blob: 4964457b336052e2c592dc9ec4ec5d799e9d58c9 [file] [log] [blame]
Adam Langleyd0592972015-03-30 14:49:51 -07001/* $OpenBSD: umac.c,v 1.11 2014/07/22 07:13:42 guenther Exp $ */
Greg Hartmanbd77cf72015-02-25 13:21:06 -08002/* -----------------------------------------------------------------------
3 *
4 * umac.c -- C Implementation UMAC Message Authentication
5 *
6 * Version 0.93b of rfc4418.txt -- 2006 July 18
7 *
8 * For a full description of UMAC message authentication see the UMAC
9 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
10 * Please report bugs and suggestions to the UMAC webpage.
11 *
12 * Copyright (c) 1999-2006 Ted Krovetz
13 *
14 * Permission to use, copy, modify, and distribute this software and
15 * its documentation for any purpose and with or without fee, is hereby
16 * granted provided that the above copyright notice appears in all copies
17 * and in supporting documentation, and that the name of the copyright
18 * holder not be used in advertising or publicity pertaining to
19 * distribution of the software without specific, written prior permission.
20 *
21 * Comments should be directed to Ted Krovetz (tdk@acm.org)
22 *
23 * ---------------------------------------------------------------------- */
24
25 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
26 *
27 * 1) This version does not work properly on messages larger than 16MB
28 *
29 * 2) If you set the switch to use SSE2, then all data must be 16-byte
30 * aligned
31 *
32 * 3) When calling the function umac(), it is assumed that msg is in
33 * a writable buffer of length divisible by 32 bytes. The message itself
34 * does not have to fill the entire buffer, but bytes beyond msg may be
35 * zeroed.
36 *
37 * 4) Three free AES implementations are supported by this implementation of
38 * UMAC. Paulo Barreto's version is in the public domain and can be found
39 * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
40 * "Barreto"). The only two files needed are rijndael-alg-fst.c and
41 * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
42 * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
43 * includes a fast IA-32 assembly version. The OpenSSL crypo library is
44 * the third.
45 *
46 * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
47 * produced under gcc with optimizations set -O3 or higher. Dunno why.
48 *
49 /////////////////////////////////////////////////////////////////////// */
Adam Langleyd0592972015-03-30 14:49:51 -070050
51/* In OpenSSH, this file is compiled twice, with different #defines set on the
52 * command line. Since we don't want to stretch the Android build system, in
53 * Android this file is duplicated as umac.c and umac128.c. The latter contains
54 * the #defines (that were set in OpenSSH's Makefile) at the top of the
55 * file. */
56
Greg Hartmanbd77cf72015-02-25 13:21:06 -080057/* ---------------------------------------------------------------------- */
58/* --- User Switches ---------------------------------------------------- */
59/* ---------------------------------------------------------------------- */
60
Adam Langleyd0592972015-03-30 14:49:51 -070061#ifndef UMAC_OUTPUT_LEN
Greg Hartmanbd77cf72015-02-25 13:21:06 -080062#define UMAC_OUTPUT_LEN 8 /* Alowable: 4, 8, 12, 16 */
Adam Langleyd0592972015-03-30 14:49:51 -070063#endif
64
65#if UMAC_OUTPUT_LEN != 4 && UMAC_OUTPUT_LEN != 8 && \
66 UMAC_OUTPUT_LEN != 12 && UMAC_OUTPUT_LEN != 16
67# error UMAC_OUTPUT_LEN must be defined to 4, 8, 12 or 16
68#endif
69
Greg Hartmanbd77cf72015-02-25 13:21:06 -080070/* #define FORCE_C_ONLY 1 ANSI C and 64-bit integers req'd */
71/* #define AES_IMPLEMENTAION 1 1 = OpenSSL, 2 = Barreto, 3 = Gladman */
72/* #define SSE2 0 Is SSE2 is available? */
73/* #define RUN_TESTS 0 Run basic correctness/speed tests */
74/* #define UMAC_AE_SUPPORT 0 Enable auhthenticated encrytion */
75
76/* ---------------------------------------------------------------------- */
77/* -- Global Includes --------------------------------------------------- */
78/* ---------------------------------------------------------------------- */
79
80#include "includes.h"
81#include <sys/types.h>
Adam Langleyd0592972015-03-30 14:49:51 -070082#include <string.h>
83#include <stdio.h>
84#include <stdlib.h>
85#include <stddef.h>
Greg Hartmanbd77cf72015-02-25 13:21:06 -080086
87#include "xmalloc.h"
88#include "umac.h"
Adam Langleyd0592972015-03-30 14:49:51 -070089#include "misc.h"
Greg Hartmanbd77cf72015-02-25 13:21:06 -080090
91/* ---------------------------------------------------------------------- */
92/* --- Primitive Data Types --- */
93/* ---------------------------------------------------------------------- */
94
95/* The following assumptions may need change on your system */
96typedef u_int8_t UINT8; /* 1 byte */
97typedef u_int16_t UINT16; /* 2 byte */
98typedef u_int32_t UINT32; /* 4 byte */
99typedef u_int64_t UINT64; /* 8 bytes */
100typedef unsigned int UWORD; /* Register */
101
102/* ---------------------------------------------------------------------- */
103/* --- Constants -------------------------------------------------------- */
104/* ---------------------------------------------------------------------- */
105
106#define UMAC_KEY_LEN 16 /* UMAC takes 16 bytes of external key */
107
108/* Message "words" are read from memory in an endian-specific manner. */
109/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must */
110/* be set true if the host computer is little-endian. */
111
112#if BYTE_ORDER == LITTLE_ENDIAN
113#define __LITTLE_ENDIAN__ 1
114#else
115#define __LITTLE_ENDIAN__ 0
116#endif
117
118/* ---------------------------------------------------------------------- */
