| /* | 
 |  * Copyright 2011 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "GrPathUtils.h" | 
 |  | 
 | #include "GrPoint.h" | 
 | #include "SkGeometry.h" | 
 |  | 
 | SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol, | 
 |                                           const SkMatrix& viewM, | 
 |                                           const SkRect& pathBounds) { | 
 |     // In order to tesselate the path we get a bound on how much the matrix can | 
 |     // stretch when mapping to screen coordinates. | 
 |     SkScalar stretch = viewM.getMaxStretch(); | 
 |     SkScalar srcTol = devTol; | 
 |  | 
 |     if (stretch < 0) { | 
 |         // take worst case mapRadius amoung four corners. | 
 |         // (less than perfect) | 
 |         for (int i = 0; i < 4; ++i) { | 
 |             SkMatrix mat; | 
 |             mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, | 
 |                              (i < 2) ? pathBounds.fTop : pathBounds.fBottom); | 
 |             mat.postConcat(viewM); | 
 |             stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1)); | 
 |         } | 
 |     } | 
 |     srcTol = SkScalarDiv(srcTol, stretch); | 
 |     return srcTol; | 
 | } | 
 |  | 
 | static const int MAX_POINTS_PER_CURVE = 1 << 10; | 
 | static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f); | 
 |  | 
 | uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[], | 
 |                                           SkScalar tol) { | 
 |     if (tol < gMinCurveTol) { | 
 |         tol = gMinCurveTol; | 
 |     } | 
 |     SkASSERT(tol > 0); | 
 |  | 
 |     SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); | 
 |     if (d <= tol) { | 
 |         return 1; | 
 |     } else { | 
 |         // Each time we subdivide, d should be cut in 4. So we need to | 
 |         // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) | 
 |         // points. | 
 |         // 2^(log4(x)) = sqrt(x); | 
 |         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); | 
 |         int pow2 = GrNextPow2(temp); | 
 |         // Because of NaNs & INFs we can wind up with a degenerate temp | 
 |         // such that pow2 comes out negative. Also, our point generator | 
 |         // will always output at least one pt. | 
 |         if (pow2 < 1) { | 
 |             pow2 = 1; | 
 |         } | 
 |         return GrMin(pow2, MAX_POINTS_PER_CURVE); | 
 |     } | 
 | } | 
 |  | 
 | uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0, | 
 |                                               const GrPoint& p1, | 
 |                                               const GrPoint& p2, | 
 |                                               SkScalar tolSqd, | 
 |                                               GrPoint** points, | 
 |                                               uint32_t pointsLeft) { | 
 |     if (pointsLeft < 2 || | 
 |         (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { | 
 |         (*points)[0] = p2; | 
 |         *points += 1; | 
 |         return 1; | 
 |     } | 
 |  | 
 |     GrPoint q[] = { | 
 |         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | 
 |         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | 
 |     }; | 
 |     GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; | 
 |  | 
 |     pointsLeft >>= 1; | 
 |     uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); | 
 |     uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); | 
 |     return a + b; | 
 | } | 
 |  | 
 | uint32_t GrPathUtils::cubicPointCount(const GrPoint points[], | 
 |                                            SkScalar tol) { | 
 |     if (tol < gMinCurveTol) { | 
 |         tol = gMinCurveTol; | 
 |     } | 
 |     SkASSERT(tol > 0); | 
 |  | 
 |     SkScalar d = GrMax( | 
 |         points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), | 
 |         points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); | 
 |     d = SkScalarSqrt(d); | 
 |     if (d <= tol) { | 
 |         return 1; | 
 |     } else { | 
 |         int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); | 
 |         int pow2 = GrNextPow2(temp); | 
