| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include <unistd.h> |
| #include <fcntl.h> |
| #include <signal.h> |
| #include <time.h> |
| #include <errno.h> |
| #include <sys/time.h> |
| #include <zlib.h> |
| |
| /* Needed early for HOST_BSD etc. */ |
| #include "config-host.h" |
| |
| #ifndef _WIN32 |
| #include <libgen.h> |
| #include <pwd.h> |
| #include <sys/times.h> |
| #include <sys/wait.h> |
| #include <termios.h> |
| #include <sys/mman.h> |
| #include <sys/ioctl.h> |
| #include <sys/resource.h> |
| #include <sys/socket.h> |
| #include <netinet/in.h> |
| #include <net/if.h> |
| #if defined(__NetBSD__) |
| #include <net/if_tap.h> |
| #endif |
| #ifdef __linux__ |
| #include <linux/if_tun.h> |
| #endif |
| #include <arpa/inet.h> |
| #include <dirent.h> |
| #include <netdb.h> |
| #include <sys/select.h> |
| #ifdef HOST_BSD |
| #include <sys/stat.h> |
| #if defined(__FreeBSD__) || defined(__DragonFly__) |
| #include <libutil.h> |
| #else |
| #include <util.h> |
| #endif |
| #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__) |
| #include <freebsd/stdlib.h> |
| #else |
| #ifdef __linux__ |
| #include <pty.h> |
| #include <malloc.h> |
| #include <linux/rtc.h> |
| |
| /* For the benefit of older linux systems which don't supply it, |
| we use a local copy of hpet.h. */ |
| /* #include <linux/hpet.h> */ |
| #include "hpet.h" |
| |
| #include <linux/ppdev.h> |
| #include <linux/parport.h> |
| #endif |
| #ifdef __sun__ |
| #include <sys/stat.h> |
| #include <sys/ethernet.h> |
| #include <sys/sockio.h> |
| #include <netinet/arp.h> |
| #include <netinet/in.h> |
| #include <netinet/in_systm.h> |
| #include <netinet/ip.h> |
| #include <netinet/ip_icmp.h> // must come after ip.h |
| #include <netinet/udp.h> |
| #include <netinet/tcp.h> |
| #include <net/if.h> |
| #include <syslog.h> |
| #include <stropts.h> |
| #endif |
| #endif |
| #endif |
| |
| #if defined(__OpenBSD__) |
| #include <util.h> |
| #endif |
| |
| #if defined(CONFIG_VDE) |
| #include <libvdeplug.h> |
| #endif |
| |
| #ifdef _WIN32 |
| #include <windows.h> |
| #include <malloc.h> |
| #include <sys/timeb.h> |
| #include <mmsystem.h> |
| #define getopt_long_only getopt_long |
| #define memalign(align, size) malloc(size) |
| #endif |
| |
| #ifdef CONFIG_SDL |
| #ifdef __APPLE__ |
| #include <SDL.h> |
| int qemu_main(int argc, char **argv, char **envp); |
| int main(int argc, char **argv) |
| { |
| qemu_main(argc, argv, NULL); |
| } |
| #undef main |
| #define main qemu_main |
| #endif |
| #endif /* CONFIG_SDL */ |
| |
| #ifdef CONFIG_COCOA |
| #undef main |
| #define main qemu_main |
| #endif /* CONFIG_COCOA */ |
| |
| #include "hw/hw.h" |
| #include "hw/boards.h" |
| #include "hw/usb.h" |
| #include "hw/pcmcia.h" |
| #include "hw/pc.h" |
| #include "hw/audiodev.h" |
| #include "hw/isa.h" |
| #include "hw/baum.h" |
| #include "hw/bt.h" |
| #include "hw/watchdog.h" |
| #include "hw/smbios.h" |
| #include "hw/xen.h" |
| #include "bt-host.h" |
| #include "net.h" |
| #include "monitor.h" |
| #include "console.h" |
| #include "sysemu.h" |
| #include "gdbstub.h" |
| #include "qemu-timer.h" |
| #include "qemu-char.h" |
| #include "cache-utils.h" |
| #include "block.h" |
| #include "dma.h" |
| #include "audio/audio.h" |
| #include "migration.h" |
| #include "kvm.h" |
| #include "balloon.h" |
| #include "qemu-option.h" |
| |
| #include "disas.h" |
| |
| #include "exec-all.h" |
| |
| #include "qemu_socket.h" |
| |
| #if defined(CONFIG_SLIRP) |
| #include "libslirp.h" |
| #endif |
| |
| //#define DEBUG_UNUSED_IOPORT |
| //#define DEBUG_IOPORT |
| //#define DEBUG_NET |
| //#define DEBUG_SLIRP |
| |
| |
| #ifdef DEBUG_IOPORT |
| # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__) |
| #else |
| # define LOG_IOPORT(...) do { } while (0) |
| #endif |
| |
| #define DEFAULT_RAM_SIZE 128 |
| |
| /* Max number of USB devices that can be specified on the commandline. */ |
| #define MAX_USB_CMDLINE 8 |
| |
| /* Max number of bluetooth switches on the commandline. */ |
| #define MAX_BT_CMDLINE 10 |
| |
| /* XXX: use a two level table to limit memory usage */ |
| #define MAX_IOPORTS 65536 |
| |
| static const char *data_dir; |
| const char *bios_name = NULL; |
| static void *ioport_opaque[MAX_IOPORTS]; |
| static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS]; |
| static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS]; |
| /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available |
| to store the VM snapshots */ |
| DriveInfo drives_table[MAX_DRIVES+1]; |
| int nb_drives; |
| enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB; |
| static DisplayState *display_state; |
| DisplayType display_type = DT_DEFAULT; |
| const char* keyboard_layout = NULL; |
| int64_t ticks_per_sec; |
| ram_addr_t ram_size; |
| int nb_nics; |
| NICInfo nd_table[MAX_NICS]; |
| int vm_running; |
| static int autostart; |
| static int rtc_utc = 1; |
| static int rtc_date_offset = -1; /* -1 means no change */ |
| int cirrus_vga_enabled = 1; |
| int std_vga_enabled = 0; |
| int vmsvga_enabled = 0; |
| int xenfb_enabled = 0; |
| #ifdef TARGET_SPARC |
| int graphic_width = 1024; |
| int graphic_height = 768; |
| int graphic_depth = 8; |
| #else |
| int graphic_width = 800; |
| int graphic_height = 600; |
| int graphic_depth = 15; |
| #endif |
| static int full_screen = 0; |
| #ifdef CONFIG_SDL |
| static int no_frame = 0; |
| #endif |
| int no_quit = 0; |
| CharDriverState *serial_hds[MAX_SERIAL_PORTS]; |
| CharDriverState *parallel_hds[MAX_PARALLEL_PORTS]; |
| CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES]; |
| #ifdef TARGET_I386 |
| int win2k_install_hack = 0; |
| int rtc_td_hack = 0; |
| #endif |
| int usb_enabled = 0; |
| int singlestep = 0; |
| int smp_cpus = 1; |
| const char *vnc_display; |
| int acpi_enabled = 1; |
| int no_hpet = 0; |
| int no_virtio_balloon = 0; |
| int fd_bootchk = 1; |
| int no_reboot = 0; |
| int no_shutdown = 0; |
| int cursor_hide = 1; |
| int graphic_rotate = 0; |
| #ifndef _WIN32 |
| int daemonize = 0; |
| #endif |
| WatchdogTimerModel *watchdog = NULL; |
| int watchdog_action = WDT_RESET; |
| const char *option_rom[MAX_OPTION_ROMS]; |
| int nb_option_roms; |
| int semihosting_enabled = 0; |
| #ifdef TARGET_ARM |
| int old_param = 0; |
| #endif |
| const char *qemu_name; |
| int alt_grab = 0; |
| #if defined(TARGET_SPARC) || defined(TARGET_PPC) |
| unsigned int nb_prom_envs = 0; |
| const char *prom_envs[MAX_PROM_ENVS]; |
| #endif |
| int nb_drives_opt; |
| struct drive_opt drives_opt[MAX_DRIVES]; |
| |
| int nb_numa_nodes; |
| uint64_t node_mem[MAX_NODES]; |
| uint64_t node_cpumask[MAX_NODES]; |
| |
| static CPUState *cur_cpu; |
| static CPUState *next_cpu; |
| static int timer_alarm_pending = 1; |
| /* Conversion factor from emulated instructions to virtual clock ticks. */ |
| static int icount_time_shift; |
| /* Arbitrarily pick 1MIPS as the minimum allowable speed. */ |
| #define MAX_ICOUNT_SHIFT 10 |
| /* Compensate for varying guest execution speed. */ |
| static int64_t qemu_icount_bias; |
| static QEMUTimer *icount_rt_timer; |
| static QEMUTimer *icount_vm_timer; |
| static QEMUTimer *nographic_timer; |
| |
| uint8_t qemu_uuid[16]; |
| |
| /***********************************************************/ |
| /* x86 ISA bus support */ |
| |
| target_phys_addr_t isa_mem_base = 0; |
| PicState2 *isa_pic; |
| |
| static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl; |
| static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel; |
| |
| static uint32_t ioport_read(int index, uint32_t address) |
| { |
| static IOPortReadFunc *default_func[3] = { |
| default_ioport_readb, |
| default_ioport_readw, |
| default_ioport_readl |
| }; |
| IOPortReadFunc *func = ioport_read_table[index][address]; |
| if (!func) |
| func = default_func[index]; |
| return func(ioport_opaque[address], address); |
| } |
| |
| static void ioport_write(int index, uint32_t address, uint32_t data) |
| { |
| static IOPortWriteFunc *default_func[3] = { |
| default_ioport_writeb, |
| default_ioport_writew, |
| default_ioport_writel |
| }; |
| IOPortWriteFunc *func = ioport_write_table[index][address]; |
| if (!func) |
| func = default_func[index]; |
| func(ioport_opaque[address], address, data); |
| } |
| |
| static uint32_t default_ioport_readb(void *opaque, uint32_t address) |
| { |
| #ifdef DEBUG_UNUSED_IOPORT |
| fprintf(stderr, "unused inb: port=0x%04x\n", address); |
| #endif |
| return 0xff; |
| } |
| |
| static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data) |
| { |
| #ifdef DEBUG_UNUSED_IOPORT |
| fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data); |
| #endif |
| } |
| |
| /* default is to make two byte accesses */ |
| static uint32_t default_ioport_readw(void *opaque, uint32_t address) |
| { |
| uint32_t data; |
| data = ioport_read(0, address); |
| address = (address + 1) & (MAX_IOPORTS - 1); |
| data |= ioport_read(0, address) << 8; |
| return data; |
| } |
| |
| static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data) |
| { |
| ioport_write(0, address, data & 0xff); |
| address = (address + 1) & (MAX_IOPORTS - 1); |
| ioport_write(0, address, (data >> 8) & 0xff); |
| } |
| |
| static uint32_t default_ioport_readl(void *opaque, uint32_t address) |
| { |
| #ifdef DEBUG_UNUSED_IOPORT |
| fprintf(stderr, "unused inl: port=0x%04x\n", address); |
| #endif |
| return 0xffffffff; |
| } |
| |
| static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data) |
| { |
| #ifdef DEBUG_UNUSED_IOPORT |
| fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data); |
| #endif |
| } |
| |
| /* size is the word size in byte */ |
| int register_ioport_read(int start, int length, int size, |
| IOPortReadFunc *func, void *opaque) |
| { |
| int i, bsize; |
| |
| if (size == 1) { |
| bsize = 0; |
| } else if (size == 2) { |
| bsize = 1; |
| } else if (size == 4) { |
| bsize = 2; |
| } else { |
| hw_error("register_ioport_read: invalid size"); |
| return -1; |
| } |
| for(i = start; i < start + length; i += size) { |
| ioport_read_table[bsize][i] = func; |
| if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque) |
| hw_error("register_ioport_read: invalid opaque"); |
| ioport_opaque[i] = opaque; |
| } |
| return 0; |
| } |
| |
| /* size is the word size in byte */ |
| int register_ioport_write(int start, int length, int size, |
| IOPortWriteFunc *func, void *opaque) |
| { |
| int i, bsize; |
| |
| if (size == 1) { |
| bsize = 0; |
| } else if (size == 2) { |
| bsize = 1; |
| } else if (size == 4) { |
| bsize = 2; |
| } else { |
| hw_error("register_ioport_write: invalid size"); |
| return -1; |
| } |
| for(i = start; i < start + length; i += size) { |
| ioport_write_table[bsize][i] = func; |
| if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque) |
| hw_error("register_ioport_write: invalid opaque"); |
| ioport_opaque[i] = opaque; |
| } |
| return 0; |
| } |
| |
| void isa_unassign_ioport(int start, int length) |
| { |
| int i; |
| |
| for(i = start; i < start + length; i++) { |
| ioport_read_table[0][i] = default_ioport_readb; |
| ioport_read_table[1][i] = default_ioport_readw; |
| ioport_read_table[2][i] = default_ioport_readl; |
| |
| ioport_write_table[0][i] = default_ioport_writeb; |
| ioport_write_table[1][i] = default_ioport_writew; |
| ioport_write_table[2][i] = default_ioport_writel; |
| |
| ioport_opaque[i] = NULL; |
| } |
| } |
| |
| /***********************************************************/ |
| |
| void cpu_outb(CPUState *env, int addr, int val) |
| { |
| LOG_IOPORT("outb: %04x %02x\n", addr, val); |
| ioport_write(0, addr, val); |
| #ifdef CONFIG_KQEMU |
| if (env) |
| env->last_io_time = cpu_get_time_fast(); |
| #endif |
| } |
| |
| void cpu_outw(CPUState *env, int addr, int val) |
| { |
| LOG_IOPORT("outw: %04x %04x\n", addr, val); |
| ioport_write(1, addr, val); |
| #ifdef CONFIG_KQEMU |
| if (env) |
| env->last_io_time = cpu_get_time_fast(); |
| #endif |
| } |
| |
| void cpu_outl(CPUState *env, int addr, int val) |
| { |
| LOG_IOPORT("outl: %04x %08x\n", addr, val); |
| ioport_write(2, addr, val); |
| #ifdef CONFIG_KQEMU |
| if (env) |
| env->last_io_time = cpu_get_time_fast(); |
| #endif |
| } |
| |
| int cpu_inb(CPUState *env, int addr) |
| { |
| int val; |
| val = ioport_read(0, addr); |
| LOG_IOPORT("inb : %04x %02x\n", addr, val); |
| #ifdef CONFIG_KQEMU |
| if (env) |
| env->last_io_time = cpu_get_time_fast(); |
| #endif |
| return val; |
| } |
| |
| int cpu_inw(CPUState *env, int addr) |
| { |
| int val; |
| val = ioport_read(1, addr); |
| LOG_IOPORT("inw : %04x %04x\n", addr, val); |
| #ifdef CONFIG_KQEMU |
| if (env) |
| env->last_io_time = cpu_get_time_fast(); |
| #endif |
| return val; |
| } |
| |
| int cpu_inl(CPUState *env, int addr) |
| { |
| int val; |
| val = ioport_read(2, addr); |
| LOG_IOPORT("inl : %04x %08x\n", addr, val); |
| #ifdef CONFIG_KQEMU |
| if (env) |
| env->last_io_time = cpu_get_time_fast(); |
| #endif |
| return val; |
| } |
| |
| /***********************************************************/ |
| void hw_error(const char *fmt, ...) |
| { |
| va_list ap; |
| CPUState *env; |
| |
| va_start(ap, fmt); |
| fprintf(stderr, "qemu: hardware error: "); |
| vfprintf(stderr, fmt, ap); |
| fprintf(stderr, "\n"); |
| for(env = first_cpu; env != NULL; env = env->next_cpu) { |
| fprintf(stderr, "CPU #%d:\n", env->cpu_index); |
| #ifdef TARGET_I386 |
| cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU); |
| #else |
| cpu_dump_state(env, stderr, fprintf, 0); |
| #endif |
| } |
| va_end(ap); |
| abort(); |
| } |
| |
| /***************/ |
| /* ballooning */ |
| |
| static QEMUBalloonEvent *qemu_balloon_event; |
| void *qemu_balloon_event_opaque; |
| |
| void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque) |
| { |
| qemu_balloon_event = func; |
| qemu_balloon_event_opaque = opaque; |
| } |
| |
| void qemu_balloon(ram_addr_t target) |
| { |
| if (qemu_balloon_event) |
| qemu_balloon_event(qemu_balloon_event_opaque, target); |
| } |
| |
| ram_addr_t qemu_balloon_status(void) |
| { |
| if (qemu_balloon_event) |
| return qemu_balloon_event(qemu_balloon_event_opaque, 0); |
| return 0; |
| } |
| |
| /***********************************************************/ |
| /* keyboard/mouse */ |
| |
| static QEMUPutKBDEvent *qemu_put_kbd_event; |
| static void *qemu_put_kbd_event_opaque; |
| static QEMUPutMouseEntry *qemu_put_mouse_event_head; |
| static QEMUPutMouseEntry *qemu_put_mouse_event_current; |
| |
| void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque) |
| { |
| qemu_put_kbd_event_opaque = opaque; |
| qemu_put_kbd_event = func; |
| } |
| |
| QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, |
| void *opaque, int absolute, |
| const char *name) |
| { |
| QEMUPutMouseEntry *s, *cursor; |
| |
| s = qemu_mallocz(sizeof(QEMUPutMouseEntry)); |
| |
| s->qemu_put_mouse_event = func; |
| s->qemu_put_mouse_event_opaque = opaque; |
| s->qemu_put_mouse_event_absolute = absolute; |
| s->qemu_put_mouse_event_name = qemu_strdup(name); |
| s->next = NULL; |
| |
| if (!qemu_put_mouse_event_head) { |
| qemu_put_mouse_event_head = qemu_put_mouse_event_current = s; |
| return s; |
| } |
| |
| cursor = qemu_put_mouse_event_head; |
| while (cursor->next != NULL) |
| cursor = cursor->next; |
| |
| cursor->next = s; |
| qemu_put_mouse_event_current = s; |
| |
| return s; |
| } |
| |
| void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry) |
| { |
| QEMUPutMouseEntry *prev = NULL, *cursor; |
| |
| if (!qemu_put_mouse_event_head || entry == NULL) |
| return; |
| |
| cursor = qemu_put_mouse_event_head; |
| while (cursor != NULL && cursor != entry) { |
| prev = cursor; |
| cursor = cursor->next; |
| } |
| |
| if (cursor == NULL) // does not exist or list empty |
| return; |
| else if (prev == NULL) { // entry is head |
| qemu_put_mouse_event_head = cursor->next; |
| if (qemu_put_mouse_event_current == entry) |
| qemu_put_mouse_event_current = cursor->next; |
| qemu_free(entry->qemu_put_mouse_event_name); |
| qemu_free(entry); |
| return; |
| } |
| |
| prev->next = entry->next; |
| |
| if (qemu_put_mouse_event_current == entry) |
| qemu_put_mouse_event_current = prev; |
| |
| qemu_free(entry->qemu_put_mouse_event_name); |
| qemu_free(entry); |
| } |
| |
| void kbd_put_keycode(int keycode) |
| { |
| if (qemu_put_kbd_event) { |
| qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode); |
| } |
| } |
| |
| void kbd_mouse_event(int dx, int dy, int dz, int buttons_state) |
| { |
| QEMUPutMouseEvent *mouse_event; |
| void *mouse_event_opaque; |
| int width; |
| |
| if (!qemu_put_mouse_event_current) { |
| return; |
| } |
| |
| mouse_event = |
| qemu_put_mouse_event_current->qemu_put_mouse_event; |
| mouse_event_opaque = |
| qemu_put_mouse_event_current->qemu_put_mouse_event_opaque; |
| |
| if (mouse_event) { |
| if (graphic_rotate) { |
| if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute) |
| width = 0x7fff; |
| else |
| width = graphic_width - 1; |
| mouse_event(mouse_event_opaque, |
| width - dy, dx, dz, buttons_state); |
| } else |
| mouse_event(mouse_event_opaque, |
| dx, dy, dz, buttons_state); |
| } |
| } |
| |
| int kbd_mouse_is_absolute(void) |
| { |
| if (!qemu_put_mouse_event_current) |
| return 0; |
| |
| return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute; |
| } |
| |
| void do_info_mice(Monitor *mon) |
| { |
| QEMUPutMouseEntry *cursor; |
| int index = 0; |
| |
| if (!qemu_put_mouse_event_head) { |
| monitor_printf(mon, "No mouse devices connected\n"); |
| return; |
| } |
| |
| monitor_printf(mon, "Mouse devices available:\n"); |
| cursor = qemu_put_mouse_event_head; |
| while (cursor != NULL) { |
| monitor_printf(mon, "%c Mouse #%d: %s\n", |
| (cursor == qemu_put_mouse_event_current ? '*' : ' '), |
| index, cursor->qemu_put_mouse_event_name); |
| index++; |
| cursor = cursor->next; |
| } |
| } |
| |
| void do_mouse_set(Monitor *mon, int index) |
| { |
| QEMUPutMouseEntry *cursor; |
| int i = 0; |
| |
| if (!qemu_put_mouse_event_head) { |
| monitor_printf(mon, "No mouse devices connected\n"); |
| return; |
| } |
| |
| cursor = qemu_put_mouse_event_head; |
| while (cursor != NULL && index != i) { |
| i++; |
| cursor = cursor->next; |
| } |
| |
| if (cursor != NULL) |
| qemu_put_mouse_event_current = cursor; |
| else |
| monitor_printf(mon, "Mouse at given index not found\n"); |
| } |
| |
| /* compute with 96 bit intermediate result: (a*b)/c */ |
| uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c) |
| { |
| union { |
| uint64_t ll; |
| struct { |
| #ifdef WORDS_BIGENDIAN |
| uint32_t high, low; |
| #else |
| uint32_t low, high; |
| #endif |
| } l; |
| } u, res; |
| uint64_t rl, rh; |
| |