119/* ---------------------------------------------------------------------- */
120/* ----- Architecture Specific ------------------------------------------ */
121/* ---------------------------------------------------------------------- */
122/* ---------------------------------------------------------------------- */
123
124
125/* ---------------------------------------------------------------------- */
126/* ---------------------------------------------------------------------- */
127/* ----- Primitive Routines --------------------------------------------- */
128/* ---------------------------------------------------------------------- */
129/* ---------------------------------------------------------------------- */
130
131
132/* ---------------------------------------------------------------------- */
133/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
134/* ---------------------------------------------------------------------- */
135
136#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))
137
138/* ---------------------------------------------------------------------- */
139/* --- Endian Conversion --- Forcing assembly on some platforms */
140/* ---------------------------------------------------------------------- */
141
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800142#if (__LITTLE_ENDIAN__)
Adam Langleyd0592972015-03-30 14:49:51 -0700143#define LOAD_UINT32_REVERSED(p) get_u32(p)
144#define STORE_UINT32_REVERSED(p,v) put_u32(p,v)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800145#else
Adam Langleyd0592972015-03-30 14:49:51 -0700146#define LOAD_UINT32_REVERSED(p) get_u32_le(p)
147#define STORE_UINT32_REVERSED(p,v) put_u32_le(p,v)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800148#endif
149
Adam Langleyd0592972015-03-30 14:49:51 -0700150#define LOAD_UINT32_LITTLE(p) (get_u32_le(p))
151#define STORE_UINT32_BIG(p,v) put_u32(p, v)
152
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800153/* ---------------------------------------------------------------------- */
154/* ---------------------------------------------------------------------- */
155/* ----- Begin KDF & PDF Section ---------------------------------------- */
156/* ---------------------------------------------------------------------- */
157/* ---------------------------------------------------------------------- */
158
159/* UMAC uses AES with 16 byte block and key lengths */
160#define AES_BLOCK_LEN 16
161
162/* OpenSSL's AES */
Adam Langleyd0592972015-03-30 14:49:51 -0700163#ifdef WITH_OPENSSL
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800164#include "openbsd-compat/openssl-compat.h"
165#ifndef USE_BUILTIN_RIJNDAEL
166# include <openssl/aes.h>
167#endif
168typedef AES_KEY aes_int_key[1];
169#define aes_encryption(in,out,int_key) \
170 AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
171#define aes_key_setup(key,int_key) \
Adam Langleyd0592972015-03-30 14:49:51 -0700172 AES_set_encrypt_key((const u_char *)(key),UMAC_KEY_LEN*8,int_key)
173#else
174#include "rijndael.h"
175#define AES_ROUNDS ((UMAC_KEY_LEN / 4) + 6)
176typedef UINT8 aes_int_key[AES_ROUNDS+1][4][4]; /* AES internal */
177#define aes_encryption(in,out,int_key) \
178 rijndaelEncrypt((u32 *)(int_key), AES_ROUNDS, (u8 *)(in), (u8 *)(out))
179#define aes_key_setup(key,int_key) \
180 rijndaelKeySetupEnc((u32 *)(int_key), (const unsigned char *)(key), \
181 UMAC_KEY_LEN*8)
182#endif
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800183
184/* The user-supplied UMAC key is stretched using AES in a counter
185 * mode to supply all random bits needed by UMAC. The kdf function takes
186 * an AES internal key representation 'key' and writes a stream of
187 * 'nbytes' bytes to the memory pointed at by 'bufp'. Each distinct
188 * 'ndx' causes a distinct byte stream.
189 */
190static void kdf(void *bufp, aes_int_key key, UINT8 ndx, int nbytes)
191{
192 UINT8 in_buf[AES_BLOCK_LEN] = {0};
193 UINT8 out_buf[AES_BLOCK_LEN];
194 UINT8 *dst_buf = (UINT8 *)bufp;
195 int i;
196
197 /* Setup the initial value */
198 in_buf[AES_BLOCK_LEN-9] = ndx;
199 in_buf[AES_BLOCK_LEN-1] = i = 1;
200
201 while (nbytes >= AES_BLOCK_LEN) {
202 aes_encryption(in_buf, out_buf, key);
203 memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
204 in_buf[AES_BLOCK_LEN-1] = ++i;
205 nbytes -= AES_BLOCK_LEN;
206 dst_buf += AES_BLOCK_LEN;
207 }
208 if (nbytes) {
209 aes_encryption(in_buf, out_buf, key);
210 memcpy(dst_buf,out_buf,nbytes);
211 }
212}
213
214/* The final UHASH result is XOR'd with the output of a pseudorandom
215 * function. Here, we use AES to generate random output and
216 * xor the appropriate bytes depending on the last bits of nonce.
217 * This scheme is optimized for sequential, increasing big-endian nonces.
218 */
219
220typedef struct {
221 UINT8 cache[AES_BLOCK_LEN]; /* Previous AES output is saved */
222 UINT8 nonce[AES_BLOCK_LEN]; /* The AES input making above cache */
223 aes_int_key prf_key; /* Expanded AES key for PDF */
224} pdf_ctx;
225
226static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
227{
228 UINT8 buf[UMAC_KEY_LEN];
229
230 kdf(buf, prf_key, 0, UMAC_KEY_LEN);
231 aes_key_setup(buf, pc->prf_key);
232
233 /* Initialize pdf and cache */
234 memset(pc->nonce, 0, sizeof(pc->nonce));
235 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
236}
237
Adam Langleyd0592972015-03-30 14:49:51 -0700238static void pdf_gen_xor(pdf_ctx *pc, const UINT8 nonce[8], UINT8 buf[8])
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800239{
240 /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
241 * of the AES output. If last time around we returned the ndx-1st
242 * element, then we may have the result in the cache already.
