| Jun Nakajima | 8679793 | 2011-01-29 14:24:24 -0800 | [diff] [blame] | 1 | /* |
| 2 | * QEMU MC146818 RTC emulation |
| 3 | * |
| 4 | * Copyright (c) 2003-2004 Fabrice Bellard |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to deal |
| 8 | * in the Software without restriction, including without limitation the rights |
| 9 | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| 10 | * copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in |
| 14 | * all copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| 19 | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| 22 | * THE SOFTWARE. |
| 23 | */ |
| 24 | #include "hw.h" |
| 25 | #include "qemu-timer.h" |
| 26 | #include "sysemu.h" |
| 27 | #include "pc.h" |
| 28 | #include "isa.h" |
| 29 | //#include "hpet_emul.h" |
| 30 | |
| 31 | //#define DEBUG_CMOS |
| 32 | |
| 33 | #define RTC_SECONDS 0 |
| 34 | #define RTC_SECONDS_ALARM 1 |
| 35 | #define RTC_MINUTES 2 |
| 36 | #define RTC_MINUTES_ALARM 3 |
| 37 | #define RTC_HOURS 4 |
| 38 | #define RTC_HOURS_ALARM 5 |
| 39 | #define RTC_ALARM_DONT_CARE 0xC0 |
| 40 | |
| 41 | #define RTC_DAY_OF_WEEK 6 |
| 42 | #define RTC_DAY_OF_MONTH 7 |
| 43 | #define RTC_MONTH 8 |
| 44 | #define RTC_YEAR 9 |
| 45 | |
| 46 | #define RTC_REG_A 10 |
| 47 | #define RTC_REG_B 11 |
| 48 | #define RTC_REG_C 12 |
| 49 | #define RTC_REG_D 13 |
| 50 | |
| 51 | #define REG_A_UIP 0x80 |
| 52 | |
| 53 | #define REG_B_SET 0x80 |
| 54 | #define REG_B_PIE 0x40 |
| 55 | #define REG_B_AIE 0x20 |
| 56 | #define REG_B_UIE 0x10 |
| 57 | #define REG_B_SQWE 0x08 |
| 58 | #define REG_B_DM 0x04 |
| 59 | |
| 60 | #define REG_C_UF 0x10 |
| 61 | #define REG_C_IRQF 0x80 |
| 62 | #define REG_C_PF 0x40 |
| 63 | #define REG_C_AF 0x20 |
| 64 | |
| 65 | struct RTCState { |
| 66 | uint8_t cmos_data[128]; |
| 67 | uint8_t cmos_index; |
| 68 | struct tm current_tm; |
| 69 | int base_year; |
| 70 | qemu_irq irq; |
| 71 | qemu_irq sqw_irq; |
| 72 | int it_shift; |
| 73 | /* periodic timer */ |
| 74 | QEMUTimer *periodic_timer; |
| 75 | int64_t next_periodic_time; |
| 76 | /* second update */ |
| 77 | int64_t next_second_time; |
| 78 | #ifdef TARGET_I386 |
| 79 | uint32_t irq_coalesced; |
| 80 | uint32_t period; |
| 81 | QEMUTimer *coalesced_timer; |
| 82 | #endif |
| 83 | QEMUTimer *second_timer; |
| 84 | QEMUTimer *second_timer2; |
| 85 | }; |
| 86 | |
| 87 | static void rtc_irq_raise(qemu_irq irq) { |
| 88 | /* When HPET is operating in legacy mode, RTC interrupts are disabled |
| 89 | * We block qemu_irq_raise, but not qemu_irq_lower, in case legacy |
| 90 | * mode is established while interrupt is raised. We want it to |
| 91 | * be lowered in any case |
| 92 | */ |
| 93 | #ifndef CONFIG_ANDROID |
| 94 | #if defined TARGET_I386 || defined TARGET_X86_64 |
| 95 | if (!hpet_in_legacy_mode()) |
| 96 | #endif |
| 97 | #endif |
| 98 | qemu_irq_raise(irq); |
| 99 | } |
| 100 | |
| 101 | static void rtc_set_time(RTCState *s); |
| 102 | static void rtc_copy_date(RTCState *s); |
| 103 | |
| 104 | #ifdef TARGET_I386 |
| 105 | static void rtc_coalesced_timer_update(RTCState *s) |