| u.ll = a; |
| rl = (uint64_t)u.l.low * (uint64_t)b; |
| rh = (uint64_t)u.l.high * (uint64_t)b; |
| rh += (rl >> 32); |
| res.l.high = rh / c; |
| res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c; |
| return res.ll; |
| } |
| |
| /***********************************************************/ |
| /* real time host monotonic timer */ |
| |
| #define QEMU_TIMER_BASE 1000000000LL |
| |
| #ifdef WIN32 |
| |
| static int64_t clock_freq; |
| |
| static void init_get_clock(void) |
| { |
| LARGE_INTEGER freq; |
| int ret; |
| ret = QueryPerformanceFrequency(&freq); |
| if (ret == 0) { |
| fprintf(stderr, "Could not calibrate ticks\n"); |
| exit(1); |
| } |
| clock_freq = freq.QuadPart; |
| } |
| |
| static int64_t get_clock(void) |
| { |
| LARGE_INTEGER ti; |
| QueryPerformanceCounter(&ti); |
| return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq); |
| } |
| |
| #else |
| |
| static int use_rt_clock; |
| |
| static void init_get_clock(void) |
| { |
| use_rt_clock = 0; |
| #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \ |
| || defined(__DragonFly__) |
| { |
| struct timespec ts; |
| if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) { |
| use_rt_clock = 1; |
| } |
| } |
| #endif |
| } |
| |
| static int64_t get_clock(void) |
| { |
| #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \ |
| || defined(__DragonFly__) |
| if (use_rt_clock) { |
| struct timespec ts; |
| clock_gettime(CLOCK_MONOTONIC, &ts); |
| return ts.tv_sec * 1000000000LL + ts.tv_nsec; |
| } else |
| #endif |
| { |
| /* XXX: using gettimeofday leads to problems if the date |
| changes, so it should be avoided. */ |
| struct timeval tv; |
| gettimeofday(&tv, NULL); |
| return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000); |
| } |
| } |
| #endif |
| |
| /* Return the virtual CPU time, based on the instruction counter. */ |
| static int64_t cpu_get_icount(void) |
| { |
| int64_t icount; |
| CPUState *env = cpu_single_env;; |
| icount = qemu_icount; |
| if (env) { |
| if (!can_do_io(env)) |
| fprintf(stderr, "Bad clock read\n"); |
| icount -= (env->icount_decr.u16.low + env->icount_extra); |
| } |
| return qemu_icount_bias + (icount << icount_time_shift); |
| } |
| |
| /***********************************************************/ |
| /* guest cycle counter */ |
| |
| static int64_t cpu_ticks_prev; |
| static int64_t cpu_ticks_offset; |
| static int64_t cpu_clock_offset; |
| static int cpu_ticks_enabled; |
| |
| /* return the host CPU cycle counter and handle stop/restart */ |
| int64_t cpu_get_ticks(void) |
| { |
| if (use_icount) { |
| return cpu_get_icount(); |
| } |
| if (!cpu_ticks_enabled) { |
| return cpu_ticks_offset; |
| } else { |
| int64_t ticks; |
| ticks = cpu_get_real_ticks(); |
| if (cpu_ticks_prev > ticks) { |
| /* Note: non increasing ticks may happen if the host uses |
| software suspend */ |
| cpu_ticks_offset += cpu_ticks_prev - ticks; |
| } |
| cpu_ticks_prev = ticks; |
| return ticks + cpu_ticks_offset; |
| } |
| } |
| |
| /* return the host CPU monotonic timer and handle stop/restart */ |
| static int64_t cpu_get_clock(void) |
| { |
| int64_t ti; |
| if (!cpu_ticks_enabled) { |
| return cpu_clock_offset; |
| } else { |
| ti = get_clock(); |
| return ti + cpu_clock_offset; |
| } |
| } |
| |
| /* enable cpu_get_ticks() */ |
| void cpu_enable_ticks(void) |
| { |
| if (!cpu_ticks_enabled) { |
| cpu_ticks_offset -= cpu_get_real_ticks(); |
| cpu_clock_offset -= get_clock(); |
| cpu_ticks_enabled = 1; |
| } |
| } |
| |
| /* disable cpu_get_ticks() : the clock is stopped. You must not call |
| cpu_get_ticks() after that. */ |
| void cpu_disable_ticks(void) |
| { |
| if (cpu_ticks_enabled) { |
| cpu_ticks_offset = cpu_get_ticks(); |
| cpu_clock_offset = cpu_get_clock(); |
| cpu_ticks_enabled = 0; |
| } |
| } |
| |
| /***********************************************************/ |
| /* timers */ |
| |
| #define QEMU_TIMER_REALTIME 0 |
| #define QEMU_TIMER_VIRTUAL 1 |
| |
| struct QEMUClock { |
| int type; |
| /* XXX: add frequency */ |
| }; |
| |
| struct QEMUTimer { |
| QEMUClock *clock; |
| int64_t expire_time; |
| QEMUTimerCB *cb; |
| void *opaque; |
| struct QEMUTimer *next; |
| }; |
| |
| struct qemu_alarm_timer { |
| char const *name; |
| unsigned int flags; |
| |
| int (*start)(struct qemu_alarm_timer *t); |
| void (*stop)(struct qemu_alarm_timer *t); |
| void (*rearm)(struct qemu_alarm_timer *t); |
| void *priv; |
| }; |
| |
| #define ALARM_FLAG_DYNTICKS 0x1 |
| #define ALARM_FLAG_EXPIRED 0x2 |
| |
| static inline int alarm_has_dynticks(struct qemu_alarm_timer *t) |
| { |
| return t && (t->flags & ALARM_FLAG_DYNTICKS); |
| } |
| |
| static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t) |
| { |
| if (!alarm_has_dynticks(t)) |
| return; |
| |
| t->rearm(t); |
| } |
| |
| /* TODO: MIN_TIMER_REARM_US should be optimized */ |
| #define MIN_TIMER_REARM_US 250 |
| |
| static struct qemu_alarm_timer *alarm_timer; |
| |
| #ifdef _WIN32 |
| |
| struct qemu_alarm_win32 { |
| MMRESULT timerId; |
| unsigned int period; |
| } alarm_win32_data = {0, -1}; |
| |
| static int win32_start_timer(struct qemu_alarm_timer *t); |
| static void win32_stop_timer(struct qemu_alarm_timer *t); |
| static void win32_rearm_timer(struct qemu_alarm_timer *t); |
| |
| #else |
| |
| static int unix_start_timer(struct qemu_alarm_timer *t); |
| static void unix_stop_timer(struct qemu_alarm_timer *t); |
| |
| #ifdef __linux__ |
| |
| static int dynticks_start_timer(struct qemu_alarm_timer *t); |
| static void dynticks_stop_timer(struct qemu_alarm_timer *t); |
| static void dynticks_rearm_timer(struct qemu_alarm_timer *t); |
| |
| static int hpet_start_timer(struct qemu_alarm_timer *t); |
| static void hpet_stop_timer(struct qemu_alarm_timer *t); |
| |
| static int rtc_start_timer(struct qemu_alarm_timer *t); |
| static void rtc_stop_timer(struct qemu_alarm_timer *t); |
| |
| #endif /* __linux__ */ |
| |
| #endif /* _WIN32 */ |
| |
| /* Correlation between real and virtual time is always going to be |
| fairly approximate, so ignore small variation. |
| When the guest is idle real and virtual time will be aligned in |
| the IO wait loop. */ |
| #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10) |
| |
| static void icount_adjust(void) |
| { |
| int64_t cur_time; |
| int64_t cur_icount; |
| int64_t delta; |
| static int64_t last_delta; |
| /* If the VM is not running, then do nothing. */ |
| if (!vm_running) |
| return; |
| |
| cur_time = cpu_get_clock(); |
| cur_icount = qemu_get_clock(vm_clock); |
| delta = cur_icount - cur_time; |
| /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */ |
| if (delta > 0 |
| && last_delta + ICOUNT_WOBBLE < delta * 2 |
| && icount_time_shift > 0) { |
| /* The guest is getting too far ahead. Slow time down. */ |
| icount_time_shift--; |
| } |
| if (delta < 0 |
| && last_delta - ICOUNT_WOBBLE > delta * 2 |
| && icount_time_shift < MAX_ICOUNT_SHIFT) { |
| /* The guest is getting too far behind. Speed time up. */ |
| icount_time_shift++; |
| } |
| last_delta = delta; |
| qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift); |
| } |
| |
| static void icount_adjust_rt(void * opaque) |
| { |
| qemu_mod_timer(icount_rt_timer, |
| qemu_get_clock(rt_clock) + 1000); |
| icount_adjust(); |
| } |
| |
| static void icount_adjust_vm(void * opaque) |
| { |
| qemu_mod_timer(icount_vm_timer, |
| qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10); |
| icount_adjust(); |
| } |
| |
| static void init_icount_adjust(void) |
| { |
| /* Have both realtime and virtual time triggers for speed adjustment. |
| The realtime trigger catches emulated time passing too slowly, |
| the virtual time trigger catches emulated time passing too fast. |
| Realtime triggers occur even when idle, so use them less frequently |
| than VM triggers. */ |
| icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL); |
| qemu_mod_timer(icount_rt_timer, |
| qemu_get_clock(rt_clock) + 1000); |
| icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL); |
| qemu_mod_timer(icount_vm_timer, |
| qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10); |
| } |
| |
| static struct qemu_alarm_timer alarm_timers[] = { |
| #ifndef _WIN32 |
| #ifdef __linux__ |
| {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer, |
| dynticks_stop_timer, dynticks_rearm_timer, NULL}, |
| /* HPET - if available - is preferred */ |
| {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL}, |
| /* ...otherwise try RTC */ |
| {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL}, |
| #endif |
| {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL}, |
| #else |
| {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer, |
| win32_stop_timer, win32_rearm_timer, &alarm_win32_data}, |
| {"win32", 0, win32_start_timer, |
| win32_stop_timer, NULL, &alarm_win32_data}, |
| #endif |
| {NULL, } |
| }; |
| |
| static void show_available_alarms(void) |
| { |
| int i; |
| |
| printf("Available alarm timers, in order of precedence:\n"); |
| for (i = 0; alarm_timers[i].name; i++) |
| printf("%s\n", alarm_timers[i].name); |
| } |
| |
| static void configure_alarms(char const *opt) |
| { |
| int i; |
| int cur = 0; |
| int count = ARRAY_SIZE(alarm_timers) - 1; |
| char *arg; |
| char *name; |
| struct qemu_alarm_timer tmp; |
| |
| if (!strcmp(opt, "?")) { |
| show_available_alarms(); |
| exit(0); |
| } |
| |
| arg = strdup(opt); |
| |
| /* Reorder the array */ |
| name = strtok(arg, ","); |
| while (name) { |
| for (i = 0; i < count && alarm_timers[i].name; i++) { |
| if (!strcmp(alarm_timers[i].name, name)) |
| break; |
| } |
| |
| if (i == count) { |
| fprintf(stderr, "Unknown clock %s\n", name); |
| goto next; |
| } |
| |
| if (i < cur) |
| /* Ignore */ |
| goto next; |
| |
| /* Swap */ |
| tmp = alarm_timers[i]; |
| alarm_timers[i] = alarm_timers[cur]; |
| alarm_timers[cur] = tmp; |
| |
| cur++; |
| next: |
| name = strtok(NULL, ","); |
| } |
| |
| free(arg); |
| |
| if (cur) { |
| /* Disable remaining timers */ |
| for (i = cur; i < count; i++) |
| alarm_timers[i].name = NULL; |
| } else { |
| show_available_alarms(); |
| exit(1); |
| } |
| } |
| |
| QEMUClock *rt_clock; |
| QEMUClock *vm_clock; |
| |
| static QEMUTimer *active_timers[2]; |
| |
| static QEMUClock *qemu_new_clock(int type) |
| { |
| QEMUClock *clock; |
| clock = qemu_mallocz(sizeof(QEMUClock)); |
| clock->type = type; |
| return clock; |
| } |
| |
| QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque) |
| { |
| QEMUTimer *ts; |
| |
| ts = qemu_mallocz(sizeof(QEMUTimer)); |
| ts->clock = clock; |
| ts->cb = cb; |
| ts->opaque = opaque; |
| return ts; |
| } |
| |
| void qemu_free_timer(QEMUTimer *ts) |
| { |
| qemu_free(ts); |
| } |
| |
| /* stop a timer, but do not dealloc it */ |
| void qemu_del_timer(QEMUTimer *ts) |
| { |
| QEMUTimer **pt, *t; |
| |
| /* NOTE: this code must be signal safe because |
| qemu_timer_expired() can be called from a signal. */ |
| pt = &active_timers[ts->clock->type]; |
| for(;;) { |
| t = *pt; |
| if (!t) |
| break; |
| if (t == ts) { |
| *pt = t->next; |
| break; |
| } |
| pt = &t->next; |
| } |
| } |
| |
| /* modify the current timer so that it will be fired when current_time |
| >= expire_time. The corresponding callback will be called. */ |
| void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time) |
| { |
| QEMUTimer **pt, *t; |
| |
| qemu_del_timer(ts); |
| |
| /* add the timer in the sorted list */ |
| /* NOTE: this code must be signal safe because |
| qemu_timer_expired() can be called from a signal. */ |
| pt = &active_timers[ts->clock->type]; |
| for(;;) { |
| t = *pt; |
| if (!t) |
| break; |
| if (t->expire_time > expire_time) |
| break; |
| pt = &t->next; |
| } |
| ts->expire_time = expire_time; |
| ts->next = *pt; |
| *pt = ts; |
| |
| /* Rearm if necessary */ |
| if (pt == &active_timers[ts->clock->type]) { |
| if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) { |
| qemu_rearm_alarm_timer(alarm_timer); |
| } |
| /* Interrupt execution to force deadline recalculation. */ |
| if (use_icount) |
| qemu_notify_event(); |
| } |
| } |
| |
| int qemu_timer_pending(QEMUTimer *ts) |
| { |
| QEMUTimer *t; |
| for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) { |
| if (t == ts) |
| return 1; |
| } |
| return 0; |
| } |
| |
| static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time) |
| { |
| if (!timer_head) |
| return 0; |
| return (timer_head->expire_time <= current_time); |
| } |
| |
| static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time) |
| { |
| QEMUTimer *ts; |
| |
| for(;;) { |
| ts = *ptimer_head; |
| if (!ts || ts->expire_time > current_time) |
| break; |
| /* remove timer from the list before calling the callback */ |
| *ptimer_head = ts->next; |
| ts->next = NULL; |
| |
| /* run the callback (the timer list can be modified) */ |
| ts->cb(ts->opaque); |
| } |
| } |
| |
| int64_t qemu_get_clock(QEMUClock *clock) |
| { |
| switch(clock->type) { |
| case QEMU_TIMER_REALTIME: |
| return get_clock() / 1000000; |
| default: |
| case QEMU_TIMER_VIRTUAL: |
| if (use_icount) { |
| return cpu_get_icount(); |
| } else { |
| return cpu_get_clock(); |
| } |
| } |
| } |
| |
| static void init_timers(void) |
| { |
| init_get_clock(); |
| ticks_per_sec = QEMU_TIMER_BASE; |
| rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME); |
| vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL); |
| } |
| |
| /* save a timer */ |
| void qemu_put_timer(QEMUFile *f, QEMUTimer *ts) |
| { |
| uint64_t expire_time; |
| |
| if (qemu_timer_pending(ts)) { |
| expire_time = ts->expire_time; |
| } else { |
| expire_time = -1; |
| } |
| qemu_put_be64(f, expire_time); |
| } |
| |
| void qemu_get_timer(QEMUFile *f, QEMUTimer *ts) |
| { |
| uint64_t expire_time; |
| |
| expire_time = qemu_get_be64(f); |
| if (expire_time != -1) { |
| qemu_mod_timer(ts, expire_time); |
| } else { |
| qemu_del_timer(ts); |
| } |
| } |
| |
| static void timer_save(QEMUFile *f, void *opaque) |
| { |
| if (cpu_ticks_enabled) { |
| hw_error("cannot save state if virtual timers are running"); |
| } |
| qemu_put_be64(f, cpu_ticks_offset); |
| qemu_put_be64(f, ticks_per_sec); |
| qemu_put_be64(f, cpu_clock_offset); |
| } |
| |
| static int timer_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| if (version_id != 1 && version_id != 2) |
| return -EINVAL; |
| if (cpu_ticks_enabled) { |
| return -EINVAL; |
| } |
| cpu_ticks_offset=qemu_get_be64(f); |
| ticks_per_sec=qemu_get_be64(f); |
| if (version_id == 2) { |
| cpu_clock_offset=qemu_get_be64(f); |
| } |
| return 0; |
| } |
| |
| static void qemu_event_increment(void); |
| |
| #ifdef _WIN32 |
| static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg, |
| DWORD_PTR dwUser, DWORD_PTR dw1, |
| DWORD_PTR dw2) |
| #else |
| static void host_alarm_handler(int host_signum) |
| #endif |
| { |
| #if 0 |
| #define DISP_FREQ 1000 |
| { |
| static int64_t delta_min = INT64_MAX; |
| static int64_t delta_max, delta_cum, last_clock, delta, ti; |
| static int count; |
| ti = qemu_get_clock(vm_clock); |
| if (last_clock != 0) { |
| delta = ti - last_clock; |
| if (delta < delta_min) |
| delta_min = delta; |
| if (delta > delta_max) |
| delta_max = delta; |
| delta_cum += delta; |
| if (++count == DISP_FREQ) { |
| printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n", |
| muldiv64(delta_min, 1000000, ticks_per_sec), |
| muldiv64(delta_max, 1000000, ticks_per_sec), |
| muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec), |
| (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ)); |
| count = 0; |
| delta_min = INT64_MAX; |
| delta_max = 0; |
| delta_cum = 0; |
| } |
| } |
| last_clock = ti; |
| } |
| #endif |
| if (alarm_has_dynticks(alarm_timer) || |
| (!use_icount && |
| qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL], |
| qemu_get_clock(vm_clock))) || |
| qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME], |
| qemu_get_clock(rt_clock))) { |
| qemu_event_increment(); |
| if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED; |
| |
| #ifndef CONFIG_IOTHREAD |
| if (next_cpu) { |
| /* stop the currently executing cpu because a timer occured */ |
| cpu_exit(next_cpu); |
| #ifdef CONFIG_KQEMU |
| if (next_cpu->kqemu_enabled) { |
| kqemu_cpu_interrupt(next_cpu); |
| } |
| #endif |
| } |
| #endif |
| timer_alarm_pending = 1; |
| qemu_notify_event(); |
| } |
| } |
| |
| static int64_t qemu_next_deadline(void) |
| { |
| int64_t delta; |
| |
| if (active_timers[QEMU_TIMER_VIRTUAL]) { |
| delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time - |
| qemu_get_clock(vm_clock); |
| } else { |
| /* To avoid problems with overflow limit this to 2^32. */ |
| delta = INT32_MAX; |
| } |
| |
| if (delta < 0) |
| delta = 0; |
| |
| return delta; |
| } |
| |
| #if defined(__linux__) || defined(_WIN32) |
| static uint64_t qemu_next_deadline_dyntick(void) |
| { |
| int64_t delta; |
| int64_t rtdelta; |
| |
| if (use_icount) |
| delta = INT32_MAX; |
| else |
| delta = (qemu_next_deadline() + 999) / 1000; |
| |
| if (active_timers[QEMU_TIMER_REALTIME]) { |
| rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time - |
| qemu_get_clock(rt_clock))*1000; |
| if (rtdelta < delta) |
| delta = rtdelta; |
| } |
| |
| if (delta < MIN_TIMER_REARM_US) |
| delta = MIN_TIMER_REARM_US; |
| |
| return delta; |
| } |
| #endif |
| |
| #ifndef _WIN32 |
| |
| /* Sets a specific flag */ |
| static int fcntl_setfl(int fd, int flag) |
| { |
| int flags; |
| |
| flags = fcntl(fd, F_GETFL); |
| if (flags == -1) |
| return -errno; |
| |
| if (fcntl(fd, F_SETFL, flags | flag) == -1) |
| return -errno; |
| |
| return 0; |
| } |
| |
| #if defined(__linux__) |
| |
| #define RTC_FREQ 1024 |
| |
| static void enable_sigio_timer(int fd) |
| { |
| struct sigaction act; |
| |
| /* timer signal */ |
| sigfillset(&act.sa_mask); |
| act.sa_flags = 0; |
| act.sa_handler = host_alarm_handler; |
| |
| sigaction(SIGIO, &act, NULL); |
| fcntl_setfl(fd, O_ASYNC); |
| fcntl(fd, F_SETOWN, getpid()); |
| } |
| |
| static int hpet_start_timer(struct qemu_alarm_timer *t) |
| { |
| struct hpet_info info; |
| int r, fd; |
| |
| fd = open("/dev/hpet", O_RDONLY); |
| if (fd < 0) |
| return -1; |
| |
| /* Set frequency */ |
| r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ); |
| if (r < 0) { |
| fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n" |
| "error, but for better emulation accuracy type:\n" |
| "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n"); |
| goto fail; |
| } |
| |
| /* Check capabilities */ |
| r = ioctl(fd, HPET_INFO, &info); |
| if (r < 0) |
| goto fail; |
| |
| /* Enable periodic mode */ |
| r = ioctl(fd, HPET_EPI, 0); |
| if (info.hi_flags && (r < 0)) |