243 */
244
245#if (UMAC_OUTPUT_LEN == 4)
246#define LOW_BIT_MASK 3
247#elif (UMAC_OUTPUT_LEN == 8)
248#define LOW_BIT_MASK 1
249#elif (UMAC_OUTPUT_LEN > 8)
250#define LOW_BIT_MASK 0
251#endif
Adam Langleyd0592972015-03-30 14:49:51 -0700252 union {
253 UINT8 tmp_nonce_lo[4];
254 UINT32 align;
255 } t;
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800256#if LOW_BIT_MASK != 0
257 int ndx = nonce[7] & LOW_BIT_MASK;
258#endif
Adam Langleyd0592972015-03-30 14:49:51 -0700259 *(UINT32 *)t.tmp_nonce_lo = ((const UINT32 *)nonce)[1];
260 t.tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800261
Adam Langleyd0592972015-03-30 14:49:51 -0700262 if ( (((UINT32 *)t.tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
263 (((const UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800264 {
Adam Langleyd0592972015-03-30 14:49:51 -0700265 ((UINT32 *)pc->nonce)[0] = ((const UINT32 *)nonce)[0];
266 ((UINT32 *)pc->nonce)[1] = ((UINT32 *)t.tmp_nonce_lo)[0];
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800267 aes_encryption(pc->nonce, pc->cache, pc->prf_key);
268 }
269
270#if (UMAC_OUTPUT_LEN == 4)
271 *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
272#elif (UMAC_OUTPUT_LEN == 8)
273 *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
274#elif (UMAC_OUTPUT_LEN == 12)
275 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
276 ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
277#elif (UMAC_OUTPUT_LEN == 16)
278 ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
279 ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
280#endif
281}
282
283/* ---------------------------------------------------------------------- */
284/* ---------------------------------------------------------------------- */
285/* ----- Begin NH Hash Section ------------------------------------------ */
286/* ---------------------------------------------------------------------- */
287/* ---------------------------------------------------------------------- */
288
289/* The NH-based hash functions used in UMAC are described in the UMAC paper
290 * and specification, both of which can be found at the UMAC website.
291 * The interface to this implementation has two
292 * versions, one expects the entire message being hashed to be passed
293 * in a single buffer and returns the hash result immediately. The second
294 * allows the message to be passed in a sequence of buffers. In the
295 * muliple-buffer interface, the client calls the routine nh_update() as
296 * many times as necessary. When there is no more data to be fed to the
297 * hash, the client calls nh_final() which calculates the hash output.
298 * Before beginning another hash calculation the nh_reset() routine
299 * must be called. The single-buffer routine, nh(), is equivalent to
300 * the sequence of calls nh_update() and nh_final(); however it is
301 * optimized and should be prefered whenever the multiple-buffer interface
302 * is not necessary. When using either interface, it is the client's
303 * responsability to pass no more than L1_KEY_LEN bytes per hash result.
304 *
305 * The routine nh_init() initializes the nh_ctx data structure and
306 * must be called once, before any other PDF routine.
307 */
308
309 /* The "nh_aux" routines do the actual NH hashing work. They
310 * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
311 * produce output for all STREAMS NH iterations in one call,
312 * allowing the parallel implementation of the streams.
313 */
314
315#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied */
316#define L1_KEY_LEN 1024 /* Internal key bytes */
317#define L1_KEY_SHIFT 16 /* Toeplitz key shift between streams */
318#define L1_PAD_BOUNDARY 32 /* pad message to boundary multiple */
319#define ALLOC_BOUNDARY 16 /* Keep buffers aligned to this */
320#define HASH_BUF_BYTES 64 /* nh_aux_hb buffer multiple */
321
322typedef struct {
323 UINT8 nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
Adam Langleyd0592972015-03-30 14:49:51 -0700324 UINT8 data [HASH_BUF_BYTES]; /* Incoming data buffer */
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800325 int next_data_empty; /* Bookeeping variable for data buffer. */
326 int bytes_hashed; /* Bytes (out of L1_KEY_LEN) incorperated. */
327 UINT64 state[STREAMS]; /* on-line state */
328} nh_ctx;
329
330
331#if (UMAC_OUTPUT_LEN == 4)
332
Adam Langleyd0592972015-03-30 14:49:51 -0700333static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800334/* NH hashing primitive. Previous (partial) hash result is loaded and
335* then stored via hp pointer. The length of the data pointed at by "dp",
336* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32). Key
337* is expected to be endian compensated in memory at key setup.
338*/
339{
340 UINT64 h;
341 UWORD c = dlen / 32;
342 UINT32 *k = (UINT32 *)kp;
Adam Langleyd0592972015-03-30 14:49:51 -0700343 const UINT32 *d = (const UINT32 *)dp;
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800344 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
345 UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
346
347 h = *((UINT64 *)hp);
348 do {
349 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
350 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
351 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
352 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
353 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
354 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
355 h += MUL64((k0 + d0), (k4 + d4));
356 h += MUL64((k1 + d1), (k5 + d5));
357 h += MUL64((k2 + d2), (k6 + d6));
358 h += MUL64((k3 + d3), (k7 + d7));
359
360 d += 8;
361 k += 8;
362 } while (--c);
363 *((UINT64 *)hp) = h;
364}
365
366#elif (UMAC_OUTPUT_LEN == 8)
367
Adam Langleyd0592972015-03-30 14:49:51 -0700368static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800369/* Same as previous nh_aux, but two streams are handled in one pass,
370 * reading and writing 16 bytes of hash-state per call.
371 */
372{
373 UINT64 h1,h2;
374 UWORD c = dlen / 32;
375 UINT32 *k = (UINT32 *)kp;
Adam Langleyd0592972015-03-30 14:49:51 -0700376 const UINT32 *d = (const UINT32 *)dp;
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800377 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
378 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
379 k8,k9,k10,k11;
380
381 h1 = *((UINT64 *)hp);
382 h2 = *((UINT64 *)hp + 1);
383 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
384 do {
385 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
386 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
387 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
388 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
389 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
390 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
391
392 h1 += MUL64((k0 + d0), (k4 + d4));
393 h2 += MUL64((k4 + d0), (k8 + d4));
394
395 h1 += MUL64((k1 + d1), (k5 + d5));
396 h2 += MUL64((k5 + d1), (k9 + d5));
397
398 h1 += MUL64((k2 + d2), (k6 + d6));
399 h2 += MUL64((k6 + d2), (k10 + d6));
400
401 h1 += MUL64((k3 + d3), (k7 + d7));
402 h2 += MUL64((k7 + d3), (k11 + d7));
403
404 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
405
406 d += 8;
407 k += 8;
408 } while (--c);
409 ((UINT64 *)hp)[0] = h1;
410 ((UINT64 *)hp)[1] = h2;
411}
412
413#elif (UMAC_OUTPUT_LEN == 12)
414
Adam Langleyd0592972015-03-30 14:49:51 -0700415static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800416/* Same as previous nh_aux, but two streams are handled in one pass,
417 * reading and writing 24 bytes of hash-state per call.
