blob: 89442706c5ec092c4e8076e9a4fd6ad48b2e7da6 [file] [log] [blame]
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*
* Contains code that is used to capture video frames from a camera device
* on Linux. This code uses V4L2 API to work with camera devices, and requires
* Linux kernel version at least 2.5
*/
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/ioctl.h>
#include <linux/videodev2.h>
#include "qemu-common.h"
#include "android/utils/debug.h"
#include "android/utils/misc.h"
#include "android/utils/system.h"
#include "android/camera/camera-capture.h"
#include "android/camera/camera-format-converters.h"
#define D(...) VERBOSE_PRINT(camera,__VA_ARGS__)
#define W(...) VERBOSE_PRINT(camera,__VA_ARGS__)
#define E(...) VERBOSE_PRINT(camera,__VA_ARGS__)
#define D_ACTIVE VERBOSE_CHECK(camera)
/* the T(...) macro is used to dump traffic */
#define T_ACTIVE 0
#if T_ACTIVE
#define T(...) VERBOSE_PRINT(camera,__VA_ARGS__)
#else
#define T(...) ((void)0)
#endif
#define CLEAR(x) memset (&(x), 0, sizeof(x))
/* Describes a framebuffer. */
typedef struct CameraFrameBuffer {
/* Framebuffer data. */
uint8_t* data;
/* Framebuffer data size. */
size_t size;
} CameraFrameBuffer;
/* Defines type of the I/O used to obtain frames from the device. */
typedef enum CameraIoType {
/* Framebuffers are shared via memory mapping. */
CAMERA_IO_MEMMAP,
/* Framebuffers are available via user pointers. */
CAMERA_IO_USERPTR,
/* Framebuffers are to be read from the device. */
CAMERA_IO_DIRECT
} CameraIoType;
typedef struct LinuxCameraDevice LinuxCameraDevice;
/*
* Describes a connection to an actual camera device.
*/
struct LinuxCameraDevice {
/* Common header. */
CameraDevice header;
/* Camera device name. (default is /dev/video0) */
char* device_name;
/* Input channel. (default is 0) */
int input_channel;
/* Requested pixel format. */
uint32_t req_pixel_format;
/*
* Set by the framework after initializing camera connection.
*/
/* Handle to the opened camera device. */
int handle;
/* Device capabilities. */
struct v4l2_capability caps;
/* Actual pixel format reported by the device. */
struct v4l2_pix_format actual_pixel_format;
/* Defines type of the I/O to use to retrieve frames from the device. */
CameraIoType io_type;
/* Allocated framebuffers. */
struct CameraFrameBuffer* framebuffers;
/* Actual number of allocated framebuffers. */
int framebuffer_num;
};
/*******************************************************************************
* Helper routines
******************************************************************************/
/* IOCTL wrapper. */
static int
_xioctl(int fd, int request, void *arg) {
int r;
do {
r = ioctl(fd, request, arg);
} while (-1 == r && EINTR == errno);
return r;
}
/*******************************************************************************
* CameraFrameBuffer routines
******************************************************************************/
/* Frees array of framebuffers, depending on the I/O method the array has been
* initialized for.
* Note that this routine doesn't frees the array itself.
* Param:
* fb, num - Array data, and its size.
* io_type - Type of the I/O the array has been initialized for.
*/
static void
_free_framebuffers(CameraFrameBuffer* fb, int num, CameraIoType io_type)
{
if (fb != NULL) {
int n;
switch (io_type) {
case CAMERA_IO_MEMMAP:
/* Unmap framebuffers. */
for (n = 0; n < num; n++) {
if (fb[n].data != NULL) {
munmap(fb[n].data, fb[n].size);
fb[n].data = NULL;
fb[n].size = 0;
}
}
break;
case CAMERA_IO_USERPTR:
case CAMERA_IO_DIRECT:
/* Free framebuffers. */
for (n = 0; n < num; n++) {
if (fb[n].data != NULL) {
free(fb[n].data);
fb[n].data = NULL;
fb[n].size = 0;
}
}
break;
default:
E("Invalid I/O type %d", io_type);
break;
}
}
}
/*******************************************************************************
* CameraDevice routines
******************************************************************************/
/* Allocates an instance of LinuxCameraDevice structure.