| goto fail; |
| |
| /* Enable interrupt */ |
| r = ioctl(fd, HPET_IE_ON, 0); |
| if (r < 0) |
| goto fail; |
| |
| enable_sigio_timer(fd); |
| t->priv = (void *)(long)fd; |
| |
| return 0; |
| fail: |
| close(fd); |
| return -1; |
| } |
| |
| static void hpet_stop_timer(struct qemu_alarm_timer *t) |
| { |
| int fd = (long)t->priv; |
| |
| close(fd); |
| } |
| |
| static int rtc_start_timer(struct qemu_alarm_timer *t) |
| { |
| int rtc_fd; |
| unsigned long current_rtc_freq = 0; |
| |
| TFR(rtc_fd = open("/dev/rtc", O_RDONLY)); |
| if (rtc_fd < 0) |
| return -1; |
| ioctl(rtc_fd, RTC_IRQP_READ, ¤t_rtc_freq); |
| if (current_rtc_freq != RTC_FREQ && |
| ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) { |
| fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n" |
| "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n" |
| "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n"); |
| goto fail; |
| } |
| if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) { |
| fail: |
| close(rtc_fd); |
| return -1; |
| } |
| |
| enable_sigio_timer(rtc_fd); |
| |
| t->priv = (void *)(long)rtc_fd; |
| |
| return 0; |
| } |
| |
| static void rtc_stop_timer(struct qemu_alarm_timer *t) |
| { |
| int rtc_fd = (long)t->priv; |
| |
| close(rtc_fd); |
| } |
| |
| static int dynticks_start_timer(struct qemu_alarm_timer *t) |
| { |
| struct sigevent ev; |
| timer_t host_timer; |
| struct sigaction act; |
| |
| sigfillset(&act.sa_mask); |
| act.sa_flags = 0; |
| act.sa_handler = host_alarm_handler; |
| |
| sigaction(SIGALRM, &act, NULL); |
| |
| /* |
| * Initialize ev struct to 0 to avoid valgrind complaining |
| * about uninitialized data in timer_create call |
| */ |
| memset(&ev, 0, sizeof(ev)); |
| ev.sigev_value.sival_int = 0; |
| ev.sigev_notify = SIGEV_SIGNAL; |
| ev.sigev_signo = SIGALRM; |
| |
| if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) { |
| perror("timer_create"); |
| |
| /* disable dynticks */ |
| fprintf(stderr, "Dynamic Ticks disabled\n"); |
| |
| return -1; |
| } |
| |
| t->priv = (void *)(long)host_timer; |
| |
| return 0; |
| } |
| |
| static void dynticks_stop_timer(struct qemu_alarm_timer *t) |
| { |
| timer_t host_timer = (timer_t)(long)t->priv; |
| |
| timer_delete(host_timer); |
| } |
| |
| static void dynticks_rearm_timer(struct qemu_alarm_timer *t) |
| { |
| timer_t host_timer = (timer_t)(long)t->priv; |
| struct itimerspec timeout; |
| int64_t nearest_delta_us = INT64_MAX; |
| int64_t current_us; |
| |
| if (!active_timers[QEMU_TIMER_REALTIME] && |
| !active_timers[QEMU_TIMER_VIRTUAL]) |
| return; |
| |
| nearest_delta_us = qemu_next_deadline_dyntick(); |
| |
| /* check whether a timer is already running */ |
| if (timer_gettime(host_timer, &timeout)) { |
| perror("gettime"); |
| fprintf(stderr, "Internal timer error: aborting\n"); |
| exit(1); |
| } |
| current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000; |
| if (current_us && current_us <= nearest_delta_us) |
| return; |
| |
| timeout.it_interval.tv_sec = 0; |
| timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */ |
| timeout.it_value.tv_sec = nearest_delta_us / 1000000; |
| timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000; |
| if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) { |
| perror("settime"); |
| fprintf(stderr, "Internal timer error: aborting\n"); |
| exit(1); |
| } |
| } |
| |
| #endif /* defined(__linux__) */ |
| |
| static int unix_start_timer(struct qemu_alarm_timer *t) |
| { |
| struct sigaction act; |
| struct itimerval itv; |
| int err; |
| |
| /* timer signal */ |
| sigfillset(&act.sa_mask); |
| act.sa_flags = 0; |
| act.sa_handler = host_alarm_handler; |
| |
| sigaction(SIGALRM, &act, NULL); |
| |
| itv.it_interval.tv_sec = 0; |
| /* for i386 kernel 2.6 to get 1 ms */ |
| itv.it_interval.tv_usec = 999; |
| itv.it_value.tv_sec = 0; |
| itv.it_value.tv_usec = 10 * 1000; |
| |
| err = setitimer(ITIMER_REAL, &itv, NULL); |
| if (err) |
| return -1; |
| |
| return 0; |
| } |
| |
| static void unix_stop_timer(struct qemu_alarm_timer *t) |
| { |
| struct itimerval itv; |
| |
| memset(&itv, 0, sizeof(itv)); |
| setitimer(ITIMER_REAL, &itv, NULL); |
| } |
| |
| #endif /* !defined(_WIN32) */ |
| |
| |
| #ifdef _WIN32 |
| |
| static int win32_start_timer(struct qemu_alarm_timer *t) |
| { |
| TIMECAPS tc; |
| struct qemu_alarm_win32 *data = t->priv; |
| UINT flags; |
| |
| memset(&tc, 0, sizeof(tc)); |
| timeGetDevCaps(&tc, sizeof(tc)); |
| |
| if (data->period < tc.wPeriodMin) |
| data->period = tc.wPeriodMin; |
| |
| timeBeginPeriod(data->period); |
| |
| flags = TIME_CALLBACK_FUNCTION; |
| if (alarm_has_dynticks(t)) |
| flags |= TIME_ONESHOT; |
| else |
| flags |= TIME_PERIODIC; |
| |
| data->timerId = timeSetEvent(1, // interval (ms) |
| data->period, // resolution |
| host_alarm_handler, // function |
| (DWORD)t, // parameter |
| flags); |
| |
| if (!data->timerId) { |
| perror("Failed to initialize win32 alarm timer"); |
| timeEndPeriod(data->period); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| static void win32_stop_timer(struct qemu_alarm_timer *t) |
| { |
| struct qemu_alarm_win32 *data = t->priv; |
| |
| timeKillEvent(data->timerId); |
| timeEndPeriod(data->period); |
| } |
| |
| static void win32_rearm_timer(struct qemu_alarm_timer *t) |
| { |
| struct qemu_alarm_win32 *data = t->priv; |
| uint64_t nearest_delta_us; |
| |
| if (!active_timers[QEMU_TIMER_REALTIME] && |
| !active_timers[QEMU_TIMER_VIRTUAL]) |
| return; |
| |
| nearest_delta_us = qemu_next_deadline_dyntick(); |
| nearest_delta_us /= 1000; |
| |
| timeKillEvent(data->timerId); |
| |
| data->timerId = timeSetEvent(1, |
| data->period, |
| host_alarm_handler, |
| (DWORD)t, |
| TIME_ONESHOT | TIME_PERIODIC); |
| |
| if (!data->timerId) { |
| perror("Failed to re-arm win32 alarm timer"); |
| |
| timeEndPeriod(data->period); |
| exit(1); |
| } |
| } |
| |
| #endif /* _WIN32 */ |
| |
| static int init_timer_alarm(void) |
| { |
| struct qemu_alarm_timer *t = NULL; |
| int i, err = -1; |
| |
| for (i = 0; alarm_timers[i].name; i++) { |
| t = &alarm_timers[i]; |
| |
| err = t->start(t); |
| if (!err) |
| break; |
| } |
| |
| if (err) { |
| err = -ENOENT; |
| goto fail; |
| } |
| |
| alarm_timer = t; |
| |
| return 0; |
| |
| fail: |
| return err; |
| } |
| |
| static void quit_timers(void) |
| { |
| alarm_timer->stop(alarm_timer); |
| alarm_timer = NULL; |
| } |
| |
| /***********************************************************/ |
| /* host time/date access */ |
| void qemu_get_timedate(struct tm *tm, int offset) |
| { |
| time_t ti; |
| struct tm *ret; |
| |
| time(&ti); |
| ti += offset; |
| if (rtc_date_offset == -1) { |
| if (rtc_utc) |
| ret = gmtime(&ti); |
| else |
| ret = localtime(&ti); |
| } else { |
| ti -= rtc_date_offset; |
| ret = gmtime(&ti); |
| } |
| |
| memcpy(tm, ret, sizeof(struct tm)); |
| } |
| |
| int qemu_timedate_diff(struct tm *tm) |
| { |
| time_t seconds; |
| |
| if (rtc_date_offset == -1) |
| if (rtc_utc) |
| seconds = mktimegm(tm); |
| else |
| seconds = mktime(tm); |
| else |
| seconds = mktimegm(tm) + rtc_date_offset; |
| |
| return seconds - time(NULL); |
| } |
| |
| #ifdef _WIN32 |
| static void socket_cleanup(void) |
| { |
| WSACleanup(); |
| } |
| |
| static int socket_init(void) |
| { |
| WSADATA Data; |
| int ret, err; |
| |
| ret = WSAStartup(MAKEWORD(2,2), &Data); |
| if (ret != 0) { |
| err = WSAGetLastError(); |
| fprintf(stderr, "WSAStartup: %d\n", err); |
| return -1; |
| } |
| atexit(socket_cleanup); |
| return 0; |
| } |
| #endif |
| |
| int get_param_value(char *buf, int buf_size, |
| const char *tag, const char *str) |
| { |
| const char *p; |
| char option[128]; |
| |
| p = str; |
| for(;;) { |
| p = get_opt_name(option, sizeof(option), p, '='); |
| if (*p != '=') |
| break; |
| p++; |
| if (!strcmp(tag, option)) { |
| (void)get_opt_value(buf, buf_size, p); |
| return strlen(buf); |
| } else { |
| p = get_opt_value(NULL, 0, p); |
| } |
| if (*p != ',') |
| break; |
| p++; |
| } |
| return 0; |
| } |
| |
| int check_params(char *buf, int buf_size, |
| const char * const *params, const char *str) |
| { |
| const char *p; |
| int i; |
| |
| p = str; |
| while (*p != '\0') { |
| p = get_opt_name(buf, buf_size, p, '='); |
| if (*p != '=') { |
| return -1; |
| } |
| p++; |
| for (i = 0; params[i] != NULL; i++) { |
| if (!strcmp(params[i], buf)) { |
| break; |
| } |
| } |
| if (params[i] == NULL) { |
| return -1; |
| } |
| p = get_opt_value(NULL, 0, p); |
| if (*p != ',') { |
| break; |
| } |
| p++; |
| } |
| return 0; |
| } |
| |
| /***********************************************************/ |
| /* Bluetooth support */ |
| static int nb_hcis; |
| static int cur_hci; |
| static struct HCIInfo *hci_table[MAX_NICS]; |
| |
| static struct bt_vlan_s { |
| struct bt_scatternet_s net; |
| int id; |
| struct bt_vlan_s *next; |
| } *first_bt_vlan; |
| |
| /* find or alloc a new bluetooth "VLAN" */ |
| static struct bt_scatternet_s *qemu_find_bt_vlan(int id) |
| { |
| struct bt_vlan_s **pvlan, *vlan; |
| for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) { |
| if (vlan->id == id) |
| return &vlan->net; |
| } |
| vlan = qemu_mallocz(sizeof(struct bt_vlan_s)); |
| vlan->id = id; |
| pvlan = &first_bt_vlan; |
| while (*pvlan != NULL) |
| pvlan = &(*pvlan)->next; |
| *pvlan = vlan; |
| return &vlan->net; |
| } |
| |
| static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len) |
| { |
| } |
| |
| static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr) |
| { |
| return -ENOTSUP; |
| } |
| |
| static struct HCIInfo null_hci = { |
| .cmd_send = null_hci_send, |
| .sco_send = null_hci_send, |
| .acl_send = null_hci_send, |
| .bdaddr_set = null_hci_addr_set, |
| }; |
| |
| struct HCIInfo *qemu_next_hci(void) |
| { |
| if (cur_hci == nb_hcis) |
| return &null_hci; |
| |
| return hci_table[cur_hci++]; |
| } |
| |
| static struct HCIInfo *hci_init(const char *str) |
| { |
| char *endp; |
| struct bt_scatternet_s *vlan = 0; |
| |
| if (!strcmp(str, "null")) |
| /* null */ |
| return &null_hci; |
| else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':')) |
| /* host[:hciN] */ |
| return bt_host_hci(str[4] ? str + 5 : "hci0"); |
| else if (!strncmp(str, "hci", 3)) { |
| /* hci[,vlan=n] */ |
| if (str[3]) { |
| if (!strncmp(str + 3, ",vlan=", 6)) { |
| vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0)); |
| if (*endp) |
| vlan = 0; |
| } |
| } else |
| vlan = qemu_find_bt_vlan(0); |
| if (vlan) |
| return bt_new_hci(vlan); |
| } |
| |
| fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str); |
| |
| return 0; |
| } |
| |
| static int bt_hci_parse(const char *str) |
| { |
| struct HCIInfo *hci; |
| bdaddr_t bdaddr; |
| |
| if (nb_hcis >= MAX_NICS) { |
| fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS); |
| return -1; |
| } |
| |
| hci = hci_init(str); |
| if (!hci) |
| return -1; |
| |
| bdaddr.b[0] = 0x52; |
| bdaddr.b[1] = 0x54; |
| bdaddr.b[2] = 0x00; |
| bdaddr.b[3] = 0x12; |
| bdaddr.b[4] = 0x34; |
| bdaddr.b[5] = 0x56 + nb_hcis; |
| hci->bdaddr_set(hci, bdaddr.b); |
| |
| hci_table[nb_hcis++] = hci; |
| |
| return 0; |
| } |
| |
| static void bt_vhci_add(int vlan_id) |
| { |
| struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id); |
| |
| if (!vlan->slave) |
| fprintf(stderr, "qemu: warning: adding a VHCI to " |
| "an empty scatternet %i\n", vlan_id); |
| |
| bt_vhci_init(bt_new_hci(vlan)); |
| } |
| |
| static struct bt_device_s *bt_device_add(const char *opt) |
| { |
| struct bt_scatternet_s *vlan; |
| int vlan_id = 0; |
| char *endp = strstr(opt, ",vlan="); |
| int len = (endp ? endp - opt : strlen(opt)) + 1; |
| char devname[10]; |
| |
| pstrcpy(devname, MIN(sizeof(devname), len), opt); |
| |
| if (endp) { |
| vlan_id = strtol(endp + 6, &endp, 0); |
| if (*endp) { |
| fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n"); |
| return 0; |
| } |
| } |
| |
| vlan = qemu_find_bt_vlan(vlan_id); |
| |
| if (!vlan->slave) |
| fprintf(stderr, "qemu: warning: adding a slave device to " |
| "an empty scatternet %i\n", vlan_id); |
| |
| if (!strcmp(devname, "keyboard")) |
| return bt_keyboard_init(vlan); |
| |
| fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname); |
| return 0; |
| } |
| |
| static int bt_parse(const char *opt) |
| { |
| const char *endp, *p; |
| int vlan; |
| |
| if (strstart(opt, "hci", &endp)) { |
| if (!*endp || *endp == ',') { |
| if (*endp) |
| if (!strstart(endp, ",vlan=", 0)) |
| opt = endp + 1; |
| |
| return bt_hci_parse(opt); |
| } |
| } else if (strstart(opt, "vhci", &endp)) { |
| if (!*endp || *endp == ',') { |
| if (*endp) { |
| if (strstart(endp, ",vlan=", &p)) { |
| vlan = strtol(p, (char **) &endp, 0); |
| if (*endp) { |
| fprintf(stderr, "qemu: bad scatternet '%s'\n", p); |
| return 1; |
| } |
| } else { |
| fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1); |
| return 1; |
| } |
| } else |
| vlan = 0; |
| |
| bt_vhci_add(vlan); |
| return 0; |
| } |
| } else if (strstart(opt, "device:", &endp)) |
| return !bt_device_add(endp); |
| |
| fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt); |
| return 1; |
| } |
| |
| /***********************************************************/ |
| /* QEMU Block devices */ |
| |
| #define HD_ALIAS "index=%d,media=disk" |
| #define CDROM_ALIAS "index=2,media=cdrom" |
| #define FD_ALIAS "index=%d,if=floppy" |
| #define PFLASH_ALIAS "if=pflash" |
| #define MTD_ALIAS "if=mtd" |
| #define SD_ALIAS "index=0,if=sd" |
| |
| static int drive_opt_get_free_idx(void) |
| { |
| int index; |
| |
| for (index = 0; index < MAX_DRIVES; index++) |
| if (!drives_opt[index].used) { |
| drives_opt[index].used = 1; |
| return index; |
| } |
| |
| return -1; |
| } |
| |
| static int drive_get_free_idx(void) |
| { |
| int index; |
| |
| for (index = 0; index < MAX_DRIVES; index++) |
| if (!drives_table[index].used) { |
| drives_table[index].used = 1; |
| return index; |
| } |
| |
| return -1; |
| } |
| |
| int drive_add(const char *file, const char *fmt, ...) |
| { |
| va_list ap; |
| int index = drive_opt_get_free_idx(); |
| |
| if (nb_drives_opt >= MAX_DRIVES || index == -1) { |
| fprintf(stderr, "qemu: too many drives\n"); |
| return -1; |
| } |
| |
| drives_opt[index].file = file; |
| va_start(ap, fmt); |
| vsnprintf(drives_opt[index].opt, |
| sizeof(drives_opt[0].opt), fmt, ap); |
| va_end(ap); |
| |
| nb_drives_opt++; |
| return index; |
| } |
| |
| void drive_remove(int index) |
| { |
| drives_opt[index].used = 0; |
| nb_drives_opt--; |
| } |
| |
| int drive_get_index(BlockInterfaceType type, int bus, int unit) |
| { |
| int index; |
| |
| /* seek interface, bus and unit */ |
| |
| for (index = 0; index < MAX_DRIVES; index++) |
| if (drives_table[index].type == type && |
| drives_table[index].bus == bus && |
| drives_table[index].unit == unit && |
| drives_table[index].used) |
| return index; |
| |
| return -1; |
| } |
| |
| int drive_get_max_bus(BlockInterfaceType type) |
| { |
| int max_bus; |
| int index; |
| |
| max_bus = -1; |
| for (index = 0; index < nb_drives; index++) { |
| if(drives_table[index].type == type && |
| drives_table[index].bus > max_bus) |
| max_bus = drives_table[index].bus; |
| } |
| return max_bus; |
| } |
| |
| const char *drive_get_serial(BlockDriverState *bdrv) |
| { |
| int index; |
| |
| for (index = 0; index < nb_drives; index++) |
| if (drives_table[index].bdrv == bdrv) |
| return drives_table[index].serial; |
| |
| return "\0"; |
| } |
| |
| BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv) |
| { |
| int index; |
| |
| for (index = 0; index < nb_drives; index++) |
| if (drives_table[index].bdrv == bdrv) |
| return drives_table[index].onerror; |
| |
| return BLOCK_ERR_STOP_ENOSPC; |
| } |
| |
| static void bdrv_format_print(void *opaque, const char *name) |
| { |
| fprintf(stderr, " %s", name); |
| } |
| |
| void drive_uninit(BlockDriverState *bdrv) |
| { |
| int i; |
| |
| for (i = 0; i < MAX_DRIVES; i++) |
| if (drives_table[i].bdrv == bdrv) { |
| drives_table[i].bdrv = NULL; |
| drives_table[i].used = 0; |
| drive_remove(drives_table[i].drive_opt_idx); |
| nb_drives--; |
| break; |
| } |
| } |
| |
| int drive_init(struct drive_opt *arg, int snapshot, void *opaque) |
| { |
| char buf[128]; |
| char file[1024]; |
| char devname[128]; |
| char serial[21]; |
| const char *mediastr = ""; |
| BlockInterfaceType type; |
| enum { MEDIA_DISK, MEDIA_CDROM } media; |
| int bus_id, unit_id; |
| int cyls, heads, secs, translation; |
| BlockDriverState *bdrv; |
| BlockDriver *drv = NULL; |
| QEMUMachine *machine = opaque; |
| int max_devs; |
| int index; |
| int cache; |
| int bdrv_flags, onerror; |
| int drives_table_idx; |
| char *str = arg->opt; |
| static const char * const params[] = { "bus", "unit", "if", "index", |
| "cyls", "heads", "secs", "trans", |
| "media", "snapshot", "file", |
| "cache", "format", "serial", "werror", |
| NULL }; |
| |
| if (check_params(buf, sizeof(buf), params, str) < 0) { |
| fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n", |
| buf, str); |
| return -1; |
| } |
| |
| file[0] = 0; |
| cyls = heads = secs = 0; |
| bus_id = 0; |
| unit_id = -1; |
| translation = BIOS_ATA_TRANSLATION_AUTO; |
| index = -1; |
| cache = 3; |
| |
| if (machine->use_scsi) { |
| type = IF_SCSI; |
| max_devs = MAX_SCSI_DEVS; |
| pstrcpy(devname, sizeof(devname), "scsi"); |
| } else { |
| type = IF_IDE; |
| max_devs = MAX_IDE_DEVS; |
| pstrcpy(devname, sizeof(devname), "ide"); |
| } |
| media = MEDIA_DISK; |
| |
| /* extract parameters */ |
| |
| if (get_param_value(buf, sizeof(buf), "bus", str)) { |
| bus_id = strtol(buf, NULL, 0); |
| if (bus_id < 0) { |
| fprintf(stderr, "qemu: '%s' invalid bus id\n", str); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "unit", str)) { |
| unit_id = strtol(buf, NULL, 0); |
| if (unit_id < 0) { |
| fprintf(stderr, "qemu: '%s' invalid unit id\n", str); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "if", str)) { |
| pstrcpy(devname, sizeof(devname), buf); |
| if (!strcmp(buf, "ide")) { |
| type = IF_IDE; |
| max_devs = MAX_IDE_DEVS; |
| } else if (!strcmp(buf, "scsi")) { |
| type = IF_SCSI; |
| max_devs = MAX_SCSI_DEVS; |
| } else if (!strcmp(buf, "floppy")) { |
| type = IF_FLOPPY; |
| max_devs = 0; |
| } else if (!strcmp(buf, "pflash")) { |
| type = IF_PFLASH; |
| max_devs = 0; |
| } else if (!strcmp(buf, "mtd")) { |
| type = IF_MTD; |
| max_devs = 0; |
| } else if (!strcmp(buf, "sd")) { |
| type = IF_SD; |
| max_devs = 0; |
| } else if (!strcmp(buf, "virtio")) { |
| type = IF_VIRTIO; |
| max_devs = 0; |
| } else if (!strcmp(buf, "xen")) { |
| type = IF_XEN; |
| max_devs = 0; |
| } else { |
| fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "index", str)) { |
| index = strtol(buf, NULL, 0); |
| if (index < 0) { |
| fprintf(stderr, "qemu: '%s' invalid index\n", str); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "cyls", str)) { |
| cyls = strtol(buf, NULL, 0); |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "heads", str)) { |
| heads = strtol(buf, NULL, 0); |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "secs", str)) { |
| secs = strtol(buf, NULL, 0); |
| } |
| |
| if (cyls || heads || secs) { |
| if (cyls < 1 || cyls > 16383) { |
| fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str); |
| return -1; |
| } |
| if (heads < 1 || heads > 16) { |
| fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str); |
| return -1; |
| } |
| if (secs < 1 || secs > 63) { |
| fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "trans", str)) { |
| if (!cyls) { |
| fprintf(stderr, |
| "qemu: '%s' trans must be used with cyls,heads and secs\n", |
| str); |
| return -1; |
| } |
| if (!strcmp(buf, "none")) |
| translation = BIOS_ATA_TRANSLATION_NONE; |
| else if (!strcmp(buf, "lba")) |
| translation = BIOS_ATA_TRANSLATION_LBA; |
| else if (!strcmp(buf, "auto")) |
| translation = BIOS_ATA_TRANSLATION_AUTO; |
| else { |
| fprintf(stderr, "qemu: '%s' invalid translation type\n", str); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "media", str)) { |
| if (!strcmp(buf, "disk")) { |
| media = MEDIA_DISK; |
| } else if (!strcmp(buf, "cdrom")) { |
| if (cyls || secs || heads) { |
| fprintf(stderr, |
| "qemu: '%s' invalid physical CHS format\n", str); |
| return -1; |
| } |
| media = MEDIA_CDROM; |
| } else { |
| fprintf(stderr, "qemu: '%s' invalid media\n", str); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "snapshot", str)) { |
| if (!strcmp(buf, "on")) |
| snapshot = 1; |
| else if (!strcmp(buf, "off")) |
| snapshot = 0; |
| else { |
| fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "cache", str)) { |
| if (!strcmp(buf, "off") || !strcmp(buf, "none")) |
| cache = 0; |
| else if (!strcmp(buf, "writethrough")) |
| cache = 1; |
| else if (!strcmp(buf, "writeback")) |
| cache = 2; |
| else { |
| fprintf(stderr, "qemu: invalid cache option\n"); |
| return -1; |
| } |
| } |
| |
| if (get_param_value(buf, sizeof(buf), "format", str)) { |
| if (strcmp(buf, "?") == 0) { |
| fprintf(stderr, "qemu: Supported formats:"); |
| bdrv_iterate_format(bdrv_format_print, NULL); |
| fprintf(stderr, "\n"); |
| return -1; |
| } |
| drv = bdrv_find_format(buf); |
| if (!drv) { |
| fprintf(stderr, "qemu: '%s' invalid format\n", buf); |
| return -1; |
| } |
| } |
| |
| if (arg->file == NULL) |
| get_param_value(file, sizeof(file), "file", str); |
| else |
| pstrcpy(file, sizeof(file), arg->file); |
| |
| if (!get_param_value(serial, sizeof(serial), "serial", str)) |
| memset(serial, 0, sizeof(serial)); |
| |
| onerror = BLOCK_ERR_STOP_ENOSPC; |
| if (get_param_value(buf, sizeof(serial), "werror", str)) { |
| if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) { |
| fprintf(stderr, "werror is no supported by this format\n"); |
| return -1; |
| } |
| if (!strcmp(buf, "ignore")) |
| onerror = BLOCK_ERR_IGNORE; |
| else if (!strcmp(buf, "enospc")) |
| onerror = BLOCK_ERR_STOP_ENOSPC; |
| else if (!strcmp(buf, "stop")) |
| onerror = BLOCK_ERR_STOP_ANY; |
| else if (!strcmp(buf, "report")) |
| onerror = BLOCK_ERR_REPORT; |
| else { |
| fprintf(stderr, "qemu: '%s' invalid write error action\n", buf); |
| return -1; |
| } |
| } |
| |
| /* compute bus and unit according index */ |
| |
| if (index != -1) { |
| if (bus_id != 0 || unit_id != -1) { |
| fprintf(stderr, |
| "qemu: '%s' index cannot be used with bus and unit\n", str); |
| return -1; |
| } |
| if (max_devs == 0) |
| { |
| unit_id = index; |
| bus_id = 0; |
| } else { |
| unit_id = index % max_devs; |
| bus_id = index / max_devs; |
| } |
| } |
| |
| /* if user doesn't specify a unit_id, |
| * try to find the first free |
| */ |
| |
| if (unit_id == -1) { |
| unit_id = 0; |
| while (drive_get_index(type, bus_id, unit_id) != -1) { |
| unit_id++; |
| if (max_devs && unit_id >= max_devs) { |
| unit_id -= max_devs; |
| bus_id++; |
| } |
| } |
| } |
| |
| /* check unit id */ |
| |
| if (max_devs && unit_id >= max_devs) { |
| fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n", |
| str, unit_id, max_devs - 1); |
| return -1; |
| } |
| |
| /* |
| * ignore multiple definitions |
| */ |
| |
| if (drive_get_index(type, bus_id, unit_id) != -1) |
| return -2; |
| |
| /* init */ |
| |
| if (type == IF_IDE || type == IF_SCSI) |
| mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd"; |
| if (max_devs) |
| snprintf(buf, sizeof(buf), "%s%i%s%i", |
| devname, bus_id, mediastr, unit_id); |
| else |
| snprintf(buf, sizeof(buf), "%s%s%i", |
| devname, mediastr, unit_id); |
| bdrv = bdrv_new(buf); |
| drives_table_idx = drive_get_free_idx(); |
| drives_table[drives_table_idx].bdrv = bdrv; |
| drives_table[drives_table_idx].type = type; |
| drives_table[drives_table_idx].bus = bus_id; |
| drives_table[drives_table_idx].unit = unit_id; |
| drives_table[drives_table_idx].onerror = onerror; |
| drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt; |
| strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial)); |
| nb_drives++; |
| |
| switch(type) { |
| case IF_IDE: |
| case IF_SCSI: |
| case IF_XEN: |
| switch(media) { |
| case MEDIA_DISK: |
| if (cyls != 0) { |
| bdrv_set_geometry_hint(bdrv, cyls, heads, secs); |
| bdrv_set_translation_hint(bdrv, translation); |
| } |
| break; |
| case MEDIA_CDROM: |
| bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM); |
| break; |
| } |
| break; |
| case IF_SD: |
| /* FIXME: This isn't really a floppy, but it's a reasonable |
| approximation. */ |
| case IF_FLOPPY: |
| bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY); |
| break; |
| case IF_PFLASH: |
| case IF_MTD: |
| case IF_VIRTIO: |
| break; |
| case IF_COUNT: |
| abort(); |
| } |
| if (!file[0]) |
| return -2; |
| bdrv_flags = 0; |
| if (snapshot) { |
| bdrv_flags |= BDRV_O_SNAPSHOT; |
| cache = 2; /* always use write-back with snapshot */ |
| } |
| if (cache == 0) /* no caching */ |
| bdrv_flags |= BDRV_O_NOCACHE; |
| else if (cache == 2) /* write-back */ |
| bdrv_flags |= BDRV_O_CACHE_WB; |
| else if (cache == 3) /* not specified */ |
| bdrv_flags |= BDRV_O_CACHE_DEF; |
| if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) { |
| fprintf(stderr, "qemu: could not open disk image %s\n", |
| file); |
| return -1; |
| } |
| if (bdrv_key_required(bdrv)) |
| autostart = 0; |
| return drives_table_idx; |
| } |
| |
| static void numa_add(const char *optarg) |
| { |
| char option[128]; |
| char *endptr; |
| unsigned long long value, endvalue; |
| int nodenr; |
| |
| optarg = get_opt_name(option, 128, optarg, ',') + 1; |
| if (!strcmp(option, "node")) { |
| if (get_param_value(option, 128, "nodeid", optarg) == 0) { |
| nodenr = nb_numa_nodes; |
| } else { |
| nodenr = strtoull(option, NULL, 10); |
| } |
| |
| if (get_param_value(option, 128, "mem", optarg) == 0) { |
| node_mem[nodenr] = 0; |
| } else { |
| value = strtoull(option, &endptr, 0); |
| switch (*endptr) { |
| case 0: case 'M': case 'm': |
| value <<= 20; |
| break; |
| case 'G': case 'g': |
| value <<= 30; |
| break; |
| } |
| node_mem[nodenr] = value; |
| } |
| if (get_param_value(option, 128, "cpus", optarg) == 0) { |
| node_cpumask[nodenr] = 0; |
| } else { |
| value = strtoull(option, &endptr, 10); |
| if (value >= 64) { |
| value = 63; |
| fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n"); |
| } else { |
| if (*endptr == '-') { |
| endvalue = strtoull(endptr+1, &endptr, 10); |
| if (endvalue >= 63) { |
| endvalue = 62; |
| fprintf(stderr, |
| "only 63 CPUs in NUMA mode supported.\n"); |
| } |
| value = (1 << (endvalue + 1)) - (1 << value); |
| } else { |
| value = 1 << value; |
| } |
| } |
| node_cpumask[nodenr] = value; |
| } |
| nb_numa_nodes++; |
| } |
| return; |
| } |
| |
| /***********************************************************/ |
| /* USB devices */ |
| |
| static USBPort *used_usb_ports; |
| static USBPort *free_usb_ports; |
| |
| /* ??? Maybe change this to register a hub to keep track of the topology. */ |
| void qemu_register_usb_port(USBPort *port, void *opaque, int index, |
| usb_attachfn attach) |
| { |
| port->opaque = opaque; |
| port->index = index; |
| port->attach = attach; |
| port->next = free_usb_ports; |
| free_usb_ports = port; |
| } |
| |
| int usb_device_add_dev(USBDevice *dev) |
| { |
| USBPort *port; |
| |
| /* Find a USB port to add the device to. */ |
| port = free_usb_ports; |
| if (!port->next) { |
| USBDevice *hub; |
| |
| /* Create a new hub and chain it on. */ |
| free_usb_ports = NULL; |
| port->next = used_usb_ports; |
| used_usb_ports = port; |
| |
| hub = usb_hub_init(VM_USB_HUB_SIZE); |
| usb_attach(port, hub); |
| port = free_usb_ports; |
| } |
| |
| free_usb_ports = port->next; |
| port->next = used_usb_ports; |
| used_usb_ports = port; |
| usb_attach(port, dev); |
| return 0; |
| } |
| |
| static void usb_msd_password_cb(void *opaque, int err) |
| { |
| USBDevice *dev = opaque; |
| |
| if (!err) |
| usb_device_add_dev(dev); |
| else |
| dev->handle_destroy(dev); |
| } |
| |
| static int usb_device_add(const char *devname, int is_hotplug) |
| { |
| const char *p; |
| USBDevice *dev; |
| |
| if (!free_usb_ports) |
| return -1; |
| |
| if (strstart(devname, "host:", &p)) { |
| dev = usb_host_device_open(p); |
| } else if (!strcmp(devname, "mouse")) { |
| dev = usb_mouse_init(); |
| } else if (!strcmp(devname, "tablet")) { |
| dev = usb_tablet_init(); |
| } else if (!strcmp(devname, "keyboard")) { |
| dev = usb_keyboard_init(); |
| } else if (strstart(devname, "disk:", &p)) { |
| BlockDriverState *bs; |
| |
| dev = usb_msd_init(p); |
| if (!dev) |
| return -1; |
| bs = usb_msd_get_bdrv(dev); |
| if (bdrv_key_required(bs)) { |
| autostart = 0; |
| if (is_hotplug) { |
| monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb, |
| dev); |
| return 0; |
| } |
| } |
| } else if (!strcmp(devname, "wacom-tablet")) { |
| dev = usb_wacom_init(); |
| } else if (strstart(devname, "serial:", &p)) { |
| dev = usb_serial_init(p); |
| #ifdef CONFIG_BRLAPI |
| } else if (!strcmp(devname, "braille")) { |
| dev = usb_baum_init(); |
| #endif |
| } else if (strstart(devname, "net:", &p)) { |
| int nic = nb_nics; |
| |
| if (net_client_init(NULL, "nic", p) < 0) |
| return -1; |
| nd_table[nic].model = "usb"; |
| dev = usb_net_init(&nd_table[nic]); |
| } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) { |
| dev = usb_bt_init(devname[2] ? hci_init(p) : |
| bt_new_hci(qemu_find_bt_vlan(0))); |
| } else { |
| return -1; |
| } |
| if (!dev) |
| return -1; |
| |
| return usb_device_add_dev(dev); |
| } |
| |
| int usb_device_del_addr(int bus_num, int addr) |
| { |
| USBPort *port; |
| USBPort **lastp; |
| USBDevice *dev; |
| |
| if (!used_usb_ports) |
| return -1; |
| |
| if (bus_num != 0) |
| return -1; |
| |
| lastp = &used_usb_ports; |
| port = used_usb_ports; |
| while (port && port->dev->addr != addr) { |
| lastp = &port->next; |
| port = port->next; |
| } |
| |
| if (!port) |
| return -1; |
| |
| dev = port->dev; |
| *lastp = port->next; |
| usb_attach(port, NULL); |
| dev->handle_destroy(dev); |
| port->next = free_usb_ports; |
| free_usb_ports = port; |
| return 0; |
| } |
| |
| static int usb_device_del(const char *devname) |
| { |
| int bus_num, addr; |
| const char *p; |
| |
| if (strstart(devname, "host:", &p)) |
| return usb_host_device_close(p); |
| |
| if (!used_usb_ports) |
| return -1; |
| |
| p = strchr(devname, '.'); |
| if (!p) |
| return -1; |
| bus_num = strtoul(devname, NULL, 0); |
| addr = strtoul(p + 1, NULL, 0); |
| |
| return usb_device_del_addr(bus_num, addr); |
| } |
| |
| void do_usb_add(Monitor *mon, const char *devname) |
| { |
| usb_device_add(devname, 1); |
| } |
| |
| void do_usb_del(Monitor *mon, const char *devname) |
| { |
| usb_device_del(devname); |
| } |
| |
| void usb_info(Monitor *mon) |
| { |
| USBDevice *dev; |
| USBPort *port; |
| const char *speed_str; |
| |
| if (!usb_enabled) { |
| monitor_printf(mon, "USB support not enabled\n"); |
| return; |
| } |
| |
| for (port = used_usb_ports; port; port = port->next) { |
| dev = port->dev; |
| if (!dev) |
| continue; |
| switch(dev->speed) { |
| case USB_SPEED_LOW: |
| speed_str = "1.5"; |
| break; |
| case USB_SPEED_FULL: |
| speed_str = "12"; |
| break; |
| case USB_SPEED_HIGH: |
| speed_str = "480"; |
| break; |
| default: |
| speed_str = "?"; |
| break; |
| } |
| monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n", |
| 0, dev->addr, speed_str, dev->devname); |
| } |
| } |
| |
| /***********************************************************/ |
| /* PCMCIA/Cardbus */ |
| |
| static struct pcmcia_socket_entry_s { |
| PCMCIASocket *socket; |
| struct pcmcia_socket_entry_s *next; |
| } *pcmcia_sockets = 0; |
| |
| void pcmcia_socket_register(PCMCIASocket *socket) |
| { |
| struct pcmcia_socket_entry_s *entry; |
| |
| entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s)); |
| entry->socket = socket; |
| entry->next = pcmcia_sockets; |
| pcmcia_sockets = entry; |
| } |
| |
| void pcmcia_socket_unregister(PCMCIASocket *socket) |
| { |
| struct pcmcia_socket_entry_s *entry, **ptr; |
| |
| ptr = &pcmcia_sockets; |
| for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr) |
| if (entry->socket == socket) { |
| *ptr = entry->next; |
| qemu_free(entry); |
| } |
| } |
| |
| void pcmcia_info(Monitor *mon) |
| { |
| struct pcmcia_socket_entry_s *iter; |
| |
| if (!pcmcia_sockets) |
| monitor_printf(mon, "No PCMCIA sockets\n"); |
| |
| for (iter = pcmcia_sockets; iter; iter = iter->next) |
| monitor_printf(mon, "%s: %s\n", iter->socket->slot_string, |
| iter->socket->attached ? iter->socket->card_string : |
| "Empty"); |
| } |
| |
| /***********************************************************/ |
| /* register display */ |
| |
| struct DisplayAllocator default_allocator = { |
| defaultallocator_create_displaysurface, |
| defaultallocator_resize_displaysurface, |
| defaultallocator_free_displaysurface |
| }; |
| |
| void register_displaystate(DisplayState *ds) |
| { |
| DisplayState **s; |
| s = &display_state; |
| while (*s != NULL) |
| s = &(*s)->next; |
| ds->next = NULL; |
| *s = ds; |
| } |
| |
| DisplayState *get_displaystate(void) |
| { |
| return display_state; |
| } |
| |
| DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da) |
| { |
| if(ds->allocator == &default_allocator) ds->allocator = da; |
| return ds->allocator; |
| } |
| |
| /* dumb display */ |
| |
| static void dumb_display_init(void) |
| { |
| DisplayState *ds = qemu_mallocz(sizeof(DisplayState)); |
| ds->allocator = &default_allocator; |
| ds->surface = qemu_create_displaysurface(ds, 640, 480); |
| register_displaystate(ds); |
| } |
| |
| /***********************************************************/ |
| /* I/O handling */ |
| |
| typedef struct IOHandlerRecord { |
| int fd; |
| IOCanRWHandler *fd_read_poll; |
| IOHandler *fd_read; |
| IOHandler *fd_write; |
| int deleted; |
| void *opaque; |
| /* temporary data */ |
| struct pollfd *ufd; |
| struct IOHandlerRecord *next; |
| } IOHandlerRecord; |
| |
| static IOHandlerRecord *first_io_handler; |
| |
| /* XXX: fd_read_poll should be suppressed, but an API change is |
| necessary in the character devices to suppress fd_can_read(). */ |
| int qemu_set_fd_handler2(int fd, |
| IOCanRWHandler *fd_read_poll, |
| IOHandler *fd_read, |
| IOHandler *fd_write, |
| void *opaque) |
| { |
| IOHandlerRecord **pioh, *ioh; |
| |
| if (!fd_read && !fd_write) { |
| pioh = &first_io_handler; |
| for(;;) { |
| ioh = *pioh; |
| if (ioh == NULL) |
| break; |
| if (ioh->fd == fd) { |
| ioh->deleted = 1; |
| break; |
| } |
| pioh = &ioh->next; |
| } |
| } else { |
| for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { |
| if (ioh->fd == fd) |
| goto found; |
| } |
| ioh = qemu_mallocz(sizeof(IOHandlerRecord)); |
| ioh->next = first_io_handler; |
| first_io_handler = ioh; |
| found: |
| ioh->fd = fd; |
| ioh->fd_read_poll = fd_read_poll; |
| ioh->fd_read = fd_read; |
| ioh->fd_write = fd_write; |
| ioh->opaque = opaque; |
| ioh->deleted = 0; |
| } |
| return 0; |
| } |
| |
| int qemu_set_fd_handler(int fd, |
| IOHandler *fd_read, |
| IOHandler *fd_write, |
| void *opaque) |
| { |
| return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque); |
| } |
| |
| #ifdef _WIN32 |
| /***********************************************************/ |
| /* Polling handling */ |
| |
| typedef struct PollingEntry { |
| PollingFunc *func; |
| void *opaque; |
| struct PollingEntry *next; |
| } PollingEntry; |
| |
| static PollingEntry *first_polling_entry; |
| |
| int qemu_add_polling_cb(PollingFunc *func, void *opaque) |
| { |
| PollingEntry **ppe, *pe; |
| pe = qemu_mallocz(sizeof(PollingEntry)); |
| pe->func = func; |
| pe->opaque = opaque; |
| for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next); |
| *ppe = pe; |
| return 0; |
| } |
| |
| void qemu_del_polling_cb(PollingFunc *func, void *opaque) |
| { |
| PollingEntry **ppe, *pe; |
| for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) { |
| pe = *ppe; |
| if (pe->func == func && pe->opaque == opaque) { |
| *ppe = pe->next; |
| qemu_free(pe); |
| break; |
| } |
| } |
| } |
| |
| /***********************************************************/ |
| /* Wait objects support */ |
| typedef struct WaitObjects { |
| int num; |
| HANDLE events[MAXIMUM_WAIT_OBJECTS + 1]; |
| WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1]; |
| void *opaque[MAXIMUM_WAIT_OBJECTS + 1]; |
| } WaitObjects; |
| |
| static WaitObjects wait_objects = {0}; |
| |
| int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) |
| { |
| WaitObjects *w = &wait_objects; |
| |
| if (w->num >= MAXIMUM_WAIT_OBJECTS) |
| return -1; |
| w->events[w->num] = handle; |
| w->func[w->num] = func; |
| w->opaque[w->num] = opaque; |
| w->num++; |
| return 0; |
| } |
| |
| void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque) |
| { |
| int i, found; |
| WaitObjects *w = &wait_objects; |
| |
| found = 0; |
| for (i = 0; i < w->num; i++) { |
| if (w->events[i] == handle) |
| found = 1; |
| if (found) { |
| w->events[i] = w->events[i + 1]; |
| w->func[i] = w->func[i + 1]; |
| w->opaque[i] = w->opaque[i + 1]; |
| } |
| } |
| if (found) |
| w->num--; |
| } |
| #endif |
| |
| /***********************************************************/ |
| /* ram save/restore */ |
| |
| static int ram_get_page(QEMUFile *f, uint8_t *buf, int len) |
| { |
| int v; |
| |
| v = qemu_get_byte(f); |
| switch(v) { |
| case 0: |
