|  | 
 | /* | 
 |  * Copyright 2012 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "GrAAConvexPathRenderer.h" | 
 |  | 
 | #include "GrContext.h" | 
 | #include "GrDrawState.h" | 
 | #include "GrDrawTargetCaps.h" | 
 | #include "GrEffect.h" | 
 | #include "GrPathUtils.h" | 
 | #include "GrTBackendEffectFactory.h" | 
 | #include "SkString.h" | 
 | #include "SkStrokeRec.h" | 
 | #include "SkTrace.h" | 
 |  | 
 | #include "gl/GrGLEffect.h" | 
 | #include "gl/GrGLSL.h" | 
 | #include "gl/GrGLVertexEffect.h" | 
 |  | 
 | #include "effects/GrVertexEffect.h" | 
 |  | 
 | GrAAConvexPathRenderer::GrAAConvexPathRenderer() { | 
 | } | 
 |  | 
 | struct Segment { | 
 |     enum { | 
 |         // These enum values are assumed in member functions below. | 
 |         kLine = 0, | 
 |         kQuad = 1, | 
 |     } fType; | 
 |  | 
 |     // line uses one pt, quad uses 2 pts | 
 |     GrPoint fPts[2]; | 
 |     // normal to edge ending at each pt | 
 |     GrVec fNorms[2]; | 
 |     // is the corner where the previous segment meets this segment | 
 |     // sharp. If so, fMid is a normalized bisector facing outward. | 
 |     GrVec fMid; | 
 |  | 
 |     int countPoints() { | 
 |         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); | 
 |         return fType + 1; | 
 |     } | 
 |     const SkPoint& endPt() const { | 
 |         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); | 
 |         return fPts[fType]; | 
 |     }; | 
 |     const SkPoint& endNorm() const { | 
 |         GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); | 
 |         return fNorms[fType]; | 
 |     }; | 
 | }; | 
 |  | 
 | typedef SkTArray<Segment, true> SegmentArray; | 
 |  | 
 | static void center_of_mass(const SegmentArray& segments, SkPoint* c) { | 
 |     SkScalar area = 0; | 
 |     SkPoint center = {0, 0}; | 
 |     int count = segments.count(); | 
 |     SkPoint p0 = {0, 0}; | 
 |     if (count > 2) { | 
 |         // We translate the polygon so that the first point is at the origin. | 
 |         // This avoids some precision issues with small area polygons far away | 
 |         // from the origin. | 
 |         p0 = segments[0].endPt(); | 
 |         SkPoint pi; | 
 |         SkPoint pj; | 
 |         // the first and last iteration of the below loop would compute | 
 |         // zeros since the starting / ending point is (0,0). So instead we start | 
 |         // at i=1 and make the last iteration i=count-2. | 
 |         pj = segments[1].endPt() - p0; | 
 |         for (int i = 1; i < count - 1; ++i) { | 
 |             pi = pj; | 
 |             const SkPoint pj = segments[i + 1].endPt() - p0; | 
 |  | 
 |             SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY); | 
 |             area += t; | 
 |             center.fX += (pi.fX + pj.fX) * t; | 
 |             center.fY += (pi.fY + pj.fY) * t; | 
 |  | 
 |         } | 
 |     } | 
 |     // If the poly has no area then we instead return the average of | 
 |     // its points. | 
 |     if (SkScalarNearlyZero(area)) { | 
 |         SkPoint avg; | 
 |         avg.set(0, 0); | 
 |         for (int i = 0; i < count; ++i) { | 
 |             const SkPoint& pt = segments[i].endPt(); | 
 |             avg.fX += pt.fX; | 
 |             avg.fY += pt.fY; | 
 |         } | 
 |         SkScalar denom = SK_Scalar1 / count; | 
 |         avg.scale(denom); | 
 |         *c = avg; | 
 |     } else { | 
 |         area *= 3; | 
 |         area = SkScalarDiv(SK_Scalar1, area); | 
 |         center.fX = SkScalarMul(center.fX, area); | 
 |         center.fY = SkScalarMul(center.fY, area); | 
 |         // undo the translate of p0 to the origin. | 
 |         *c = center + p0; | 
