| The Android Open Source Project | 9877e2e | 2009-03-18 17:39:44 -0700 | [diff] [blame^] | 1 | /* Copyright (C) 2009 The Android Open Source Project |
| 2 | ** |
| 3 | ** This software is licensed under the terms of the GNU General Public |
| 4 | ** License version 2, as published by the Free Software Foundation, and |
| 5 | ** may be copied, distributed, and modified under those terms. |
| 6 | ** |
| 7 | ** This program is distributed in the hope that it will be useful, |
| 8 | ** but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 9 | ** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 10 | ** GNU General Public License for more details. |
| 11 | */ |
| 12 | |
| 13 | #include "android/hw-sensors.h" |
| 14 | #include "android/utils/debug.h" |
| 15 | #include "android/utils/misc.h" |
| 16 | #include "android/hw-qemud.h" |
| 17 | #include "android/globals.h" |
| 18 | #include "qemu-char.h" |
| 19 | #include "qemu-timer.h" |
| 20 | |
| 21 | #define D(...) VERBOSE_PRINT(sensors,__VA_ARGS__) |
| 22 | |
| 23 | /* define T_ACTIVE to 1 to debug transport communications */ |
| 24 | #define T_ACTIVE 0 |
| 25 | |
| 26 | #if T_ACTIVE |
| 27 | #define T(...) VERBOSE_PRINT(sensors,__VA_ARGS__) |
| 28 | #else |
| 29 | #define T(...) ((void)0) |
| 30 | #endif |
| 31 | |
| 32 | /* this code supports emulated sensor hardware |
| 33 | * |
| 34 | * Note that currently, only the accelerometer is really emulated, and only |
| 35 | * for the purpose of allowing auto-rotating the screen in keyboard-less |
| 36 | * configurations. |
| 37 | * |
| 38 | * |
| 39 | */ |
| 40 | |
| 41 | |
| 42 | static const struct { |
| 43 | const char* name; |
| 44 | int id; |
| 45 | } _sSensors[MAX_SENSORS] = { |
| 46 | #define SENSOR_(x,y) { y, ANDROID_SENSOR_##x }, |
| 47 | SENSORS_LIST |
| 48 | #undef SENSOR_ |
| 49 | }; |
| 50 | |
| 51 | |
| 52 | static int |
| 53 | _sensorIdFromName( const char* name ) |
| 54 | { |
| 55 | int nn; |
| 56 | for (nn = 0; nn < MAX_SENSORS; nn++) |
| 57 | if (!strcmp(_sSensors[nn].name,name)) |
| 58 | return _sSensors[nn].id; |
| 59 | return -1; |
| 60 | } |
| 61 | |
| 62 | |
| 63 | typedef struct { |
| 64 | float x, y, z; |
| 65 | } Acceleration; |
| 66 | |
| 67 | |
| 68 | typedef struct { |
| 69 | float x, y, z; |
| 70 | } MagneticField; |
| 71 | |
| 72 | |
| 73 | typedef struct { |
| 74 | float azimuth; |
| 75 | float pitch; |
| 76 | float roll; |
| 77 | } Orientation; |
| 78 | |
| 79 | |
| 80 | typedef struct { |
| 81 | float celsius; |
| 82 | } Temperature; |
| 83 | |
| 84 | |
| 85 | typedef struct { |
| 86 | char enabled; |
| 87 | union { |
| 88 | Acceleration acceleration; |
| 89 | MagneticField magnetic; |
| 90 | Orientation orientation; |
| 91 | Temperature temperature; |
| 92 | } u; |
| 93 | } Sensor; |
| 94 | |
| 95 | /* |
| 96 | * - when the qemu-specific sensors HAL module starts, it sends |
| 97 | * "list-sensors" |
| 98 | * |
| 99 | * - this code replies with a string containing an integer corresponding |
| 100 | * to a bitmap of available hardware sensors in the current AVD |
| 101 | * configuration (e.g. "1" a.k.a (1 << ANDROID_SENSOR_ACCELERATION)) |
| 102 | * |
| 103 | * - the HAL module sends "set:<sensor>:<flag>" to enable or disable |
