| /* |
| * internal execution defines for qemu |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #ifndef _EXEC_ALL_H_ |
| #define _EXEC_ALL_H_ |
| |
| #include "qemu-common.h" |
| |
| /* allow to see translation results - the slowdown should be negligible, so we leave it */ |
| #define DEBUG_DISAS |
| |
| /* is_jmp field values */ |
| #define DISAS_NEXT 0 /* next instruction can be analyzed */ |
| #define DISAS_JUMP 1 /* only pc was modified dynamically */ |
| #define DISAS_UPDATE 2 /* cpu state was modified dynamically */ |
| #define DISAS_TB_JUMP 3 /* only pc was modified statically */ |
| |
| typedef struct TranslationBlock TranslationBlock; |
| |
| /* XXX: make safe guess about sizes */ |
| #define MAX_OP_PER_INSTR 96 |
| /* A Call op needs up to 6 + 2N parameters (N = number of arguments). */ |
| #define MAX_OPC_PARAM 10 |
| #define OPC_BUF_SIZE 2048 |
| #define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR) |
| |
| /* Maximum size a TCG op can expand to. This is complicated because a |
| single op may require several host instructions and register reloads. |
| For now take a wild guess at 192 bytes, which should allow at least |
| a couple of fixup instructions per argument. */ |
| #define TCG_MAX_OP_SIZE 192 |
| |
| #define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM) |
| |
| extern target_ulong gen_opc_pc[OPC_BUF_SIZE]; |
| extern target_ulong gen_opc_npc[OPC_BUF_SIZE]; |
| extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE]; |
| extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE]; |
| extern uint16_t gen_opc_icount[OPC_BUF_SIZE]; |
| extern target_ulong gen_opc_jump_pc[2]; |
| extern uint32_t gen_opc_hflags[OPC_BUF_SIZE]; |
| |
| #include "qemu-log.h" |
| |
| void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb); |
| void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb); |
| void gen_pc_load(CPUState *env, struct TranslationBlock *tb, |
| unsigned long searched_pc, int pc_pos, void *puc); |
| |
| unsigned long code_gen_max_block_size(void); |
| void cpu_gen_init(void); |
| int cpu_gen_code(CPUState *env, struct TranslationBlock *tb, |
| int *gen_code_size_ptr); |
| int cpu_restore_state(struct TranslationBlock *tb, |
| CPUState *env, unsigned long searched_pc, |
| void *puc); |
| int cpu_restore_state_copy(struct TranslationBlock *tb, |
| CPUState *env, unsigned long searched_pc, |
| void *puc); |
| void cpu_resume_from_signal(CPUState *env1, void *puc); |
| void cpu_io_recompile(CPUState *env, void *retaddr); |
| TranslationBlock *tb_gen_code(CPUState *env, |
| target_ulong pc, target_ulong cs_base, int flags, |
| int cflags); |
| void cpu_exec_init(CPUState *env); |
| void QEMU_NORETURN cpu_loop_exit(void); |
| int page_unprotect(target_ulong address, unsigned long pc, void *puc); |
| void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end, |
| int is_cpu_write_access); |
| void tb_invalidate_page_range(target_ulong start, target_ulong end); |
| void tlb_flush_page(CPUState *env, target_ulong addr); |
| void tlb_flush(CPUState *env, int flush_global); |
| int tlb_set_page_exec(CPUState *env, target_ulong vaddr, |
| target_phys_addr_t paddr, int prot, |
| int mmu_idx, int is_softmmu); |
| static inline int tlb_set_page(CPUState *env1, target_ulong vaddr, |
| target_phys_addr_t paddr, int prot, |
| int mmu_idx, int is_softmmu) |
| { |
| if (prot & PAGE_READ) |
| prot |= PAGE_EXEC; |
| return tlb_set_page_exec(env1, vaddr, paddr, prot, mmu_idx, is_softmmu); |
| } |
| |
| #define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */ |
| |
| #define CODE_GEN_PHYS_HASH_BITS 15 |
| #define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS) |
| |
| #define MIN_CODE_GEN_BUFFER_SIZE (1024 * 1024) |
| |
| /* estimated block size for TB allocation */ |