| if (qemu_get_buffer(f, buf, len) != len) |
| return -EIO; |
| break; |
| case 1: |
| v = qemu_get_byte(f); |
| memset(buf, v, len); |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (qemu_file_has_error(f)) |
| return -EIO; |
| |
| return 0; |
| } |
| |
| static int ram_load_v1(QEMUFile *f, void *opaque) |
| { |
| int ret; |
| ram_addr_t i; |
| |
| if (qemu_get_be32(f) != last_ram_offset) |
| return -EINVAL; |
| for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) { |
| ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE); |
| if (ret) |
| return ret; |
| } |
| return 0; |
| } |
| |
| #define BDRV_HASH_BLOCK_SIZE 1024 |
| #define IOBUF_SIZE 4096 |
| #define RAM_CBLOCK_MAGIC 0xfabe |
| |
| typedef struct RamDecompressState { |
| z_stream zstream; |
| QEMUFile *f; |
| uint8_t buf[IOBUF_SIZE]; |
| } RamDecompressState; |
| |
| static int ram_decompress_open(RamDecompressState *s, QEMUFile *f) |
| { |
| int ret; |
| memset(s, 0, sizeof(*s)); |
| s->f = f; |
| ret = inflateInit(&s->zstream); |
| if (ret != Z_OK) |
| return -1; |
| return 0; |
| } |
| |
| static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len) |
| { |
| int ret, clen; |
| |
| s->zstream.avail_out = len; |
| s->zstream.next_out = buf; |
| while (s->zstream.avail_out > 0) { |
| if (s->zstream.avail_in == 0) { |
| if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC) |
| return -1; |
| clen = qemu_get_be16(s->f); |
| if (clen > IOBUF_SIZE) |
| return -1; |
| qemu_get_buffer(s->f, s->buf, clen); |
| s->zstream.avail_in = clen; |
| s->zstream.next_in = s->buf; |
| } |
| ret = inflate(&s->zstream, Z_PARTIAL_FLUSH); |
| if (ret != Z_OK && ret != Z_STREAM_END) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static void ram_decompress_close(RamDecompressState *s) |
| { |
| inflateEnd(&s->zstream); |
| } |
| |
| #define RAM_SAVE_FLAG_FULL 0x01 |
| #define RAM_SAVE_FLAG_COMPRESS 0x02 |
| #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
| #define RAM_SAVE_FLAG_PAGE 0x08 |
| #define RAM_SAVE_FLAG_EOS 0x10 |
| |
| static int is_dup_page(uint8_t *page, uint8_t ch) |
| { |
| uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch; |
| uint32_t *array = (uint32_t *)page; |
| int i; |
| |
| for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) { |
| if (array[i] != val) |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| static int ram_save_block(QEMUFile *f) |
| { |
| static ram_addr_t current_addr = 0; |
| ram_addr_t saved_addr = current_addr; |
| ram_addr_t addr = 0; |
| int found = 0; |
| |
| while (addr < last_ram_offset) { |
| if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) { |
| uint8_t *p; |
| |
| cpu_physical_memory_reset_dirty(current_addr, |
| current_addr + TARGET_PAGE_SIZE, |
| MIGRATION_DIRTY_FLAG); |
| |
| p = qemu_get_ram_ptr(current_addr); |
| |
| if (is_dup_page(p, *p)) { |
| qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS); |
| qemu_put_byte(f, *p); |
| } else { |
| qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE); |
| qemu_put_buffer(f, p, TARGET_PAGE_SIZE); |
| } |
| |
| found = 1; |
| break; |
| } |
| addr += TARGET_PAGE_SIZE; |
| current_addr = (saved_addr + addr) % last_ram_offset; |
| } |
| |
| return found; |
| } |
| |
| static uint64_t bytes_transferred = 0; |
| |
| static ram_addr_t ram_save_remaining(void) |
| { |
| ram_addr_t addr; |
| ram_addr_t count = 0; |
| |
| for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) { |
| if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) |
| count++; |
| } |
| |
| return count; |
| } |
| |
| uint64_t ram_bytes_remaining(void) |
| { |
| return ram_save_remaining() * TARGET_PAGE_SIZE; |
| } |
| |
| uint64_t ram_bytes_transferred(void) |
| { |
| return bytes_transferred; |
| } |
| |
| uint64_t ram_bytes_total(void) |
| { |
| return last_ram_offset; |
| } |
| |
| static int ram_save_live(QEMUFile *f, int stage, void *opaque) |
| { |
| ram_addr_t addr; |
| uint64_t bytes_transferred_last; |
| double bwidth = 0; |
| uint64_t expected_time = 0; |
| |
| if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) { |
| qemu_file_set_error(f); |
| return 0; |
| } |
| |
| if (stage == 1) { |
| /* Make sure all dirty bits are set */ |
| for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) { |
| if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG)) |
| cpu_physical_memory_set_dirty(addr); |
| } |
| |
| /* Enable dirty memory tracking */ |
| cpu_physical_memory_set_dirty_tracking(1); |
| |
| qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE); |
| } |
| |
| bytes_transferred_last = bytes_transferred; |
| bwidth = get_clock(); |
| |
| while (!qemu_file_rate_limit(f)) { |
| int ret; |
| |
| ret = ram_save_block(f); |
| bytes_transferred += ret * TARGET_PAGE_SIZE; |
| if (ret == 0) /* no more blocks */ |
| break; |
| } |
| |
| bwidth = get_clock() - bwidth; |
| bwidth = (bytes_transferred - bytes_transferred_last) / bwidth; |
| |
| /* if we haven't transferred anything this round, force expected_time to a |
| * a very high value, but without crashing */ |
| if (bwidth == 0) |
| bwidth = 0.000001; |
| |
| /* try transferring iterative blocks of memory */ |
| |
| if (stage == 3) { |
| |
| /* flush all remaining blocks regardless of rate limiting */ |
| while (ram_save_block(f) != 0) { |
| bytes_transferred += TARGET_PAGE_SIZE; |
| } |
| cpu_physical_memory_set_dirty_tracking(0); |
| } |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| |
| expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth; |
| |
| return (stage == 2) && (expected_time <= migrate_max_downtime()); |
| } |
| |
| static int ram_load_dead(QEMUFile *f, void *opaque) |
| { |
| RamDecompressState s1, *s = &s1; |
| uint8_t buf[10]; |
| ram_addr_t i; |
| |
| if (ram_decompress_open(s, f) < 0) |
| return -EINVAL; |
| for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) { |
| if (ram_decompress_buf(s, buf, 1) < 0) { |
| fprintf(stderr, "Error while reading ram block header\n"); |
| goto error; |
| } |
| if (buf[0] == 0) { |
| if (ram_decompress_buf(s, qemu_get_ram_ptr(i), |
| BDRV_HASH_BLOCK_SIZE) < 0) { |
| fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i); |
| goto error; |
| } |
| } else { |
| error: |
| printf("Error block header\n"); |
| return -EINVAL; |
| } |
| } |
| ram_decompress_close(s); |
| |
| return 0; |
| } |
| |
| static int ram_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| ram_addr_t addr; |
| int flags; |
| |
| if (version_id == 1) |
| return ram_load_v1(f, opaque); |
| |
| if (version_id == 2) { |
| if (qemu_get_be32(f) != last_ram_offset) |
| return -EINVAL; |
| return ram_load_dead(f, opaque); |
| } |
| |
| if (version_id != 3) |
| return -EINVAL; |
| |
| do { |
| addr = qemu_get_be64(f); |
| |
| flags = addr & ~TARGET_PAGE_MASK; |
| addr &= TARGET_PAGE_MASK; |
| |
| if (flags & RAM_SAVE_FLAG_MEM_SIZE) { |
| if (addr != last_ram_offset) |
| return -EINVAL; |
| } |
| |
| if (flags & RAM_SAVE_FLAG_FULL) { |
| if (ram_load_dead(f, opaque) < 0) |
| return -EINVAL; |
| } |
| |
| if (flags & RAM_SAVE_FLAG_COMPRESS) { |
| uint8_t ch = qemu_get_byte(f); |
| memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE); |
| } else if (flags & RAM_SAVE_FLAG_PAGE) |
| qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE); |
| } while (!(flags & RAM_SAVE_FLAG_EOS)); |
| |
| return 0; |
| } |
| |
| void qemu_service_io(void) |
| { |
| qemu_notify_event(); |
| } |
| |
| /***********************************************************/ |
| /* bottom halves (can be seen as timers which expire ASAP) */ |
| |
| struct QEMUBH { |
| QEMUBHFunc *cb; |
| void *opaque; |
| int scheduled; |
| int idle; |
| int deleted; |
| QEMUBH *next; |
| }; |
| |
| static QEMUBH *first_bh = NULL; |
| |
| QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque) |
| { |
| QEMUBH *bh; |
| bh = qemu_mallocz(sizeof(QEMUBH)); |
| bh->cb = cb; |
| bh->opaque = opaque; |
| bh->next = first_bh; |
| first_bh = bh; |
| return bh; |
| } |
| |
| int qemu_bh_poll(void) |
| { |
| QEMUBH *bh, **bhp; |
| int ret; |
| |
| ret = 0; |
| for (bh = first_bh; bh; bh = bh->next) { |
| if (!bh->deleted && bh->scheduled) { |
| bh->scheduled = 0; |
| if (!bh->idle) |
| ret = 1; |
| bh->idle = 0; |
| bh->cb(bh->opaque); |
| } |
| } |
| |
| /* remove deleted bhs */ |
| bhp = &first_bh; |
| while (*bhp) { |
| bh = *bhp; |
| if (bh->deleted) { |
| *bhp = bh->next; |
| qemu_free(bh); |
| } else |
| bhp = &bh->next; |
| } |
| |
| return ret; |
| } |
| |
| void qemu_bh_schedule_idle(QEMUBH *bh) |
| { |
| if (bh->scheduled) |
| return; |
| bh->scheduled = 1; |
| bh->idle = 1; |
| } |
| |
| void qemu_bh_schedule(QEMUBH *bh) |
| { |
| if (bh->scheduled) |
| return; |
| bh->scheduled = 1; |
| bh->idle = 0; |
| /* stop the currently executing CPU to execute the BH ASAP */ |
| qemu_notify_event(); |
| } |
| |
| void qemu_bh_cancel(QEMUBH *bh) |
| { |
| bh->scheduled = 0; |
| } |
| |
| void qemu_bh_delete(QEMUBH *bh) |
| { |
| bh->scheduled = 0; |
| bh->deleted = 1; |
| } |
| |
| static void qemu_bh_update_timeout(int *timeout) |
| { |
| QEMUBH *bh; |
| |
| for (bh = first_bh; bh; bh = bh->next) { |
| if (!bh->deleted && bh->scheduled) { |
| if (bh->idle) { |
| /* idle bottom halves will be polled at least |
| * every 10ms */ |
| *timeout = MIN(10, *timeout); |
| } else { |
| /* non-idle bottom halves will be executed |
| * immediately */ |
| *timeout = 0; |
| break; |
| } |
| } |
| } |
| } |
| |
| /***********************************************************/ |
| /* machine registration */ |
| |
| static QEMUMachine *first_machine = NULL; |
| QEMUMachine *current_machine = NULL; |
| |
| int qemu_register_machine(QEMUMachine *m) |
| { |
| QEMUMachine **pm; |
| pm = &first_machine; |
| while (*pm != NULL) |
| pm = &(*pm)->next; |
| m->next = NULL; |
| *pm = m; |
| return 0; |
| } |
| |
| static QEMUMachine *find_machine(const char *name) |
| { |
| QEMUMachine *m; |
| |
| for(m = first_machine; m != NULL; m = m->next) { |
| if (!strcmp(m->name, name)) |
| return m; |
| } |
| return NULL; |
| } |
| |
| static QEMUMachine *find_default_machine(void) |
| { |
| QEMUMachine *m; |
| |
| for(m = first_machine; m != NULL; m = m->next) { |
| if (m->is_default) { |
| return m; |
| } |
| } |
| return NULL; |
| } |
| |
| /***********************************************************/ |
| /* main execution loop */ |
| |
| static void gui_update(void *opaque) |
| { |
| uint64_t interval = GUI_REFRESH_INTERVAL; |
| DisplayState *ds = opaque; |
| DisplayChangeListener *dcl = ds->listeners; |
| |
| dpy_refresh(ds); |
| |
| while (dcl != NULL) { |
| if (dcl->gui_timer_interval && |
| dcl->gui_timer_interval < interval) |
| interval = dcl->gui_timer_interval; |
| dcl = dcl->next; |
| } |
| qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock)); |
| } |
| |
| static void nographic_update(void *opaque) |
| { |
| uint64_t interval = GUI_REFRESH_INTERVAL; |
| |
| qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock)); |
| } |
| |
| struct vm_change_state_entry { |
| VMChangeStateHandler *cb; |
| void *opaque; |
| LIST_ENTRY (vm_change_state_entry) entries; |
| }; |
| |
| static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head; |
| |
| VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb, |
| void *opaque) |
| { |
| VMChangeStateEntry *e; |
| |
| e = qemu_mallocz(sizeof (*e)); |
| |
| e->cb = cb; |
| e->opaque = opaque; |
| LIST_INSERT_HEAD(&vm_change_state_head, e, entries); |
| return e; |
| } |
| |
| void qemu_del_vm_change_state_handler(VMChangeStateEntry *e) |
| { |
| LIST_REMOVE (e, entries); |
| qemu_free (e); |
| } |
| |
| static void vm_state_notify(int running, int reason) |
| { |
| VMChangeStateEntry *e; |
| |
| for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) { |
| e->cb(e->opaque, running, reason); |
| } |
| } |
| |
| static void resume_all_vcpus(void); |
| static void pause_all_vcpus(void); |
| |
| void vm_start(void) |
| { |
| if (!vm_running) { |
| cpu_enable_ticks(); |
| vm_running = 1; |
| vm_state_notify(1, 0); |
| qemu_rearm_alarm_timer(alarm_timer); |
| resume_all_vcpus(); |
| } |
| } |
| |
| /* reset/shutdown handler */ |
| |
| typedef struct QEMUResetEntry { |
| QEMUResetHandler *func; |
| void *opaque; |
| int order; |
| struct QEMUResetEntry *next; |
| } QEMUResetEntry; |
| |
| static QEMUResetEntry *first_reset_entry; |
| static int reset_requested; |
| static int shutdown_requested; |
| static int powerdown_requested; |
| static int debug_requested; |
| static int vmstop_requested; |
| |
| int qemu_shutdown_requested(void) |
| { |
| int r = shutdown_requested; |
| shutdown_requested = 0; |
| return r; |
| } |
| |
| int qemu_reset_requested(void) |
| { |
| int r = reset_requested; |
| reset_requested = 0; |
| return r; |
| } |
| |
| int qemu_powerdown_requested(void) |
| { |
| int r = powerdown_requested; |
| powerdown_requested = 0; |
| return r; |
| } |
| |
| static int qemu_debug_requested(void) |
| { |
| int r = debug_requested; |
| debug_requested = 0; |
| return r; |
| } |
| |
| static int qemu_vmstop_requested(void) |
| { |
| int r = vmstop_requested; |
| vmstop_requested = 0; |
| return r; |
| } |
| |
| static void do_vm_stop(int reason) |
| { |
| if (vm_running) { |
| cpu_disable_ticks(); |
| vm_running = 0; |
| pause_all_vcpus(); |
| vm_state_notify(0, reason); |
| } |
| } |
| |
| void qemu_register_reset(QEMUResetHandler *func, int order, void *opaque) |
| { |
| QEMUResetEntry **pre, *re; |
| |
| pre = &first_reset_entry; |
| while (*pre != NULL && (*pre)->order >= order) { |
| pre = &(*pre)->next; |
| } |
| re = qemu_mallocz(sizeof(QEMUResetEntry)); |
| re->func = func; |
| re->opaque = opaque; |
| re->order = order; |
| re->next = NULL; |
| *pre = re; |
| } |
| |
| void qemu_system_reset(void) |
| { |
| QEMUResetEntry *re; |
| |
| /* reset all devices */ |
| for(re = first_reset_entry; re != NULL; re = re->next) { |
| re->func(re->opaque); |
| } |
| } |
| |
| void qemu_system_reset_request(void) |
| { |
| if (no_reboot) { |
| shutdown_requested = 1; |
| } else { |
| reset_requested = 1; |
| } |
| qemu_notify_event(); |
| } |
| |
| void qemu_system_shutdown_request(void) |
| { |
| shutdown_requested = 1; |
| qemu_notify_event(); |
| } |
| |
| void qemu_system_powerdown_request(void) |
| { |
| powerdown_requested = 1; |
| qemu_notify_event(); |
| } |
| |
| #ifdef CONFIG_IOTHREAD |
| static void qemu_system_vmstop_request(int reason) |
| { |
| vmstop_requested = reason; |
| qemu_notify_event(); |
| } |
| #endif |
| |
| #ifndef _WIN32 |
| static int io_thread_fd = -1; |
| |
| static void qemu_event_increment(void) |
| { |
| static const char byte = 0; |
| |
| if (io_thread_fd == -1) |
| return; |
| |
| write(io_thread_fd, &byte, sizeof(byte)); |
| } |
| |
| static void qemu_event_read(void *opaque) |
| { |
| int fd = (unsigned long)opaque; |
| ssize_t len; |
| |
| /* Drain the notify pipe */ |
| do { |
| char buffer[512]; |
| len = read(fd, buffer, sizeof(buffer)); |
| } while ((len == -1 && errno == EINTR) || len > 0); |
| } |
| |
| static int qemu_event_init(void) |
| { |
| int err; |
| int fds[2]; |
| |
| err = pipe(fds); |
| if (err == -1) |
| return -errno; |
| |
| err = fcntl_setfl(fds[0], O_NONBLOCK); |
| if (err < 0) |
| goto fail; |
| |
| err = fcntl_setfl(fds[1], O_NONBLOCK); |
| if (err < 0) |
| goto fail; |
| |
| qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL, |
| (void *)(unsigned long)fds[0]); |
| |
| io_thread_fd = fds[1]; |
| return 0; |
| |
| fail: |
| close(fds[0]); |
| close(fds[1]); |
| return err; |
| } |
| #else |
| HANDLE qemu_event_handle; |
| |
| static void dummy_event_handler(void *opaque) |
| { |
| } |
| |
| static int qemu_event_init(void) |
| { |
| qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL); |
| if (!qemu_event_handle) { |
| perror("Failed CreateEvent"); |
| return -1; |
| } |
| qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL); |
| return 0; |
| } |
| |
| static void qemu_event_increment(void) |
| { |
| SetEvent(qemu_event_handle); |
| } |
| #endif |
| |
| static int cpu_can_run(CPUState *env) |
| { |
| if (env->stop) |
| return 0; |
| if (env->stopped) |
| return 0; |
| return 1; |
| } |
| |
| #ifndef CONFIG_IOTHREAD |
| static int qemu_init_main_loop(void) |
| { |
| return qemu_event_init(); |
| } |
| |
| void qemu_init_vcpu(void *_env) |
| { |
| CPUState *env = _env; |
| |
| if (kvm_enabled()) |
| kvm_init_vcpu(env); |
| return; |
| } |
| |
| int qemu_cpu_self(void *env) |
| { |
| return 1; |
| } |
| |
| static void resume_all_vcpus(void) |
| { |
| } |
| |
| static void pause_all_vcpus(void) |
| { |
| } |
| |
| void qemu_cpu_kick(void *env) |
| { |
| return; |
| } |
| |
| void qemu_notify_event(void) |
| { |
| CPUState *env = cpu_single_env; |
| |
| if (env) { |
| cpu_exit(env); |
| #ifdef USE_KQEMU |
| if (env->kqemu_enabled) |
| kqemu_cpu_interrupt(env); |
| #endif |
| } |
| } |
| |
| #define qemu_mutex_lock_iothread() do { } while (0) |
| #define qemu_mutex_unlock_iothread() do { } while (0) |
| |
| void vm_stop(int reason) |
| { |
| do_vm_stop(reason); |
| } |
| |
| #else /* CONFIG_IOTHREAD */ |
| |
| #include "qemu-thread.h" |
| |
| QemuMutex qemu_global_mutex; |
| static QemuMutex qemu_fair_mutex; |
| |
| static QemuThread io_thread; |
| |
| static QemuThread *tcg_cpu_thread; |
| static QemuCond *tcg_halt_cond; |
| |
| static int qemu_system_ready; |
| /* cpu creation */ |
| static QemuCond qemu_cpu_cond; |
| /* system init */ |
| static QemuCond qemu_system_cond; |
| static QemuCond qemu_pause_cond; |
| |
| static void block_io_signals(void); |
| static void unblock_io_signals(void); |
| static int tcg_has_work(void); |
| |
| static int qemu_init_main_loop(void) |
| { |
| int ret; |
| |
| ret = qemu_event_init(); |
| if (ret) |
| return ret; |
| |
| qemu_cond_init(&qemu_pause_cond); |
| qemu_mutex_init(&qemu_fair_mutex); |
| qemu_mutex_init(&qemu_global_mutex); |
| qemu_mutex_lock(&qemu_global_mutex); |
| |
| unblock_io_signals(); |
| qemu_thread_self(&io_thread); |
| |
| return 0; |
| } |
| |
| static void qemu_wait_io_event(CPUState *env) |
| { |
| while (!tcg_has_work()) |
| qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000); |
| |
| qemu_mutex_unlock(&qemu_global_mutex); |
| |
| /* |
| * Users of qemu_global_mutex can be starved, having no chance |
| * to acquire it since this path will get to it first. |
| * So use another lock to provide fairness. |
| */ |
| qemu_mutex_lock(&qemu_fair_mutex); |
| qemu_mutex_unlock(&qemu_fair_mutex); |
| |
| qemu_mutex_lock(&qemu_global_mutex); |
| if (env->stop) { |
| env->stop = 0; |
| env->stopped = 1; |
| qemu_cond_signal(&qemu_pause_cond); |
| } |
| } |
| |
| static int qemu_cpu_exec(CPUState *env); |