 |         // Because of NaNs & INFs we can wind up with a degenerate temp | 
 |         // such that pow2 comes out negative. Also, our point generator | 
 |         // will always output at least one pt. | 
 |         if (pow2 < 1) { | 
 |             pow2 = 1; | 
 |         } | 
 |         return GrMin(pow2, MAX_POINTS_PER_CURVE); | 
 |     } | 
 | } | 
 |  | 
 | uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0, | 
 |                                           const GrPoint& p1, | 
 |                                           const GrPoint& p2, | 
 |                                           const GrPoint& p3, | 
 |                                           SkScalar tolSqd, | 
 |                                           GrPoint** points, | 
 |                                           uint32_t pointsLeft) { | 
 |     if (pointsLeft < 2 || | 
 |         (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && | 
 |          p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { | 
 |             (*points)[0] = p3; | 
 |             *points += 1; | 
 |             return 1; | 
 |         } | 
 |     GrPoint q[] = { | 
 |         { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, | 
 |         { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, | 
 |         { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } | 
 |     }; | 
 |     GrPoint r[] = { | 
 |         { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, | 
 |         { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } | 
 |     }; | 
 |     GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; | 
 |     pointsLeft >>= 1; | 
 |     uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); | 
 |     uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); | 
 |     return a + b; | 
 | } | 
 |  | 
 | int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, | 
 |                                      SkScalar tol) { | 
 |     if (tol < gMinCurveTol) { | 
 |         tol = gMinCurveTol; | 
 |     } | 
 |     SkASSERT(tol > 0); | 
 |  | 
 |     int pointCount = 0; | 
 |     *subpaths = 1; | 
 |  | 
 |     bool first = true; | 
 |  | 
 |     SkPath::Iter iter(path, false); | 
 |     SkPath::Verb verb; | 
 |  | 
 |     GrPoint pts[4]; | 
 |     while ((verb = iter.next(pts)) != SkPath::kDone_Verb) { | 
 |  | 
 |         switch (verb) { | 
 |             case SkPath::kLine_Verb: | 
 |                 pointCount += 1; | 
 |                 break; | 
 |             case SkPath::kQuad_Verb: | 
 |                 pointCount += quadraticPointCount(pts, tol); | 
 |                 break; | 
 |             case SkPath::kCubic_Verb: | 
 |                 pointCount += cubicPointCount(pts, tol); | 
 |                 break; | 
 |             case SkPath::kMove_Verb: | 
 |                 pointCount += 1; | 
 |                 if (!first) { | 
 |                     ++(*subpaths); | 
 |                 } | 
 |                 break; | 
 |             default: | 
 |                 break; | 
 |         } | 
 |         first = false; | 
 |     } | 
 |     return pointCount; | 
 | } | 
 |  | 
 | void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) { | 
 |     // can't make this static, no cons :( | 
 |     SkMatrix UVpts; | 
 | #ifndef SK_SCALAR_IS_FLOAT | 
 |     GrCrash("Expected scalar is float."); | 
 | #endif | 
 |     SkMatrix m; | 
 |     // We want M such that M * xy_pt = uv_pt | 
 |     // We know M * control_pts = [0  1/2 1] | 
 |     //                           [0  0   1] | 
 |     //                           [1  1   1] | 
 |     // We invert the control pt matrix and post concat to both sides to get M. | 
 |     UVpts.setAll(0,   SK_ScalarHalf,  SK_Scalar1, | 
 |                  0,               0,  SK_Scalar1, | 
 |                  SkScalarToPersp(SK_Scalar1), | 
 |                  SkScalarToPersp(SK_Scalar1), | 
 |                  SkScalarToPersp(SK_Scalar1)); | 
 |     m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX, | 
 |              qPts[0].fY, qPts[1].fY, qPts[2].fY, | 
 |              SkScalarToPersp(SK_Scalar1), | 
 |              SkScalarToPersp(SK_Scalar1), | 
 |              SkScalarToPersp(SK_Scalar1)); | 