| 106 | { |
| 107 | if (s->irq_coalesced == 0) { |
| 108 | qemu_del_timer(s->coalesced_timer); |
| 109 | } else { |
| 110 | /* divide each RTC interval to 2 - 8 smaller intervals */ |
| 111 | int c = MIN(s->irq_coalesced, 7) + 1; |
| 112 | int64_t next_clock = qemu_get_clock(vm_clock) + |
| 113 | muldiv64(s->period / c, get_ticks_per_sec(), 32768); |
| 114 | qemu_mod_timer(s->coalesced_timer, next_clock); |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | static void rtc_coalesced_timer(void *opaque) |
| 119 | { |
| 120 | RTCState *s = opaque; |
| 121 | |
| 122 | if (s->irq_coalesced != 0) { |
| 123 | apic_reset_irq_delivered(); |
| 124 | s->cmos_data[RTC_REG_C] |= 0xc0; |
| 125 | rtc_irq_raise(s->irq); |
| 126 | if (apic_get_irq_delivered()) { |
| 127 | s->irq_coalesced--; |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | rtc_coalesced_timer_update(s); |
| 132 | } |
| 133 | #endif |
| 134 | |
| 135 | static void rtc_timer_update(RTCState *s, int64_t current_time) |
| 136 | { |
| 137 | int period_code, period; |
| 138 | int64_t cur_clock, next_irq_clock; |
| 139 | int enable_pie; |
| 140 | |
| 141 | period_code = s->cmos_data[RTC_REG_A] & 0x0f; |
| 142 | #ifndef CONFIG_ANDROID |
| 143 | #if defined TARGET_I386 || defined TARGET_X86_64 |
| 144 | /* disable periodic timer if hpet is in legacy mode, since interrupts are |
| 145 | * disabled anyway. |
| 146 | */ |
| 147 | enable_pie = !hpet_in_legacy_mode(); |
| 148 | #else |
| 149 | enable_pie = 1; |
| 150 | #endif |
| 151 | #endif |
| 152 | enable_pie = 1; |
| 153 | |
| 154 | if (period_code != 0 |
| 155 | && (((s->cmos_data[RTC_REG_B] & REG_B_PIE) && enable_pie) |
| 156 | || ((s->cmos_data[RTC_REG_B] & REG_B_SQWE) && s->sqw_irq))) { |
| 157 | if (period_code <= 2) |
| 158 | period_code += 7; |
| 159 | /* period in 32 Khz cycles */ |
| 160 | period = 1 << (period_code - 1); |
| 161 | #ifdef TARGET_I386 |
| 162 | if(period != s->period) |
| 163 | s->irq_coalesced = (s->irq_coalesced * s->period) / period; |
| 164 | s->period = period; |
| 165 | #endif |
| 166 | /* compute 32 khz clock */ |
| 167 | cur_clock = muldiv64(current_time, 32768, get_ticks_per_sec()); |
| 168 | next_irq_clock = (cur_clock & ~(period - 1)) + period; |
| 169 | s->next_periodic_time = muldiv64(next_irq_clock, get_ticks_per_sec(), 32768) + 1; |
| 170 | qemu_mod_timer(s->periodic_timer, s->next_periodic_time); |
| 171 | } else { |
| 172 | #ifdef TARGET_I386 |
| 173 | s->irq_coalesced = 0; |
| 174 | #endif |
| 175 | qemu_del_timer(s->periodic_timer); |
| 176 | } |
| 177 | } |
| 178 | |
| 179 | static void rtc_periodic_timer(void *opaque) |
| 180 | { |
| 181 | RTCState *s = opaque; |
| 182 | |
| 183 | rtc_timer_update(s, s->next_periodic_time); |
| 184 | if (s->cmos_data[RTC_REG_B] & REG_B_PIE) { |
| 185 | s->cmos_data[RTC_REG_C] |= 0xc0; |
| 186 | #ifdef TARGET_I386 |
| 187 | if(rtc_td_hack) { |
| 188 | apic_reset_irq_delivered(); |
| 189 | rtc_irq_raise(s->irq); |
| 190 | if (!apic_get_irq_delivered()) { |
| 191 | s->irq_coalesced++; |
| 192 | rtc_coalesced_timer_update(s); |