 |     } | 
 |     SkASSERT(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); | 
 | } | 
 |  | 
 | static void compute_vectors(SegmentArray* segments, | 
 |                             SkPoint* fanPt, | 
 |                             SkPath::Direction dir, | 
 |                             int* vCount, | 
 |                             int* iCount) { | 
 |     center_of_mass(*segments, fanPt); | 
 |     int count = segments->count(); | 
 |  | 
 |     // Make the normals point towards the outside | 
 |     GrPoint::Side normSide; | 
 |     if (dir == SkPath::kCCW_Direction) { | 
 |         normSide = GrPoint::kRight_Side; | 
 |     } else { | 
 |         normSide = GrPoint::kLeft_Side; | 
 |     } | 
 |  | 
 |     *vCount = 0; | 
 |     *iCount = 0; | 
 |     // compute normals at all points | 
 |     for (int a = 0; a < count; ++a) { | 
 |         Segment& sega = (*segments)[a]; | 
 |         int b = (a + 1) % count; | 
 |         Segment& segb = (*segments)[b]; | 
 |  | 
 |         const GrPoint* prevPt = &sega.endPt(); | 
 |         int n = segb.countPoints(); | 
 |         for (int p = 0; p < n; ++p) { | 
 |             segb.fNorms[p] = segb.fPts[p] - *prevPt; | 
 |             segb.fNorms[p].normalize(); | 
 |             segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); | 
 |             prevPt = &segb.fPts[p]; | 
 |         } | 
 |         if (Segment::kLine == segb.fType) { | 
 |             *vCount += 5; | 
 |             *iCount += 9; | 
 |         } else { | 
 |             *vCount += 6; | 
 |             *iCount += 12; | 
 |         } | 
 |     } | 
 |  | 
 |     // compute mid-vectors where segments meet. TODO: Detect shallow corners | 
 |     // and leave out the wedges and close gaps by stitching segments together. | 
 |     for (int a = 0; a < count; ++a) { | 
 |         const Segment& sega = (*segments)[a]; | 
 |         int b = (a + 1) % count; | 
 |         Segment& segb = (*segments)[b]; | 
 |         segb.fMid = segb.fNorms[0] + sega.endNorm(); | 
 |         segb.fMid.normalize(); | 
 |         // corner wedges | 
 |         *vCount += 4; | 
 |         *iCount += 6; | 
 |     } | 
 | } | 
 |  | 
 | struct DegenerateTestData { | 
 |     DegenerateTestData() { fStage = kInitial; } | 
 |     bool isDegenerate() const { return kNonDegenerate != fStage; } | 
 |     enum { | 
 |         kInitial, | 
 |         kPoint, | 
 |         kLine, | 
 |         kNonDegenerate | 
 |     }           fStage; | 
 |     GrPoint     fFirstPoint; | 
 |     GrVec       fLineNormal; | 
 |     SkScalar    fLineC; | 
 | }; | 
 |  | 
 | static const SkScalar kClose = (SK_Scalar1 / 16); | 
 | static const SkScalar kCloseSqd = SkScalarMul(kClose, kClose); | 
 |  | 
 | static void update_degenerate_test(DegenerateTestData* data, const GrPoint& pt) { | 
 |     switch (data->fStage) { | 
 |         case DegenerateTestData::kInitial: | 
 |             data->fFirstPoint = pt; | 
 |             data->fStage = DegenerateTestData::kPoint; | 
 |             break; | 
 |         case DegenerateTestData::kPoint: | 
 |             if (pt.distanceToSqd(data->fFirstPoint) > kCloseSqd) { | 
 |                 data->fLineNormal = pt - data->fFirstPoint; | 
 |                 data->fLineNormal.normalize(); | 
 |                 data->fLineNormal.setOrthog(data->fLineNormal); | 
 |                 data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); | 
 |                 data->fStage = DegenerateTestData::kLine; | 
 |             } | 
 |             break; | 
 |         case DegenerateTestData::kLine: | 
 |             if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > kClose) { | 