 |     if (!m.invert(&m)) { | 
 |         // The quad is degenerate. Hopefully this is rare. Find the pts that are | 
 |         // farthest apart to compute a line (unless it is really a pt). | 
 |         SkScalar maxD = qPts[0].distanceToSqd(qPts[1]); | 
 |         int maxEdge = 0; | 
 |         SkScalar d = qPts[1].distanceToSqd(qPts[2]); | 
 |         if (d > maxD) { | 
 |             maxD = d; | 
 |             maxEdge = 1; | 
 |         } | 
 |         d = qPts[2].distanceToSqd(qPts[0]); | 
 |         if (d > maxD) { | 
 |             maxD = d; | 
 |             maxEdge = 2; | 
 |         } | 
 |         // We could have a tolerance here, not sure if it would improve anything | 
 |         if (maxD > 0) { | 
 |             // Set the matrix to give (u = 0, v = distance_to_line) | 
 |             GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; | 
 |             // when looking from the point 0 down the line we want positive | 
 |             // distances to be to the left. This matches the non-degenerate | 
 |             // case. | 
 |             lineVec.setOrthog(lineVec, GrPoint::kLeft_Side); | 
 |             lineVec.dot(qPts[0]); | 
 |             // first row | 
 |             fM[0] = 0; | 
 |             fM[1] = 0; | 
 |             fM[2] = 0; | 
 |             // second row | 
 |             fM[3] = lineVec.fX; | 
 |             fM[4] = lineVec.fY; | 
 |             fM[5] = -lineVec.dot(qPts[maxEdge]); | 
 |         } else { | 
 |             // It's a point. It should cover zero area. Just set the matrix such | 
 |             // that (u, v) will always be far away from the quad. | 
 |             fM[0] = 0; fM[1] = 0; fM[2] = 100.f; | 
 |             fM[3] = 0; fM[4] = 0; fM[5] = 100.f; | 
 |         } | 
 |     } else { | 
 |         m.postConcat(UVpts); | 
 |  | 
 |         // The matrix should not have perspective. | 
 |         SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f)); | 
 |         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL); | 
 |         SkASSERT(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL); | 
 |  | 
 |         // It may not be normalized to have 1.0 in the bottom right | 
 |         float m33 = m.get(SkMatrix::kMPersp2); | 
 |         if (1.f != m33) { | 
 |             m33 = 1.f / m33; | 
 |             fM[0] = m33 * m.get(SkMatrix::kMScaleX); | 
 |             fM[1] = m33 * m.get(SkMatrix::kMSkewX); | 
 |             fM[2] = m33 * m.get(SkMatrix::kMTransX); | 
 |             fM[3] = m33 * m.get(SkMatrix::kMSkewY); | 
 |             fM[4] = m33 * m.get(SkMatrix::kMScaleY); | 
 |             fM[5] = m33 * m.get(SkMatrix::kMTransY); | 
 |         } else { | 
 |             fM[0] = m.get(SkMatrix::kMScaleX); | 
 |             fM[1] = m.get(SkMatrix::kMSkewX); | 
 |             fM[2] = m.get(SkMatrix::kMTransX); | 
 |             fM[3] = m.get(SkMatrix::kMSkewY); | 
 |             fM[4] = m.get(SkMatrix::kMScaleY); | 
 |             fM[5] = m.get(SkMatrix::kMTransY); | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | // k = (y2 - y0, x0 - x2, (x2 - x0)*y0 - (y2 - y0)*x0 ) | 
 | // l = (2*w * (y1 - y0), 2*w * (x0 - x1), 2*w * (x1*y0 - x0*y1)) | 
 | // m = (2*w * (y2 - y1), 2*w * (x1 - x2), 2*w * (x2*y1 - x1*y2)) | 
 | void GrPathUtils::getConicKLM(const SkPoint p[3], const SkScalar weight, SkScalar klm[9]) { | 
 |     const SkScalar w2 = 2.f * weight; | 
 |     klm[0] = p[2].fY - p[0].fY; | 
 |     klm[1] = p[0].fX - p[2].fX; | 
 |     klm[2] = (p[2].fX - p[0].fX) * p[0].fY - (p[2].fY - p[0].fY) * p[0].fX; | 
 |  | 
 |     klm[3] = w2 * (p[1].fY - p[0].fY); | 
 |     klm[4] = w2 * (p[0].fX - p[1].fX); | 
 |     klm[5] = w2 * (p[1].fX * p[0].fY - p[0].fX * p[1].fY); | 
 |  | 
 |     klm[6] = w2 * (p[2].fY - p[1].fY); | 
 |     klm[7] = w2 * (p[1].fX - p[2].fX); | 
 |     klm[8] = w2 * (p[2].fX * p[1].fY - p[1].fX * p[2].fY); | 
 |  | 
 |     // scale the max absolute value of coeffs to 10 | 
 |     SkScalar scale = 0.f; | 
 |     for (int i = 0; i < 9; ++i) { | 
 |        scale = SkMaxScalar(scale, SkScalarAbs(klm[i])); | 
 |     } | 
 |     SkASSERT(scale > 0.f); | 
 |     scale = 10.f / scale; | 