| /* XXX: use a per code average code fragment size and modulate it |
| according to the host CPU */ |
| #if defined(CONFIG_SOFTMMU) |
| #define CODE_GEN_AVG_BLOCK_SIZE 128 |
| #else |
| #define CODE_GEN_AVG_BLOCK_SIZE 64 |
| #endif |
| |
| #if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) || defined(__i386__) |
| #define USE_DIRECT_JUMP |
| #endif |
| |
| struct TranslationBlock { |
| target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */ |
| target_ulong cs_base; /* CS base for this block */ |
| uint64_t flags; /* flags defining in which context the code was generated */ |
| uint16_t size; /* size of target code for this block (1 <= |
| size <= TARGET_PAGE_SIZE) */ |
| uint16_t cflags; /* compile flags */ |
| #define CF_COUNT_MASK 0x7fff |
| #define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */ |
| |
| uint8_t *tc_ptr; /* pointer to the translated code */ |
| /* next matching tb for physical address. */ |
| struct TranslationBlock *phys_hash_next; |
| /* first and second physical page containing code. The lower bit |
| of the pointer tells the index in page_next[] */ |
| struct TranslationBlock *page_next[2]; |
| target_ulong page_addr[2]; |
| |
| /* the following data are used to directly call another TB from |
| the code of this one. */ |
| uint16_t tb_next_offset[2]; /* offset of original jump target */ |
| #ifdef USE_DIRECT_JUMP |
| uint16_t tb_jmp_offset[4]; /* offset of jump instruction */ |
| #else |
| unsigned long tb_next[2]; /* address of jump generated code */ |
| #endif |
| /* list of TBs jumping to this one. This is a circular list using |
| the two least significant bits of the pointers to tell what is |
| the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 = |
| jmp_first */ |
| struct TranslationBlock *jmp_next[2]; |
| struct TranslationBlock *jmp_first; |
| #ifdef CONFIG_TRACE |
| struct BBRec *bb_rec; |
| uint64_t prev_time; |
| #endif |
| |
| #ifdef CONFIG_MEMCHECK |
| /* Maps PCs in this translation block to corresponding PCs in guest address |
| * space. The array is arranged in such way, that every even entry contains |
| * PC in the translation block, followed by an odd entry that contains |
| * guest PC corresponding to that PC in the translation block. This |
| * arrangement is set by tcg_gen_code_common that initializes this array |
| * when performing guest code translation. */ |
| target_ulong* tpc2gpc; |
| /* Number of pairs (pc_tb, pc_guest) in tpc2gpc array. */ |
| unsigned int tpc2gpc_pairs; |
| #endif // CONFIG_MEMCHECK |
| |
| uint32_t icount; |
| }; |
| |
| static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc) |
| { |
| target_ulong tmp; |
| tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); |
| return (tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK; |
| } |
| |
| static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc) |
| { |
| target_ulong tmp; |
| tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)); |
| return (((tmp >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS)) & TB_JMP_PAGE_MASK) |
| | (tmp & TB_JMP_ADDR_MASK)); |
| } |
| |
| static inline unsigned int tb_phys_hash_func(unsigned long pc) |
| { |
| return pc & (CODE_GEN_PHYS_HASH_SIZE - 1); |
| } |
| |
| #ifdef CONFIG_MEMCHECK |
| /* Gets translated PC for a given (translated PC, guest PC) pair. |
| * Return: |
| * Translated PC, or NULL if pair index was too large. |
| */ |
| static inline target_ulong |
| tb_get_tb_pc(const TranslationBlock* tb, unsigned int pair) |
| { |
| return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ? |
| tb->tpc2gpc[pair * 2] : 0; |
| } |
| |
| /* Gets guest PC for a given (translated PC, guest PC) pair. |
| * Return: |
| * Guest PC, or NULL if pair index was too large. |
| */ |
| static inline target_ulong |
