Ian Hodson | 2ee91b4 | 2012-05-14 12:29:36 +0100 | [diff] [blame] | 1 | // Copyright 2008 The RE2 Authors. All Rights Reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
| 5 | // Tested by search_test.cc, exhaustive_test.cc, tester.cc |
| 6 | |
| 7 | // Prog::SearchBitState is a regular expression search with submatch |
| 8 | // tracking for small regular expressions and texts. Like |
| 9 | // testing/backtrack.cc, it allocates a bit vector with (length of |
| 10 | // text) * (length of prog) bits, to make sure it never explores the |
| 11 | // same (character position, instruction) state multiple times. This |
| 12 | // limits the search to run in time linear in the length of the text. |
| 13 | // |
| 14 | // Unlike testing/backtrack.cc, SearchBitState is not recursive |
| 15 | // on the text. |
| 16 | // |
| 17 | // SearchBitState is a fast replacement for the NFA code on small |
| 18 | // regexps and texts when SearchOnePass cannot be used. |
| 19 | |
| 20 | #include "re2/prog.h" |
| 21 | #include "re2/regexp.h" |
| 22 | |
| 23 | namespace re2 { |
| 24 | |
| 25 | struct Job { |
| 26 | int id; |
| 27 | int arg; |
| 28 | const char* p; |
| 29 | }; |
| 30 | |
| 31 | class BitState { |
| 32 | public: |
| 33 | explicit BitState(Prog* prog); |
| 34 | ~BitState(); |
| 35 | |
| 36 | // The usual Search prototype. |
| 37 | // Can only call Search once per BitState. |
| 38 | bool Search(const StringPiece& text, const StringPiece& context, |
| 39 | bool anchored, bool longest, |
| 40 | StringPiece* submatch, int nsubmatch); |
| 41 | |
| 42 | private: |
| 43 | inline bool ShouldVisit(int id, const char* p); |
| 44 | void Push(int id, const char* p, int arg); |
| 45 | bool GrowStack(); |
| 46 | bool TrySearch(int id, const char* p); |
| 47 | |
| 48 | // Search parameters |
| 49 | Prog* prog_; // program being run |
| 50 | StringPiece text_; // text being searched |
| 51 | StringPiece context_; // greater context of text being searched |
| 52 | bool anchored_; // whether search is anchored at text.begin() |
| 53 | bool longest_; // whether search wants leftmost-longest match |
| 54 | bool endmatch_; // whether match must end at text.end() |
| 55 | StringPiece *submatch_; // submatches to fill in |
| 56 | int nsubmatch_; // # of submatches to fill in |
| 57 | |
| 58 | // Search state |
| 59 | const char** cap_; // capture registers |
| 60 | int ncap_; |
| 61 | |
| 62 | static const int VisitedBits = 32; |
| 63 | uint32 *visited_; // bitmap: (Inst*, char*) pairs already backtracked |
| 64 | int nvisited_; // # of words in bitmap |
| 65 | |
| 66 | Job *job_; // stack of text positions to explore |
| 67 | int njob_; |
| 68 | int maxjob_; |
| 69 | }; |
| 70 | |
| 71 | BitState::BitState(Prog* prog) |
| 72 | : prog_(prog), |
| 73 | anchored_(false), |
| 74 | longest_(false), |
| 75 | endmatch_(false), |
| 76 | submatch_(NULL), |
| 77 | nsubmatch_(0), |
| 78 | cap_(NULL), |
| 79 | ncap_(0), |
| 80 | visited_(NULL), |
| 81 | nvisited_(0), |
| 82 | job_(NULL), |
| 83 | njob_(0), |
| 84 | maxjob_(0) { |
| 85 | } |
| 86 | |
| 87 | BitState::~BitState() { |
| 88 | delete[] visited_; |
| 89 | delete[] job_; |
| 90 | delete[] cap_; |
| 91 | } |
| 92 | |
| 93 | // Should the search visit the pair ip, p? |
