| 5938 | /* out. For those options that take two parms, specifying only */ |
| 5939 | /* the first will set both to that value. Specifying only the */ |
| 5940 | /* second will leave the first untouched. To change only the */ |
| 5941 | /* first, use the form "first," (see the routine break_args.. */ |
| 5942 | |
| 5943 | while ((c= getopt(argc, argv, XTI_ARGS)) != EOF) { |
| 5944 | switch (c) { |
| 5945 | case '?': |
| 5946 | case 'h': |
| 5947 | print_xti_usage(); |
| 5948 | exit(1); |
| 5949 | case 'D': |
| 5950 | /* set the TCP nodelay flag */ |
| 5951 | loc_nodelay = 1; |
| 5952 | rem_nodelay = 1; |
| 5953 | break; |
| 5954 | case 's': |
| 5955 | /* set local socket sizes */ |
| 5956 | break_args(optarg,arg1,arg2); |
| 5957 | if (arg1[0]) |
| 5958 | lss_size = convert(arg1); |
| 5959 | if (arg2[0]) |
| 5960 | lsr_size = convert(arg2); |
| 5961 | break; |
| 5962 | case 'S': |
| 5963 | /* set remote socket sizes */ |
| 5964 | break_args(optarg,arg1,arg2); |
| 5965 | if (arg1[0]) |
| 5966 | rss_size = convert(arg1); |
| 5967 | if (arg2[0]) |
| 5968 | rsr_size = convert(arg2); |
| 5969 | break; |
| 5970 | case 'r': |
| 5971 | /* set the request/response sizes */ |
| 5972 | break_args(optarg,arg1,arg2); |
| 5973 | if (arg1[0]) |
| 5974 | req_size = convert(arg1); |
| 5975 | if (arg2[0]) |
| 5976 | rsp_size = convert(arg2); |
| 5977 | break; |
| 5978 | case 'm': |
| 5979 | /* set the send size */ |
| 5980 | send_size = convert(optarg); |
| 5981 | break; |
| 5982 | case 'M': |
| 5983 | /* set the recv size */ |
| 5984 | recv_size = convert(optarg); |
| 5985 | break; |
| 5986 | case 'W': |
| 5987 | /* set the "width" of the user space data */ |
| 5988 | /* buffer. This will be the number of */ |
| 5989 | /* send_size buffers malloc'd in the */ |
| 5990 | /* *_STREAM test. It may be enhanced to set */ |
| 5991 | /* both send and receive "widths" but for now */ |
| 5992 | /* it is just the sending *_STREAM. */ |
| 5993 | send_width = convert(optarg); |
| 5994 | break; |
| 5995 | case 'V' : |
| 5996 | /* we want to do copy avoidance and will set */ |
| 5997 | /* it for everything, everywhere, if we really */ |
| 5998 | /* can. of course, we don't know anything */ |
| 5999 | /* about the remote... */ |
| 6000 | #ifdef SO_SND_COPYAVOID |
| 6001 | loc_sndavoid = 1; |
| 6002 | #else |
| 6003 | loc_sndavoid = 0; |
| 6004 | printf("Local send copy avoidance not available.\n"); |
| 6005 | #endif |
| 6006 | #ifdef SO_RCV_COPYAVOID |
| 6007 | loc_rcvavoid = 1; |
| 6008 | #else |
| 6009 | loc_rcvavoid = 0; |
| 6010 | printf("Local recv copy avoidance not available.\n"); |
| 6011 | #endif |
| 6012 | rem_sndavoid = 1; |
| 6013 | rem_rcvavoid = 1; |
| 6014 | break; |
| 6015 | case 'X': |
| 6016 | /* set the xti device file name(s) */ |
| 6017 | break_args(optarg,arg1,arg2); |
| 6018 | if (arg1[0]) |
| 6019 | strcpy(loc_xti_device,arg1); |
| 6020 | if (arg2[0]) |
| 6021 | strcpy(rem_xti_device,arg2); |
| 6022 | break; |
| 6023 | }; |
| 6024 | } |
| 6025 | } |
| 6026 | #endif /* WANT_XTI */ |