 |     for (int i = 0; i < 9; ++i) { | 
 |         klm[i] *= scale; | 
 |     } | 
 | } | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | namespace { | 
 |  | 
 | // a is the first control point of the cubic. | 
 | // ab is the vector from a to the second control point. | 
 | // dc is the vector from the fourth to the third control point. | 
 | // d is the fourth control point. | 
 | // p is the candidate quadratic control point. | 
 | // this assumes that the cubic doesn't inflect and is simple | 
 | bool is_point_within_cubic_tangents(const SkPoint& a, | 
 |                                     const SkVector& ab, | 
 |                                     const SkVector& dc, | 
 |                                     const SkPoint& d, | 
 |                                     SkPath::Direction dir, | 
 |                                     const SkPoint p) { | 
 |     SkVector ap = p - a; | 
 |     SkScalar apXab = ap.cross(ab); | 
 |     if (SkPath::kCW_Direction == dir) { | 
 |         if (apXab > 0) { | 
 |             return false; | 
 |         } | 
 |     } else { | 
 |         SkASSERT(SkPath::kCCW_Direction == dir); | 
 |         if (apXab < 0) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |  | 
 |     SkVector dp = p - d; | 
 |     SkScalar dpXdc = dp.cross(dc); | 
 |     if (SkPath::kCW_Direction == dir) { | 
 |         if (dpXdc < 0) { | 
 |             return false; | 
 |         } | 
 |     } else { | 
 |         SkASSERT(SkPath::kCCW_Direction == dir); | 
 |         if (dpXdc > 0) { | 
 |             return false; | 
 |         } | 
 |     } | 
 |     return true; | 
 | } | 
 |  | 
 | void convert_noninflect_cubic_to_quads(const SkPoint p[4], | 
 |                                        SkScalar toleranceSqd, | 
 |                                        bool constrainWithinTangents, | 
 |                                        SkPath::Direction dir, | 
 |                                        SkTArray<SkPoint, true>* quads, | 
 |                                        int sublevel = 0) { | 
 |  | 
 |     // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is | 
 |     // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1]. | 
 |  | 
 |     SkVector ab = p[1] - p[0]; | 
 |     SkVector dc = p[2] - p[3]; | 
 |  | 
 |     if (ab.isZero()) { | 
 |         if (dc.isZero()) { | 
 |             SkPoint* degQuad = quads->push_back_n(3); | 
 |             degQuad[0] = p[0]; | 
 |             degQuad[1] = p[0]; | 
 |             degQuad[2] = p[3]; | 
 |             return; | 
 |         } | 
 |         ab = p[2] - p[0]; | 
 |     } | 
 |     if (dc.isZero()) { | 
 |         dc = p[1] - p[3]; | 
 |     } | 
 |  | 
 |     // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that | 
 |     // the quad point falls between the tangents becomes hard to enforce and we are likely to hit | 
 |     // the max subdivision count. However, in this case the cubic is approaching a line and the | 
 |     // accuracy of the quad point isn't so important. We check if the two middle cubic control | 
 |     // points are very close to the baseline vector. If so then we just pick quadratic points on the | 
 |     // control polygon. | 
 |  | 
 |     if (constrainWithinTangents) { | 
 |         SkVector da = p[0] - p[3]; | 
 |         SkScalar invDALengthSqd = da.lengthSqd(); | 
 |         if (invDALengthSqd > SK_ScalarNearlyZero) { | 
 |             invDALengthSqd = SkScalarInvert(invDALengthSqd); | 
 |             // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a. | 
 |             // same goed for point c using vector cd. | 
 |             SkScalar detABSqd = ab.cross(da); | 
 |             detABSqd = SkScalarSquare(detABSqd); | 
 |             SkScalar detDCSqd = dc.cross(da); | 
 |             detDCSqd = SkScalarSquare(detDCSqd); | 
 |             if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd && | 
 |                 SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) { | 
 |                 SkPoint b = p[0] + ab; | 
 |                 SkPoint c = p[3] + dc; | 
 |                 SkPoint mid = b + c; | 
 |                 mid.scale(SK_ScalarHalf); | 