| 94 | // If so, remember that it was visited so that the next time, |
| 95 | // we don't repeat the visit. |
| 96 | bool BitState::ShouldVisit(int id, const char* p) { |
| 97 | uint n = id * (text_.size() + 1) + (p - text_.begin()); |
| 98 | if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1)))) |
| 99 | return false; |
| 100 | visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1)); |
| 101 | return true; |
| 102 | } |
| 103 | |
| 104 | // Grow the stack. |
| 105 | bool BitState::GrowStack() { |
| 106 | // VLOG(0) << "Reallocate."; |
| 107 | maxjob_ *= 2; |
| 108 | Job* newjob = new Job[maxjob_]; |
| 109 | memmove(newjob, job_, njob_*sizeof job_[0]); |
| 110 | delete[] job_; |
| 111 | job_ = newjob; |
| 112 | if (njob_ >= maxjob_) { |
| 113 | LOG(DFATAL) << "Job stack overflow."; |
| 114 | return false; |
| 115 | } |
| 116 | return true; |
| 117 | } |
| 118 | |
| 119 | // Push the triple (id, p, arg) onto the stack, growing it if necessary. |
| 120 | void BitState::Push(int id, const char* p, int arg) { |
| 121 | if (njob_ >= maxjob_) { |
| 122 | if (!GrowStack()) |
| 123 | return; |
| 124 | } |
| 125 | int op = prog_->inst(id)->opcode(); |
| 126 | if (op == kInstFail) |
| 127 | return; |
| 128 | |
| 129 | // Only check ShouldVisit when arg == 0. |
| 130 | // When arg > 0, we are continuing a previous visit. |
| 131 | if (arg == 0 && !ShouldVisit(id, p)) |
| 132 | return; |
| 133 | |
| 134 | Job* j = &job_[njob_++]; |
| 135 | j->id = id; |
| 136 | j->p = p; |
| 137 | j->arg = arg; |
| 138 | } |
| 139 | |
| 140 | // Try a search from instruction id0 in state p0. |
| 141 | // Return whether it succeeded. |
| 142 | bool BitState::TrySearch(int id0, const char* p0) { |
| 143 | bool matched = false; |
| 144 | const char* end = text_.end(); |
| 145 | njob_ = 0; |
| 146 | Push(id0, p0, 0); |
| 147 | while (njob_ > 0) { |
| 148 | // Pop job off stack. |
| 149 | --njob_; |
| 150 | int id = job_[njob_].id; |
| 151 | const char* p = job_[njob_].p; |
| 152 | int arg = job_[njob_].arg; |
| 153 | |
| 154 | // Optimization: rather than push and pop, |
| 155 | // code that is going to Push and continue |
| 156 | // the loop simply updates ip, p, and arg |
| 157 | // and jumps to CheckAndLoop. We have to |
| 158 | // do the ShouldVisit check that Push |
| 159 | // would have, but we avoid the stack |
| 160 | // manipulation. |
| 161 | if (0) { |
| 162 | CheckAndLoop: |
| 163 | if (!ShouldVisit(id, p)) |
| 164 | continue; |
| 165 | } |
| 166 | |
| 167 | // Visit ip, p. |
| 168 | // VLOG(0) << "Job: " << ip->id() << " " |
| 169 | // << (p - text_.begin()) << " " << arg; |
| 170 | Prog::Inst* ip = prog_->inst(id); |
| 171 | switch (ip->opcode()) { |
| 172 | case kInstFail: |
| 173 | default: |
| 174 | LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg; |
| 175 | return false; |
| 176 | |
| 177 | case kInstAlt: |
| 178 | // Cannot just |
| 179 | // Push(ip->out1(), p, 0); |
| 180 | // Push(ip->out(), p, 0); |
| 181 | // If, during the processing of ip->out(), we encounter |
| 182 | // ip->out1() via another path, we want to process it then. |
| 183 | // Pushing it here will inhibit that. Instead, re-push |
| 184 | // ip with arg==1 as a reminder to push ip->out1() later. |