| 104 | * the report of a given sensor state. <sensor> must be the name of |
| 105 | * a given sensor (e.g. "accelerometer"), and <flag> must be either |
| 106 | * "1" (to enable) or "0" (to disable). |
| 107 | * |
| 108 | * - Once at least one sensor is "enabled", this code should periodically |
| 109 | * send information about the corresponding enabled sensors. The default |
| 110 | * period is 200ms. |
| 111 | * |
| 112 | * - the HAL module sends "set-delay:<delay>", where <delay> is an integer |
| 113 | * corresponding to a time delay in milli-seconds. This corresponds to |
| 114 | * a new interval between sensor events sent by this code to the HAL |
| 115 | * module. |
| 116 | * |
| 117 | * - the HAL module can also send a "wake" command. This code should simply |
| 118 | * send the "wake" back to the module. This is used internally to wake a |
| 119 | * blocking read that happens in a different thread. This ping-pong makes |
| 120 | * the code in the HAL module very simple. |
| 121 | * |
| 122 | * - each timer tick, this code sends sensor reports in the following |
| 123 | * format (each line corresponds to a different line sent to the module): |
| 124 | * |
| 125 | * acceleration:<x>:<y>:<z> |
| 126 | * magnetic-field:<x>:<y>:<z> |
| 127 | * orientation:<azimuth>:<pitch>:<roll> |
| 128 | * temperature:<celsius> |
| 129 | * sync:<time_us> |
| 130 | * |
| 131 | * Where each line before the sync:<time_us> is optional and will only |
| 132 | * appear if the corresponding sensor has been enabled by the HAL module. |
| 133 | * |
| 134 | * Note that <time_us> is the VM time in micro-seconds when the report |
| 135 | * was "taken" by this code. This is adjusted by the HAL module to |
| 136 | * emulated system time (using the first sync: to compute an adjustment |
| 137 | * offset). |
| 138 | */ |
| 139 | #define HEADER_SIZE 4 |
| 140 | #define BUFFER_SIZE 512 |
| 141 | |
| 142 | typedef struct { |
| 143 | QemudService* service; |
| 144 | int32_t delay_ms; |
| 145 | uint32_t enabledMask; |
| 146 | QEMUTimer* timer; |
| 147 | Sensor sensors[MAX_SENSORS]; |
| 148 | } HwSensors; |
| 149 | |
| 150 | /* forward */ |
| 151 | |
| 152 | static void hw_sensors_receive( HwSensors* h, |
| 153 | uint8_t* query, |
| 154 | int querylen ); |
| 155 | |
| 156 | static void hw_sensors_timer_tick(void* opaque); |
| 157 | |
| 158 | /* Qemud service management */ |
| 159 | |
| 160 | static void |
| 161 | _hw_sensors_qemud_client_recv( void* opaque, uint8_t* msg, int msglen ) |
| 162 | { |
| 163 | hw_sensors_receive(opaque, msg, msglen); |
| 164 | } |
| 165 | |
| 166 | static QemudClient* |
| 167 | _hw_sensors_service_connect( void* opaque, QemudService* service, int channel ) |
| 168 | { |
| 169 | HwSensors* sensors = opaque; |
| 170 | QemudClient* client = qemud_client_new(service, channel, |
| 171 | sensors, |
| 172 | _hw_sensors_qemud_client_recv, |
| 173 | NULL); |
| 174 | qemud_client_set_framing(client, 1); |
| 175 | return client; |
| 176 | } |
| 177 | |
| 178 | /* change the value of the emulated acceleration vector */ |
| 179 | static void |
| 180 | hw_sensors_set_acceleration( HwSensors* h, float x, float y, float z ) |
| 181 | { |