 |                 // Insert two quadratics to cover the case when ab points away from d and/or dc | 
 |                 // points away from a. | 
 |                 if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) { | 
 |                     SkPoint* qpts = quads->push_back_n(6); | 
 |                     qpts[0] = p[0]; | 
 |                     qpts[1] = b; | 
 |                     qpts[2] = mid; | 
 |                     qpts[3] = mid; | 
 |                     qpts[4] = c; | 
 |                     qpts[5] = p[3]; | 
 |                 } else { | 
 |                     SkPoint* qpts = quads->push_back_n(3); | 
 |                     qpts[0] = p[0]; | 
 |                     qpts[1] = mid; | 
 |                     qpts[2] = p[3]; | 
 |                 } | 
 |                 return; | 
 |             } | 
 |         } | 
 |     } | 
 |  | 
 |     static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2; | 
 |     static const int kMaxSubdivs = 10; | 
 |  | 
 |     ab.scale(kLengthScale); | 
 |     dc.scale(kLengthScale); | 
 |  | 
 |     // e0 and e1 are extrapolations along vectors ab and dc. | 
 |     SkVector c0 = p[0]; | 
 |     c0 += ab; | 
 |     SkVector c1 = p[3]; | 
 |     c1 += dc; | 
 |  | 
 |     SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1); | 
 |     if (dSqd < toleranceSqd) { | 
 |         SkPoint cAvg = c0; | 
 |         cAvg += c1; | 
 |         cAvg.scale(SK_ScalarHalf); | 
 |  | 
 |         bool subdivide = false; | 
 |  | 
 |         if (constrainWithinTangents && | 
 |             !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) { | 
 |             // choose a new cAvg that is the intersection of the two tangent lines. | 
 |             ab.setOrthog(ab); | 
 |             SkScalar z0 = -ab.dot(p[0]); | 
 |             dc.setOrthog(dc); | 
 |             SkScalar z1 = -dc.dot(p[3]); | 
 |             cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY); | 
 |             cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1); | 
 |             SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX); | 
 |             z = SkScalarInvert(z); | 
 |             cAvg.fX *= z; | 
 |             cAvg.fY *= z; | 
 |             if (sublevel <= kMaxSubdivs) { | 
 |                 SkScalar d0Sqd = c0.distanceToSqd(cAvg); | 
 |                 SkScalar d1Sqd = c1.distanceToSqd(cAvg); | 
 |                 // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know | 
 |                 // the distances and tolerance can't be negative. | 
 |                 // (d0 + d1)^2 > toleranceSqd | 
 |                 // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd | 
 |                 SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd)); | 
 |                 subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd; | 
 |             } | 
 |         } | 
 |         if (!subdivide) { | 
 |             SkPoint* pts = quads->push_back_n(3); | 
 |             pts[0] = p[0]; | 
 |             pts[1] = cAvg; | 
 |             pts[2] = p[3]; | 
 |             return; | 
 |         } | 
 |     } | 
 |     SkPoint choppedPts[7]; | 
 |     SkChopCubicAtHalf(p, choppedPts); | 
 |     convert_noninflect_cubic_to_quads(choppedPts + 0, | 
 |                                       toleranceSqd, | 
 |                                       constrainWithinTangents, | 
 |                                       dir, | 
 |                                       quads, | 
 |                                       sublevel + 1); | 
 |     convert_noninflect_cubic_to_quads(choppedPts + 3, | 
 |                                       toleranceSqd, | 
 |                                       constrainWithinTangents, | 
 |                                       dir, | 
 |                                       quads, | 
 |                                       sublevel + 1); | 
 | } | 
 | } | 
 |  | 
 | void GrPathUtils::convertCubicToQuads(const GrPoint p[4], | 
 |                                       SkScalar tolScale, | 
 |                                       bool constrainWithinTangents, | 
 |                                       SkPath::Direction dir, | 