| 193 | } |
| 194 | } else |
| 195 | #endif |
| 196 | rtc_irq_raise(s->irq); |
| 197 | } |
| 198 | if (s->cmos_data[RTC_REG_B] & REG_B_SQWE) { |
| 199 | /* Not square wave at all but we don't want 2048Hz interrupts! |
| 200 | Must be seen as a pulse. */ |
| 201 | qemu_irq_raise(s->sqw_irq); |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data) |
| 206 | { |
| 207 | RTCState *s = opaque; |
| 208 | |
| 209 | if ((addr & 1) == 0) { |
| 210 | s->cmos_index = data & 0x7f; |
| 211 | } else { |
| 212 | #ifdef DEBUG_CMOS |
| 213 | printf("cmos: write index=0x%02x val=0x%02x\n", |
| 214 | s->cmos_index, data); |
| 215 | #endif |
| 216 | switch(s->cmos_index) { |
| 217 | case RTC_SECONDS_ALARM: |
| 218 | case RTC_MINUTES_ALARM: |
| 219 | case RTC_HOURS_ALARM: |
| 220 | /* XXX: not supported */ |
| 221 | s->cmos_data[s->cmos_index] = data; |
| 222 | break; |
| 223 | case RTC_SECONDS: |
| 224 | case RTC_MINUTES: |
| 225 | case RTC_HOURS: |
| 226 | case RTC_DAY_OF_WEEK: |
| 227 | case RTC_DAY_OF_MONTH: |
| 228 | case RTC_MONTH: |
| 229 | case RTC_YEAR: |
| 230 | s->cmos_data[s->cmos_index] = data; |
| 231 | /* if in set mode, do not update the time */ |
| 232 | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| 233 | rtc_set_time(s); |
| 234 | } |
| 235 | break; |
| 236 | case RTC_REG_A: |
| 237 | /* UIP bit is read only */ |
| 238 | s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) | |
| 239 | (s->cmos_data[RTC_REG_A] & REG_A_UIP); |
| 240 | rtc_timer_update(s, qemu_get_clock(vm_clock)); |
| 241 | break; |
| 242 | case RTC_REG_B: |
| 243 | if (data & REG_B_SET) { |
| 244 | /* set mode: reset UIP mode */ |
| 245 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| 246 | data &= ~REG_B_UIE; |
| 247 | } else { |
| 248 | /* if disabling set mode, update the time */ |
| 249 | if (s->cmos_data[RTC_REG_B] & REG_B_SET) { |
| 250 | rtc_set_time(s); |
| 251 | } |
| 252 | } |
| 253 | s->cmos_data[RTC_REG_B] = data; |
| 254 | rtc_timer_update(s, qemu_get_clock(vm_clock)); |
| 255 | break; |
| 256 | case RTC_REG_C: |
| 257 | case RTC_REG_D: |
| 258 | /* cannot write to them */ |
| 259 | break; |
| 260 | default: |
| 261 | s->cmos_data[s->cmos_index] = data; |
| 262 | break; |
| 263 | } |
| 264 | } |
| 265 | } |
| 266 | |
| 267 | static inline int rtc_to_bcd(RTCState *s, int a) |
| 268 | { |
| 269 | if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| 270 | return a; |
| 271 | } else { |
| 272 | return ((a / 10) << 4) | (a % 10); |
| 273 | } |
| 274 | } |
| 275 | |
| 276 | static inline int rtc_from_bcd(RTCState *s, int a) |
| 277 | { |
| 278 | if (s->cmos_data[RTC_REG_B] & REG_B_DM) { |
| 279 | return a; |
| 280 | } else { |
| 281 | return ((a >> 4) * 10) + (a & 0x0f); |
| 282 | } |
| 283 | } |
| 284 | |
| 285 | static void rtc_set_time(RTCState *s) |
| 286 | { |
| 287 | struct tm *tm = &s->current_tm; |
| 288 | |
| 289 | tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]); |
| 290 | tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]); |
| 291 | tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f); |