* Return:
* Allocated instance of LinuxCameraDevice structure. Note that this routine
* also sets 'opaque' field in the 'header' structure to point back to the
* containing LinuxCameraDevice instance.
*/
static LinuxCameraDevice*
_camera_device_alloc(void)
{
LinuxCameraDevice* cd;
ANEW0(cd);
memset(cd, 0, sizeof(*cd));
cd->header.opaque = cd;
cd->handle = -1;
return cd;
}
/* Uninitializes and frees CameraDevice structure.
*/
static void
_camera_device_free(LinuxCameraDevice* lcd)
{
if (lcd != NULL) {
/* Closing handle will also disconnect from the driver. */
if (lcd->handle >= 0) {
close(lcd->handle);
}
if (lcd->device_name != NULL) {
free(lcd->device_name);
}
if (lcd->framebuffers != NULL) {
_free_framebuffers(lcd->framebuffers, lcd->framebuffer_num,
lcd->io_type);
free(lcd->framebuffers);
}
AFREE(lcd);
} else {
W("%s: No descriptor", __FUNCTION__);
}
}
/* Memory maps buffers and shares mapped memory with the device.
* Return:
* 0 Framebuffers have been mapped.
* -1 A critical error has ocurred.
* 1 Memory mapping is not available.
*/
static int
_camera_device_mmap_framebuffer(LinuxCameraDevice* cd)
{
struct v4l2_requestbuffers req;
CLEAR(req);
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_MMAP;
/* Request memory mapped buffers. Note that device can return less buffers
* than requested. */
if(_xioctl(cd->handle, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {
D("%s: %s does not support memory mapping",
__FUNCTION__, cd->device_name);
return 1;
} else {
E("%s: VIDIOC_REQBUFS has failed: %s",
__FUNCTION__, strerror(errno));
return -1;
}
}
/* Allocate framebuffer array. */
cd->framebuffers = calloc(req.count, sizeof(CameraFrameBuffer));
if (cd->framebuffers == NULL) {
E("%s: Not enough memory to allocate framebuffer array", __FUNCTION__);
return -1;
}
/* Map every framebuffer to the shared memory, and queue it
* with the device. */
for(cd->framebuffer_num = 0; cd->framebuffer_num < req.count;
cd->framebuffer_num++) {
/* Map framebuffer. */
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = cd->framebuffer_num;
if(_xioctl(cd->handle, VIDIOC_QUERYBUF, &buf) < 0) {
E("%s: VIDIOC_QUERYBUF has failed: %s",
__FUNCTION__, strerror(errno));
return -1;
}
cd->framebuffers[cd->framebuffer_num].size = buf.length;
cd->framebuffers[cd->framebuffer_num].data =
mmap(NULL, buf.length, PROT_READ | PROT_WRITE, MAP_SHARED,
cd->handle, buf.m.offset);
if (MAP_FAILED == cd->framebuffers[cd->framebuffer_num].data) {
E("%s: Memory mapping has failed: %s",
__FUNCTION__, strerror(errno));
return -1;
}
/* Queue the mapped buffer. */
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_MMAP;
buf.index = cd->framebuffer_num;
if (_xioctl(cd->handle, VIDIOC_QBUF, &buf) < 0) {
E("%s: VIDIOC_QBUF has failed: %s", __FUNCTION__, strerror(errno));
return -1;
}
}
cd->io_type = CAMERA_IO_MEMMAP;
return 0;
}
/* Allocates frame buffers and registers them with the device.
* Return:
* 0 Framebuffers have been mapped.
* -1 A critical error has ocurred.
* 1 Device doesn't support user pointers.