 |                 data->fStage = DegenerateTestData::kNonDegenerate; | 
 |             } | 
 |         case DegenerateTestData::kNonDegenerate: | 
 |             break; | 
 |         default: | 
 |             GrCrash("Unexpected degenerate test stage."); | 
 |     } | 
 | } | 
 |  | 
 | static inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPath::Direction* dir) { | 
 |     if (!path.cheapComputeDirection(dir)) { | 
 |         return false; | 
 |     } | 
 |     // check whether m reverses the orientation | 
 |     SkASSERT(!m.hasPerspective()); | 
 |     SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - | 
 |                       SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); | 
 |     if (det2x2 < 0) { | 
 |         *dir = SkPath::OppositeDirection(*dir); | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | static inline void add_line_to_segment(const SkPoint& pt, | 
 |                                        SegmentArray* segments, | 
 |                                        SkRect* devBounds) { | 
 |     segments->push_back(); | 
 |     segments->back().fType = Segment::kLine; | 
 |     segments->back().fPts[0] = pt; | 
 |     devBounds->growToInclude(pt.fX, pt.fY); | 
 | } | 
 |  | 
 | #ifdef SK_DEBUG | 
 | static inline bool contains_inclusive(const SkRect& rect, const SkPoint& p) { | 
 |     return p.fX >= rect.fLeft && p.fX <= rect.fRight && p.fY >= rect.fTop && p.fY <= rect.fBottom; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void add_quad_segment(const SkPoint pts[3], | 
 |                                     SegmentArray* segments, | 
 |                                     SkRect* devBounds) { | 
 |     if (pts[0].distanceToSqd(pts[1]) < kCloseSqd || pts[1].distanceToSqd(pts[2]) < kCloseSqd) { | 
 |         if (pts[0] != pts[2]) { | 
 |             add_line_to_segment(pts[2], segments, devBounds); | 
 |         } | 
 |     } else { | 
 |         segments->push_back(); | 
 |         segments->back().fType = Segment::kQuad; | 
 |         segments->back().fPts[0] = pts[1]; | 
 |         segments->back().fPts[1] = pts[2]; | 
 |         SkASSERT(contains_inclusive(*devBounds, pts[0])); | 
 |         devBounds->growToInclude(pts + 1, 2); | 
 |     } | 
 | } | 
 |  | 
 | static inline void add_cubic_segments(const SkPoint pts[4], | 
 |                                       SkPath::Direction dir, | 
 |                                       SegmentArray* segments, | 
 |                                       SkRect* devBounds) { | 
 |     SkSTArray<15, SkPoint, true> quads; | 
 |     GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); | 
 |     int count = quads.count(); | 
 |     for (int q = 0; q < count; q += 3) { | 
 |         add_quad_segment(&quads[q], segments, devBounds); | 
 |     } | 
 | } | 
 |  | 
 | static bool get_segments(const SkPath& path, | 
 |                          const SkMatrix& m, | 
 |                          SegmentArray* segments, | 
 |                          SkPoint* fanPt, | 
 |                          int* vCount, | 
 |                          int* iCount, | 
 |                          SkRect* devBounds) { | 
 |     SkPath::Iter iter(path, true); | 
 |     // This renderer over-emphasizes very thin path regions. We use the distance | 
 |     // to the path from the sample to compute coverage. Every pixel intersected | 
 |     // by the path will be hit and the maximum distance is sqrt(2)/2. We don't | 
 |     // notice that the sample may be close to a very thin area of the path and | 
 |     // thus should be very light. This is particularly egregious for degenerate | 
 |     // line paths. We detect paths that are very close to a line (zero area) and | 