418*/
419{
420 UINT64 h1,h2,h3;
421 UWORD c = dlen / 32;
422 UINT32 *k = (UINT32 *)kp;
Adam Langleyd0592972015-03-30 14:49:51 -0700423 const UINT32 *d = (const UINT32 *)dp;
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800424 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
425 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
426 k8,k9,k10,k11,k12,k13,k14,k15;
427
428 h1 = *((UINT64 *)hp);
429 h2 = *((UINT64 *)hp + 1);
430 h3 = *((UINT64 *)hp + 2);
431 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
432 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
433 do {
434 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
435 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
436 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
437 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
438 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
439 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
440
441 h1 += MUL64((k0 + d0), (k4 + d4));
442 h2 += MUL64((k4 + d0), (k8 + d4));
443 h3 += MUL64((k8 + d0), (k12 + d4));
444
445 h1 += MUL64((k1 + d1), (k5 + d5));
446 h2 += MUL64((k5 + d1), (k9 + d5));
447 h3 += MUL64((k9 + d1), (k13 + d5));
448
449 h1 += MUL64((k2 + d2), (k6 + d6));
450 h2 += MUL64((k6 + d2), (k10 + d6));
451 h3 += MUL64((k10 + d2), (k14 + d6));
452
453 h1 += MUL64((k3 + d3), (k7 + d7));
454 h2 += MUL64((k7 + d3), (k11 + d7));
455 h3 += MUL64((k11 + d3), (k15 + d7));
456
457 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
458 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
459
460 d += 8;
461 k += 8;
462 } while (--c);
463 ((UINT64 *)hp)[0] = h1;
464 ((UINT64 *)hp)[1] = h2;
465 ((UINT64 *)hp)[2] = h3;
466}
467
468#elif (UMAC_OUTPUT_LEN == 16)
469
Adam Langleyd0592972015-03-30 14:49:51 -0700470static void nh_aux(void *kp, const void *dp, void *hp, UINT32 dlen)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800471/* Same as previous nh_aux, but two streams are handled in one pass,
472 * reading and writing 24 bytes of hash-state per call.
473*/
474{
475 UINT64 h1,h2,h3,h4;
476 UWORD c = dlen / 32;
477 UINT32 *k = (UINT32 *)kp;
Adam Langleyd0592972015-03-30 14:49:51 -0700478 const UINT32 *d = (const UINT32 *)dp;
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800479 UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
480 UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
481 k8,k9,k10,k11,k12,k13,k14,k15,
482 k16,k17,k18,k19;
483
484 h1 = *((UINT64 *)hp);
485 h2 = *((UINT64 *)hp + 1);
486 h3 = *((UINT64 *)hp + 2);
487 h4 = *((UINT64 *)hp + 3);
488 k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
489 k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
490 do {
491 d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
492 d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
493 d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
494 d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
495 k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
496 k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
497 k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
498
499 h1 += MUL64((k0 + d0), (k4 + d4));
500 h2 += MUL64((k4 + d0), (k8 + d4));
501 h3 += MUL64((k8 + d0), (k12 + d4));
502 h4 += MUL64((k12 + d0), (k16 + d4));
503
504 h1 += MUL64((k1 + d1), (k5 + d5));
505 h2 += MUL64((k5 + d1), (k9 + d5));
506 h3 += MUL64((k9 + d1), (k13 + d5));
507 h4 += MUL64((k13 + d1), (k17 + d5));
508
509 h1 += MUL64((k2 + d2), (k6 + d6));
510 h2 += MUL64((k6 + d2), (k10 + d6));
511 h3 += MUL64((k10 + d2), (k14 + d6));
512 h4 += MUL64((k14 + d2), (k18 + d6));
513
514 h1 += MUL64((k3 + d3), (k7 + d7));
515 h2 += MUL64((k7 + d3), (k11 + d7));
516 h3 += MUL64((k11 + d3), (k15 + d7));
517 h4 += MUL64((k15 + d3), (k19 + d7));
518
519 k0 = k8; k1 = k9; k2 = k10; k3 = k11;
520 k4 = k12; k5 = k13; k6 = k14; k7 = k15;
521 k8 = k16; k9 = k17; k10 = k18; k11 = k19;
522
523 d += 8;
524 k += 8;
525 } while (--c);
526 ((UINT64 *)hp)[0] = h1;
527 ((UINT64 *)hp)[1] = h2;
528 ((UINT64 *)hp)[2] = h3;
529 ((UINT64 *)hp)[3] = h4;
530}
531
532/* ---------------------------------------------------------------------- */
533#endif /* UMAC_OUTPUT_LENGTH */
534/* ---------------------------------------------------------------------- */
535
536
537/* ---------------------------------------------------------------------- */
538
Adam Langleyd0592972015-03-30 14:49:51 -0700539static void nh_transform(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800540/* This function is a wrapper for the primitive NH hash functions. It takes
541 * as argument "hc" the current hash context and a buffer which must be a
542 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
543 * appropriately according to how much message has been hashed already.