| 185 | switch (arg) { |
| 186 | case 0: |
| 187 | Push(id, p, 1); // come back when we're done |
| 188 | id = ip->out(); |
| 189 | goto CheckAndLoop; |
| 190 | |
| 191 | case 1: |
| 192 | // Finished ip->out(); try ip->out1(). |
| 193 | arg = 0; |
| 194 | id = ip->out1(); |
| 195 | goto CheckAndLoop; |
| 196 | } |
| 197 | LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
| 198 | continue; |
| 199 | |
| 200 | case kInstAltMatch: |
| 201 | // One opcode is byte range; the other leads to match. |
| 202 | if (ip->greedy(prog_)) { |
| 203 | // out1 is the match |
| 204 | Push(ip->out1(), p, 0); |
| 205 | id = ip->out1(); |
| 206 | p = end; |
| 207 | goto CheckAndLoop; |
| 208 | } |
| 209 | // out is the match - non-greedy |
| 210 | Push(ip->out(), end, 0); |
| 211 | id = ip->out(); |
| 212 | goto CheckAndLoop; |
| 213 | |
| 214 | case kInstByteRange: { |
| 215 | int c = -1; |
| 216 | if (p < end) |
| 217 | c = *p & 0xFF; |
| 218 | if (ip->Matches(c)) { |
| 219 | id = ip->out(); |
| 220 | p++; |
| 221 | goto CheckAndLoop; |
| 222 | } |
| 223 | continue; |
| 224 | } |
| 225 | |
| 226 | case kInstCapture: |
| 227 | switch (arg) { |
| 228 | case 0: |
| 229 | if (0 <= ip->cap() && ip->cap() < ncap_) { |
| 230 | // Capture p to register, but save old value. |
| 231 | Push(id, cap_[ip->cap()], 1); // come back when we're done |
| 232 | cap_[ip->cap()] = p; |
| 233 | } |
| 234 | // Continue on. |
| 235 | id = ip->out(); |
| 236 | goto CheckAndLoop; |
| 237 | case 1: |
| 238 | // Finished ip->out(); restore the old value. |
| 239 | cap_[ip->cap()] = p; |
| 240 | continue; |
| 241 | } |
| 242 | LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
| 243 | continue; |
| 244 | |
| 245 | case kInstEmptyWidth: |
| 246 | if (ip->empty() & ~Prog::EmptyFlags(context_, p)) |
| 247 | continue; |
| 248 | id = ip->out(); |
| 249 | goto CheckAndLoop; |
| 250 | |
| 251 | case kInstNop: |
| 252 | id = ip->out(); |
| 253 | goto CheckAndLoop; |
| 254 | |
| 255 | case kInstMatch: { |
| 256 | if (endmatch_ && p != text_.end()) |
| 257 | continue; |
| 258 | |
| 259 | // VLOG(0) << "Found match."; |
| 260 | // We found a match. If the caller doesn't care |
| 261 | // where the match is, no point going further. |
| 262 | if (nsubmatch_ == 0) |
| 263 | return true; |
| 264 | |
| 265 | // Record best match so far. |
| 266 | // Only need to check end point, because this entire |
| 267 | // call is only considering one start position. |
| 268 | matched = true; |
| 269 | cap_[1] = p; |
| 270 | if (submatch_[0].data() == NULL || |
| 271 | (longest_ && p > submatch_[0].end())) { |
| 272 | for (int i = 0; i < nsubmatch_; i++) |
| 273 | submatch_[i] = StringPiece(cap_[2*i], cap_[2*i+1] - cap_[2*i]); |
| 274 | } |
| 275 | |
| 276 | // If going for first match, we're done. |
| 277 | if (!longest_) |
| 278 | return true; |
| 279 | |
| 280 | // If we used the entire text, no longer match is possible. |
| 281 | if (p == text_.end()) |
| 282 | return true; |
| 283 | |
| 284 | // Otherwise, continue on in hope of a longer match. |
| 285 | continue; |
| 286 | } |
| 287 | } |
| 288 | } |
| 289 | return matched; |
| 290 | } |
| 291 | |
| 292 | // Search text (within context) for prog_. |
