blob: 165dd090eb49df4fc4a96259eb707d2d8a2370c7 [file] [log] [blame]
Ian Hodson2ee91b42012-05-14 12:29:36 +01001// Copyright 2006 The RE2 Authors. All Rights Reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// DESCRIPTION
6//
7// SparseSet<T>(m) is a set of integers in [0, m).
8// It requires sizeof(int)*m memory, but it provides
9// fast iteration through the elements in the set and fast clearing
10// of the set.
11//
12// Insertion and deletion are constant time operations.
13//
14// Allocating the set is a constant time operation
15// when memory allocation is a constant time operation.
16//
17// Clearing the set is a constant time operation (unusual!).
18//
19// Iterating through the set is an O(n) operation, where n
20// is the number of items in the set (not O(m)).
21//
22// The set iterator visits entries in the order they were first
23// inserted into the array. It is safe to add items to the set while
24// using an iterator: the iterator will visit indices added to the set
25// during the iteration, but will not re-visit indices whose values
26// change after visiting. Thus SparseSet can be a convenient
27// implementation of a work queue.
28//
29// The SparseSet implementation is NOT thread-safe. It is up to the
30// caller to make sure only one thread is accessing the set. (Typically
31// these sets are temporary values and used in situations where speed is
32// important.)
33//
34// The SparseSet interface does not present all the usual STL bells and
35// whistles.
36//
37// Implemented with reference to Briggs & Torczon, An Efficient
38// Representation for Sparse Sets, ACM Letters on Programming Languages
39// and Systems, Volume 2, Issue 1-4 (March-Dec. 1993), pp. 59-69.
40//
41// For a generalization to sparse array, see sparse_array.h.
42
43// IMPLEMENTATION
44//
45// See sparse_array.h for implementation details
46
47#ifndef RE2_UTIL_SPARSE_SET_H__
48#define RE2_UTIL_SPARSE_SET_H__
49
50#include "util/util.h"
51
52namespace re2 {
53
54class SparseSet {
55 public:
56 SparseSet()
Alexander Gutkin0d4c5232013-02-28 13:47:27 +000057 : size_(0), max_size_(0), sparse_to_dense_(NULL), dense_(NULL), valgrind_(RunningOnValgrind()) {}
Ian Hodson2ee91b42012-05-14 12:29:36 +010058
59 SparseSet(int max_size) {
60 max_size_ = max_size;
61 sparse_to_dense_ = new int[max_size];
62 dense_ = new int[max_size];
Alexander Gutkin0d4c5232013-02-28 13:47:27 +000063 valgrind_ = RunningOnValgrind();
Ian Hodson2ee91b42012-05-14 12:29:36 +010064 // Don't need to zero the memory, but do so anyway
65 // to appease Valgrind.
Alexander Gutkin0d4c5232013-02-28 13:47:27 +000066 if (valgrind_) {
Ian Hodson2ee91b42012-05-14 12:29:36 +010067 for (int i = 0; i < max_size; i++) {
68 dense_[i] = 0xababababU;
69 sparse_to_dense_[i] = 0xababababU;
70 }
71 }
72 size_ = 0;
73 }
74
75 ~SparseSet() {
76 delete[] sparse_to_dense_;
77 delete[] dense_;
78 }
79
80 typedef int* iterator;
81 typedef const int* const_iterator;
82
83 int size() const { return size_; }
84 iterator begin() { return dense_; }
85 iterator end() { return dense_ + size_; }
86 const_iterator begin() const { return dense_; }
87 const_iterator end() const { return dense_ + size_; }
88
89 // Change the maximum size of the array.
90 // Invalidates all iterators.
91 void resize(int new_max_size) {
92 if (size_ > new_max_size)
93 size_ = new_max_size;
94 if (new_max_size > max_size_) {
95 int* a = new int[new_max_size];
96 if (sparse_to_dense_) {
97 memmove(a, sparse_to_dense_, max_size_*sizeof a[0]);
Alexander Gutkin0d4c5232013-02-28 13:47:27 +000098 if (valgrind_) {
Ian Hodson2ee91b42012-05-14 12:29:36 +010099 for (int i = max_size_; i < new_max_size; i++)
100 a[i] = 0xababababU;
101 }
102 delete[] sparse_to_dense_;
103 }
104 sparse_to_dense_ = a;
105
106 a = new int[new_max_size];
107 if (dense_) {
108 memmove(a, dense_, size_*sizeof a[0]);
Alexander Gutkin0d4c5232013-02-28 13:47:27 +0000109 if (valgrind_) {
Ian Hodson2ee91b42012-05-14 12:29:36 +0100110 for (int i = size_; i < new_max_size; i++)
111 a[i] = 0xababababU;
112 }
113 delete[] dense_;
114 }
115 dense_ = a;
116 }
117 max_size_ = new_max_size;
118 }
119
120 // Return the maximum size of the array.
121 // Indices can be in the range [0, max_size).
122 int max_size() const { return max_size_; }
123
124 // Clear the array.
125 void clear() { size_ = 0; }
126
127 // Check whether i is in the array.
128 bool contains(int i) const {
129 DCHECK_GE(i, 0);
130 DCHECK_LT(i, max_size_);
131 if (static_cast<uint>(i) >= max_size_) {
132 return false;
133 }
134 // Unsigned comparison avoids checking sparse_to_dense_[i] < 0.
135 return (uint)sparse_to_dense_[i] < (uint)size_ &&
136 dense_[sparse_to_dense_[i]] == i;
137 }
138
139 // Adds i to the set.
140 void insert(int i) {
141 if (!contains(i))
142 insert_new(i);
143 }
144
145 // Set the value at the new index i to v.
146 // Fast but unsafe: only use if contains(i) is false.
147 void insert_new(int i) {
148 if (static_cast<uint>(i) >= max_size_) {
149 // Semantically, end() would be better here, but we already know
150 // the user did something stupid, so begin() insulates them from
151 // dereferencing an invalid pointer.
152 return;
153 }
154 DCHECK(!contains(i));
155 DCHECK_LT(size_, max_size_);
156 sparse_to_dense_[i] = size_;
157 dense_[size_] = i;
158 size_++;
159 }
160
161 // Comparison function for sorting.
162 // Can sort the sparse array so that future iterations
163 // will visit indices in increasing order using
164 // sort(arr.begin(), arr.end(), arr.less);
165 static bool less(int a, int b) { return a < b; }
166
167 private:
168 int size_;
169 int max_size_;
170 int* sparse_to_dense_;
171 int* dense_;
Alexander Gutkin0d4c5232013-02-28 13:47:27 +0000172 bool valgrind_;
Ian Hodson2ee91b42012-05-14 12:29:36 +0100173
174 DISALLOW_EVIL_CONSTRUCTORS(SparseSet);
175};
176
177} // namespace re2
178
179#endif // RE2_UTIL_SPARSE_SET_H__