*/
static int
_camera_device_user_framebuffer(LinuxCameraDevice* cd)
{
struct v4l2_requestbuffers req;
CLEAR (req);
req.count = 4;
req.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
req.memory = V4L2_MEMORY_USERPTR;
/* Request user buffers. Note that device can return less buffers
* than requested. */
if(_xioctl(cd->handle, VIDIOC_REQBUFS, &req)) {
if (EINVAL == errno) {
D("%s: %s does not support user pointers",
__FUNCTION__, cd->device_name);
return 1;
} else {
E("%s: VIDIOC_REQBUFS has failed: %s",
__FUNCTION__, strerror(errno));
return -1;
}
}
/* Allocate framebuffer array. */
cd->framebuffers = calloc(req.count, sizeof(CameraFrameBuffer));
if (cd->framebuffers == NULL) {
E("%s: Not enough memory to allocate framebuffer array", __FUNCTION__);
return -1;
}
/* Allocate buffers, queueing them wit the device at the same time */
for(cd->framebuffer_num = 0; cd->framebuffer_num < req.count;
cd->framebuffer_num++) {
cd->framebuffers[cd->framebuffer_num].size =
cd->actual_pixel_format.sizeimage;
cd->framebuffers[cd->framebuffer_num].data =
malloc(cd->framebuffers[cd->framebuffer_num].size);
if (cd->framebuffers[cd->framebuffer_num].data == NULL) {
E("%s: Not enough memory to allocate framebuffer", __FUNCTION__);
return -1;
}
/* Queue the user buffer. */
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = V4L2_MEMORY_USERPTR;
buf.m.userptr = cd->framebuffers[cd->framebuffer_num].data;
buf.length = cd->framebuffers[cd->framebuffer_num].size;
if (_xioctl(cd->handle, VIDIOC_QBUF, &buf) < 0) {
E("%s: VIDIOC_QBUF has failed: %s", __FUNCTION__, strerror(errno));
return -1;
}
}
cd->io_type = CAMERA_IO_USERPTR;
return 0;
}
/* Allocate frame buffer for direct read from the device.
* Return:
* 0 Framebuffers have been mapped.
* -1 A critical error has ocurred.
* 1 Memory mapping is not available.
*/
static int
_camera_device_direct_framebuffer(LinuxCameraDevice* cd)
{
/* Allocate framebuffer array. */
cd->framebuffer_num = 1;
cd->framebuffers = malloc(sizeof(CameraFrameBuffer));
if (cd->framebuffers == NULL) {
E("%s: Not enough memory to allocate framebuffer array", __FUNCTION__);
return -1;
}
cd->framebuffers[0].size = cd->actual_pixel_format.sizeimage;
cd->framebuffers[0].data = malloc(cd->framebuffers[0].size);
if (cd->framebuffers[0].data == NULL) {
E("%s: Not enough memory to allocate framebuffer", __FUNCTION__);
return -1;
}
cd->io_type = CAMERA_IO_DIRECT;
return 0;
}
static int
_camera_device_open(LinuxCameraDevice* cd)
{
struct stat st;
if (stat(cd->device_name, &st)) {
E("%s: Cannot identify camera device '%s': %s",
__FUNCTION__, cd->device_name, strerror(errno));
return -1;
}
if (!S_ISCHR(st.st_mode)) {
E("%s: %s is not a device", __FUNCTION__, cd->device_name);
return -1;
}
/* Open handle to the device, and query device capabilities. */
cd->handle = open(cd->device_name, O_RDWR | O_NONBLOCK, 0);
if (cd->handle < 0) {
E("%s: Cannot open camera device '%s': %s\n",
__FUNCTION__, cd->device_name, strerror(errno));
return -1;