544 */
545{
546 UINT8 *key;
547
548 key = hc->nh_key + hc->bytes_hashed;
549 nh_aux(key, buf, hc->state, nbytes);
550}
551
552/* ---------------------------------------------------------------------- */
553
554#if (__LITTLE_ENDIAN__)
555static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
556/* We endian convert the keys on little-endian computers to */
557/* compensate for the lack of big-endian memory reads during hashing. */
558{
559 UWORD iters = num_bytes / bpw;
560 if (bpw == 4) {
561 UINT32 *p = (UINT32 *)buf;
562 do {
563 *p = LOAD_UINT32_REVERSED(p);
564 p++;
565 } while (--iters);
566 } else if (bpw == 8) {
567 UINT32 *p = (UINT32 *)buf;
568 UINT32 t;
569 do {
570 t = LOAD_UINT32_REVERSED(p+1);
571 p[1] = LOAD_UINT32_REVERSED(p);
572 p[0] = t;
573 p += 2;
574 } while (--iters);
575 }
576}
577#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
578#else
579#define endian_convert_if_le(x,y,z) do{}while(0) /* Do nothing */
580#endif
581
582/* ---------------------------------------------------------------------- */
583
584static void nh_reset(nh_ctx *hc)
585/* Reset nh_ctx to ready for hashing of new data */
586{
587 hc->bytes_hashed = 0;
588 hc->next_data_empty = 0;
589 hc->state[0] = 0;
590#if (UMAC_OUTPUT_LEN >= 8)
591 hc->state[1] = 0;
592#endif
593#if (UMAC_OUTPUT_LEN >= 12)
594 hc->state[2] = 0;
595#endif
596#if (UMAC_OUTPUT_LEN == 16)
597 hc->state[3] = 0;
598#endif
599
600}
601
602/* ---------------------------------------------------------------------- */
603
604static void nh_init(nh_ctx *hc, aes_int_key prf_key)
605/* Generate nh_key, endian convert and reset to be ready for hashing. */
606{
607 kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
608 endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
609 nh_reset(hc);
610}
611
612/* ---------------------------------------------------------------------- */
613
Adam Langleyd0592972015-03-30 14:49:51 -0700614static void nh_update(nh_ctx *hc, const UINT8 *buf, UINT32 nbytes)
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800615/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an */
616/* even multiple of HASH_BUF_BYTES. */
617{
618 UINT32 i,j;
619
620 j = hc->next_data_empty;
621 if ((j + nbytes) >= HASH_BUF_BYTES) {
622 if (j) {
623 i = HASH_BUF_BYTES - j;
624 memcpy(hc->data+j, buf, i);
625 nh_transform(hc,hc->data,HASH_BUF_BYTES);
626 nbytes -= i;
627 buf += i;
628 hc->bytes_hashed += HASH_BUF_BYTES;
629 }
630 if (nbytes >= HASH_BUF_BYTES) {
631 i = nbytes & ~(HASH_BUF_BYTES - 1);
632 nh_transform(hc, buf, i);
633 nbytes -= i;
634 buf += i;
635 hc->bytes_hashed += i;
636 }
637 j = 0;
638 }
639 memcpy(hc->data + j, buf, nbytes);
640 hc->next_data_empty = j + nbytes;
641}
642
643/* ---------------------------------------------------------------------- */
644
645static void zero_pad(UINT8 *p, int nbytes)
646{
647/* Write "nbytes" of zeroes, beginning at "p" */
648 if (nbytes >= (int)sizeof(UWORD)) {
649 while ((ptrdiff_t)p % sizeof(UWORD)) {
650 *p = 0;
651 nbytes--;
652 p++;
653 }
654 while (nbytes >= (int)sizeof(UWORD)) {
655 *(UWORD *)p = 0;
656 nbytes -= sizeof(UWORD);
657 p += sizeof(UWORD);
658 }
659 }
660 while (nbytes) {
661 *p = 0;
662 nbytes--;
663 p++;
664 }
665}
666
667/* ---------------------------------------------------------------------- */
668
669static void nh_final(nh_ctx *hc, UINT8 *result)
670/* After passing some number of data buffers to nh_update() for integration
671 * into an NH context, nh_final is called to produce a hash result. If any
672 * bytes are in the buffer hc->data, incorporate them into the
673 * NH context. Finally, add into the NH accumulation "state" the total number
674 * of bits hashed. The resulting numbers are written to the buffer "result".
675 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
676 */
677{
678 int nh_len, nbits;
679
680 if (hc->next_data_empty != 0) {
681 nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
682 ~(L1_PAD_BOUNDARY - 1));
683 zero_pad(hc->data + hc->next_data_empty,
684 nh_len - hc->next_data_empty);
685 nh_transform(hc, hc->data, nh_len);
686 hc->bytes_hashed += hc->next_data_empty;
687 } else if (hc->bytes_hashed == 0) {
688 nh_len = L1_PAD_BOUNDARY;
689 zero_pad(hc->data, L1_PAD_BOUNDARY);
690 nh_transform(hc, hc->data, nh_len);
691 }
692
693 nbits = (hc->bytes_hashed << 3);
694 ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
695#if (UMAC_OUTPUT_LEN >= 8)
696 ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
697#endif
698#if (UMAC_OUTPUT_LEN >= 12)
699 ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
700#endif
701#if (UMAC_OUTPUT_LEN == 16)
702 ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
703#endif
704 nh_reset(hc);
705}
706
707/* ---------------------------------------------------------------------- */
708
Adam Langleyd0592972015-03-30 14:49:51 -0700709static void nh(nh_ctx *hc, const UINT8 *buf, UINT32 padded_len,
Greg Hartmanbd77cf72015-02-25 13:21:06 -0800710 UINT32 unpadded_len, UINT8 *result)
711/* All-in-one nh_update() and nh_final() equivalent.
712 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
713 * well aligned
714 */
715{
716 UINT32 nbits;
717
718 /* Initialize the hash state */
719 nbits = (unpadded_len << 3);
720
721 ((UINT64 *)result)[0] = nbits;
722#if (UMAC_OUTPUT_LEN >= 8)
723 ((UINT64 *)result)[1] = nbits;
724#endif
725#if (UMAC_OUTPUT_LEN >= 12)
726 ((UINT64 *)result)[2] = nbits;
727#endif
728#if (UMAC_OUTPUT_LEN == 16)
729 ((UINT64 *)result)[3] = nbits;
730#endif
731
732 nh_aux(hc->nh_key, buf, result, padded_len);
733}
734
735/* ---------------------------------------------------------------------- */
736/* ---------------------------------------------------------------------- */
737/* ----- Begin UHASH Section -------------------------------------------- */
738/* ---------------------------------------------------------------------- */
739/* ---------------------------------------------------------------------- */
740
741/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
742 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
743 * unless the initial data to be hashed is short. After the polynomial-
744 * layer, an inner-product hash is used to produce the final UHASH output.
745 *
746 * UHASH provides two interfaces, one all-at-once and another where data
747 * buffers are presented sequentially. In the sequential interface, the
748 * UHASH client calls the routine uhash_update() as many times as necessary.
749 * When there is no more data to be fed to UHASH, the client calls
750 * uhash_final() which
751 * calculates the UHASH output. Before beginning another UHASH calculation
752 * the uhash_reset() routine must be called. The all-at-once UHASH routine,
753 * uhash(), is equivalent to the sequence of calls uhash_update() and
754 * uhash_final(); however it is optimized and should be
755 * used whenever the sequential interface is not necessary.
756 *
757 * The routine uhash_init() initializes the uhash_ctx data structure and
758 * must be called once, before any other UHASH routine.