 |                                       SkTArray<SkPoint, true>* quads) { | 
 |     SkPoint chopped[10]; | 
 |     int count = SkChopCubicAtInflections(p, chopped); | 
 |  | 
 |     // base tolerance is 1 pixel. | 
 |     static const SkScalar kTolerance = SK_Scalar1; | 
 |     const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance)); | 
 |  | 
 |     for (int i = 0; i < count; ++i) { | 
 |         SkPoint* cubic = chopped + 3*i; | 
 |         convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads); | 
 |     } | 
 |  | 
 | } | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 |  | 
 | enum CubicType { | 
 |     kSerpentine_CubicType, | 
 |     kCusp_CubicType, | 
 |     kLoop_CubicType, | 
 |     kQuadratic_CubicType, | 
 |     kLine_CubicType, | 
 |     kPoint_CubicType | 
 | }; | 
 |  | 
 | // discr(I) = d0^2 * (3*d1^2 - 4*d0*d2) | 
 | // Classification: | 
 | // discr(I) > 0        Serpentine | 
 | // discr(I) = 0        Cusp | 
 | // discr(I) < 0        Loop | 
 | // d0 = d1 = 0         Quadratic | 
 | // d0 = d1 = d2 = 0    Line | 
 | // p0 = p1 = p2 = p3   Point | 
 | static CubicType classify_cubic(const SkPoint p[4], const SkScalar d[3]) { | 
 |     if (p[0] == p[1] && p[0] == p[2] && p[0] == p[3]) { | 
 |         return kPoint_CubicType; | 
 |     } | 
 |     const SkScalar discr = d[0] * d[0] * (3.f * d[1] * d[1] - 4.f * d[0] * d[2]); | 
 |     if (discr > SK_ScalarNearlyZero) { | 
 |         return kSerpentine_CubicType; | 
 |     } else if (discr < -SK_ScalarNearlyZero) { | 
 |         return kLoop_CubicType; | 
 |     } else { | 
 |         if (0.f == d[0] && 0.f == d[1]) { | 
 |             return (0.f == d[2] ? kLine_CubicType : kQuadratic_CubicType); | 
 |         } else { | 
 |             return kCusp_CubicType; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // Assumes the third component of points is 1. | 
 | // Calcs p0 . (p1 x p2) | 
 | static SkScalar calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) { | 
 |     const SkScalar xComp = p0.fX * (p1.fY - p2.fY); | 
 |     const SkScalar yComp = p0.fY * (p2.fX - p1.fX); | 
 |     const SkScalar wComp = p1.fX * p2.fY - p1.fY * p2.fX; | 
 |     return (xComp + yComp + wComp); | 
 | } | 
 |  | 
 | // Solves linear system to extract klm | 
 | // P.K = k (similarly for l, m) | 
 | // Where P is matrix of control points | 
 | // K is coefficients for the line K | 
 | // k is vector of values of K evaluated at the control points | 
 | // Solving for K, thus K = P^(-1) . k | 
 | static void calc_cubic_klm(const SkPoint p[4], const SkScalar controlK[4], | 
 |                            const SkScalar controlL[4], const SkScalar controlM[4], | 
 |                            SkScalar k[3], SkScalar l[3], SkScalar m[3]) { | 
 |     SkMatrix matrix; | 
 |     matrix.setAll(p[0].fX, p[0].fY, 1.f, | 
 |                   p[1].fX, p[1].fY, 1.f, | 
 |                   p[2].fX, p[2].fY, 1.f); | 
 |     SkMatrix inverse; | 
 |     if (matrix.invert(&inverse)) { | 
 |        inverse.mapHomogeneousPoints(k, controlK, 1); | 
 |        inverse.mapHomogeneousPoints(l, controlL, 1); | 
 |        inverse.mapHomogeneousPoints(m, controlM, 1); | 
 |     } | 
 |  | 
 | } | 
 |  | 
 | static void set_serp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { | 
 |     SkScalar tempSqrt = SkScalarSqrt(9.f * d[1] * d[1] - 12.f * d[0] * d[2]); | 
 |     SkScalar ls = 3.f * d[1] - tempSqrt; | 
 |     SkScalar lt = 6.f * d[0]; | 
 |     SkScalar ms = 3.f * d[1] + tempSqrt; | 
 |     SkScalar mt = 6.f * d[0]; | 
 |  | 
 |     k[0] = ls * ms; | 
 |     k[1] = (3.f * ls * ms - ls * mt - lt * ms) / 3.f; | 
 |     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; | 
 |     k[3] = (lt - ls) * (mt - ms); | 
 |  | 
 |     l[0] = ls * ls * ls; | 
 |     const SkScalar lt_ls = lt - ls; | 
 |     l[1] = ls * ls * lt_ls * -1.f; | 
 |     l[2] = lt_ls * lt_ls * ls; | 
 |     l[3] = -1.f * lt_ls * lt_ls * lt_ls; | 
 |  | 
 |     m[0] = ms * ms * ms; | 
 |     const SkScalar mt_ms = mt - ms; | 
 |     m[1] = ms * ms * mt_ms * -1.f; | 
 |     m[2] = mt_ms * mt_ms * ms; | 
 |     m[3] = -1.f * mt_ms * mt_ms * mt_ms; | 