| 293 | bool BitState::Search(const StringPiece& text, const StringPiece& context, |
| 294 | bool anchored, bool longest, |
| 295 | StringPiece* submatch, int nsubmatch) { |
| 296 | // Search parameters. |
| 297 | text_ = text; |
| 298 | context_ = context; |
| 299 | if (context_.begin() == NULL) |
| 300 | context_ = text; |
| 301 | if (prog_->anchor_start() && context_.begin() != text.begin()) |
| 302 | return false; |
| 303 | if (prog_->anchor_end() && context_.end() != text.end()) |
| 304 | return false; |
| 305 | anchored_ = anchored || prog_->anchor_start(); |
| 306 | longest_ = longest || prog_->anchor_end(); |
| 307 | endmatch_ = prog_->anchor_end(); |
| 308 | submatch_ = submatch; |
| 309 | nsubmatch_ = nsubmatch; |
| 310 | for (int i = 0; i < nsubmatch_; i++) |
| 311 | submatch_[i] = NULL; |
| 312 | |
| 313 | // Allocate scratch space. |
| 314 | nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits; |
| 315 | visited_ = new uint32[nvisited_]; |
| 316 | memset(visited_, 0, nvisited_*sizeof visited_[0]); |
| 317 | // VLOG(0) << "nvisited_ = " << nvisited_; |
| 318 | |
| 319 | ncap_ = 2*nsubmatch; |
| 320 | if (ncap_ < 2) |
| 321 | ncap_ = 2; |
| 322 | cap_ = new const char*[ncap_]; |
| 323 | memset(cap_, 0, ncap_*sizeof cap_[0]); |
| 324 | |
| 325 | maxjob_ = 256; |
| 326 | job_ = new Job[maxjob_]; |
| 327 | |
| 328 | // Anchored search must start at text.begin(). |
| 329 | if (anchored_) { |
| 330 | cap_[0] = text.begin(); |
| 331 | return TrySearch(prog_->start(), text.begin()); |
| 332 | } |
| 333 | |
| 334 | // Unanchored search, starting from each possible text position. |
| 335 | // Notice that we have to try the empty string at the end of |
| 336 | // the text, so the loop condition is p <= text.end(), not p < text.end(). |
| 337 | // This looks like it's quadratic in the size of the text, |
| 338 | // but we are not clearing visited_ between calls to TrySearch, |
| 339 | // so no work is duplicated and it ends up still being linear. |
| 340 | for (const char* p = text.begin(); p <= text.end(); p++) { |
| 341 | cap_[0] = p; |
| 342 | if (TrySearch(prog_->start(), p)) // Match must be leftmost; done. |
| 343 | return true; |
| 344 | } |
| 345 | return false; |
| 346 | } |
| 347 | |
| 348 | // Bit-state search. |
| 349 | bool Prog::SearchBitState(const StringPiece& text, |
| 350 | const StringPiece& context, |
| 351 | Anchor anchor, |
| 352 | MatchKind kind, |
| 353 | StringPiece* match, |
| 354 | int nmatch) { |
| 355 | // If full match, we ask for an anchored longest match |
| 356 | // and then check that match[0] == text. |
| 357 | // So make sure match[0] exists. |
| 358 | StringPiece sp0; |
| 359 | if (kind == kFullMatch) { |
| 360 | anchor = kAnchored; |
| 361 | if (nmatch < 1) { |
| 362 | match = &sp0; |
| 363 | nmatch = 1; |
| 364 | } |
| 365 | } |
| 366 | |
| 367 | // Run the search. |
| 368 | BitState b(this); |
| 369 | bool anchored = anchor == kAnchored; |
| 370 | bool longest = kind != kFirstMatch; |
| 371 | if (!b.Search(text, context, anchored, longest, match, nmatch)) |
| 372 | return false; |
| 373 | if (kind == kFullMatch && match[0].end() != text.end()) |
| 374 | return false; |
| 375 | return true; |
| 376 | } |
| 377 | |
| 378 | } // namespace re2 |