| |
| static void *kvm_cpu_thread_fn(void *arg) |
| { |
| CPUState *env = arg; |
| |
| block_io_signals(); |
| qemu_thread_self(env->thread); |
| |
| /* signal CPU creation */ |
| qemu_mutex_lock(&qemu_global_mutex); |
| env->created = 1; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| /* and wait for machine initialization */ |
| while (!qemu_system_ready) |
| qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); |
| |
| while (1) { |
| if (cpu_can_run(env)) |
| qemu_cpu_exec(env); |
| qemu_wait_io_event(env); |
| } |
| |
| return NULL; |
| } |
| |
| static void tcg_cpu_exec(void); |
| |
| static void *tcg_cpu_thread_fn(void *arg) |
| { |
| CPUState *env = arg; |
| |
| block_io_signals(); |
| qemu_thread_self(env->thread); |
| |
| /* signal CPU creation */ |
| qemu_mutex_lock(&qemu_global_mutex); |
| for (env = first_cpu; env != NULL; env = env->next_cpu) |
| env->created = 1; |
| qemu_cond_signal(&qemu_cpu_cond); |
| |
| /* and wait for machine initialization */ |
| while (!qemu_system_ready) |
| qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100); |
| |
| while (1) { |
| tcg_cpu_exec(); |
| qemu_wait_io_event(cur_cpu); |
| } |
| |
| return NULL; |
| } |
| |
| void qemu_cpu_kick(void *_env) |
| { |
| CPUState *env = _env; |
| qemu_cond_broadcast(env->halt_cond); |
| if (kvm_enabled()) |
| qemu_thread_signal(env->thread, SIGUSR1); |
| } |
| |
| int qemu_cpu_self(void *env) |
| { |
| return (cpu_single_env != NULL); |
| } |
| |
| static void cpu_signal(int sig) |
| { |
| if (cpu_single_env) |
| cpu_exit(cpu_single_env); |
| } |
| |
| static void block_io_signals(void) |
| { |
| sigset_t set; |
| struct sigaction sigact; |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIGUSR2); |
| sigaddset(&set, SIGIO); |
| sigaddset(&set, SIGALRM); |
| pthread_sigmask(SIG_BLOCK, &set, NULL); |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIGUSR1); |
| pthread_sigmask(SIG_UNBLOCK, &set, NULL); |
| |
| memset(&sigact, 0, sizeof(sigact)); |
| sigact.sa_handler = cpu_signal; |
| sigaction(SIGUSR1, &sigact, NULL); |
| } |
| |
| static void unblock_io_signals(void) |
| { |
| sigset_t set; |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIGUSR2); |
| sigaddset(&set, SIGIO); |
| sigaddset(&set, SIGALRM); |
| pthread_sigmask(SIG_UNBLOCK, &set, NULL); |
| |
| sigemptyset(&set); |
| sigaddset(&set, SIGUSR1); |
| pthread_sigmask(SIG_BLOCK, &set, NULL); |
| } |
| |
| static void qemu_signal_lock(unsigned int msecs) |
| { |
| qemu_mutex_lock(&qemu_fair_mutex); |
| |
| while (qemu_mutex_trylock(&qemu_global_mutex)) { |
| qemu_thread_signal(tcg_cpu_thread, SIGUSR1); |
| if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs)) |
| break; |
| } |
| qemu_mutex_unlock(&qemu_fair_mutex); |
| } |
| |
| static void qemu_mutex_lock_iothread(void) |
| { |
| if (kvm_enabled()) { |
| qemu_mutex_lock(&qemu_fair_mutex); |
| qemu_mutex_lock(&qemu_global_mutex); |
| qemu_mutex_unlock(&qemu_fair_mutex); |
| } else |
| qemu_signal_lock(100); |
| } |
| |
| static void qemu_mutex_unlock_iothread(void) |
| { |
| qemu_mutex_unlock(&qemu_global_mutex); |
| } |
| |
| static int all_vcpus_paused(void) |
| { |
| CPUState *penv = first_cpu; |
| |
| while (penv) { |
| if (!penv->stopped) |
| return 0; |
| penv = (CPUState *)penv->next_cpu; |
| } |
| |
| return 1; |
| } |
| |
| static void pause_all_vcpus(void) |
| { |
| CPUState *penv = first_cpu; |
| |
| while (penv) { |
| penv->stop = 1; |
| qemu_thread_signal(penv->thread, SIGUSR1); |
| qemu_cpu_kick(penv); |
| penv = (CPUState *)penv->next_cpu; |
| } |
| |
| while (!all_vcpus_paused()) { |
| qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100); |
| penv = first_cpu; |
| while (penv) { |
| qemu_thread_signal(penv->thread, SIGUSR1); |
| penv = (CPUState *)penv->next_cpu; |
| } |
| } |
| } |
| |
| static void resume_all_vcpus(void) |
| { |
| CPUState *penv = first_cpu; |
| |
| while (penv) { |
| penv->stop = 0; |
| penv->stopped = 0; |
| qemu_thread_signal(penv->thread, SIGUSR1); |
| qemu_cpu_kick(penv); |
| penv = (CPUState *)penv->next_cpu; |
| } |
| } |
| |
| static void tcg_init_vcpu(void *_env) |
| { |
| CPUState *env = _env; |
| /* share a single thread for all cpus with TCG */ |
| if (!tcg_cpu_thread) { |
| env->thread = qemu_mallocz(sizeof(QemuThread)); |
| env->halt_cond = qemu_mallocz(sizeof(QemuCond)); |
| qemu_cond_init(env->halt_cond); |
| qemu_thread_create(env->thread, tcg_cpu_thread_fn, env); |
| while (env->created == 0) |
| qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); |
| tcg_cpu_thread = env->thread; |
| tcg_halt_cond = env->halt_cond; |
| } else { |
| env->thread = tcg_cpu_thread; |
| env->halt_cond = tcg_halt_cond; |
| } |
| } |
| |
| static void kvm_start_vcpu(CPUState *env) |
| { |
| kvm_init_vcpu(env); |
| env->thread = qemu_mallocz(sizeof(QemuThread)); |
| env->halt_cond = qemu_mallocz(sizeof(QemuCond)); |
| qemu_cond_init(env->halt_cond); |
| qemu_thread_create(env->thread, kvm_cpu_thread_fn, env); |
| while (env->created == 0) |
| qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100); |
| } |
| |
| void qemu_init_vcpu(void *_env) |
| { |
| CPUState *env = _env; |
| |
| if (kvm_enabled()) |
| kvm_start_vcpu(env); |
| else |
| tcg_init_vcpu(env); |
| } |
| |
| void qemu_notify_event(void) |
| { |
| qemu_event_increment(); |
| } |
| |
| void vm_stop(int reason) |
| { |
| QemuThread me; |
| qemu_thread_self(&me); |
| |
| if (!qemu_thread_equal(&me, &io_thread)) { |
| qemu_system_vmstop_request(reason); |
| /* |
| * FIXME: should not return to device code in case |
| * vm_stop() has been requested. |
| */ |
| if (cpu_single_env) { |
| cpu_exit(cpu_single_env); |
| cpu_single_env->stop = 1; |
| } |
| return; |
| } |
| do_vm_stop(reason); |
| } |
| |
| #endif |
| |
| |
| #ifdef _WIN32 |
| static void host_main_loop_wait(int *timeout) |
| { |
| int ret, ret2, i; |
| PollingEntry *pe; |
| |
| |
| /* XXX: need to suppress polling by better using win32 events */ |
| ret = 0; |
| for(pe = first_polling_entry; pe != NULL; pe = pe->next) { |
| ret |= pe->func(pe->opaque); |
| } |
| if (ret == 0) { |
| int err; |
| WaitObjects *w = &wait_objects; |
| |
| ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout); |
| if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) { |
| if (w->func[ret - WAIT_OBJECT_0]) |
| w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]); |
| |
| /* Check for additional signaled events */ |
| for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) { |
| |
| /* Check if event is signaled */ |
| ret2 = WaitForSingleObject(w->events[i], 0); |
| if(ret2 == WAIT_OBJECT_0) { |
| if (w->func[i]) |
| w->func[i](w->opaque[i]); |
| } else if (ret2 == WAIT_TIMEOUT) { |
| } else { |
| err = GetLastError(); |
| fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err); |
| } |
| } |
| } else if (ret == WAIT_TIMEOUT) { |
| } else { |
| err = GetLastError(); |
| fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err); |
| } |
| } |
| |
| *timeout = 0; |
| } |
| #else |
| static void host_main_loop_wait(int *timeout) |
| { |
| } |
| #endif |
| |
| void main_loop_wait(int timeout) |
| { |
| IOHandlerRecord *ioh; |
| fd_set rfds, wfds, xfds; |
| int ret, nfds; |
| struct timeval tv; |
| |
| qemu_bh_update_timeout(&timeout); |
| |
| host_main_loop_wait(&timeout); |
| |
| /* poll any events */ |
| /* XXX: separate device handlers from system ones */ |
| nfds = -1; |
| FD_ZERO(&rfds); |
| FD_ZERO(&wfds); |
| FD_ZERO(&xfds); |
| for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { |
| if (ioh->deleted) |
| continue; |
| if (ioh->fd_read && |
| (!ioh->fd_read_poll || |
| ioh->fd_read_poll(ioh->opaque) != 0)) { |
| FD_SET(ioh->fd, &rfds); |
| if (ioh->fd > nfds) |
| nfds = ioh->fd; |
| } |
| if (ioh->fd_write) { |
| FD_SET(ioh->fd, &wfds); |
| if (ioh->fd > nfds) |
| nfds = ioh->fd; |
| } |
| } |
| |
| tv.tv_sec = timeout / 1000; |
| tv.tv_usec = (timeout % 1000) * 1000; |
| |
| #if defined(CONFIG_SLIRP) |
| if (slirp_is_inited()) { |
| slirp_select_fill(&nfds, &rfds, &wfds, &xfds); |
| } |
| #endif |
| qemu_mutex_unlock_iothread(); |
| ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv); |
| qemu_mutex_lock_iothread(); |
| if (ret > 0) { |
| IOHandlerRecord **pioh; |
| |
| for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) { |
| if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) { |
| ioh->fd_read(ioh->opaque); |
| } |
| if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) { |
| ioh->fd_write(ioh->opaque); |
| } |
| } |
| |
| /* remove deleted IO handlers */ |
| pioh = &first_io_handler; |
| while (*pioh) { |
| ioh = *pioh; |
| if (ioh->deleted) { |
| *pioh = ioh->next; |
| qemu_free(ioh); |
| } else |
| pioh = &ioh->next; |
| } |
| } |
| #if defined(CONFIG_SLIRP) |
| if (slirp_is_inited()) { |
| if (ret < 0) { |
| FD_ZERO(&rfds); |
| FD_ZERO(&wfds); |
| FD_ZERO(&xfds); |
| } |
| slirp_select_poll(&rfds, &wfds, &xfds); |
| } |
| #endif |
| |
| /* rearm timer, if not periodic */ |
| if (alarm_timer->flags & ALARM_FLAG_EXPIRED) { |
| alarm_timer->flags &= ~ALARM_FLAG_EXPIRED; |
| qemu_rearm_alarm_timer(alarm_timer); |
| } |
| |
| /* vm time timers */ |
| if (vm_running) { |
| if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER))) |
| qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL], |
| qemu_get_clock(vm_clock)); |
| } |
| |
| /* real time timers */ |
| qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME], |
| qemu_get_clock(rt_clock)); |
| |
| /* Check bottom-halves last in case any of the earlier events triggered |
| them. */ |
| qemu_bh_poll(); |
| |
| } |
| |
| static int qemu_cpu_exec(CPUState *env) |
| { |
| int ret; |
| #ifdef CONFIG_PROFILER |
| int64_t ti; |
| #endif |
| |
| #ifdef CONFIG_PROFILER |
| ti = profile_getclock(); |
| #endif |
| if (use_icount) { |
| int64_t count; |
| int decr; |
| qemu_icount -= (env->icount_decr.u16.low + env->icount_extra); |
| env->icount_decr.u16.low = 0; |
| env->icount_extra = 0; |
| count = qemu_next_deadline(); |
| count = (count + (1 << icount_time_shift) - 1) |
| >> icount_time_shift; |
| qemu_icount += count; |
| decr = (count > 0xffff) ? 0xffff : count; |
| count -= decr; |
| env->icount_decr.u16.low = decr; |
| env->icount_extra = count; |
| } |
| ret = cpu_exec(env); |
| #ifdef CONFIG_PROFILER |
| qemu_time += profile_getclock() - ti; |
| #endif |
| if (use_icount) { |
| /* Fold pending instructions back into the |
| instruction counter, and clear the interrupt flag. */ |
| qemu_icount -= (env->icount_decr.u16.low |
| + env->icount_extra); |
| env->icount_decr.u32 = 0; |
| env->icount_extra = 0; |
| } |
| return ret; |
| } |
| |
| static void tcg_cpu_exec(void) |
| { |
| int ret = 0; |
| |
| if (next_cpu == NULL) |
| next_cpu = first_cpu; |
| for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) { |
| CPUState *env = cur_cpu = next_cpu; |
| |
| if (!vm_running) |
| break; |
| if (timer_alarm_pending) { |
| timer_alarm_pending = 0; |
| break; |
| } |
| if (cpu_can_run(env)) |
| ret = qemu_cpu_exec(env); |
| if (ret == EXCP_DEBUG) { |
| gdb_set_stop_cpu(env); |
| debug_requested = 1; |
| break; |
| } |
| } |
| } |
| |
| static int cpu_has_work(CPUState *env) |
| { |
| if (env->stop) |
| return 1; |
| if (env->stopped) |
| return 0; |
| if (!env->halted) |
| return 1; |
| if (qemu_cpu_has_work(env)) |
| return 1; |
| return 0; |
| } |
| |
| static int tcg_has_work(void) |
| { |
| CPUState *env; |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) |
| if (cpu_has_work(env)) |
| return 1; |
| return 0; |
| } |
| |
| static int qemu_calculate_timeout(void) |
| { |
| #ifndef CONFIG_IOTHREAD |
| int timeout; |
| |
| if (!vm_running) |
| timeout = 5000; |
| else if (tcg_has_work()) |
| timeout = 0; |
| else if (!use_icount) |
| timeout = 5000; |
| else { |
| /* XXX: use timeout computed from timers */ |
| int64_t add; |
| int64_t delta; |
| /* Advance virtual time to the next event. */ |
| if (use_icount == 1) { |
| /* When not using an adaptive execution frequency |
| we tend to get badly out of sync with real time, |
| so just delay for a reasonable amount of time. */ |
| delta = 0; |
| } else { |
| delta = cpu_get_icount() - cpu_get_clock(); |
| } |
| if (delta > 0) { |
| /* If virtual time is ahead of real time then just |
| wait for IO. */ |
| timeout = (delta / 1000000) + 1; |
| } else { |
| /* Wait for either IO to occur or the next |
| timer event. */ |
| add = qemu_next_deadline(); |
| /* We advance the timer before checking for IO. |
| Limit the amount we advance so that early IO |
| activity won't get the guest too far ahead. */ |
| if (add > 10000000) |
| add = 10000000; |
| delta += add; |
| add = (add + (1 << icount_time_shift) - 1) |
| >> icount_time_shift; |
| qemu_icount += add; |
| timeout = delta / 1000000; |
| if (timeout < 0) |
| timeout = 0; |
| } |
| } |
| |
| return timeout; |
| #else /* CONFIG_IOTHREAD */ |
| return 1000; |
| #endif |
| } |
| |
| static int vm_can_run(void) |
| { |
| if (powerdown_requested) |
| return 0; |
| if (reset_requested) |
| return 0; |
| if (shutdown_requested) |
| return 0; |
| if (debug_requested) |
| return 0; |
| return 1; |
| } |
| |
| static void main_loop(void) |
| { |
| int r; |
| |
| #ifdef CONFIG_IOTHREAD |
| qemu_system_ready = 1; |
| qemu_cond_broadcast(&qemu_system_cond); |
| #endif |
| |
| for (;;) { |
| do { |
| #ifdef CONFIG_PROFILER |
| int64_t ti; |
| #endif |
| #ifndef CONFIG_IOTHREAD |
| tcg_cpu_exec(); |
| #endif |
| #ifdef CONFIG_PROFILER |
| ti = profile_getclock(); |
| #endif |
| main_loop_wait(qemu_calculate_timeout()); |
| #ifdef CONFIG_PROFILER |
| dev_time += profile_getclock() - ti; |
| #endif |
| } while (vm_can_run()); |
| |
| if (qemu_debug_requested()) |
| vm_stop(EXCP_DEBUG); |
| if (qemu_shutdown_requested()) { |
| if (no_shutdown) { |
| vm_stop(0); |
| no_shutdown = 0; |
| } else |
| break; |
| } |
| if (qemu_reset_requested()) { |
| pause_all_vcpus(); |
| qemu_system_reset(); |
| resume_all_vcpus(); |
| } |
| if (qemu_powerdown_requested()) |
| qemu_system_powerdown(); |
| if ((r = qemu_vmstop_requested())) |
| vm_stop(r); |
| } |
| pause_all_vcpus(); |
| } |
| |
| static void version(void) |
| { |
| printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"); |
| } |
| |
| static void help(int exitcode) |
| { |
| version(); |
| printf("usage: %s [options] [disk_image]\n" |
| "\n" |
| "'disk_image' is a raw hard image image for IDE hard disk 0\n" |
| "\n" |
| #define DEF(option, opt_arg, opt_enum, opt_help) \ |
| opt_help |
| #define DEFHEADING(text) stringify(text) "\n" |
| #include "qemu-options.h" |
| #undef DEF |
| #undef DEFHEADING |
| #undef GEN_DOCS |
| "\n" |
| "During emulation, the following keys are useful:\n" |
| "ctrl-alt-f toggle full screen\n" |
| "ctrl-alt-n switch to virtual console 'n'\n" |
| "ctrl-alt toggle mouse and keyboard grab\n" |
| "\n" |
| "When using -nographic, press 'ctrl-a h' to get some help.\n" |
| , |
| "qemu", |
| DEFAULT_RAM_SIZE, |
| #ifndef _WIN32 |
| DEFAULT_NETWORK_SCRIPT, |
| DEFAULT_NETWORK_DOWN_SCRIPT, |
| #endif |
| DEFAULT_GDBSTUB_PORT, |
| "/tmp/qemu.log"); |
| exit(exitcode); |
| } |
| |
| #define HAS_ARG 0x0001 |
| |
| enum { |
| #define DEF(option, opt_arg, opt_enum, opt_help) \ |
| opt_enum, |
| #define DEFHEADING(text) |
| #include "qemu-options.h" |
| #undef DEF |
| #undef DEFHEADING |
| #undef GEN_DOCS |
| }; |
| |
| typedef struct QEMUOption { |
| const char *name; |
| int flags; |
| int index; |
| } QEMUOption; |
| |
| static const QEMUOption qemu_options[] = { |
| { "h", 0, QEMU_OPTION_h }, |
| #define DEF(option, opt_arg, opt_enum, opt_help) \ |
| { option, opt_arg, opt_enum }, |
| #define DEFHEADING(text) |
| #include "qemu-options.h" |
| #undef DEF |
| #undef DEFHEADING |
| #undef GEN_DOCS |
| { NULL }, |
| }; |
| |
| #ifdef HAS_AUDIO |
| struct soundhw soundhw[] = { |
| #ifdef HAS_AUDIO_CHOICE |
| #if defined(TARGET_I386) || defined(TARGET_MIPS) |
| { |
| "pcspk", |
| "PC speaker", |
| 0, |
| 1, |
| { .init_isa = pcspk_audio_init } |
| }, |
| #endif |
| |
| #ifdef CONFIG_SB16 |
| { |
| "sb16", |
| "Creative Sound Blaster 16", |
| 0, |
| 1, |
| { .init_isa = SB16_init } |
| }, |
| #endif |
| |
| #ifdef CONFIG_CS4231A |
| { |
| "cs4231a", |
| "CS4231A", |
| 0, |
| 1, |
| { .init_isa = cs4231a_init } |
| }, |
| #endif |
| |
| #ifdef CONFIG_ADLIB |
| { |
| "adlib", |
| #ifdef HAS_YMF262 |
| "Yamaha YMF262 (OPL3)", |
| #else |
| "Yamaha YM3812 (OPL2)", |
| #endif |
| 0, |
| 1, |
| { .init_isa = Adlib_init } |
| }, |
| #endif |
| |
| #ifdef CONFIG_GUS |
| { |
| "gus", |
| "Gravis Ultrasound GF1", |
| 0, |
| 1, |
| { .init_isa = GUS_init } |
| }, |
| #endif |
| |
| #ifdef CONFIG_AC97 |
| { |
| "ac97", |
| "Intel 82801AA AC97 Audio", |
| 0, |
| 0, |
| { .init_pci = ac97_init } |
| }, |
| #endif |
| |
| #ifdef CONFIG_ES1370 |
| { |
| "es1370", |
| "ENSONIQ AudioPCI ES1370", |
| 0, |
| 0, |
| { .init_pci = es1370_init } |
| }, |
| #endif |
| |
| #endif /* HAS_AUDIO_CHOICE */ |
| |
| { NULL, NULL, 0, 0, { NULL } } |
| }; |
| |
| static void select_soundhw (const char *optarg) |
| { |
| struct soundhw *c; |
| |
| if (*optarg == '?') { |
| show_valid_cards: |
| |
| printf ("Valid sound card names (comma separated):\n"); |
| for (c = soundhw; c->name; ++c) { |
| printf ("%-11s %s\n", c->name, c->descr); |
| } |
| printf ("\n-soundhw all will enable all of the above\n"); |
| exit (*optarg != '?'); |
| } |
| else { |
| size_t l; |
| const char *p; |
| char *e; |
| int bad_card = 0; |
| |
| if (!strcmp (optarg, "all")) { |
| for (c = soundhw; c->name; ++c) { |
| c->enabled = 1; |
| } |
| return; |
| } |
| |
| p = optarg; |
| while (*p) { |
| e = strchr (p, ','); |
| l = !e ? strlen (p) : (size_t) (e - p); |
| |
| for (c = soundhw; c->name; ++c) { |
| if (!strncmp (c->name, p, l)) { |
| c->enabled = 1; |
| break; |
| } |
| } |
| |
| if (!c->name) { |
| if (l > 80) { |
| fprintf (stderr, |
| "Unknown sound card name (too big to show)\n"); |
| } |
| else { |
| fprintf (stderr, "Unknown sound card name `%.*s'\n", |
| (int) l, p); |
| } |
| bad_card = 1; |
| } |
| p += l + (e != NULL); |
| } |
| |
| if (bad_card) |
| goto show_valid_cards; |
| } |
| } |
| #endif |
| |
| static void select_vgahw (const char *p) |
| { |
| const char *opts; |
| |
| cirrus_vga_enabled = 0; |
| std_vga_enabled = 0; |
| vmsvga_enabled = 0; |
| xenfb_enabled = 0; |
| if (strstart(p, "std", &opts)) { |
| std_vga_enabled = 1; |
| } else if (strstart(p, "cirrus", &opts)) { |
| cirrus_vga_enabled = 1; |
| } else if (strstart(p, "vmware", &opts)) { |
| vmsvga_enabled = 1; |
| } else if (strstart(p, "xenfb", &opts)) { |
| xenfb_enabled = 1; |