 |  | 
 |     // If d0 < 0 we need to flip the orientation of our curve | 
 |     // This is done by negating the k and l values | 
 |     // We want negative distance values to be on the inside | 
 |     if ( d[0] > 0) { | 
 |         for (int i = 0; i < 4; ++i) { | 
 |             k[i] = -k[i]; | 
 |             l[i] = -l[i]; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void set_loop_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { | 
 |     SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); | 
 |     SkScalar ls = d[1] - tempSqrt; | 
 |     SkScalar lt = 2.f * d[0]; | 
 |     SkScalar ms = d[1] + tempSqrt; | 
 |     SkScalar mt = 2.f * d[0]; | 
 |  | 
 |     k[0] = ls * ms; | 
 |     k[1] = (3.f * ls*ms - ls * mt - lt * ms) / 3.f; | 
 |     k[2] = (lt * (mt - 2.f * ms) + ls * (3.f * ms - 2.f * mt)) / 3.f; | 
 |     k[3] = (lt - ls) * (mt - ms); | 
 |  | 
 |     l[0] = ls * ls * ms; | 
 |     l[1] = (ls * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/-3.f; | 
 |     l[2] = ((lt - ls) * (ls * (2.f * mt - 3.f * ms) + lt * ms))/3.f; | 
 |     l[3] = -1.f * (lt - ls) * (lt - ls) * (mt - ms); | 
 |  | 
 |     m[0] = ls * ms * ms; | 
 |     m[1] = (ms * (ls * (2.f * mt - 3.f * ms) + lt * ms))/-3.f; | 
 |     m[2] = ((mt - ms) * (ls * (mt - 3.f * ms) + 2.f * lt * ms))/3.f; | 
 |     m[3] = -1.f * (lt - ls) * (mt - ms) * (mt - ms); | 
 |  | 
 |  | 
 |     // If (d0 < 0 && sign(k1) > 0) || (d0 > 0 && sign(k1) < 0), | 
 |     // we need to flip the orientation of our curve. | 
 |     // This is done by negating the k and l values | 
 |     if ( (d[0] < 0 && k[1] > 0) || (d[0] > 0 && k[1] < 0)) { | 
 |         for (int i = 0; i < 4; ++i) { | 
 |             k[i] = -k[i]; | 
 |             l[i] = -l[i]; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | static void set_cusp_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { | 
 |     const SkScalar ls = d[2]; | 
 |     const SkScalar lt = 3.f * d[1]; | 
 |  | 
 |     k[0] = ls; | 
 |     k[1] = ls - lt / 3.f; | 
 |     k[2] = ls - 2.f * lt / 3.f; | 
 |     k[3] = ls - lt; | 
 |  | 
 |     l[0] = ls * ls * ls; | 
 |     const SkScalar ls_lt = ls - lt; | 
 |     l[1] = ls * ls * ls_lt; | 
 |     l[2] = ls_lt * ls_lt * ls; | 
 |     l[3] = ls_lt * ls_lt * ls_lt; | 
 |  | 
 |     m[0] = 1.f; | 
 |     m[1] = 1.f; | 
 |     m[2] = 1.f; | 
 |     m[3] = 1.f; | 
 | } | 
 |  | 
 | // For the case when a cubic is actually a quadratic | 
 | // M = | 
 | // 0     0     0 | 
 | // 1/3   0     1/3 | 
 | // 2/3   1/3   2/3 | 
 | // 1     1     1 | 
 | static void set_quadratic_klm(const SkScalar d[3], SkScalar k[4], SkScalar l[4], SkScalar m[4]) { | 
 |     k[0] = 0.f; | 
 |     k[1] = 1.f/3.f; | 
 |     k[2] = 2.f/3.f; | 
 |     k[3] = 1.f; | 
 |  | 
 |     l[0] = 0.f; | 
 |     l[1] = 0.f; | 
 |     l[2] = 1.f/3.f; | 
 |     l[3] = 1.f; | 
 |  | 
 |     m[0] = 0.f; | 
 |     m[1] = 1.f/3.f; | 
 |     m[2] = 2.f/3.f; | 
 |     m[3] = 1.f; | 
 |  | 
 |     // If d2 < 0 we need to flip the orientation of our curve | 
 |     // This is done by negating the k and l values | 
 |     if ( d[2] > 0) { | 
 |         for (int i = 0; i < 4; ++i) { | 
 |             k[i] = -k[i]; | 
 |             l[i] = -l[i]; | 
 |         } | 
 |     } | 
 | } | 
 |  | 
 | // Calc coefficients of I(s,t) where roots of I are inflection points of curve | 
 | // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2) | 
 | // d0 = a1 - 2*a2+3*a3 | 
 | // d1 = -a2 + 3*a3 | 
 | // d2 = 3*a3 | 
 | // a1 = p0 . (p3 x p2) | 
 | // a2 = p1 . (p0 x p3) | 
 | // a3 = p2 . (p1 x p0) | 
 | // Places the values of d1, d2, d3 in array d passed in | 
 | static void calc_cubic_inflection_func(const SkPoint p[4], SkScalar d[3]) { | 
 |     SkScalar a1 = calc_dot_cross_cubic(p[0], p[3], p[2]); | 
 |     SkScalar a2 = calc_dot_cross_cubic(p[1], p[0], p[3]); | 
 |     SkScalar a3 = calc_dot_cross_cubic(p[2], p[1], p[0]); | 
 |  | 
 |     // need to scale a's or values in later calculations will grow to high | 
 |     SkScalar max = SkScalarAbs(a1); | 
 |     max = SkMaxScalar(max, SkScalarAbs(a2)); | 
 |     max = SkMaxScalar(max, SkScalarAbs(a3)); | 