| 182 | Sensor* s = &h->sensors[ANDROID_SENSOR_ACCELERATION]; |
| 183 | s->u.acceleration.x = x; |
| 184 | s->u.acceleration.y = y; |
| 185 | s->u.acceleration.z = z; |
| 186 | } |
| 187 | |
| 188 | #if 0 /* not used yet */ |
| 189 | /* change the value of the emulated magnetic vector */ |
| 190 | static void |
| 191 | hw_sensors_set_magnetic_field( HwSensors* h, float x, float y, float z ) |
| 192 | { |
| 193 | Sensor* s = &h->sensors[ANDROID_SENSOR_MAGNETIC_FIELD]; |
| 194 | s->u.magnetic.x = x; |
| 195 | s->u.magnetic.y = y; |
| 196 | s->u.magnetic.z = z; |
| 197 | } |
| 198 | |
| 199 | /* change the values of the emulated orientation */ |
| 200 | static void |
| 201 | hw_sensors_set_orientation( HwSensors* h, float azimuth, float pitch, float roll ) |
| 202 | { |
| 203 | Sensor* s = &h->sensors[ANDROID_SENSOR_MAGNETIC_FIELD]; |
| 204 | s->u.orientation.azimuth = azimuth; |
| 205 | s->u.orientation.pitch = pitch; |
| 206 | s->u.orientation.roll = roll; |
| 207 | } |
| 208 | |
| 209 | /* change the emulated temperature */ |
| 210 | static void |
| 211 | hw_sensors_set_temperature( HwSensors* h, float celsius ) |
| 212 | { |
| 213 | Sensor* s = &h->sensors[ANDROID_SENSOR_MAGNETIC_FIELD]; |
| 214 | s->u.temperature.celsius = celsius; |
| 215 | } |
| 216 | #endif |
| 217 | |
| 218 | /* change the coarse orientation (landscape/portrait) of the emulated device */ |
| 219 | static void |
| 220 | hw_sensors_set_coarse_orientation( HwSensors* h, AndroidCoarseOrientation orient ) |
| 221 | { |
| 222 | /* The Android framework computes the orientation by looking at |
| 223 | * the accelerometer sensor (*not* the orientation sensor !) |
| 224 | * |
| 225 | * That's because the gravity is a constant 9.81 vector that |
| 226 | * can be determined quite easily. |
| 227 | * |
| 228 | * Also, for some reason, the framework code considers that the phone should |
| 229 | * be inclined by 30 degrees along the phone's X axis to be considered |
| 230 | * in its ideal "vertical" position |
| 231 | * |
| 232 | * If the phone is completely vertical, rotating it will not do anything ! |
| 233 | */ |
| 234 | const double g = 9.81; |
| 235 | const double cos_30 = 0.866025403784; |
| 236 | const double sin_30 = 0.5; |
| 237 | |
| 238 | switch (orient) { |
| 239 | case ANDROID_COARSE_PORTRAIT: |
| 240 | hw_sensors_set_acceleration( h, 0., g*cos_30, g*sin_30 ); |
| 241 | break; |
| 242 | |
| 243 | case ANDROID_COARSE_LANDSCAPE: |
| 244 | hw_sensors_set_acceleration( h, g*cos_30, 0., g*sin_30 ); |
| 245 | break; |
| 246 | default: |
| 247 | ; |
| 248 | } |
| 249 | } |
| 250 | |
| 251 | |
| 252 | /* initialize the sensors state */ |
| 253 | static void |
| 254 | hw_sensors_init( HwSensors* h ) |
| 255 | { |
| 256 | h->service = qemud_service_register("sensors", 1, h, |
| 257 | _hw_sensors_service_connect ); |
| 258 | h->enabledMask = 0; |
| 259 | h->delay_ms = 1000; |
| 260 | h->timer = qemu_new_timer(vm_clock, hw_sensors_timer_tick, h); |
| 261 | |
| 262 | hw_sensors_set_coarse_orientation(h, ANDROID_COARSE_PORTRAIT); |
| 263 | } |
| 264 | |
| 265 | /* send a one-line message to the HAL module through a qemud channel */ |
| 266 | static void |