| 292 | if (!(s->cmos_data[RTC_REG_B] & 0x02) && |
| 293 | (s->cmos_data[RTC_HOURS] & 0x80)) { |
| 294 | tm->tm_hour += 12; |
| 295 | } |
| 296 | tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1; |
| 297 | tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]); |
| 298 | tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1; |
| 299 | tm->tm_year = rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year - 1900; |
| 300 | } |
| 301 | |
| 302 | static void rtc_copy_date(RTCState *s) |
| 303 | { |
| 304 | const struct tm *tm = &s->current_tm; |
| 305 | int year; |
| 306 | |
| 307 | s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec); |
| 308 | s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min); |
| 309 | if (s->cmos_data[RTC_REG_B] & 0x02) { |
| 310 | /* 24 hour format */ |
| 311 | s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour); |
| 312 | } else { |
| 313 | /* 12 hour format */ |
| 314 | s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour % 12); |
| 315 | if (tm->tm_hour >= 12) |
| 316 | s->cmos_data[RTC_HOURS] |= 0x80; |
| 317 | } |
| 318 | s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1); |
| 319 | s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday); |
| 320 | s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1); |
| 321 | year = (tm->tm_year - s->base_year) % 100; |
| 322 | if (year < 0) |
| 323 | year += 100; |
| 324 | s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year); |
| 325 | } |
| 326 | |
| 327 | /* month is between 0 and 11. */ |
| 328 | static int get_days_in_month(int month, int year) |
| 329 | { |
| 330 | static const int days_tab[12] = { |
| 331 | 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 |
| 332 | }; |
| 333 | int d; |
| 334 | if ((unsigned )month >= 12) |
| 335 | return 31; |
| 336 | d = days_tab[month]; |
| 337 | if (month == 1) { |
| 338 | if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0)) |
| 339 | d++; |
| 340 | } |
| 341 | return d; |
| 342 | } |
| 343 | |
| 344 | /* update 'tm' to the next second */ |
| 345 | static void rtc_next_second(struct tm *tm) |
| 346 | { |
| 347 | int days_in_month; |
| 348 | |
| 349 | tm->tm_sec++; |
| 350 | if ((unsigned)tm->tm_sec >= 60) { |
| 351 | tm->tm_sec = 0; |
| 352 | tm->tm_min++; |
| 353 | if ((unsigned)tm->tm_min >= 60) { |
| 354 | tm->tm_min = 0; |
| 355 | tm->tm_hour++; |
| 356 | if ((unsigned)tm->tm_hour >= 24) { |
| 357 | tm->tm_hour = 0; |
| 358 | /* next day */ |
| 359 | tm->tm_wday++; |
| 360 | if ((unsigned)tm->tm_wday >= 7) |
| 361 | tm->tm_wday = 0; |
| 362 | days_in_month = get_days_in_month(tm->tm_mon, |
| 363 | tm->tm_year + 1900); |
| 364 | tm->tm_mday++; |
| 365 | if (tm->tm_mday < 1) { |
| 366 | tm->tm_mday = 1; |
| 367 | } else if (tm->tm_mday > days_in_month) { |
| 368 | tm->tm_mday = 1; |
| 369 | tm->tm_mon++; |
| 370 | if (tm->tm_mon >= 12) { |
| 371 | tm->tm_mon = 0; |
| 372 | tm->tm_year++; |
| 373 | } |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | } |
| 379 | |
| 380 | |
| 381 | static void rtc_update_second(void *opaque) |