 |     // draw nothing. | 
 |     DegenerateTestData degenerateData; | 
 |     SkPath::Direction dir; | 
 |     // get_direction can fail for some degenerate paths. | 
 |     if (!get_direction(path, m, &dir)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     for (;;) { | 
 |         GrPoint pts[4]; | 
 |         SkPath::Verb verb = iter.next(pts); | 
 |         switch (verb) { | 
 |             case SkPath::kMove_Verb: | 
 |                 m.mapPoints(pts, 1); | 
 |                 update_degenerate_test(°enerateData, pts[0]); | 
 |                 devBounds->set(pts->fX, pts->fY, pts->fX, pts->fY); | 
 |                 break; | 
 |             case SkPath::kLine_Verb: { | 
 |                 m.mapPoints(&pts[1], 1); | 
 |                 update_degenerate_test(°enerateData, pts[1]); | 
 |                 add_line_to_segment(pts[1], segments, devBounds); | 
 |                 break; | 
 |             } | 
 |             case SkPath::kQuad_Verb: | 
 |                 m.mapPoints(pts, 3); | 
 |                 update_degenerate_test(°enerateData, pts[1]); | 
 |                 update_degenerate_test(°enerateData, pts[2]); | 
 |                 add_quad_segment(pts, segments, devBounds); | 
 |                 break; | 
 |             case SkPath::kCubic_Verb: { | 
 |                 m.mapPoints(pts, 4); | 
 |                 update_degenerate_test(°enerateData, pts[1]); | 
 |                 update_degenerate_test(°enerateData, pts[2]); | 
 |                 update_degenerate_test(°enerateData, pts[3]); | 
 |                 add_cubic_segments(pts, dir, segments, devBounds); | 
 |                 break; | 
 |             }; | 
 |             case SkPath::kDone_Verb: | 
 |                 if (degenerateData.isDegenerate()) { | 
 |                     return false; | 
 |                 } else { | 
 |                     compute_vectors(segments, fanPt, dir, vCount, iCount); | 
 |                     return true; | 
 |                 } | 
 |             default: | 
 |                 break; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | struct QuadVertex { | 
 |     GrPoint  fPos; | 
 |     GrPoint  fUV; | 
 |     SkScalar fD0; | 
 |     SkScalar fD1; | 
 | }; | 
 |  | 
 | struct Draw { | 
 |     Draw() : fVertexCnt(0), fIndexCnt(0) {} | 
 |     int fVertexCnt; | 
 |     int fIndexCnt; | 
 | }; | 
 |  | 
 | typedef SkTArray<Draw, true> DrawArray; | 
 |  | 
 | static void create_vertices(const SegmentArray&  segments, | 
 |                             const SkPoint& fanPt, | 
 |                             DrawArray*     draws, | 
 |                             QuadVertex*    verts, | 
 |                             uint16_t*      idxs) { | 
 |     Draw* draw = &draws->push_back(); | 
 |     // alias just to make vert/index assignments easier to read. | 
 |     int* v = &draw->fVertexCnt; | 
 |     int* i = &draw->fIndexCnt; | 
 |  | 
 |     int count = segments.count(); | 
 |     for (int a = 0; a < count; ++a) { | 
 |         const Segment& sega = segments[a]; | 
 |         int b = (a + 1) % count; | 
 |         const Segment& segb = segments[b]; | 
 |  | 
 |         // Check whether adding the verts for this segment to the current draw would cause index | 
 |         // values to overflow. | 
 |         int vCount = 4; | 
 |         if (Segment::kLine == segb.fType) { | 
 |             vCount += 5; | 
 |         } else { | 
 |             vCount += 6; | 
 |         } | 
 |         if (draw->fVertexCnt + vCount > (1 << 16)) { | 
 |             verts += *v; | 
 |             idxs += *i; | 
 |             draw = &draws->push_back(); | 
 |             v = &draw->fVertexCnt; | 
 |             i = &draw->fIndexCnt; | 