| 267 | hw_sensors_send( HwSensors* hw, const uint8_t* msg, int msglen ) |
| 268 | { |
| 269 | D("%s: '%s'", __FUNCTION__, quote_bytes((const void*)msg, msglen)); |
| 270 | qemud_service_broadcast(hw->service, msg, msglen); |
| 271 | } |
| 272 | |
| 273 | /* this function is called periodically to send sensor reports |
| 274 | * to the HAL module, and re-arm the timer if necessary |
| 275 | */ |
| 276 | static void |
| 277 | hw_sensors_timer_tick( void* opaque ) |
| 278 | { |
| 279 | HwSensors* h = opaque; |
| 280 | int64_t delay = h->delay_ms; |
| 281 | int64_t now_ns; |
| 282 | uint32_t mask = h->enabledMask; |
| 283 | Sensor* sensor; |
| 284 | char buffer[128]; |
| 285 | |
| 286 | sensor = &h->sensors[ANDROID_SENSOR_ACCELERATION]; |
| 287 | if (sensor->enabled) { |
| 288 | snprintf(buffer, sizeof buffer, "acceleration:%g:%g:%g", |
| 289 | sensor->u.acceleration.x, |
| 290 | sensor->u.acceleration.y, |
| 291 | sensor->u.acceleration.z); |
| 292 | hw_sensors_send(h, (uint8_t*)buffer, strlen(buffer)); |
| 293 | } |
| 294 | |
| 295 | sensor = &h->sensors[ANDROID_SENSOR_MAGNETIC_FIELD]; |
| 296 | if (sensor->enabled) { |
| 297 | snprintf(buffer, sizeof buffer, "magnetic-field:%g:%g:%g", |
| 298 | sensor->u.magnetic.x, |
| 299 | sensor->u.magnetic.y, |
| 300 | sensor->u.magnetic.z); |
| 301 | hw_sensors_send(h, (uint8_t*)buffer, strlen(buffer)); |
| 302 | } |
| 303 | |
| 304 | sensor = &h->sensors[ANDROID_SENSOR_ORIENTATION]; |
| 305 | if (sensor->enabled) { |
| 306 | snprintf(buffer, sizeof buffer, "orientation:%g:%g:%g", |
| 307 | sensor->u.orientation.azimuth, |
| 308 | sensor->u.orientation.pitch, |
| 309 | sensor->u.orientation.roll); |
| 310 | hw_sensors_send(h, (uint8_t*)buffer, strlen(buffer)); |
| 311 | } |
| 312 | |
| 313 | sensor = &h->sensors[ANDROID_SENSOR_TEMPERATURE]; |
| 314 | if (sensor->enabled) { |
| 315 | snprintf(buffer, sizeof buffer, "temperature:%g", |
| 316 | sensor->u.temperature.celsius); |
| 317 | hw_sensors_send(h, (uint8_t*)buffer, strlen(buffer)); |
| 318 | } |
| 319 | |
| 320 | now_ns = qemu_get_clock(vm_clock); |
| 321 | |
| 322 | snprintf(buffer, sizeof buffer, "sync:%lld", now_ns/1000); |
| 323 | hw_sensors_send(h, (uint8_t*)buffer, strlen(buffer)); |
| 324 | |
| 325 | /* rearm timer, use a minimum delay of 20 ms, just to |
| 326 | * be safe. |
| 327 | */ |
| 328 | if (mask == 0) |
| 329 | return; |
| 330 | |
| 331 | if (delay < 20) |
| 332 | delay = 20; |
| 333 | |
| 334 | delay *= 1000000LL; /* convert to nanoseconds */ |
| 335 | qemu_mod_timer(h->timer, now_ns + delay); |
| 336 | } |
| 337 | |
| 338 | /* handle incoming messages from the HAL module */ |
| 339 | static void |
| 340 | hw_sensors_receive( HwSensors* hw, uint8_t* msg, int msglen ) |
| 341 | { |
| 342 | D("%s: '%.*s'", __FUNCTION__, msglen, msg); |
| 343 | |
| 344 | /* "list-sensors" is used to get an integer bit map of |
| 345 | * available emulated sensors. We compute the mask from the |
| 346 | * current hardware configuration. |
| 347 | */ |
| 348 | if (msglen == 12 && !memcmp(msg, "list-sensors", 12)) { |
| 349 | char buff[12]; |
| 350 | int mask = 0; |
| 351 | |
| 352 | if (android_hw->hw_accelerometer) |
| 353 | mask |= (1 << ANDROID_SENSOR_ACCELERATION); |
| 354 | |