| 382 | { |
| 383 | RTCState *s = opaque; |
| 384 | int64_t delay; |
| 385 | |
| 386 | /* if the oscillator is not in normal operation, we do not update */ |
| 387 | if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) { |
| 388 | s->next_second_time += get_ticks_per_sec(); |
| 389 | qemu_mod_timer(s->second_timer, s->next_second_time); |
| 390 | } else { |
| 391 | rtc_next_second(&s->current_tm); |
| 392 | |
| 393 | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| 394 | /* update in progress bit */ |
| 395 | s->cmos_data[RTC_REG_A] |= REG_A_UIP; |
| 396 | } |
| 397 | /* should be 244 us = 8 / 32768 seconds, but currently the |
| 398 | timers do not have the necessary resolution. */ |
| 399 | delay = (get_ticks_per_sec() * 1) / 100; |
| 400 | if (delay < 1) |
| 401 | delay = 1; |
| 402 | qemu_mod_timer(s->second_timer2, |
| 403 | s->next_second_time + delay); |
| 404 | } |
| 405 | } |
| 406 | |
| 407 | static void rtc_update_second2(void *opaque) |
| 408 | { |
| 409 | RTCState *s = opaque; |
| 410 | |
| 411 | if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) { |
| 412 | rtc_copy_date(s); |
| 413 | } |
| 414 | |
| 415 | /* check alarm */ |
| 416 | if (s->cmos_data[RTC_REG_B] & REG_B_AIE) { |
| 417 | if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 || |
| 418 | s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) && |
| 419 | ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 || |
| 420 | s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) && |
| 421 | ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 || |
| 422 | s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) { |
| 423 | |
| 424 | s->cmos_data[RTC_REG_C] |= 0xa0; |
| 425 | rtc_irq_raise(s->irq); |
| 426 | } |
| 427 | } |
| 428 | |
| 429 | /* update ended interrupt */ |
| 430 | if (s->cmos_data[RTC_REG_B] & REG_B_UIE) { |
| 431 | s->cmos_data[RTC_REG_C] |= 0x90; |
| 432 | rtc_irq_raise(s->irq); |
| 433 | } |
| 434 | |
| 435 | /* clear update in progress bit */ |
| 436 | s->cmos_data[RTC_REG_A] &= ~REG_A_UIP; |
| 437 | |
| 438 | s->next_second_time += get_ticks_per_sec(); |
| 439 | qemu_mod_timer(s->second_timer, s->next_second_time); |
| 440 | } |
| 441 | |
| 442 | static uint32_t cmos_ioport_read(void *opaque, uint32_t addr) |
| 443 | { |
| 444 | RTCState *s = opaque; |
| 445 | int ret; |
| 446 | if ((addr & 1) == 0) { |
| 447 | return 0xff; |
| 448 | } else { |
| 449 | switch(s->cmos_index) { |
| 450 | case RTC_SECONDS: |
| 451 | case RTC_MINUTES: |
| 452 | case RTC_HOURS: |
| 453 | case RTC_DAY_OF_WEEK: |
| 454 | case RTC_DAY_OF_MONTH: |
| 455 | case RTC_MONTH: |
| 456 | case RTC_YEAR: |
| 457 | ret = s->cmos_data[s->cmos_index]; |
| 458 | break; |
| 459 | case RTC_REG_A: |
| 460 | ret = s->cmos_data[s->cmos_index]; |
| 461 | break; |
| 462 | case RTC_REG_C: |
| 463 | ret = s->cmos_data[s->cmos_index]; |
| 464 | qemu_irq_lower(s->irq); |
| 465 | s->cmos_data[RTC_REG_C] = 0x00; |
| 466 | break; |
| 467 | default: |
| 468 | ret = s->cmos_data[s->cmos_index]; |
| 469 | break; |
| 470 | } |
| 471 | #ifdef DEBUG_CMOS |