 |         } | 
 |  | 
 |         // FIXME: These tris are inset in the 1 unit arc around the corner | 
 |         verts[*v + 0].fPos = sega.endPt(); | 
 |         verts[*v + 1].fPos = verts[*v + 0].fPos + sega.endNorm(); | 
 |         verts[*v + 2].fPos = verts[*v + 0].fPos + segb.fMid; | 
 |         verts[*v + 3].fPos = verts[*v + 0].fPos + segb.fNorms[0]; | 
 |         verts[*v + 0].fUV.set(0,0); | 
 |         verts[*v + 1].fUV.set(0,-SK_Scalar1); | 
 |         verts[*v + 2].fUV.set(0,-SK_Scalar1); | 
 |         verts[*v + 3].fUV.set(0,-SK_Scalar1); | 
 |         verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; | 
 |         verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; | 
 |         verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; | 
 |         verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; | 
 |  | 
 |         idxs[*i + 0] = *v + 0; | 
 |         idxs[*i + 1] = *v + 2; | 
 |         idxs[*i + 2] = *v + 1; | 
 |         idxs[*i + 3] = *v + 0; | 
 |         idxs[*i + 4] = *v + 3; | 
 |         idxs[*i + 5] = *v + 2; | 
 |  | 
 |         *v += 4; | 
 |         *i += 6; | 
 |  | 
 |         if (Segment::kLine == segb.fType) { | 
 |             verts[*v + 0].fPos = fanPt; | 
 |             verts[*v + 1].fPos = sega.endPt(); | 
 |             verts[*v + 2].fPos = segb.fPts[0]; | 
 |  | 
 |             verts[*v + 3].fPos = verts[*v + 1].fPos + segb.fNorms[0]; | 
 |             verts[*v + 4].fPos = verts[*v + 2].fPos + segb.fNorms[0]; | 
 |  | 
 |             // we draw the line edge as a degenerate quad (u is 0, v is the | 
 |             // signed distance to the edge) | 
 |             SkScalar dist = fanPt.distanceToLineBetween(verts[*v + 1].fPos, | 
 |                                                         verts[*v + 2].fPos); | 
 |             verts[*v + 0].fUV.set(0, dist); | 
 |             verts[*v + 1].fUV.set(0, 0); | 
 |             verts[*v + 2].fUV.set(0, 0); | 
 |             verts[*v + 3].fUV.set(0, -SK_Scalar1); | 
 |             verts[*v + 4].fUV.set(0, -SK_Scalar1); | 
 |  | 
 |             verts[*v + 0].fD0 = verts[*v + 0].fD1 = -SK_Scalar1; | 
 |             verts[*v + 1].fD0 = verts[*v + 1].fD1 = -SK_Scalar1; | 
 |             verts[*v + 2].fD0 = verts[*v + 2].fD1 = -SK_Scalar1; | 
 |             verts[*v + 3].fD0 = verts[*v + 3].fD1 = -SK_Scalar1; | 
 |             verts[*v + 4].fD0 = verts[*v + 4].fD1 = -SK_Scalar1; | 
 |  | 
 |             idxs[*i + 0] = *v + 0; | 
 |             idxs[*i + 1] = *v + 2; | 
 |             idxs[*i + 2] = *v + 1; | 
 |  | 
 |             idxs[*i + 3] = *v + 3; | 
 |             idxs[*i + 4] = *v + 1; | 
 |             idxs[*i + 5] = *v + 2; | 
 |  | 
 |             idxs[*i + 6] = *v + 4; | 
 |             idxs[*i + 7] = *v + 3; | 
 |             idxs[*i + 8] = *v + 2; | 
 |  | 
 |             *v += 5; | 
 |             *i += 9; | 
 |         } else { | 
 |             GrPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; | 
 |  | 
 |             GrVec midVec = segb.fNorms[0] + segb.fNorms[1]; | 
 |             midVec.normalize(); | 
 |  | 
 |             verts[*v + 0].fPos = fanPt; | 
 |             verts[*v + 1].fPos = qpts[0]; | 
 |             verts[*v + 2].fPos = qpts[2]; | 
 |             verts[*v + 3].fPos = qpts[0] + segb.fNorms[0]; | 
 |             verts[*v + 4].fPos = qpts[2] + segb.fNorms[1]; | 
 |             verts[*v + 5].fPos = qpts[1] + midVec; | 
 |  | 
 |             SkScalar c = segb.fNorms[0].dot(qpts[0]); | 
 |             verts[*v + 0].fD0 =  -segb.fNorms[0].dot(fanPt) + c; | 
 |             verts[*v + 1].fD0 =  0.f; | 
 |             verts[*v + 2].fD0 =  -segb.fNorms[0].dot(qpts[2]) + c; | 