759 */
760
761/* ---------------------------------------------------------------------- */
762/* ----- Constants and uhash_ctx ---------------------------------------- */
763/* ---------------------------------------------------------------------- */
764
765/* ---------------------------------------------------------------------- */
766/* ----- Poly hash and Inner-Product hash Constants --------------------- */
767/* ---------------------------------------------------------------------- */
768
769/* Primes and masks */
770#define p36 ((UINT64)0x0000000FFFFFFFFBull) /* 2^36 - 5 */
771#define p64 ((UINT64)0xFFFFFFFFFFFFFFC5ull) /* 2^64 - 59 */
772#define m36 ((UINT64)0x0000000FFFFFFFFFull) /* The low 36 of 64 bits */
773
774
775/* ---------------------------------------------------------------------- */
776
777typedef struct uhash_ctx {
778 nh_ctx hash; /* Hash context for L1 NH hash */
779 UINT64 poly_key_8[STREAMS]; /* p64 poly keys */
780 UINT64 poly_accum[STREAMS]; /* poly hash result */
781 UINT64 ip_keys[STREAMS*4]; /* Inner-product keys */
782 UINT32 ip_trans[STREAMS]; /* Inner-product translation */
783 UINT32 msg_len; /* Total length of data passed */
784 /* to uhash */
785} uhash_ctx;
786typedef struct uhash_ctx *uhash_ctx_t;
787
788/* ---------------------------------------------------------------------- */
789
790
791/* The polynomial hashes use Horner's rule to evaluate a polynomial one
792 * word at a time. As described in the specification, poly32 and poly64
793 * require keys from special domains. The following implementations exploit
794 * the special domains to avoid overflow. The results are not guaranteed to
795 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
796 * patches any errant values.
797 */
798
799static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
800{
801 UINT32 key_hi = (UINT32)(key >> 32),
802 key_lo = (UINT32)key,
803 cur_hi = (UINT32)(cur >> 32),
804 cur_lo = (UINT32)cur,
805 x_lo,
806 x_hi;
807 UINT64 X,T,res;
808
809 X = MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
810 x_lo = (UINT32)X;
811 x_hi = (UINT32)(X >> 32);
812
813 res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
814
815 T = ((UINT64)x_lo << 32);
816 res += T;
817 if (res < T)
818 res += 59;
819
820 res += data;
821 if (res < data)
822 res += 59;
823
824 return res;
825}
826
827
828/* Although UMAC is specified to use a ramped polynomial hash scheme, this
829 * implementation does not handle all ramp levels. Because we don't handle
830 * the ramp up to p128 modulus in this implementation, we are limited to
831 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
832 * bytes input to UMAC per tag, ie. 16MB).
833 */
834static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
835{
836 int i;
837 UINT64 *data=(UINT64*)data_in;
838
839 for (i = 0; i < STREAMS; i++) {
840 if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
841 hc->poly_accum[i] = poly64(hc->poly_accum[i],
842 hc->poly_key_8[i], p64 - 1);
843 hc->poly_accum[i] = poly64(hc->poly_accum[i],
844 hc->poly_key_8[i], (data[i] - 59));
845 } else {
846 hc->poly_accum[i] = poly64(hc->poly_accum[i],
847 hc->poly_key_8[i], data[i]);
848 }
849 }
850}
851
852
853/* ---------------------------------------------------------------------- */
854
855
856/* The final step in UHASH is an inner-product hash. The poly hash
857 * produces a result not neccesarily WORD_LEN bytes long. The inner-
858 * product hash breaks the polyhash output into 16-bit chunks and
859 * multiplies each with a 36 bit key.
860 */
861
862static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
863{
864 t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
865 t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
866 t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
867 t = t + ipkp[3] * (UINT64)(UINT16)(data);
868
869 return t;
870}
871
872static UINT32 ip_reduce_p36(UINT64 t)
873{
874/* Divisionless modular reduction */
875 UINT64 ret;
876
877 ret = (t & m36) + 5 * (t >> 36);
878 if (ret >= p36)
879 ret -= p36;
880
881 /* return least significant 32 bits */
882 return (UINT32)(ret);
883}
884
885
886/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
887 * the polyhash stage is skipped and ip_short is applied directly to the
888 * NH output.
889 */
890static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
891{
892 UINT64 t;
893 UINT64 *nhp = (UINT64 *)nh_res;
894
895 t = ip_aux(0,ahc->ip_keys, nhp[0]);
896 STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
897#if (UMAC_OUTPUT_LEN >= 8)
898 t = ip_aux(0,ahc->ip_keys+4, nhp[1]);
899 STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
900#endif
901#if (UMAC_OUTPUT_LEN >= 12)
902 t = ip_aux(0,ahc->ip_keys+8, nhp[2]);
903 STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
904#endif
905#if (UMAC_OUTPUT_LEN == 16)
906 t = ip_aux(0,ahc->ip_keys+12, nhp[3]);
907 STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
908#endif
909}
910
911/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
912 * the polyhash stage is not skipped and ip_long is applied to the
913 * polyhash output.
914 */
915static void ip_long(uhash_ctx_t ahc, u_char *res)
916{
917 int i;
918 UINT64 t;
919
920 for (i = 0; i < STREAMS; i++) {
921 /* fix polyhash output not in Z_p64 */
922 if (ahc->poly_accum[i] >= p64)
923 ahc->poly_accum[i] -= p64;
924 t = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
925 STORE_UINT32_BIG((UINT32 *)res+i,
926 ip_reduce_p36(t) ^ ahc->ip_trans[i]);
927 }
928}
929
930
931/* ---------------------------------------------------------------------- */
932
933/* ---------------------------------------------------------------------- */
934
935/* Reset uhash context for next hash session */
936static int uhash_reset(uhash_ctx_t pc)
937{
938 nh_reset(&pc->hash);
939 pc->msg_len = 0;
940 pc->poly_accum[0] = 1;
941#if (UMAC_OUTPUT_LEN >= 8)
942 pc->poly_accum[1] = 1;
943#endif
944#if (UMAC_OUTPUT_LEN >= 12)
945 pc->poly_accum[2] = 1;
946#endif
947#if (UMAC_OUTPUT_LEN == 16)
948 pc->poly_accum[3] = 1;
949#endif
950 return 1;
951}
952
953/* ---------------------------------------------------------------------- */
954
955/* Given a pointer to the internal key needed by kdf() and a uhash context,
956 * initialize the NH context and generate keys needed for poly and inner-
957 * product hashing. All keys are endian adjusted in memory so that native
958 * loads cause correct keys to be in registers during calculation.