}
if (_xioctl(cd->handle, VIDIOC_QUERYCAP, &cd->caps) < 0) {
if (EINVAL == errno) {
E("%s: Camera '%s' is not a V4L2 device",
__FUNCTION__, cd->device_name);
close(cd->handle);
cd->handle = -1;
return -1;
} else {
E("%s: Unable to query camera '%s' capabilities",
__FUNCTION__, cd->device_name);
close(cd->handle);
cd->handle = -1;
return -1;
}
}
/* Make sure that camera supports minimal requirements. */
if (!(cd->caps.capabilities & V4L2_CAP_VIDEO_CAPTURE)) {
E("%s: Camera '%s' is not a video capture device",
__FUNCTION__, cd->device_name);
close(cd->handle);
cd->handle = -1;
return -1;
}
return 0;
}
/*******************************************************************************
* CameraDevice API
******************************************************************************/
CameraDevice*
camera_device_open(const char* name,
int inp_channel,
uint32_t pixel_format)
{
struct v4l2_cropcap cropcap;
struct v4l2_crop crop;
struct v4l2_format fmt;
LinuxCameraDevice* cd;
/* Allocate and initialize the descriptor. */
cd = _camera_device_alloc();
cd->device_name = name != NULL ? ASTRDUP(name) : ASTRDUP("/dev/video0");
cd->input_channel = inp_channel;
cd->req_pixel_format = pixel_format;
/* Open the device. */
if (_camera_device_open(cd)) {
_camera_device_free(cd);
return NULL;
}
/* Select video input, video standard and tune here. */
cropcap.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
_xioctl(cd->handle, VIDIOC_CROPCAP, &cropcap);
crop.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
crop.c = cropcap.defrect; /* reset to default */
_xioctl (cd->handle, VIDIOC_S_CROP, &crop);
/* Image settings. */
CLEAR(fmt);
fmt.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
fmt.fmt.pix.width = 0;
fmt.fmt.pix.height = 0;
fmt.fmt.pix.pixelformat = 0;
if (_xioctl(cd->handle, VIDIOC_G_FMT, &fmt) < 0) {
E("%s: Unable to obtain pixel format", __FUNCTION__);
_camera_device_free(cd);
return NULL;
}
if (_xioctl(cd->handle, VIDIOC_S_FMT, &fmt) < 0) {
char fmt_str[5];
memcpy(fmt_str, &cd->req_pixel_format, 4);
fmt_str[4] = '\0';
E("%s: Camera '%s' does not support requested pixel format '%s'",
__FUNCTION__, cd->device_name, fmt_str);
_camera_device_free(cd);
return NULL;
}
/* VIDIOC_S_FMT has changed some properties of the structure, adjusting them
* to the actual values, supported by the device. */
memcpy(&cd->actual_pixel_format, &fmt.fmt.pix,
sizeof(cd->actual_pixel_format));
{
char fmt_str[5];
memcpy(fmt_str, &cd->req_pixel_format, 4);
fmt_str[4] = '\0';
D("%s: Camera '%s' uses pixel format '%s'",
__FUNCTION__, cd->device_name, fmt_str);
}
return &cd->header;
}
int
camera_device_start_capturing(CameraDevice* ccd)
{
LinuxCameraDevice* cd;
/* Sanity checks. */
if (ccd == NULL || ccd->opaque == NULL) {
E("%s: Invalid camera device descriptor", __FUNCTION__);
return -1;
}
cd = (LinuxCameraDevice*)ccd->opaque;
/*
* Lets initialize frame buffers, and see what kind of I/O we're going to
* use to retrieve frames.