| 472 | printf("cmos: read index=0x%02x val=0x%02x\n", |
| 473 | s->cmos_index, ret); |
| 474 | #endif |
| 475 | return ret; |
| 476 | } |
| 477 | } |
| 478 | |
| 479 | void rtc_set_memory(RTCState *s, int addr, int val) |
| 480 | { |
| 481 | if (addr >= 0 && addr <= 127) |
| 482 | s->cmos_data[addr] = val; |
| 483 | } |
| 484 | |
| 485 | void rtc_set_date(RTCState *s, const struct tm *tm) |
| 486 | { |
| 487 | s->current_tm = *tm; |
| 488 | rtc_copy_date(s); |
| 489 | } |
| 490 | |
| 491 | /* PC cmos mappings */ |
| 492 | #define REG_IBM_CENTURY_BYTE 0x32 |
| 493 | #define REG_IBM_PS2_CENTURY_BYTE 0x37 |
| 494 | |
| 495 | static void rtc_set_date_from_host(RTCState *s) |
| 496 | { |
| 497 | struct tm tm; |
| 498 | int val; |
| 499 | |
| 500 | /* set the CMOS date */ |
| 501 | qemu_get_timedate(&tm, 0); |
| 502 | rtc_set_date(s, &tm); |
| 503 | |
| 504 | val = rtc_to_bcd(s, (tm.tm_year / 100) + 19); |
| 505 | rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val); |
| 506 | rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val); |
| 507 | } |
| 508 | |
| 509 | static void rtc_save(QEMUFile *f, void *opaque) |
| 510 | { |
| 511 | RTCState *s = opaque; |
| 512 | |
| 513 | qemu_put_buffer(f, s->cmos_data, 128); |
| 514 | qemu_put_8s(f, &s->cmos_index); |
| 515 | |
| 516 | qemu_put_be32(f, s->current_tm.tm_sec); |
| 517 | qemu_put_be32(f, s->current_tm.tm_min); |
| 518 | qemu_put_be32(f, s->current_tm.tm_hour); |
| 519 | qemu_put_be32(f, s->current_tm.tm_wday); |
| 520 | qemu_put_be32(f, s->current_tm.tm_mday); |
| 521 | qemu_put_be32(f, s->current_tm.tm_mon); |
| 522 | qemu_put_be32(f, s->current_tm.tm_year); |
| 523 | |
| 524 | qemu_put_timer(f, s->periodic_timer); |
| 525 | qemu_put_be64(f, s->next_periodic_time); |
| 526 | |
| 527 | qemu_put_be64(f, s->next_second_time); |
| 528 | qemu_put_timer(f, s->second_timer); |
| 529 | qemu_put_timer(f, s->second_timer2); |
| 530 | } |
| 531 | |
| 532 | static int rtc_load(QEMUFile *f, void *opaque, int version_id) |
| 533 | { |
| 534 | RTCState *s = opaque; |
| 535 | |
| 536 | if (version_id != 1) |
| 537 | return -EINVAL; |
| 538 | |
| 539 | qemu_get_buffer(f, s->cmos_data, 128); |
| 540 | qemu_get_8s(f, &s->cmos_index); |
| 541 | |
| 542 | s->current_tm.tm_sec=qemu_get_be32(f); |
| 543 | s->current_tm.tm_min=qemu_get_be32(f); |
| 544 | s->current_tm.tm_hour=qemu_get_be32(f); |
| 545 | s->current_tm.tm_wday=qemu_get_be32(f); |
| 546 | s->current_tm.tm_mday=qemu_get_be32(f); |
| 547 | s->current_tm.tm_mon=qemu_get_be32(f); |
| 548 | s->current_tm.tm_year=qemu_get_be32(f); |
| 549 | |
| 550 | qemu_get_timer(f, s->periodic_timer); |
| 551 | s->next_periodic_time=qemu_get_be64(f); |
| 552 | |
| 553 | s->next_second_time=qemu_get_be64(f); |
| 554 | qemu_get_timer(f, s->second_timer); |
| 555 | qemu_get_timer(f, s->second_timer2); |
| 556 | return 0; |
| 557 | } |
| 558 | |
| 559 | #ifdef TARGET_I386 |
| 560 | static void rtc_save_td(QEMUFile *f, void *opaque) |
| 561 | { |
| 562 | RTCState *s = opaque; |
| 563 | |
| 564 | qemu_put_be32(f, s->irq_coalesced); |