| tb_get_guest_pc(const TranslationBlock* tb, unsigned int pair) |
| { |
| return (tb->tpc2gpc != NULL && pair < tb->tpc2gpc_pairs) ? |
| tb->tpc2gpc[pair * 2 + 1] : 0; |
| } |
| |
| /* Gets guest PC for a given translated PC. |
| * Return: |
| * Guest PC for a given translated PC, or NULL if there was no pair, matching |
| * translated PC in tb's tpc2gpc array. |
| */ |
| static inline target_ulong |
| tb_search_guest_pc_from_tb_pc(const TranslationBlock* tb, target_ulong tb_pc) |
| { |
| if (tb->tpc2gpc != NULL && tb->tpc2gpc_pairs != 0) { |
| unsigned int m_min = 0; |
| unsigned int m_max = (tb->tpc2gpc_pairs - 1) << 1; |
| /* Make sure that tb_pc is within TB array. */ |
| if (tb_pc < tb->tpc2gpc[0]) { |
| return 0; |
| } |
| while (m_min <= m_max) { |
| const unsigned int m = ((m_min + m_max) >> 1) & ~1; |
| if (tb_pc < tb->tpc2gpc[m]) { |
| m_max = m - 2; |
| } else if (m == m_max || tb_pc < tb->tpc2gpc[m + 2]) { |
| return tb->tpc2gpc[m + 1]; |
| } else { |
| m_min = m + 2; |
| } |
| } |
| return tb->tpc2gpc[m_max + 1]; |
| } |
| return 0; |
| } |
| #endif // CONFIG_MEMCHECK |
| |
| TranslationBlock *tb_alloc(target_ulong pc); |
| void tb_free(TranslationBlock *tb); |
| void tb_flush(CPUState *env); |
| void tb_link_phys(TranslationBlock *tb, |
| target_ulong phys_pc, target_ulong phys_page2); |
| void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr); |
| |
| extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE]; |
| extern uint8_t *code_gen_ptr; |
| extern int code_gen_max_blocks; |
| |
| #if defined(USE_DIRECT_JUMP) |
| |
| #if defined(_ARCH_PPC) |
| extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr); |
| #define tb_set_jmp_target1 ppc_tb_set_jmp_target |
| #elif defined(__i386__) || defined(__x86_64__) |
| static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) |
| { |
| /* patch the branch destination */ |
| *(uint32_t *)jmp_addr = addr - (jmp_addr + 4); |
| /* no need to flush icache explicitly */ |
| } |
| #elif defined(__arm__) |
| static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr) |
| { |
| #if QEMU_GNUC_PREREQ(4, 1) |
| void __clear_cache(char *beg, char *end); |
| #else |
| register unsigned long _beg __asm ("a1"); |
| register unsigned long _end __asm ("a2"); |
| register unsigned long _flg __asm ("a3"); |
| #endif |
| |
| /* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */ |
| *(uint32_t *)jmp_addr = |
| (*(uint32_t *)jmp_addr & ~0xffffff) |
| | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff); |
| |
| #if QEMU_GNUC_PREREQ(4, 1) |
| __clear_cache((char *) jmp_addr, (char *) jmp_addr + 4); |
| #else |
| /* flush icache */ |
| _beg = jmp_addr; |
| _end = jmp_addr + 4; |
| _flg = 0; |
| __asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg)); |
| #endif |
| } |
| #endif |
| |
| static inline void tb_set_jmp_target(TranslationBlock *tb, |
| int n, unsigned long addr) |
| { |
| unsigned long offset; |
| |
| offset = tb->tb_jmp_offset[n]; |
| tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); |
| offset = tb->tb_jmp_offset[n + 2]; |
| if (offset != 0xffff) |
| tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr); |
| } |
| |
| #else |
| |
| /* set the jump target */ |
| static inline void tb_set_jmp_target(TranslationBlock *tb, |
| int n, unsigned long addr) |
| { |
| tb->tb_next[n] = addr; |
| } |
| |
| #endif |
| |
| static inline void tb_add_jump(TranslationBlock *tb, int n, |
| TranslationBlock *tb_next) |
| { |
| /* NOTE: this test is only needed for thread safety */ |
| if (!tb->jmp_next[n]) { |
| /* patch the native jump address */ |
| tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr); |
| |
| /* add in TB jmp circular list */ |
| tb->jmp_next[n] = tb_next->jmp_first; |
| tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n)); |
| } |
| } |
| |