 |             verts[*v + 3].fD0 = -SK_ScalarMax/100; | 
 |             verts[*v + 4].fD0 = -SK_ScalarMax/100; | 
 |             verts[*v + 5].fD0 = -SK_ScalarMax/100; | 
 |  | 
 |             c = segb.fNorms[1].dot(qpts[2]); | 
 |             verts[*v + 0].fD1 =  -segb.fNorms[1].dot(fanPt) + c; | 
 |             verts[*v + 1].fD1 =  -segb.fNorms[1].dot(qpts[0]) + c; | 
 |             verts[*v + 2].fD1 =  0.f; | 
 |             verts[*v + 3].fD1 = -SK_ScalarMax/100; | 
 |             verts[*v + 4].fD1 = -SK_ScalarMax/100; | 
 |             verts[*v + 5].fD1 = -SK_ScalarMax/100; | 
 |  | 
 |             GrPathUtils::QuadUVMatrix toUV(qpts); | 
 |             toUV.apply<6, sizeof(QuadVertex), sizeof(GrPoint)>(verts + *v); | 
 |  | 
 |             idxs[*i + 0] = *v + 3; | 
 |             idxs[*i + 1] = *v + 1; | 
 |             idxs[*i + 2] = *v + 2; | 
 |             idxs[*i + 3] = *v + 4; | 
 |             idxs[*i + 4] = *v + 3; | 
 |             idxs[*i + 5] = *v + 2; | 
 |  | 
 |             idxs[*i + 6] = *v + 5; | 
 |             idxs[*i + 7] = *v + 3; | 
 |             idxs[*i + 8] = *v + 4; | 
 |  | 
 |             idxs[*i +  9] = *v + 0; | 
 |             idxs[*i + 10] = *v + 2; | 
 |             idxs[*i + 11] = *v + 1; | 
 |  | 
 |             *v += 6; | 
 |             *i += 12; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | /* | 
 |  * Quadratic specified by 0=u^2-v canonical coords. u and v are the first | 
 |  * two components of the vertex attribute. Coverage is based on signed | 
 |  * distance with negative being inside, positive outside. The edge is specified in | 
 |  * window space (y-down). If either the third or fourth component of the interpolated | 
 |  * vertex coord is > 0 then the pixel is considered outside the edge. This is used to | 
 |  * attempt to trim to a portion of the infinite quad. | 
 |  * Requires shader derivative instruction support. | 
 |  */ | 
 |  | 
 | class QuadEdgeEffect : public GrVertexEffect { | 
 | public: | 
 |  | 
 |     static GrEffectRef* Create() { | 
 |         GR_CREATE_STATIC_EFFECT(gQuadEdgeEffect, QuadEdgeEffect, ()); | 
 |         gQuadEdgeEffect->ref(); | 
 |         return gQuadEdgeEffect; | 
 |     } | 
 |  | 
 |     virtual ~QuadEdgeEffect() {} | 
 |  | 
 |     static const char* Name() { return "QuadEdge"; } | 
 |  | 
 |     virtual void getConstantColorComponents(GrColor* color, | 
 |                                             uint32_t* validFlags) const SK_OVERRIDE { | 
 |         *validFlags = 0; | 
 |     } | 
 |  | 
 |     virtual const GrBackendEffectFactory& getFactory() const SK_OVERRIDE { | 
 |         return GrTBackendEffectFactory<QuadEdgeEffect>::getInstance(); | 
 |     } | 
 |  | 
 |     class GLEffect : public GrGLVertexEffect { | 
 |     public: | 
 |         GLEffect(const GrBackendEffectFactory& factory, const GrDrawEffect&) | 
 |             : INHERITED (factory) {} | 
 |  | 
 |         virtual void emitCode(GrGLFullShaderBuilder* builder, | 
 |                               const GrDrawEffect& drawEffect, | 
 |                               EffectKey key, | 
 |                               const char* outputColor, | 
 |                               const char* inputColor, | 
 |                               const TransformedCoordsArray&, | 
 |                               const TextureSamplerArray& samplers) SK_OVERRIDE { | 
 |             const char *vsName, *fsName; | 
 |             const SkString* attrName = | 
 |                 builder->getEffectAttributeName(drawEffect.getVertexAttribIndices()[0]); | 
 |             builder->fsCodeAppendf("\t\tfloat edgeAlpha;\n"); | 
 |  | 
 |             SkAssertResult(builder->enableFeature( | 