| 565 | qemu_put_be32(f, s->period); |
| 566 | } |
| 567 | |
| 568 | static int rtc_load_td(QEMUFile *f, void *opaque, int version_id) |
| 569 | { |
| 570 | RTCState *s = opaque; |
| 571 | |
| 572 | if (version_id != 1) |
| 573 | return -EINVAL; |
| 574 | |
| 575 | s->irq_coalesced = qemu_get_be32(f); |
| 576 | s->period = qemu_get_be32(f); |
| 577 | rtc_coalesced_timer_update(s); |
| 578 | return 0; |
| 579 | } |
| 580 | #endif |
| 581 | |
| 582 | static void rtc_reset(void *opaque) |
| 583 | { |
| 584 | RTCState *s = opaque; |
| 585 | |
| 586 | s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE); |
| 587 | s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF); |
| 588 | |
| 589 | qemu_irq_lower(s->irq); |
| 590 | |
| 591 | #ifdef TARGET_I386 |
| 592 | if (rtc_td_hack) |
| 593 | s->irq_coalesced = 0; |
| 594 | #endif |
| 595 | } |
| 596 | |
| 597 | RTCState *rtc_init_sqw(int base, qemu_irq irq, qemu_irq sqw_irq, int base_year) |
| 598 | { |
| 599 | RTCState *s; |
| 600 | |
| 601 | s = qemu_mallocz(sizeof(RTCState)); |
| 602 | |
| 603 | s->irq = irq; |
| 604 | s->sqw_irq = sqw_irq; |
| 605 | s->cmos_data[RTC_REG_A] = 0x26; |
| 606 | s->cmos_data[RTC_REG_B] = 0x02; |
| 607 | s->cmos_data[RTC_REG_C] = 0x00; |
| 608 | s->cmos_data[RTC_REG_D] = 0x80; |
| 609 | |
| 610 | s->base_year = base_year; |
| 611 | rtc_set_date_from_host(s); |
| 612 | |
| 613 | s->periodic_timer = qemu_new_timer(vm_clock, |
| 614 | rtc_periodic_timer, s); |
| 615 | #ifdef TARGET_I386 |
| 616 | if (rtc_td_hack) |
| 617 | s->coalesced_timer = qemu_new_timer(vm_clock, rtc_coalesced_timer, s); |
| 618 | #endif |
| 619 | s->second_timer = qemu_new_timer(vm_clock, |
| 620 | rtc_update_second, s); |
| 621 | s->second_timer2 = qemu_new_timer(vm_clock, |
| 622 | rtc_update_second2, s); |
| 623 | |
| 624 | s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100; |
| 625 | qemu_mod_timer(s->second_timer2, s->next_second_time); |
| 626 | |
| 627 | register_ioport_write(base, 2, 1, cmos_ioport_write, s); |
| 628 | register_ioport_read(base, 2, 1, cmos_ioport_read, s); |
| 629 | |
| 630 | register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); |
| 631 | #ifdef TARGET_I386 |
| 632 | if (rtc_td_hack) |
| 633 | register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s); |
| 634 | #endif |
| 635 | qemu_register_reset(rtc_reset, 0, s); |
| 636 | |
| 637 | return s; |
| 638 | } |
| 639 | |
| 640 | RTCState *rtc_init(int base, qemu_irq irq, int base_year) |
| 641 | { |
| 642 | return rtc_init_sqw(base, irq, NULL, base_year); |
| 643 | } |
| 644 | |
| 645 | /* Memory mapped interface */ |
| 646 | static uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr) |
| 647 | { |
| 648 | RTCState *s = opaque; |
| 649 | |
| 650 | return cmos_ioport_read(s, addr >> s->it_shift) & 0xFF; |
| 651 | } |
| 652 | |
| 653 | static void cmos_mm_writeb (void *opaque, |
| 654 | target_phys_addr_t addr, uint32_t value) |
| 655 | { |
| 656 | RTCState *s = opaque; |
| 657 | |
| 658 | cmos_ioport_write(s, addr >> s->it_shift, value & 0xFF); |
| 659 | } |
| 660 | |