| } else if (!strstart(p, "none", &opts)) { |
| invalid_vga: |
| fprintf(stderr, "Unknown vga type: %s\n", p); |
| exit(1); |
| } |
| while (*opts) { |
| const char *nextopt; |
| |
| if (strstart(opts, ",retrace=", &nextopt)) { |
| opts = nextopt; |
| if (strstart(opts, "dumb", &nextopt)) |
| vga_retrace_method = VGA_RETRACE_DUMB; |
| else if (strstart(opts, "precise", &nextopt)) |
| vga_retrace_method = VGA_RETRACE_PRECISE; |
| else goto invalid_vga; |
| } else goto invalid_vga; |
| opts = nextopt; |
| } |
| } |
| |
| #ifdef _WIN32 |
| static BOOL WINAPI qemu_ctrl_handler(DWORD type) |
| { |
| exit(STATUS_CONTROL_C_EXIT); |
| return TRUE; |
| } |
| #endif |
| |
| int qemu_uuid_parse(const char *str, uint8_t *uuid) |
| { |
| int ret; |
| |
| if(strlen(str) != 36) |
| return -1; |
| |
| ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], |
| &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], |
| &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]); |
| |
| if(ret != 16) |
| return -1; |
| |
| #ifdef TARGET_I386 |
| smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid); |
| #endif |
| |
| return 0; |
| } |
| |
| #define MAX_NET_CLIENTS 32 |
| |
| #ifndef _WIN32 |
| |
| static void termsig_handler(int signal) |
| { |
| qemu_system_shutdown_request(); |
| } |
| |
| static void sigchld_handler(int signal) |
| { |
| waitpid(-1, NULL, WNOHANG); |
| } |
| |
| static void sighandler_setup(void) |
| { |
| struct sigaction act; |
| |
| memset(&act, 0, sizeof(act)); |
| act.sa_handler = termsig_handler; |
| sigaction(SIGINT, &act, NULL); |
| sigaction(SIGHUP, &act, NULL); |
| sigaction(SIGTERM, &act, NULL); |
| |
| act.sa_handler = sigchld_handler; |
| act.sa_flags = SA_NOCLDSTOP; |
| sigaction(SIGCHLD, &act, NULL); |
| } |
| |
| #endif |
| |
| #ifdef _WIN32 |
| /* Look for support files in the same directory as the executable. */ |
| static char *find_datadir(const char *argv0) |
| { |
| char *p; |
| char buf[MAX_PATH]; |
| DWORD len; |
| |
| len = GetModuleFileName(NULL, buf, sizeof(buf) - 1); |
| if (len == 0) { |
| return NULL; |
| } |
| |
| buf[len] = 0; |
| p = buf + len - 1; |
| while (p != buf && *p != '\\') |
| p--; |
| *p = 0; |
| if (access(buf, R_OK) == 0) { |
| return qemu_strdup(buf); |
| } |
| return NULL; |
| } |
| #else /* !_WIN32 */ |
| |
| /* Find a likely location for support files using the location of the binary. |
| For installed binaries this will be "$bindir/../share/qemu". When |
| running from the build tree this will be "$bindir/../pc-bios". */ |
| #define SHARE_SUFFIX "/share/qemu" |
| #define BUILD_SUFFIX "/pc-bios" |
| static char *find_datadir(const char *argv0) |
| { |
| char *dir; |
| char *p = NULL; |
| char *res; |
| #ifdef PATH_MAX |
| char buf[PATH_MAX]; |
| #endif |
| size_t max_len; |
| |
| #if defined(__linux__) |
| { |
| int len; |
| len = readlink("/proc/self/exe", buf, sizeof(buf) - 1); |
| if (len > 0) { |
| buf[len] = 0; |
| p = buf; |
| } |
| } |
| #elif defined(__FreeBSD__) |
| { |
| int len; |
| len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1); |
| if (len > 0) { |
| buf[len] = 0; |
| p = buf; |
| } |
| } |
| #endif |
| /* If we don't have any way of figuring out the actual executable |
| location then try argv[0]. */ |
| if (!p) { |
| #ifdef PATH_MAX |
| p = buf; |
| #endif |
| p = realpath(argv0, p); |
| if (!p) { |
| return NULL; |
| } |
| } |
| dir = dirname(p); |
| dir = dirname(dir); |
| |
| max_len = strlen(dir) + |
| MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1; |
| res = qemu_mallocz(max_len); |
| snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX); |
| if (access(res, R_OK)) { |
| snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX); |
| if (access(res, R_OK)) { |
| qemu_free(res); |
| res = NULL; |
| } |
| } |
| #ifndef PATH_MAX |
| free(p); |
| #endif |
| return res; |
| } |
| #undef SHARE_SUFFIX |
| #undef BUILD_SUFFIX |
| #endif |
| |
| char *qemu_find_file(int type, const char *name) |
| { |
| int len; |
| const char *subdir; |
| char *buf; |
| |
| /* If name contains path separators then try it as a straight path. */ |
| if ((strchr(name, '/') || strchr(name, '\\')) |
| && access(name, R_OK) == 0) { |
| return strdup(name); |
| } |
| switch (type) { |
| case QEMU_FILE_TYPE_BIOS: |
| subdir = ""; |
| break; |
| case QEMU_FILE_TYPE_KEYMAP: |
| subdir = "keymaps/"; |
| break; |
| default: |
| abort(); |
| } |
| len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2; |
| buf = qemu_mallocz(len); |
| snprintf(buf, len, "%s/%s%s", data_dir, subdir, name); |
| if (access(buf, R_OK)) { |
| qemu_free(buf); |
| return NULL; |
| } |
| return buf; |
| } |
| |
| int main(int argc, char **argv, char **envp) |
| { |
| const char *gdbstub_dev = NULL; |
| uint32_t boot_devices_bitmap = 0; |
| int i; |
| int snapshot, linux_boot, net_boot; |
| const char *initrd_filename; |
| const char *kernel_filename, *kernel_cmdline; |
| const char *boot_devices = ""; |
| DisplayState *ds; |
| DisplayChangeListener *dcl; |
| int cyls, heads, secs, translation; |
| const char *net_clients[MAX_NET_CLIENTS]; |
| int nb_net_clients; |
| const char *bt_opts[MAX_BT_CMDLINE]; |
| int nb_bt_opts; |
| int hda_index; |
| int optind; |
| const char *r, *optarg; |
| CharDriverState *monitor_hd = NULL; |
| const char *monitor_device; |
| const char *serial_devices[MAX_SERIAL_PORTS]; |
| int serial_device_index; |
| const char *parallel_devices[MAX_PARALLEL_PORTS]; |
| int parallel_device_index; |
| const char *virtio_consoles[MAX_VIRTIO_CONSOLES]; |
| int virtio_console_index; |
| const char *loadvm = NULL; |
| QEMUMachine *machine; |
| const char *cpu_model; |
| const char *usb_devices[MAX_USB_CMDLINE]; |
| int usb_devices_index; |
| #ifndef _WIN32 |
| int fds[2]; |
| #endif |
| int tb_size; |
| const char *pid_file = NULL; |
| const char *incoming = NULL; |
| #ifndef _WIN32 |
| int fd = 0; |
| struct passwd *pwd = NULL; |
| const char *chroot_dir = NULL; |
| const char *run_as = NULL; |
| #endif |
| CPUState *env; |
| int show_vnc_port = 0; |
| |
| qemu_cache_utils_init(envp); |
| |
| LIST_INIT (&vm_change_state_head); |
| #ifndef _WIN32 |
| { |
| struct sigaction act; |
| sigfillset(&act.sa_mask); |
| act.sa_flags = 0; |
| act.sa_handler = SIG_IGN; |
| sigaction(SIGPIPE, &act, NULL); |
| } |
| #else |
| SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE); |
| /* Note: cpu_interrupt() is currently not SMP safe, so we force |
| QEMU to run on a single CPU */ |
| { |
| HANDLE h; |
| DWORD mask, smask; |
| int i; |
| h = GetCurrentProcess(); |
| if (GetProcessAffinityMask(h, &mask, &smask)) { |
| for(i = 0; i < 32; i++) { |
| if (mask & (1 << i)) |
| break; |
| } |
| if (i != 32) { |
| mask = 1 << i; |
| SetProcessAffinityMask(h, mask); |
| } |
| } |
| } |
| #endif |
| |
| module_call_init(MODULE_INIT_MACHINE); |
| machine = find_default_machine(); |
| cpu_model = NULL; |
| initrd_filename = NULL; |
| ram_size = 0; |
| snapshot = 0; |
| kernel_filename = NULL; |
| kernel_cmdline = ""; |
| cyls = heads = secs = 0; |
| translation = BIOS_ATA_TRANSLATION_AUTO; |
| monitor_device = "vc:80Cx24C"; |
| |
| serial_devices[0] = "vc:80Cx24C"; |
| for(i = 1; i < MAX_SERIAL_PORTS; i++) |
| serial_devices[i] = NULL; |
| serial_device_index = 0; |
| |
| parallel_devices[0] = "vc:80Cx24C"; |
| for(i = 1; i < MAX_PARALLEL_PORTS; i++) |
| parallel_devices[i] = NULL; |
| parallel_device_index = 0; |
| |
| for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) |
| virtio_consoles[i] = NULL; |
| virtio_console_index = 0; |
| |
| for (i = 0; i < MAX_NODES; i++) { |
| node_mem[i] = 0; |
| node_cpumask[i] = 0; |
| } |
| |
| usb_devices_index = 0; |
| |
| nb_net_clients = 0; |
| nb_bt_opts = 0; |
| nb_drives = 0; |
| nb_drives_opt = 0; |
| nb_numa_nodes = 0; |
| hda_index = -1; |
| |
| nb_nics = 0; |
| |
| tb_size = 0; |
| autostart= 1; |
| |
| register_watchdogs(); |
| |
| optind = 1; |
| for(;;) { |
| if (optind >= argc) |
| break; |
| r = argv[optind]; |
| if (r[0] != '-') { |
| hda_index = drive_add(argv[optind++], HD_ALIAS, 0); |
| } else { |
| const QEMUOption *popt; |
| |
| optind++; |
| /* Treat --foo the same as -foo. */ |
| if (r[1] == '-') |
| r++; |
| popt = qemu_options; |
| for(;;) { |
| if (!popt->name) { |
| fprintf(stderr, "%s: invalid option -- '%s'\n", |
| argv[0], r); |
| exit(1); |
| } |
| if (!strcmp(popt->name, r + 1)) |
| break; |
| popt++; |
| } |
| if (popt->flags & HAS_ARG) { |
| if (optind >= argc) { |
| fprintf(stderr, "%s: option '%s' requires an argument\n", |
| argv[0], r); |
| exit(1); |
| } |
| optarg = argv[optind++]; |
| } else { |
| optarg = NULL; |
| } |
| |
| switch(popt->index) { |
| case QEMU_OPTION_M: |
| machine = find_machine(optarg); |
| if (!machine) { |
| QEMUMachine *m; |
| printf("Supported machines are:\n"); |
| for(m = first_machine; m != NULL; m = m->next) { |
| printf("%-10s %s%s\n", |
| m->name, m->desc, |
| m->is_default ? " (default)" : ""); |
| } |
| exit(*optarg != '?'); |
| } |
| break; |
| case QEMU_OPTION_cpu: |
| /* hw initialization will check this */ |
| if (*optarg == '?') { |
| /* XXX: implement xxx_cpu_list for targets that still miss it */ |
| #if defined(cpu_list) |
| cpu_list(stdout, &fprintf); |
| #endif |
| exit(0); |
| } else { |
| cpu_model = optarg; |
| } |
| break; |
| case QEMU_OPTION_initrd: |
| initrd_filename = optarg; |
| break; |
| case QEMU_OPTION_hda: |
| if (cyls == 0) |
| hda_index = drive_add(optarg, HD_ALIAS, 0); |
| else |
| hda_index = drive_add(optarg, HD_ALIAS |
| ",cyls=%d,heads=%d,secs=%d%s", |
| 0, cyls, heads, secs, |
| translation == BIOS_ATA_TRANSLATION_LBA ? |
| ",trans=lba" : |
| translation == BIOS_ATA_TRANSLATION_NONE ? |
| ",trans=none" : ""); |
| break; |
| case QEMU_OPTION_hdb: |
| case QEMU_OPTION_hdc: |
| case QEMU_OPTION_hdd: |
| drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda); |
| break; |
| case QEMU_OPTION_drive: |
| drive_add(NULL, "%s", optarg); |
| break; |
| case QEMU_OPTION_mtdblock: |
| drive_add(optarg, MTD_ALIAS); |
| break; |
| case QEMU_OPTION_sd: |
| drive_add(optarg, SD_ALIAS); |
| break; |
| case QEMU_OPTION_pflash: |
| drive_add(optarg, PFLASH_ALIAS); |
| break; |
| case QEMU_OPTION_snapshot: |
| snapshot = 1; |
| break; |
| case QEMU_OPTION_hdachs: |
| { |
| const char *p; |
| p = optarg; |
| cyls = strtol(p, (char **)&p, 0); |
| if (cyls < 1 || cyls > 16383) |
| goto chs_fail; |
| if (*p != ',') |
| goto chs_fail; |
| p++; |
| heads = strtol(p, (char **)&p, 0); |
| if (heads < 1 || heads > 16) |
| goto chs_fail; |
| if (*p != ',') |
| goto chs_fail; |
| p++; |
| secs = strtol(p, (char **)&p, 0); |
| if (secs < 1 || secs > 63) |
| goto chs_fail; |
| if (*p == ',') { |
| p++; |
| if (!strcmp(p, "none")) |
| translation = BIOS_ATA_TRANSLATION_NONE; |
| else if (!strcmp(p, "lba")) |
| translation = BIOS_ATA_TRANSLATION_LBA; |
| else if (!strcmp(p, "auto")) |
| translation = BIOS_ATA_TRANSLATION_AUTO; |
| else |
| goto chs_fail; |
| } else if (*p != '\0') { |
| chs_fail: |
| fprintf(stderr, "qemu: invalid physical CHS format\n"); |
| exit(1); |
| } |
| if (hda_index != -1) |
| snprintf(drives_opt[hda_index].opt, |
| sizeof(drives_opt[hda_index].opt), |
| HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s", |
| 0, cyls, heads, secs, |
| translation == BIOS_ATA_TRANSLATION_LBA ? |
| ",trans=lba" : |
| translation == BIOS_ATA_TRANSLATION_NONE ? |
| ",trans=none" : ""); |
| } |
| break; |
| case QEMU_OPTION_numa: |
| if (nb_numa_nodes >= MAX_NODES) { |
| fprintf(stderr, "qemu: too many NUMA nodes\n"); |
| exit(1); |
| } |
| numa_add(optarg); |
| break; |
| case QEMU_OPTION_nographic: |
| display_type = DT_NOGRAPHIC; |
| break; |
| #ifdef CONFIG_CURSES |
| case QEMU_OPTION_curses: |
| display_type = DT_CURSES; |
| break; |
| #endif |
| case QEMU_OPTION_portrait: |
| graphic_rotate = 1; |
| break; |
| case QEMU_OPTION_kernel: |
| kernel_filename = optarg; |
| break; |
| case QEMU_OPTION_append: |
| kernel_cmdline = optarg; |
| break; |
| case QEMU_OPTION_cdrom: |
| drive_add(optarg, CDROM_ALIAS); |
| break; |
| case QEMU_OPTION_boot: |
| boot_devices = optarg; |
| /* We just do some generic consistency checks */ |
| { |
| /* Could easily be extended to 64 devices if needed */ |
| const char *p; |
| |
| boot_devices_bitmap = 0; |
| for (p = boot_devices; *p != '\0'; p++) { |
| /* Allowed boot devices are: |
| * a b : floppy disk drives |
| * c ... f : IDE disk drives |
| * g ... m : machine implementation dependant drives |
| * n ... p : network devices |
| * It's up to each machine implementation to check |
| * if the given boot devices match the actual hardware |
| * implementation and firmware features. |
| */ |
| if (*p < 'a' || *p > 'q') { |
| fprintf(stderr, "Invalid boot device '%c'\n", *p); |
| exit(1); |
| } |
| if (boot_devices_bitmap & (1 << (*p - 'a'))) { |
| fprintf(stderr, |
| "Boot device '%c' was given twice\n",*p); |
| exit(1); |
| } |
| boot_devices_bitmap |= 1 << (*p - 'a'); |
| } |
| } |
| break; |
| case QEMU_OPTION_fda: |
| case QEMU_OPTION_fdb: |
| drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda); |
| break; |
| #ifdef TARGET_I386 |
| case QEMU_OPTION_no_fd_bootchk: |
| fd_bootchk = 0; |
| break; |
| #endif |
| case QEMU_OPTION_net: |
| if (nb_net_clients >= MAX_NET_CLIENTS) { |
| fprintf(stderr, "qemu: too many network clients\n"); |
| exit(1); |
| } |
| net_clients[nb_net_clients] = optarg; |
| nb_net_clients++; |
| break; |
| #ifdef CONFIG_SLIRP |
| case QEMU_OPTION_tftp: |
| tftp_prefix = optarg; |
| break; |
| case QEMU_OPTION_bootp: |
| bootp_filename = optarg; |
| break; |
| #ifndef _WIN32 |
| case QEMU_OPTION_smb: |
| net_slirp_smb(optarg); |
| break; |
| #endif |
| case QEMU_OPTION_redir: |
| net_slirp_redir(NULL, optarg, NULL); |
| break; |
| #endif |
| case QEMU_OPTION_bt: |
| if (nb_bt_opts >= MAX_BT_CMDLINE) { |
| fprintf(stderr, "qemu: too many bluetooth options\n"); |
| exit(1); |
| } |
| bt_opts[nb_bt_opts++] = optarg; |
| break; |
| #ifdef HAS_AUDIO |
| case QEMU_OPTION_audio_help: |
| AUD_help (); |
| exit (0); |
| break; |
| case QEMU_OPTION_soundhw: |
| select_soundhw (optarg); |
| break; |
| #endif |
| case QEMU_OPTION_h: |
| help(0); |
| break; |
| case QEMU_OPTION_version: |
| version(); |
| exit(0); |
| break; |
| case QEMU_OPTION_m: { |
| uint64_t value; |
| char *ptr; |
| |
| value = strtoul(optarg, &ptr, 10); |
| switch (*ptr) { |
| case 0: case 'M': case 'm': |
| value <<= 20; |
| break; |
| case 'G': case 'g': |
| value <<= 30; |
| break; |
| default: |
| fprintf(stderr, "qemu: invalid ram size: %s\n", optarg); |
| exit(1); |
| } |
| |
| /* On 32-bit hosts, QEMU is limited by virtual address space */ |
| if (value > (2047 << 20) |
| #ifndef CONFIG_KQEMU |
| && HOST_LONG_BITS == 32 |
| #endif |
| ) { |
| fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n"); |
| exit(1); |
| } |
| if (value != (uint64_t)(ram_addr_t)value) { |
| fprintf(stderr, "qemu: ram size too large\n"); |
| exit(1); |
| } |
| ram_size = value; |
| break; |
| } |
| case QEMU_OPTION_d: |
| { |
| int mask; |
| const CPULogItem *item; |
| |
| mask = cpu_str_to_log_mask(optarg); |
| if (!mask) { |
| printf("Log items (comma separated):\n"); |
| for(item = cpu_log_items; item->mask != 0; item++) { |
| printf("%-10s %s\n", item->name, item->help); |
| } |
| exit(1); |
| } |
| cpu_set_log(mask); |
| } |
| break; |
| case QEMU_OPTION_s: |
| gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT; |
| break; |
| case QEMU_OPTION_gdb: |
| gdbstub_dev = optarg; |
| break; |
| case QEMU_OPTION_L: |
| data_dir = optarg; |
| break; |
| case QEMU_OPTION_bios: |
| bios_name = optarg; |
| break; |
| case QEMU_OPTION_singlestep: |
| singlestep = 1; |
| break; |
| case QEMU_OPTION_S: |
| autostart = 0; |
| break; |
| #ifndef _WIN32 |
| case QEMU_OPTION_k: |
| keyboard_layout = optarg; |
| break; |
| #endif |
| case QEMU_OPTION_localtime: |
| rtc_utc = 0; |
| break; |
| case QEMU_OPTION_vga: |
| select_vgahw (optarg); |
| break; |
| #if defined(TARGET_PPC) || defined(TARGET_SPARC) |
| case QEMU_OPTION_g: |
| { |
| const char *p; |
| int w, h, depth; |
| p = optarg; |
| w = strtol(p, (char **)&p, 10); |
| if (w <= 0) { |
| graphic_error: |
| fprintf(stderr, "qemu: invalid resolution or depth\n"); |
| exit(1); |
| } |
| if (*p != 'x') |
| goto graphic_error; |
| p++; |
| h = strtol(p, (char **)&p, 10); |
| if (h <= 0) |
| goto graphic_error; |
| if (*p == 'x') { |
| p++; |
| depth = strtol(p, (char **)&p, 10); |
| if (depth != 8 && depth != 15 && depth != 16 && |
| depth != 24 && depth != 32) |
| goto graphic_error; |
| } else if (*p == '\0') { |
| depth = graphic_depth; |
| } else { |
| goto graphic_error; |
| } |
| |
| graphic_width = w; |
| graphic_height = h; |
| graphic_depth = depth; |
| } |
| break; |
| #endif |
| case QEMU_OPTION_echr: |
| { |
| char *r; |
| term_escape_char = strtol(optarg, &r, 0); |
| if (r == optarg) |
| printf("Bad argument to echr\n"); |
| break; |
| } |
| case QEMU_OPTION_monitor: |
| monitor_device = optarg; |
| break; |
| case QEMU_OPTION_serial: |
| if (serial_device_index >= MAX_SERIAL_PORTS) { |
| fprintf(stderr, "qemu: too many serial ports\n"); |
| exit(1); |
| } |
| serial_devices[serial_device_index] = optarg; |
| serial_device_index++; |
| break; |
| case QEMU_OPTION_watchdog: |
| i = select_watchdog(optarg); |
| if (i > 0) |
| exit (i == 1 ? 1 : 0); |
| break; |
| case QEMU_OPTION_watchdog_action: |
| if (select_watchdog_action(optarg) == -1) { |
| fprintf(stderr, "Unknown -watchdog-action parameter\n"); |
| exit(1); |
| } |
| break; |
| case QEMU_OPTION_virtiocon: |
| if (virtio_console_index >= MAX_VIRTIO_CONSOLES) { |
| fprintf(stderr, "qemu: too many virtio consoles\n"); |
| exit(1); |
| } |
| virtio_consoles[virtio_console_index] = optarg; |
| virtio_console_index++; |
| break; |
| case QEMU_OPTION_parallel: |
| if (parallel_device_index >= MAX_PARALLEL_PORTS) { |
| fprintf(stderr, "qemu: too many parallel ports\n"); |
| exit(1); |
| } |
| parallel_devices[parallel_device_index] = optarg; |
| parallel_device_index++; |
| break; |
| case QEMU_OPTION_loadvm: |
| loadvm = optarg; |
| break; |
| case QEMU_OPTION_full_screen: |
| full_screen = 1; |
| break; |
| #ifdef CONFIG_SDL |
| case QEMU_OPTION_no_frame: |
| no_frame = 1; |
| break; |
| case QEMU_OPTION_alt_grab: |
| alt_grab = 1; |
| break; |
| case QEMU_OPTION_no_quit: |
| no_quit = 1; |
| break; |
| case QEMU_OPTION_sdl: |
| display_type = DT_SDL; |
| break; |
| #endif |
| case QEMU_OPTION_pidfile: |
| pid_file = optarg; |
| break; |
| #ifdef TARGET_I386 |
| case QEMU_OPTION_win2k_hack: |
| win2k_install_hack = 1; |
| break; |
| case QEMU_OPTION_rtc_td_hack: |
| rtc_td_hack = 1; |