| 355 | /* XXX: TODO: Add other tests when we add the corresponding |
| 356 | * properties to hardware-properties.ini et al. */ |
| 357 | |
| 358 | snprintf(buff, sizeof buff, "%d", mask); |
| 359 | hw_sensors_send(hw, (const uint8_t*)buff, strlen(buff)); |
| 360 | return; |
| 361 | } |
| 362 | |
| 363 | /* "wake" is a special message that must be sent back through |
| 364 | * the channel. It is used to exit a blocking read. |
| 365 | */ |
| 366 | if (msglen == 4 && !memcmp(msg, "wake", 4)) { |
| 367 | hw_sensors_send(hw, (const uint8_t*)"wake", 4); |
| 368 | return; |
| 369 | } |
| 370 | |
| 371 | /* "set-delay:<delay>" is used to set the delay in milliseconds |
| 372 | * between sensor events |
| 373 | */ |
| 374 | if (msglen > 10 && !memcmp(msg, "set-delay:", 10)) { |
| 375 | hw->delay_ms = atoi((const char*)msg+10); |
| 376 | if (hw->enabledMask != 0) |
| 377 | hw_sensors_timer_tick(hw); |
| 378 | |
| 379 | return; |
| 380 | } |
| 381 | |
| 382 | /* "set:<name>:<state>" is used to enable/disable a given |
| 383 | * sensor. <state> must be 0 or 1 |
| 384 | */ |
| 385 | if (msglen > 4 && !memcmp(msg, "set:", 4)) { |
| 386 | char* q; |
| 387 | int id, enabled, oldEnabledMask = hw->enabledMask; |
| 388 | msg += 4; |
| 389 | q = strchr((char*)msg, ':'); |
| 390 | if (q == NULL) { /* should not happen */ |
| 391 | D("%s: ignore bad 'set' command", __FUNCTION__); |
| 392 | return; |
| 393 | } |
| 394 | *q++ = 0; |
| 395 | |
| 396 | id = _sensorIdFromName((const char*)msg); |
| 397 | if (id < 0) { |
| 398 | D("%s: ignore unknown sensor name '%s'", __FUNCTION__, msg); |
| 399 | return; |
| 400 | } |
| 401 | |
| 402 | enabled = (q[0] == '1'); |
| 403 | |
| 404 | hw->sensors[id].enabled = (char) enabled; |
| 405 | if (enabled) |
| 406 | hw->enabledMask |= (1 << id); |
| 407 | else |
| 408 | hw->enabledMask &= ~(1 << id); |
| 409 | |
| 410 | D("%s: %s %s sensor", __FUNCTION__, |
| 411 | hw->sensors[id].enabled ? "enabling" : "disabling", msg); |
| 412 | |
| 413 | if (oldEnabledMask == 0 && enabled) { |
| 414 | /* we enabled our first sensor, start event reporting */ |
| 415 | D("%s: starting event reporting (mask=%04x)", __FUNCTION__, |
| 416 | hw->enabledMask); |
| 417 | } |
| 418 | else if (hw->enabledMask == 0 && !enabled) { |
| 419 | /* we disabled our last sensor, stop event reporting */ |
| 420 | D("%s: stopping event reporting", __FUNCTION__); |
| 421 | } |
| 422 | hw_sensors_timer_tick(hw); |
| 423 | return; |
| 424 | } |
| 425 | |
| 426 | D("%s: ignoring unknown query", __FUNCTION__); |
| 427 | } |
| 428 | |
| 429 | |
| 430 | static HwSensors _sensorsState[1]; |
| 431 | |
| 432 | void |
| 433 | android_hw_sensors_init( void ) |
| 434 | { |
| 435 | HwSensors* hw = _sensorsState; |
| 436 | |
| 437 | if (hw->service == NULL) { |
| 438 | hw_sensors_init(hw); |
| 439 | D("%s: sensors qemud service initialized", __FUNCTION__); |
| 440 | } |
| 441 | } |
| 442 | |
| 443 | /* change the coarse orientation value */ |
| 444 | extern void |
| 445 | android_sensors_set_coarse_orientation( AndroidCoarseOrientation orient ) |
| 446 | { |
| 447 | android_hw_sensors_init(); |
| 448 | hw_sensors_set_coarse_orientation(_sensorsState, orient); |
| 449 | } |
| 450 | |