| 661 | static uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr) |
| 662 | { |
| 663 | RTCState *s = opaque; |
| 664 | uint32_t val; |
| 665 | |
| 666 | val = cmos_ioport_read(s, addr >> s->it_shift) & 0xFFFF; |
| 667 | #ifdef TARGET_WORDS_BIGENDIAN |
| 668 | val = bswap16(val); |
| 669 | #endif |
| 670 | return val; |
| 671 | } |
| 672 | |
| 673 | static void cmos_mm_writew (void *opaque, |
| 674 | target_phys_addr_t addr, uint32_t value) |
| 675 | { |
| 676 | RTCState *s = opaque; |
| 677 | #ifdef TARGET_WORDS_BIGENDIAN |
| 678 | value = bswap16(value); |
| 679 | #endif |
| 680 | cmos_ioport_write(s, addr >> s->it_shift, value & 0xFFFF); |
| 681 | } |
| 682 | |
| 683 | static uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr) |
| 684 | { |
| 685 | RTCState *s = opaque; |
| 686 | uint32_t val; |
| 687 | |
| 688 | val = cmos_ioport_read(s, addr >> s->it_shift); |
| 689 | #ifdef TARGET_WORDS_BIGENDIAN |
| 690 | val = bswap32(val); |
| 691 | #endif |
| 692 | return val; |
| 693 | } |
| 694 | |
| 695 | static void cmos_mm_writel (void *opaque, |
| 696 | target_phys_addr_t addr, uint32_t value) |
| 697 | { |
| 698 | RTCState *s = opaque; |
| 699 | #ifdef TARGET_WORDS_BIGENDIAN |
| 700 | value = bswap32(value); |
| 701 | #endif |
| 702 | cmos_ioport_write(s, addr >> s->it_shift, value); |
| 703 | } |
| 704 | |
| 705 | static CPUReadMemoryFunc *rtc_mm_read[] = { |
| 706 | &cmos_mm_readb, |
| 707 | &cmos_mm_readw, |
| 708 | &cmos_mm_readl, |
| 709 | }; |
| 710 | |
| 711 | static CPUWriteMemoryFunc *rtc_mm_write[] = { |
| 712 | &cmos_mm_writeb, |
| 713 | &cmos_mm_writew, |
| 714 | &cmos_mm_writel, |
| 715 | }; |
| 716 | |
| 717 | RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq, |
| 718 | int base_year) |
| 719 | { |
| 720 | RTCState *s; |
| 721 | int io_memory; |
| 722 | |
| 723 | s = qemu_mallocz(sizeof(RTCState)); |
| 724 | |
| 725 | s->irq = irq; |
| 726 | s->cmos_data[RTC_REG_A] = 0x26; |
| 727 | s->cmos_data[RTC_REG_B] = 0x02; |
| 728 | s->cmos_data[RTC_REG_C] = 0x00; |
| 729 | s->cmos_data[RTC_REG_D] = 0x80; |
| 730 | |
| 731 | s->base_year = base_year; |
| 732 | rtc_set_date_from_host(s); |
| 733 | |
| 734 | s->periodic_timer = qemu_new_timer(vm_clock, |
| 735 | rtc_periodic_timer, s); |
| 736 | s->second_timer = qemu_new_timer(vm_clock, |
| 737 | rtc_update_second, s); |
| 738 | s->second_timer2 = qemu_new_timer(vm_clock, |
| 739 | rtc_update_second2, s); |
| 740 | |
| 741 | s->next_second_time = qemu_get_clock(vm_clock) + (get_ticks_per_sec() * 99) / 100; |
| 742 | qemu_mod_timer(s->second_timer2, s->next_second_time); |
| 743 | |
| 744 | io_memory = cpu_register_io_memory(rtc_mm_read, rtc_mm_write, s); |
| 745 | cpu_register_physical_memory(base, 2 << it_shift, io_memory); |
| 746 | |
| 747 | register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s); |
| 748 | #ifdef TARGET_I386 |
| 749 | if (rtc_td_hack) |
| 750 | register_savevm("mc146818rtc-td", base, 1, rtc_save_td, rtc_load_td, s); |
| 751 | #endif |
| 752 | qemu_register_reset(rtc_reset, 0, s); |
| 753 | return s; |
| 754 | } |