959 */
960static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
961{
962 int i;
963 UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
964
965 /* Zero the entire uhash context */
966 memset(ahc, 0, sizeof(uhash_ctx));
967
968 /* Initialize the L1 hash */
969 nh_init(&ahc->hash, prf_key);
970
971 /* Setup L2 hash variables */
972 kdf(buf, prf_key, 2, sizeof(buf)); /* Fill buffer with index 1 key */
973 for (i = 0; i < STREAMS; i++) {
974 /* Fill keys from the buffer, skipping bytes in the buffer not
975 * used by this implementation. Endian reverse the keys if on a
976 * little-endian computer.
977 */
978 memcpy(ahc->poly_key_8+i, buf+24*i, 8);
979 endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
980 /* Mask the 64-bit keys to their special domain */
981 ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
982 ahc->poly_accum[i] = 1; /* Our polyhash prepends a non-zero word */
983 }
984
985 /* Setup L3-1 hash variables */
986 kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
987 for (i = 0; i < STREAMS; i++)
988 memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
989 4*sizeof(UINT64));
990 endian_convert_if_le(ahc->ip_keys, sizeof(UINT64),
991 sizeof(ahc->ip_keys));
992 for (i = 0; i < STREAMS*4; i++)
993 ahc->ip_keys[i] %= p36; /* Bring into Z_p36 */
994
995 /* Setup L3-2 hash variables */
996 /* Fill buffer with index 4 key */
997 kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
998 endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
999 STREAMS * sizeof(UINT32));
1000}
1001
1002/* ---------------------------------------------------------------------- */
1003
1004#if 0
1005static uhash_ctx_t uhash_alloc(u_char key[])
1006{
1007/* Allocate memory and force to a 16-byte boundary. */
1008 uhash_ctx_t ctx;
1009 u_char bytes_to_add;
1010 aes_int_key prf_key;
1011
1012 ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
1013 if (ctx) {
1014 if (ALLOC_BOUNDARY) {
1015 bytes_to_add = ALLOC_BOUNDARY -
1016 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
1017 ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
1018 *((u_char *)ctx - 1) = bytes_to_add;
1019 }
1020 aes_key_setup(key,prf_key);
1021 uhash_init(ctx, prf_key);
1022 }
1023 return (ctx);
1024}
1025#endif
1026
1027/* ---------------------------------------------------------------------- */
1028
1029#if 0
1030static int uhash_free(uhash_ctx_t ctx)
1031{
1032/* Free memory allocated by uhash_alloc */
1033 u_char bytes_to_sub;
1034
1035 if (ctx) {
1036 if (ALLOC_BOUNDARY) {
1037 bytes_to_sub = *((u_char *)ctx - 1);
1038 ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
1039 }
1040 free(ctx);
1041 }
1042 return (1);
1043}
1044#endif
1045/* ---------------------------------------------------------------------- */
1046
Adam Langleyd0592972015-03-30 14:49:51 -07001047static int uhash_update(uhash_ctx_t ctx, const u_char *input, long len)
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001048/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
1049 * hash each one with NH, calling the polyhash on each NH output.
1050 */
1051{
1052 UWORD bytes_hashed, bytes_remaining;
1053 UINT64 result_buf[STREAMS];
1054 UINT8 *nh_result = (UINT8 *)&result_buf;
1055
1056 if (ctx->msg_len + len <= L1_KEY_LEN) {
Adam Langleyd0592972015-03-30 14:49:51 -07001057 nh_update(&ctx->hash, (const UINT8 *)input, len);
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001058 ctx->msg_len += len;
1059 } else {
1060
1061 bytes_hashed = ctx->msg_len % L1_KEY_LEN;
1062 if (ctx->msg_len == L1_KEY_LEN)
1063 bytes_hashed = L1_KEY_LEN;
1064
1065 if (bytes_hashed + len >= L1_KEY_LEN) {
1066
1067 /* If some bytes have been passed to the hash function */
1068 /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
1069 /* bytes to complete the current nh_block. */
1070 if (bytes_hashed) {
1071 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
Adam Langleyd0592972015-03-30 14:49:51 -07001072 nh_update(&ctx->hash, (const UINT8 *)input, bytes_remaining);
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001073 nh_final(&ctx->hash, nh_result);
1074 ctx->msg_len += bytes_remaining;
1075 poly_hash(ctx,(UINT32 *)nh_result);
1076 len -= bytes_remaining;
1077 input += bytes_remaining;
1078 }
1079
1080 /* Hash directly from input stream if enough bytes */
1081 while (len >= L1_KEY_LEN) {
Adam Langleyd0592972015-03-30 14:49:51 -07001082 nh(&ctx->hash, (const UINT8 *)input, L1_KEY_LEN,
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001083 L1_KEY_LEN, nh_result);
1084 ctx->msg_len += L1_KEY_LEN;
1085 len -= L1_KEY_LEN;
1086 input += L1_KEY_LEN;
1087 poly_hash(ctx,(UINT32 *)nh_result);
1088 }
1089 }
1090
1091 /* pass remaining < L1_KEY_LEN bytes of input data to NH */
1092 if (len) {
Adam Langleyd0592972015-03-30 14:49:51 -07001093 nh_update(&ctx->hash, (const UINT8 *)input, len);
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001094 ctx->msg_len += len;
1095 }
1096 }
1097
1098 return (1);
1099}
1100
1101/* ---------------------------------------------------------------------- */
1102
1103static int uhash_final(uhash_ctx_t ctx, u_char *res)
1104/* Incorporate any pending data, pad, and generate tag */
1105{
1106 UINT64 result_buf[STREAMS];
1107 UINT8 *nh_result = (UINT8 *)&result_buf;
1108
1109 if (ctx->msg_len > L1_KEY_LEN) {
1110 if (ctx->msg_len % L1_KEY_LEN) {
1111 nh_final(&ctx->hash, nh_result);
1112 poly_hash(ctx,(UINT32 *)nh_result);
1113 }
1114 ip_long(ctx, res);
1115 } else {
1116 nh_final(&ctx->hash, nh_result);
1117 ip_short(ctx,nh_result, res);
1118 }
1119 uhash_reset(ctx);
1120 return (1);
1121}
1122
1123/* ---------------------------------------------------------------------- */
1124
1125#if 0
1126static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
1127/* assumes that msg is in a writable buffer of length divisible by */
1128/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed. */
1129{
1130 UINT8 nh_result[STREAMS*sizeof(UINT64)];
1131 UINT32 nh_len;
1132 int extra_zeroes_needed;
1133
1134 /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
1135 * the polyhash.