| TranslationBlock *tb_find_pc(unsigned long pc_ptr); |
| |
| extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4]; |
| extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4]; |
| extern void *io_mem_opaque[IO_MEM_NB_ENTRIES]; |
| |
| #include "qemu-lock.h" |
| |
| extern spinlock_t tb_lock; |
| |
| extern int tb_invalidated_flag; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| void tlb_fill(target_ulong addr, int is_write, int mmu_idx, |
| void *retaddr); |
| |
| #include "softmmu_defs.h" |
| |
| #define ACCESS_TYPE (NB_MMU_MODES + 1) |
| #define MEMSUFFIX _code |
| #define env cpu_single_env |
| |
| #define DATA_SIZE 1 |
| #include "softmmu_header.h" |
| |
| #define DATA_SIZE 2 |
| #include "softmmu_header.h" |
| |
| #define DATA_SIZE 4 |
| #include "softmmu_header.h" |
| |
| #define DATA_SIZE 8 |
| #include "softmmu_header.h" |
| |
| #undef ACCESS_TYPE |
| #undef MEMSUFFIX |
| #undef env |
| |
| #endif |
| |
| #if defined(CONFIG_USER_ONLY) |
| static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) |
| { |
| return addr; |
| } |
| #else |
| /* NOTE: this function can trigger an exception */ |
| /* NOTE2: the returned address is not exactly the physical address: it |
| is the offset relative to phys_ram_base */ |
| static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr) |
| { |
| int mmu_idx, page_index, pd; |
| void *p; |
| |
| page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); |
| mmu_idx = cpu_mmu_index(env1); |
| if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code != |
| (addr & TARGET_PAGE_MASK))) { |
| ldub_code(addr); |
| } |
| pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK; |
| if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) { |
| #if defined(TARGET_SPARC) || defined(TARGET_MIPS) |
| do_unassigned_access(addr, 0, 1, 0, 4); |
| #else |
| cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr); |
| #endif |
| } |
| p = (void *)(unsigned long)addr |
| + env1->tlb_table[mmu_idx][page_index].addend; |
| return qemu_ram_addr_from_host(p); |
| } |
| |
| #if 0 |
| /* Deterministic execution requires that IO only be performed on the last |
| instruction of a TB so that interrupts take effect immediately. */ |
| static inline int can_do_io(CPUState *env) |
| { |
| if (!use_icount) |
| return 1; |
| |
| /* If not executing code then assume we are ok. */ |
| if (!env->current_tb) |
| return 1; |
| |
| return env->can_do_io != 0; |
| } |
| #endif |
| #endif /* 0 */ |
| |
| #ifdef CONFIG_KQEMU |
| #define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG)) |
| |
| #define MSR_QPI_COMMBASE 0xfabe0010 |
| |
| int kqemu_init(CPUState *env); |
| int kqemu_cpu_exec(CPUState *env); |
| void kqemu_flush_page(CPUState *env, target_ulong addr); |
| void kqemu_flush(CPUState *env, int global); |
| void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr); |
| void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr); |
| void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size, |
| ram_addr_t phys_offset); |
| void kqemu_cpu_interrupt(CPUState *env); |
| void kqemu_record_dump(void); |
| |
| extern uint32_t kqemu_comm_base; |
| |
| extern ram_addr_t kqemu_phys_ram_size; |
| extern uint8_t *kqemu_phys_ram_base; |
| |
| static inline int kqemu_is_ok(CPUState *env) |
| { |
| return(env->kqemu_enabled && |
| (env->cr[0] & CR0_PE_MASK) && |
| !(env->hflags & HF_INHIBIT_IRQ_MASK) && |
| (env->eflags & IF_MASK) && |
| !(env->eflags & VM_MASK) && |
| (env->kqemu_enabled == 2 || |
| ((env->hflags & HF_CPL_MASK) == 3 && |
| (env->eflags & IOPL_MASK) != IOPL_MASK))); |
| } |
| |
| #endif |
| |
| typedef void (CPUDebugExcpHandler)(CPUState *env); |
| |
| CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler); |
| |
| /* vl.c */ |
| extern int singlestep; |
| |
| #endif |