 |                                               GrGLShaderBuilder::kStandardDerivatives_GLSLFeature)); | 
 |             builder->addVarying(kVec4f_GrSLType, "QuadEdge", &vsName, &fsName); | 
 |  | 
 |             // keep the derivative instructions outside the conditional | 
 |             builder->fsCodeAppendf("\t\tvec2 duvdx = dFdx(%s.xy);\n", fsName); | 
 |             builder->fsCodeAppendf("\t\tvec2 duvdy = dFdy(%s.xy);\n", fsName); | 
 |             builder->fsCodeAppendf("\t\tif (%s.z > 0.0 && %s.w > 0.0) {\n", fsName, fsName); | 
 |             // today we know z and w are in device space. We could use derivatives | 
 |             builder->fsCodeAppendf("\t\t\tedgeAlpha = min(min(%s.z, %s.w) + 0.5, 1.0);\n", fsName, | 
 |                                     fsName); | 
 |             builder->fsCodeAppendf ("\t\t} else {\n"); | 
 |             builder->fsCodeAppendf("\t\t\tvec2 gF = vec2(2.0*%s.x*duvdx.x - duvdx.y,\n" | 
 |                                    "\t\t\t               2.0*%s.x*duvdy.x - duvdy.y);\n", | 
 |                                    fsName, fsName); | 
 |             builder->fsCodeAppendf("\t\t\tedgeAlpha = (%s.x*%s.x - %s.y);\n", fsName, fsName, | 
 |                                     fsName); | 
 |             builder->fsCodeAppendf("\t\t\tedgeAlpha = " | 
 |                                    "clamp(0.5 - edgeAlpha / length(gF), 0.0, 1.0);\n\t\t}\n"); | 
 |  | 
 |  | 
 |             builder->fsCodeAppendf("\t%s = %s;\n", outputColor, | 
 |                                    (GrGLSLExpr4(inputColor) * GrGLSLExpr1("edgeAlpha")).c_str()); | 
 |  | 
 |             builder->vsCodeAppendf("\t%s = %s;\n", vsName, attrName->c_str()); | 
 |         } | 
 |  | 
 |         static inline EffectKey GenKey(const GrDrawEffect& drawEffect, const GrGLCaps&) { | 
 |             return 0x0; | 
 |         } | 
 |  | 
 |         virtual void setData(const GrGLUniformManager&, const GrDrawEffect&) SK_OVERRIDE {} | 
 |  | 
 |     private: | 
 |         typedef GrGLVertexEffect INHERITED; | 
 |     }; | 
 |  | 
 | private: | 
 |     QuadEdgeEffect() { | 
 |         this->addVertexAttrib(kVec4f_GrSLType); | 
 |     } | 
 |  | 
 |     virtual bool onIsEqual(const GrEffect& other) const SK_OVERRIDE { | 
 |         return true; | 
 |     } | 
 |  | 
 |     GR_DECLARE_EFFECT_TEST; | 
 |  | 
 |     typedef GrVertexEffect INHERITED; | 
 | }; | 
 |  | 
 | GR_DEFINE_EFFECT_TEST(QuadEdgeEffect); | 
 |  | 
 | GrEffectRef* QuadEdgeEffect::TestCreate(SkRandom* random, | 
 |                                         GrContext*, | 
 |                                         const GrDrawTargetCaps& caps, | 
 |                                         GrTexture*[]) { | 
 |     // Doesn't work without derivative instructions. | 
 |     return caps.shaderDerivativeSupport() ? QuadEdgeEffect::Create() : NULL; | 
 | } | 
 |  | 
 | /////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path, | 
 |                                          const SkStrokeRec& stroke, | 
 |                                          const GrDrawTarget* target, | 
 |                                          bool antiAlias) const { | 
 |     return (target->caps()->shaderDerivativeSupport() && antiAlias && | 
 |             stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex()); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | // position + edge | 
 | extern const GrVertexAttrib gPathAttribs[] = { | 
 |     {kVec2f_GrVertexAttribType, 0,               kPosition_GrVertexAttribBinding}, | 
 |     {kVec4f_GrVertexAttribType, sizeof(GrPoint), kEffect_GrVertexAttribBinding} | 
 | }; | 
 |  | 
 | }; | 
 |  | 
 | bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath, | 
 |                                         const SkStrokeRec&, | 
 |                                         GrDrawTarget* target, | 
 |                                         bool antiAlias) { | 
 |  | 
 |     const SkPath* path = &origPath; | 
 |     if (path->isEmpty()) { | 
 |         return true; | 
 |     } | 
 |  | 
 |     SkMatrix viewMatrix = target->getDrawState().getViewMatrix(); | 
 |     GrDrawTarget::AutoStateRestore asr; | 
 |     if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { | 
 |         return false; | 
 |     } | 
 |     GrDrawState* drawState = target->drawState(); | 
 |  | 
 |     // We use the fact that SkPath::transform path does subdivision based on | 
 |     // perspective. Otherwise, we apply the view matrix when copying to the | 
 |     // segment representation. | 
 |     SkPath tmpPath; | 
 |     if (viewMatrix.hasPerspective()) { | 
 |         origPath.transform(viewMatrix, &tmpPath); | 
 |         path = &tmpPath; | 
 |         viewMatrix = SkMatrix::I(); | 
 |     } | 
 |  | 
 |     QuadVertex *verts; | 
 |     uint16_t* idxs; | 
 |  | 
 |     int vCount; | 
 |     int iCount; | 
 |     enum { | 
 |         kPreallocSegmentCnt = 512 / sizeof(Segment), | 
 |         kPreallocDrawCnt = 4, | 
 |     }; | 
 |     SkSTArray<kPreallocSegmentCnt, Segment, true> segments; | 
 |     SkPoint fanPt; | 
 |  | 
 |     // We can't simply use the path bounds because we may degenerate cubics to quads which produces | 
 |     // new control points outside the original convex hull. | 
 |     SkRect devBounds; | 
 |     if (!get_segments(*path, viewMatrix, &segments, &fanPt, &vCount, &iCount, &devBounds)) { | 
 |         return false; | 
 |     } | 
 |  | 
 |     // Our computed verts should all be within one pixel of the segment control points. | 
 |     devBounds.outset(SK_Scalar1, SK_Scalar1); | 
 |  | 
 |     drawState->setVertexAttribs<gPathAttribs>(SK_ARRAY_COUNT(gPathAttribs)); | 
 |  | 
 |     static const int kEdgeAttrIndex = 1; | 
 |     GrEffectRef* quadEffect = QuadEdgeEffect::Create(); | 
 |     drawState->addCoverageEffect(quadEffect, kEdgeAttrIndex)->unref(); | 
 |  | 
 |     GrDrawTarget::AutoReleaseGeometry arg(target, vCount, iCount); | 
 |     if (!arg.succeeded()) { | 
 |         return false; | 
 |     } | 
 |     SkASSERT(sizeof(QuadVertex) == drawState->getVertexSize()); | 
 |     verts = reinterpret_cast<QuadVertex*>(arg.vertices()); | 
 |     idxs = reinterpret_cast<uint16_t*>(arg.indices()); | 
 |  | 
 |     SkSTArray<kPreallocDrawCnt, Draw, true> draws; | 
 |     create_vertices(segments, fanPt, &draws, verts, idxs); | 
 |  | 
 |     // Check devBounds | 
 | #ifdef SK_DEBUG | 
 |     SkRect tolDevBounds = devBounds; | 
 |     tolDevBounds.outset(SK_Scalar1 / 10000, SK_Scalar1 / 10000); | 
 |     SkRect actualBounds; | 
 |     actualBounds.set(verts[0].fPos, verts[1].fPos); | 
 |     for (int i = 2; i < vCount; ++i) { | 
 |         actualBounds.growToInclude(verts[i].fPos.fX, verts[i].fPos.fY); | 
 |     } | 
 |     SkASSERT(tolDevBounds.contains(actualBounds)); | 
 | #endif | 
 |  | 
 |     int vOffset = 0; | 
 |     for (int i = 0; i < draws.count(); ++i) { | 
 |         const Draw& draw = draws[i]; | 
 |         target->drawIndexed(kTriangles_GrPrimitiveType, | 
 |                             vOffset,  // start vertex | 
 |                             0,        // start index | 
 |                             draw.fVertexCnt, | 
 |                             draw.fIndexCnt, | 
 |                             &devBounds); | 
 |         vOffset += draw.fVertexCnt; | 
 |     } | 
 |  | 
 |     return true; | 
 | } |