| break; |
| case QEMU_OPTION_acpitable: |
| if(acpi_table_add(optarg) < 0) { |
| fprintf(stderr, "Wrong acpi table provided\n"); |
| exit(1); |
| } |
| break; |
| case QEMU_OPTION_smbios: |
| if(smbios_entry_add(optarg) < 0) { |
| fprintf(stderr, "Wrong smbios provided\n"); |
| exit(1); |
| } |
| break; |
| #endif |
| #ifdef CONFIG_KQEMU |
| case QEMU_OPTION_no_kqemu: |
| kqemu_allowed = 0; |
| break; |
| case QEMU_OPTION_kernel_kqemu: |
| kqemu_allowed = 2; |
| break; |
| #endif |
| #ifdef CONFIG_KVM |
| case QEMU_OPTION_enable_kvm: |
| kvm_allowed = 1; |
| #ifdef CONFIG_KQEMU |
| kqemu_allowed = 0; |
| #endif |
| break; |
| #endif |
| case QEMU_OPTION_usb: |
| usb_enabled = 1; |
| break; |
| case QEMU_OPTION_usbdevice: |
| usb_enabled = 1; |
| if (usb_devices_index >= MAX_USB_CMDLINE) { |
| fprintf(stderr, "Too many USB devices\n"); |
| exit(1); |
| } |
| usb_devices[usb_devices_index] = optarg; |
| usb_devices_index++; |
| break; |
| case QEMU_OPTION_smp: |
| smp_cpus = atoi(optarg); |
| if (smp_cpus < 1) { |
| fprintf(stderr, "Invalid number of CPUs\n"); |
| exit(1); |
| } |
| break; |
| case QEMU_OPTION_vnc: |
| display_type = DT_VNC; |
| vnc_display = optarg; |
| break; |
| #ifdef TARGET_I386 |
| case QEMU_OPTION_no_acpi: |
| acpi_enabled = 0; |
| break; |
| case QEMU_OPTION_no_hpet: |
| no_hpet = 1; |
| break; |
| case QEMU_OPTION_no_virtio_balloon: |
| no_virtio_balloon = 1; |
| break; |
| #endif |
| case QEMU_OPTION_no_reboot: |
| no_reboot = 1; |
| break; |
| case QEMU_OPTION_no_shutdown: |
| no_shutdown = 1; |
| break; |
| case QEMU_OPTION_show_cursor: |
| cursor_hide = 0; |
| break; |
| case QEMU_OPTION_uuid: |
| if(qemu_uuid_parse(optarg, qemu_uuid) < 0) { |
| fprintf(stderr, "Fail to parse UUID string." |
| " Wrong format.\n"); |
| exit(1); |
| } |
| break; |
| #ifndef _WIN32 |
| case QEMU_OPTION_daemonize: |
| daemonize = 1; |
| break; |
| #endif |
| case QEMU_OPTION_option_rom: |
| if (nb_option_roms >= MAX_OPTION_ROMS) { |
| fprintf(stderr, "Too many option ROMs\n"); |
| exit(1); |
| } |
| option_rom[nb_option_roms] = optarg; |
| nb_option_roms++; |
| break; |
| #if defined(TARGET_ARM) || defined(TARGET_M68K) |
| case QEMU_OPTION_semihosting: |
| semihosting_enabled = 1; |
| break; |
| #endif |
| case QEMU_OPTION_name: |
| qemu_name = optarg; |
| break; |
| #if defined(TARGET_SPARC) || defined(TARGET_PPC) |
| case QEMU_OPTION_prom_env: |
| if (nb_prom_envs >= MAX_PROM_ENVS) { |
| fprintf(stderr, "Too many prom variables\n"); |
| exit(1); |
| } |
| prom_envs[nb_prom_envs] = optarg; |
| nb_prom_envs++; |
| break; |
| #endif |
| #ifdef TARGET_ARM |
| case QEMU_OPTION_old_param: |
| old_param = 1; |
| break; |
| #endif |
| case QEMU_OPTION_clock: |
| configure_alarms(optarg); |
| break; |
| case QEMU_OPTION_startdate: |
| { |
| struct tm tm; |
| time_t rtc_start_date; |
| if (!strcmp(optarg, "now")) { |
| rtc_date_offset = -1; |
| } else { |
| if (sscanf(optarg, "%d-%d-%dT%d:%d:%d", |
| &tm.tm_year, |
| &tm.tm_mon, |
| &tm.tm_mday, |
| &tm.tm_hour, |
| &tm.tm_min, |
| &tm.tm_sec) == 6) { |
| /* OK */ |
| } else if (sscanf(optarg, "%d-%d-%d", |
| &tm.tm_year, |
| &tm.tm_mon, |
| &tm.tm_mday) == 3) { |
| tm.tm_hour = 0; |
| tm.tm_min = 0; |
| tm.tm_sec = 0; |
| } else { |
| goto date_fail; |
| } |
| tm.tm_year -= 1900; |
| tm.tm_mon--; |
| rtc_start_date = mktimegm(&tm); |
| if (rtc_start_date == -1) { |
| date_fail: |
| fprintf(stderr, "Invalid date format. Valid format are:\n" |
| "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n"); |
| exit(1); |
| } |
| rtc_date_offset = time(NULL) - rtc_start_date; |
| } |
| } |
| break; |
| case QEMU_OPTION_tb_size: |
| tb_size = strtol(optarg, NULL, 0); |
| if (tb_size < 0) |
| tb_size = 0; |
| break; |
| case QEMU_OPTION_icount: |
| use_icount = 1; |
| if (strcmp(optarg, "auto") == 0) { |
| icount_time_shift = -1; |
| } else { |
| icount_time_shift = strtol(optarg, NULL, 0); |
| } |
| break; |
| case QEMU_OPTION_incoming: |
| incoming = optarg; |
| break; |
| #ifndef _WIN32 |
| case QEMU_OPTION_chroot: |
| chroot_dir = optarg; |
| break; |
| case QEMU_OPTION_runas: |
| run_as = optarg; |
| break; |
| #endif |
| #ifdef CONFIG_XEN |
| case QEMU_OPTION_xen_domid: |
| xen_domid = atoi(optarg); |
| break; |
| case QEMU_OPTION_xen_create: |
| xen_mode = XEN_CREATE; |
| break; |
| case QEMU_OPTION_xen_attach: |
| xen_mode = XEN_ATTACH; |
| break; |
| #endif |
| } |
| } |
| } |
| |
| /* If no data_dir is specified then try to find it relative to the |
| executable path. */ |
| if (!data_dir) { |
| data_dir = find_datadir(argv[0]); |
| } |
| /* If all else fails use the install patch specified when building. */ |
| if (!data_dir) { |
| data_dir = CONFIG_QEMU_SHAREDIR; |
| } |
| |
| #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU) |
| if (kvm_allowed && kqemu_allowed) { |
| fprintf(stderr, |
| "You can not enable both KVM and kqemu at the same time\n"); |
| exit(1); |
| } |
| #endif |
| |
| machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */ |
| if (smp_cpus > machine->max_cpus) { |
| fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus " |
| "supported by machine `%s' (%d)\n", smp_cpus, machine->name, |
| machine->max_cpus); |
| exit(1); |
| } |
| |
| if (display_type == DT_NOGRAPHIC) { |
| if (serial_device_index == 0) |
| serial_devices[0] = "stdio"; |
| if (parallel_device_index == 0) |
| parallel_devices[0] = "null"; |
| if (strncmp(monitor_device, "vc", 2) == 0) |
| monitor_device = "stdio"; |
| } |
| |
| #ifndef _WIN32 |
| if (daemonize) { |
| pid_t pid; |
| |
| if (pipe(fds) == -1) |
| exit(1); |
| |
| pid = fork(); |
| if (pid > 0) { |
| uint8_t status; |
| ssize_t len; |
| |
| close(fds[1]); |
| |
| again: |
| len = read(fds[0], &status, 1); |
| if (len == -1 && (errno == EINTR)) |
| goto again; |
| |
| if (len != 1) |
| exit(1); |
| else if (status == 1) { |
| fprintf(stderr, "Could not acquire pidfile\n"); |
| exit(1); |
| } else |
| exit(0); |
| } else if (pid < 0) |
| exit(1); |
| |
| setsid(); |
| |
| pid = fork(); |
| if (pid > 0) |
| exit(0); |
| else if (pid < 0) |
| exit(1); |
| |
| umask(027); |
| |
| signal(SIGTSTP, SIG_IGN); |
| signal(SIGTTOU, SIG_IGN); |
| signal(SIGTTIN, SIG_IGN); |
| } |
| |
| if (pid_file && qemu_create_pidfile(pid_file) != 0) { |
| if (daemonize) { |
| uint8_t status = 1; |
| write(fds[1], &status, 1); |
| } else |
| fprintf(stderr, "Could not acquire pid file\n"); |
| exit(1); |
| } |
| #endif |
| |
| #ifdef CONFIG_KQEMU |
| if (smp_cpus > 1) |
| kqemu_allowed = 0; |
| #endif |
| if (qemu_init_main_loop()) { |
| fprintf(stderr, "qemu_init_main_loop failed\n"); |
| exit(1); |
| } |
| linux_boot = (kernel_filename != NULL); |
| net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF; |
| |
| if (!linux_boot && *kernel_cmdline != '\0') { |
| fprintf(stderr, "-append only allowed with -kernel option\n"); |
| exit(1); |
| } |
| |
| if (!linux_boot && initrd_filename != NULL) { |
| fprintf(stderr, "-initrd only allowed with -kernel option\n"); |
| exit(1); |
| } |
| |
| /* boot to floppy or the default cd if no hard disk defined yet */ |
| if (!boot_devices[0]) { |
| boot_devices = "cad"; |
| } |
| setvbuf(stdout, NULL, _IOLBF, 0); |
| |
| init_timers(); |
| if (init_timer_alarm() < 0) { |
| fprintf(stderr, "could not initialize alarm timer\n"); |
| exit(1); |
| } |
| if (use_icount && icount_time_shift < 0) { |
| use_icount = 2; |
| /* 125MIPS seems a reasonable initial guess at the guest speed. |
| It will be corrected fairly quickly anyway. */ |
| icount_time_shift = 3; |
| init_icount_adjust(); |
| } |
| |
| #ifdef _WIN32 |
| socket_init(); |
| #endif |
| |
| /* init network clients */ |
| if (nb_net_clients == 0) { |
| /* if no clients, we use a default config */ |
| net_clients[nb_net_clients++] = "nic"; |
| #ifdef CONFIG_SLIRP |
| net_clients[nb_net_clients++] = "user"; |
| #endif |
| } |
| |
| for(i = 0;i < nb_net_clients; i++) { |
| if (net_client_parse(net_clients[i]) < 0) |
| exit(1); |
| } |
| net_client_check(); |
| |
| #ifdef TARGET_I386 |
| /* XXX: this should be moved in the PC machine instantiation code */ |
| if (net_boot != 0) { |
| int netroms = 0; |
| for (i = 0; i < nb_nics && i < 4; i++) { |
| const char *model = nd_table[i].model; |
| char buf[1024]; |
| char *filename; |
| if (net_boot & (1 << i)) { |
| if (model == NULL) |
| model = "ne2k_pci"; |
| snprintf(buf, sizeof(buf), "pxe-%s.bin", model); |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, buf); |
| if (filename && get_image_size(filename) > 0) { |
| if (nb_option_roms >= MAX_OPTION_ROMS) { |
| fprintf(stderr, "Too many option ROMs\n"); |
| exit(1); |
| } |
| option_rom[nb_option_roms] = qemu_strdup(buf); |
| nb_option_roms++; |
| netroms++; |
| } |
| if (filename) { |
| qemu_free(filename); |
| } |
| } |
| } |
| if (netroms == 0) { |
| fprintf(stderr, "No valid PXE rom found for network device\n"); |
| exit(1); |
| } |
| } |
| #endif |
| |
| /* init the bluetooth world */ |
| for (i = 0; i < nb_bt_opts; i++) |
| if (bt_parse(bt_opts[i])) |
| exit(1); |
| |
| /* init the memory */ |
| if (ram_size == 0) |
| ram_size = DEFAULT_RAM_SIZE * 1024 * 1024; |
| |
| #ifdef CONFIG_KQEMU |
| /* FIXME: This is a nasty hack because kqemu can't cope with dynamic |
| guest ram allocation. It needs to go away. */ |
| if (kqemu_allowed) { |
| kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024; |
| kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size); |
| if (!kqemu_phys_ram_base) { |
| fprintf(stderr, "Could not allocate physical memory\n"); |
| exit(1); |
| } |
| } |
| #endif |
| |
| /* init the dynamic translator */ |
| cpu_exec_init_all(tb_size * 1024 * 1024); |
| |
| bdrv_init(); |
| |
| /* we always create the cdrom drive, even if no disk is there */ |
| |
| if (nb_drives_opt < MAX_DRIVES) |
| drive_add(NULL, CDROM_ALIAS); |
| |
| /* we always create at least one floppy */ |
| |
| if (nb_drives_opt < MAX_DRIVES) |
| drive_add(NULL, FD_ALIAS, 0); |
| |
| /* we always create one sd slot, even if no card is in it */ |
| |
| if (nb_drives_opt < MAX_DRIVES) |
| drive_add(NULL, SD_ALIAS); |
| |
| /* open the virtual block devices */ |
| |
| for(i = 0; i < nb_drives_opt; i++) |
| if (drive_init(&drives_opt[i], snapshot, machine) == -1) |
| exit(1); |
| |
| register_savevm("timer", 0, 2, timer_save, timer_load, NULL); |
| register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL); |
| |
| #ifndef _WIN32 |
| /* must be after terminal init, SDL library changes signal handlers */ |
| sighandler_setup(); |
| #endif |
| |
| /* Maintain compatibility with multiple stdio monitors */ |
| if (!strcmp(monitor_device,"stdio")) { |
| for (i = 0; i < MAX_SERIAL_PORTS; i++) { |
| const char *devname = serial_devices[i]; |
| if (devname && !strcmp(devname,"mon:stdio")) { |
| monitor_device = NULL; |
| break; |
| } else if (devname && !strcmp(devname,"stdio")) { |
| monitor_device = NULL; |
| serial_devices[i] = "mon:stdio"; |
| break; |
| } |
| } |
| } |
| |
| if (nb_numa_nodes > 0) { |
| int i; |
| |
| if (nb_numa_nodes > smp_cpus) { |
| nb_numa_nodes = smp_cpus; |
| } |
| |
| /* If no memory size if given for any node, assume the default case |
| * and distribute the available memory equally across all nodes |
| */ |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (node_mem[i] != 0) |
| break; |
| } |
| if (i == nb_numa_nodes) { |
| uint64_t usedmem = 0; |
| |
| /* On Linux, the each node's border has to be 8MB aligned, |
| * the final node gets the rest. |
| */ |
| for (i = 0; i < nb_numa_nodes - 1; i++) { |
| node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1); |
| usedmem += node_mem[i]; |
| } |
| node_mem[i] = ram_size - usedmem; |
| } |
| |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (node_cpumask[i] != 0) |
| break; |
| } |
| /* assigning the VCPUs round-robin is easier to implement, guest OSes |
| * must cope with this anyway, because there are BIOSes out there in |
| * real machines which also use this scheme. |
| */ |
| if (i == nb_numa_nodes) { |
| for (i = 0; i < smp_cpus; i++) { |
| node_cpumask[i % nb_numa_nodes] |= 1 << i; |
| } |
| } |
| } |
| |
| if (kvm_enabled()) { |
| int ret; |
| |
| ret = kvm_init(smp_cpus); |
| if (ret < 0) { |
| fprintf(stderr, "failed to initialize KVM\n"); |
| exit(1); |
| } |
| } |
| |
| if (monitor_device) { |
| monitor_hd = qemu_chr_open("monitor", monitor_device, NULL); |
| if (!monitor_hd) { |
| fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device); |
| exit(1); |
| } |
| } |
| |
| for(i = 0; i < MAX_SERIAL_PORTS; i++) { |
| const char *devname = serial_devices[i]; |
| if (devname && strcmp(devname, "none")) { |
| char label[32]; |
| snprintf(label, sizeof(label), "serial%d", i); |
| serial_hds[i] = qemu_chr_open(label, devname, NULL); |
| if (!serial_hds[i]) { |
| fprintf(stderr, "qemu: could not open serial device '%s'\n", |
| devname); |
| exit(1); |
| } |
| } |
| } |
| |
| for(i = 0; i < MAX_PARALLEL_PORTS; i++) { |
| const char *devname = parallel_devices[i]; |
| if (devname && strcmp(devname, "none")) { |
| char label[32]; |
| snprintf(label, sizeof(label), "parallel%d", i); |
| parallel_hds[i] = qemu_chr_open(label, devname, NULL); |
| if (!parallel_hds[i]) { |
| fprintf(stderr, "qemu: could not open parallel device '%s'\n", |
| devname); |
| exit(1); |
| } |
| } |
| } |
| |
| for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) { |
| const char *devname = virtio_consoles[i]; |
| if (devname && strcmp(devname, "none")) { |
| char label[32]; |
| snprintf(label, sizeof(label), "virtcon%d", i); |
| virtcon_hds[i] = qemu_chr_open(label, devname, NULL); |
| if (!virtcon_hds[i]) { |
| fprintf(stderr, "qemu: could not open virtio console '%s'\n", |
| devname); |
| exit(1); |
| } |
| } |
| } |
| |
| module_call_init(MODULE_INIT_DEVICE); |
| |
| machine->init(ram_size, boot_devices, |
| kernel_filename, kernel_cmdline, initrd_filename, cpu_model); |
| |
| |
| for (env = first_cpu; env != NULL; env = env->next_cpu) { |
| for (i = 0; i < nb_numa_nodes; i++) { |
| if (node_cpumask[i] & (1 << env->cpu_index)) { |
| env->numa_node = i; |
| } |
| } |
| } |
| |
| current_machine = machine; |
| |
| /* Set KVM's vcpu state to qemu's initial CPUState. */ |
| if (kvm_enabled()) { |
| int ret; |
| |
| ret = kvm_sync_vcpus(); |
| if (ret < 0) { |
| fprintf(stderr, "failed to initialize vcpus\n"); |
| exit(1); |
| } |
| } |
| |
| /* init USB devices */ |
| if (usb_enabled) { |
| for(i = 0; i < usb_devices_index; i++) { |
| if (usb_device_add(usb_devices[i], 0) < 0) { |
| fprintf(stderr, "Warning: could not add USB device %s\n", |
| usb_devices[i]); |
| } |
| } |
| } |
| |
| if (!display_state) |
| dumb_display_init(); |
| /* just use the first displaystate for the moment */ |
| ds = display_state; |
| |
| if (display_type == DT_DEFAULT) { |
| #if defined(CONFIG_SDL) || defined(CONFIG_COCOA) |
| display_type = DT_SDL; |
| #else |
| display_type = DT_VNC; |
| vnc_display = "localhost:0,to=99"; |
| show_vnc_port = 1; |
| #endif |
| } |
| |
| |
| switch (display_type) { |
| case DT_NOGRAPHIC: |
| break; |
| #if defined(CONFIG_CURSES) |
| case DT_CURSES: |
| curses_display_init(ds, full_screen); |
| break; |
| #endif |
| #if defined(CONFIG_SDL) |
| case DT_SDL: |
| sdl_display_init(ds, full_screen, no_frame); |
| break; |
| #elif defined(CONFIG_COCOA) |
| case DT_SDL: |
| cocoa_display_init(ds, full_screen); |
| break; |
| #endif |
| case DT_VNC: |
| vnc_display_init(ds); |
| if (vnc_display_open(ds, vnc_display) < 0) |
| exit(1); |
| |
| if (show_vnc_port) { |
| printf("VNC server running on `%s'\n", vnc_display_local_addr(ds)); |
| } |
| break; |
| default: |
| break; |
| } |
| dpy_resize(ds); |
| |
| dcl = ds->listeners; |
| while (dcl != NULL) { |
| if (dcl->dpy_refresh != NULL) { |
| ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds); |
| qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock)); |
| } |
| dcl = dcl->next; |
| } |
| |
| if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) { |
| nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL); |
| qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock)); |
| } |
| |
| text_consoles_set_display(display_state); |
| qemu_chr_initial_reset(); |
| |
| if (monitor_device && monitor_hd) |
| monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT); |
| |
| for(i = 0; i < MAX_SERIAL_PORTS; i++) { |
| const char *devname = serial_devices[i]; |
| if (devname && strcmp(devname, "none")) { |
| if (strstart(devname, "vc", 0)) |
| qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i); |
| } |
| } |
| |
| for(i = 0; i < MAX_PARALLEL_PORTS; i++) { |
| const char *devname = parallel_devices[i]; |
| if (devname && strcmp(devname, "none")) { |
| if (strstart(devname, "vc", 0)) |
| qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i); |
| } |
| } |
| |
| for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) { |
| const char *devname = virtio_consoles[i]; |
| if (virtcon_hds[i] && devname) { |
| if (strstart(devname, "vc", 0)) |
| qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i); |
| } |
| } |
| |
| if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) { |
| fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n", |
| gdbstub_dev); |
| exit(1); |
| } |
| |
| if (loadvm) |
| do_loadvm(cur_mon, loadvm); |
| |
| if (incoming) { |
| autostart = 0; /* fixme how to deal with -daemonize */ |
| qemu_start_incoming_migration(incoming); |
| } |
| |
| if (autostart) |
| vm_start(); |
| |
| #ifndef _WIN32 |
| if (daemonize) { |
| uint8_t status = 0; |
| ssize_t len; |
| |
| again1: |
| len = write(fds[1], &status, 1); |
| if (len == -1 && (errno == EINTR)) |
| goto again1; |
| |
| if (len != 1) |
| exit(1); |
| |
| chdir("/"); |
| TFR(fd = open("/dev/null", O_RDWR)); |
| if (fd == -1) |
| exit(1); |
| } |
| |
| if (run_as) { |
| pwd = getpwnam(run_as); |
| if (!pwd) { |
| fprintf(stderr, "User \"%s\" doesn't exist\n", run_as); |
| exit(1); |
| } |
| } |
| |
| if (chroot_dir) { |
| if (chroot(chroot_dir) < 0) { |
| fprintf(stderr, "chroot failed\n"); |
| exit(1); |
| } |
| chdir("/"); |
| } |
| |
| if (run_as) { |
| if (setgid(pwd->pw_gid) < 0) { |
| fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid); |
| exit(1); |
| } |
| if (setuid(pwd->pw_uid) < 0) { |
| fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid); |
| exit(1); |
| } |
| if (setuid(0) != -1) { |
| fprintf(stderr, "Dropping privileges failed\n"); |
| exit(1); |
| } |
| } |
| |
| if (daemonize) { |
| dup2(fd, 0); |
| dup2(fd, 1); |
| dup2(fd, 2); |
| |
| close(fd); |
| } |
| #endif |
| |
| main_loop(); |
| quit_timers(); |
| net_cleanup(); |
| |
| return 0; |
| } |