1136 */
1137 if (len <= L1_KEY_LEN) {
1138 if (len == 0) /* If zero length messages will not */
1139 nh_len = L1_PAD_BOUNDARY; /* be seen, comment out this case */
1140 else
1141 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1142 extra_zeroes_needed = nh_len - len;
1143 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1144 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1145 ip_short(ahc,nh_result, res);
1146 } else {
1147 /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
1148 * output to poly_hash().
1149 */
1150 do {
1151 nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
1152 poly_hash(ahc,(UINT32 *)nh_result);
1153 len -= L1_KEY_LEN;
1154 msg += L1_KEY_LEN;
1155 } while (len >= L1_KEY_LEN);
1156 if (len) {
1157 nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
1158 extra_zeroes_needed = nh_len - len;
1159 zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
1160 nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
1161 poly_hash(ahc,(UINT32 *)nh_result);
1162 }
1163
1164 ip_long(ahc, res);
1165 }
1166
1167 uhash_reset(ahc);
1168 return 1;
1169}
1170#endif
1171
1172/* ---------------------------------------------------------------------- */
1173/* ---------------------------------------------------------------------- */
1174/* ----- Begin UMAC Section --------------------------------------------- */
1175/* ---------------------------------------------------------------------- */
1176/* ---------------------------------------------------------------------- */
1177
1178/* The UMAC interface has two interfaces, an all-at-once interface where
1179 * the entire message to be authenticated is passed to UMAC in one buffer,
1180 * and a sequential interface where the message is presented a little at a
1181 * time. The all-at-once is more optimaized than the sequential version and
1182 * should be preferred when the sequential interface is not required.
1183 */
1184struct umac_ctx {
1185 uhash_ctx hash; /* Hash function for message compression */
1186 pdf_ctx pdf; /* PDF for hashed output */
1187 void *free_ptr; /* Address to free this struct via */
1188} umac_ctx;
1189
1190/* ---------------------------------------------------------------------- */
1191
1192#if 0
1193int umac_reset(struct umac_ctx *ctx)
1194/* Reset the hash function to begin a new authentication. */
1195{
1196 uhash_reset(&ctx->hash);
1197 return (1);
1198}
1199#endif
1200
1201/* ---------------------------------------------------------------------- */
1202
1203int umac_delete(struct umac_ctx *ctx)
1204/* Deallocate the ctx structure */
1205{
1206 if (ctx) {
1207 if (ALLOC_BOUNDARY)
1208 ctx = (struct umac_ctx *)ctx->free_ptr;
Adam Langleyd0592972015-03-30 14:49:51 -07001209 free(ctx);
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001210 }
1211 return (1);
1212}
1213
1214/* ---------------------------------------------------------------------- */
1215
Adam Langleyd0592972015-03-30 14:49:51 -07001216struct umac_ctx *umac_new(const u_char key[])
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001217/* Dynamically allocate a umac_ctx struct, initialize variables,
1218 * generate subkeys from key. Align to 16-byte boundary.
1219 */
1220{
1221 struct umac_ctx *ctx, *octx;
1222 size_t bytes_to_add;
1223 aes_int_key prf_key;
1224
Adam Langleyd0592972015-03-30 14:49:51 -07001225 octx = ctx = xcalloc(1, sizeof(*ctx) + ALLOC_BOUNDARY);
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001226 if (ctx) {
1227 if (ALLOC_BOUNDARY) {
1228 bytes_to_add = ALLOC_BOUNDARY -
1229 ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
1230 ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
1231 }
1232 ctx->free_ptr = octx;
Adam Langleyd0592972015-03-30 14:49:51 -07001233 aes_key_setup(key, prf_key);
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001234 pdf_init(&ctx->pdf, prf_key);
1235 uhash_init(&ctx->hash, prf_key);
1236 }
1237
1238 return (ctx);
1239}
1240
1241/* ---------------------------------------------------------------------- */
1242
Adam Langleyd0592972015-03-30 14:49:51 -07001243int umac_final(struct umac_ctx *ctx, u_char tag[], const u_char nonce[8])
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001244/* Incorporate any pending data, pad, and generate tag */
1245{
1246 uhash_final(&ctx->hash, (u_char *)tag);
Adam Langleyd0592972015-03-30 14:49:51 -07001247 pdf_gen_xor(&ctx->pdf, (const UINT8 *)nonce, (UINT8 *)tag);
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001248
1249 return (1);
1250}
1251
1252/* ---------------------------------------------------------------------- */
1253
Adam Langleyd0592972015-03-30 14:49:51 -07001254int umac_update(struct umac_ctx *ctx, const u_char *input, long len)
Greg Hartmanbd77cf72015-02-25 13:21:06 -08001255/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and */
1256/* hash each one, calling the PDF on the hashed output whenever the hash- */
1257/* output buffer is full. */
1258{
1259 uhash_update(&ctx->hash, input, len);
1260 return (1);
1261}
1262
1263/* ---------------------------------------------------------------------- */
1264
1265#if 0
1266int umac(struct umac_ctx *ctx, u_char *input,
1267 long len, u_char tag[],
1268 u_char nonce[8])
1269/* All-in-one version simply calls umac_update() and umac_final(). */
1270{
1271 uhash(&ctx->hash, input, len, (u_char *)tag);
1272 pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
1273
1274 return (1);
1275}
1276#endif
1277
1278/* ---------------------------------------------------------------------- */
1279/* ---------------------------------------------------------------------- */
1280/* ----- End UMAC Section ----------------------------------------------- */
1281/* ---------------------------------------------------------------------- */
1282/* ---------------------------------------------------------------------- */