*/
/* First, lets see if we can do mapped I/O (as most performant one). */
int r = _camera_device_mmap_framebuffer(cd);
if (r < 0) {
/* Some critical error has ocurred. Bail out. */
return -1;
} else if (r > 0) {
/* Device doesn't support memory mapping. Retrieve to the next performant
* one: preallocated user buffers. */
r = _camera_device_user_framebuffer(cd);
if (r < 0) {
/* Some critical error has ocurred. Bail out. */
return -1;
} else if (r > 0) {
/* The only thing left for us is direct reading from the device. */
if (!(cd->caps.capabilities & V4L2_CAP_READWRITE)) {
E("%s: Device '%s' doesn't support direct read",
__FUNCTION__, cd->device_name);
return -1;
}
r = _camera_device_direct_framebuffer(cd);
if (r != 0) {
/* Any error at this point is a critical one. */
return -1;
}
}
}
/* Start capturing from the device. */
if (cd->io_type != CAMERA_IO_DIRECT) {
enum v4l2_buf_type type;
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (_xioctl (cd->handle, VIDIOC_STREAMON, &type) < 0) {
E("%s: VIDIOC_STREAMON has failed: %s",
__FUNCTION__, strerror(errno));
return -1;
}
}
return 0;
}
int
camera_device_stop_capturing(CameraDevice* ccd)
{
enum v4l2_buf_type type;
LinuxCameraDevice* cd;
/* Sanity checks. */
if (ccd == NULL || ccd->opaque == NULL) {
E("%s: Invalid camera device descriptor", __FUNCTION__);
return -1;
}
cd = (LinuxCameraDevice*)ccd->opaque;
switch (cd->io_type) {
case CAMERA_IO_DIRECT:
/* Nothing to do. */
break;
case CAMERA_IO_MEMMAP:
case CAMERA_IO_USERPTR:
type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
if (_xioctl(cd->handle, VIDIOC_STREAMOFF, &type) < 0) {
E("%s: VIDIOC_STREAMOFF has failed: %s",
__FUNCTION__, strerror(errno));
return -1;
}
break;
default:
E("%s: Unknown I/O method: %d", __FUNCTION__, cd->io_type);
return -1;
}
if (cd->framebuffers != NULL) {
_free_framebuffers(cd->framebuffers, cd->framebuffer_num, cd->io_type);
free(cd->framebuffers);
cd->framebuffers = NULL;
cd->framebuffer_num = 0;
}
return 0;
}
int
camera_device_read_frame(CameraDevice* ccd, uint8_t* buff)
{
LinuxCameraDevice* cd;
/* Sanity checks. */
if (ccd == NULL || ccd->opaque == NULL) {
E("%s: Invalid camera device descriptor", __FUNCTION__);
return -1;
}
cd = (LinuxCameraDevice*)ccd->opaque;
if (cd->io_type == CAMERA_IO_DIRECT) {
/* Read directly from the device. */
size_t total_read_bytes = 0;
do {
int read_bytes =
read(cd->handle, buff + total_read_bytes,
cd->actual_pixel_format.sizeimage - total_read_bytes);
if (read_bytes < 0) {
switch (errno) {
case EIO:
case EAGAIN:
continue;
default:
E("%s: Unable to read from the device: %s",
__FUNCTION__, strerror(errno));
return -1;
}
}
total_read_bytes += read_bytes;
} while (total_read_bytes < cd->actual_pixel_format.sizeimage);
return 0;
} else {
/* Dequeue next buffer from the device. */
struct v4l2_buffer buf;
CLEAR(buf);
buf.type = V4L2_BUF_TYPE_VIDEO_CAPTURE;
buf.memory = cd->io_type == CAMERA_IO_MEMMAP ? V4L2_MEMORY_MMAP :
V4L2_MEMORY_USERPTR;
if (_xioctl(cd->handle, VIDIOC_DQBUF, &buf) < 0) {
switch (errno) {
case EAGAIN:
return 1;
case EIO:
/* Could ignore EIO, see spec. */
/* fall through */
default:
E("%s: VIDIOC_DQBUF has failed: %s",
__FUNCTION__, strerror(errno));
return 1;
}
}
/* Copy frame to the buffer. */
memcpy(buff, cd->framebuffers[buf.index].data,
cd->framebuffers[buf.index].size);
/* Requeue the buffer with the device. */
if (_xioctl(cd->handle, VIDIOC_QBUF, &buf) < 0) {
D("%s: VIDIOC_QBUF has failed: %s",
__FUNCTION__, strerror(errno));
}
return 0;
}
}
void
camera_device_close(CameraDevice* ccd)
{
LinuxCameraDevice* cd;
/* Sanity checks. */
if (ccd != NULL && ccd->opaque != NULL) {
cd = (LinuxCameraDevice*)ccd->opaque;
_camera_device_free(cd);
} else {
E("%s: Invalid camera device descriptor", __FUNCTION__);
}
}