 |     max = 1.f/max; | 
 |     a1 = a1 * max; | 
 |     a2 = a2 * max; | 
 |     a3 = a3 * max; | 
 |  | 
 |     d[2] = 3.f * a3; | 
 |     d[1] = d[2] - a2; | 
 |     d[0] = d[1] - a2 + a1; | 
 | } | 
 |  | 
 | int GrPathUtils::chopCubicAtLoopIntersection(const SkPoint src[4], SkPoint dst[10], SkScalar klm[9], | 
 |                                              SkScalar klm_rev[3]) { | 
 |     // Variable to store the two parametric values at the loop double point | 
 |     SkScalar smallS = 0.f; | 
 |     SkScalar largeS = 0.f; | 
 |  | 
 |     SkScalar d[3]; | 
 |     calc_cubic_inflection_func(src, d); | 
 |  | 
 |     CubicType cType = classify_cubic(src, d); | 
 |  | 
 |     int chop_count = 0; | 
 |     if (kLoop_CubicType == cType) { | 
 |         SkScalar tempSqrt = SkScalarSqrt(4.f * d[0] * d[2] - 3.f * d[1] * d[1]); | 
 |         SkScalar ls = d[1] - tempSqrt; | 
 |         SkScalar lt = 2.f * d[0]; | 
 |         SkScalar ms = d[1] + tempSqrt; | 
 |         SkScalar mt = 2.f * d[0]; | 
 |         ls = ls / lt; | 
 |         ms = ms / mt; | 
 |         // need to have t values sorted since this is what is expected by SkChopCubicAt | 
 |         if (ls <= ms) { | 
 |             smallS = ls; | 
 |             largeS = ms; | 
 |         } else { | 
 |             smallS = ms; | 
 |             largeS = ls; | 
 |         } | 
 |  | 
 |         SkScalar chop_ts[2]; | 
 |         if (smallS > 0.f && smallS < 1.f) { | 
 |             chop_ts[chop_count++] = smallS; | 
 |         } | 
 |         if (largeS > 0.f && largeS < 1.f) { | 
 |             chop_ts[chop_count++] = largeS; | 
 |         } | 
 |         if(dst) { | 
 |             SkChopCubicAt(src, dst, chop_ts, chop_count); | 
 |         } | 
 |     } else { | 
 |         if (dst) { | 
 |             memcpy(dst, src, sizeof(SkPoint) * 4); | 
 |         } | 
 |     } | 
 |  | 
 |     if (klm && klm_rev) { | 
 |         // Set klm_rev to to match the sub_section of cubic that needs to have its orientation | 
 |         // flipped. This will always be the section that is the "loop" | 
 |         if (2 == chop_count) { | 
 |             klm_rev[0] = 1.f; | 
 |             klm_rev[1] = -1.f; | 
 |             klm_rev[2] = 1.f; | 
 |         } else if (1 == chop_count) { | 
 |             if (smallS < 0.f) { | 
 |                 klm_rev[0] = -1.f; | 
 |                 klm_rev[1] = 1.f; | 
 |             } else { | 
 |                 klm_rev[0] = 1.f; | 
 |                 klm_rev[1] = -1.f; | 
 |             } | 
 |         } else { | 
 |             if (smallS < 0.f && largeS > 1.f) { | 
 |                 klm_rev[0] = -1.f; | 
 |             } else { | 
 |                 klm_rev[0] = 1.f; | 
 |             } | 
 |         } | 
 |         SkScalar controlK[4]; | 
 |         SkScalar controlL[4]; | 
 |         SkScalar controlM[4]; | 
 |  | 
 |         if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) { | 
 |             set_serp_klm(d, controlK, controlL, controlM); | 
 |         } else if (kLoop_CubicType == cType) { | 
 |             set_loop_klm(d, controlK, controlL, controlM); | 
 |         } else if (kCusp_CubicType == cType) { | 
 |             SkASSERT(0.f == d[0]); | 
 |             set_cusp_klm(d, controlK, controlL, controlM); | 
 |         } else if (kQuadratic_CubicType == cType) { | 
 |             set_quadratic_klm(d, controlK, controlL, controlM); | 
 |         } | 
 |  | 
 |         calc_cubic_klm(src, controlK, controlL, controlM, klm, &klm[3], &klm[6]); | 
 |     } | 
 |     return chop_count + 1; | 
 | } | 
 |  | 
 | void GrPathUtils::getCubicKLM(const SkPoint p[4], SkScalar klm[9]) { | 
 |     SkScalar d[3]; | 
 |     calc_cubic_inflection_func(p, d); | 
 |  | 
 |     CubicType cType = classify_cubic(p, d); | 
 |  | 
 |     SkScalar controlK[4]; | 
 |     SkScalar controlL[4]; | 
 |     SkScalar controlM[4]; | 
 |  | 
 |     if (kSerpentine_CubicType == cType || (kCusp_CubicType == cType && 0.f != d[0])) { | 
 |         set_serp_klm(d, controlK, controlL, controlM); | 
 |     } else if (kLoop_CubicType == cType) { | 
 |         set_loop_klm(d, controlK, controlL, controlM); | 
 |     } else if (kCusp_CubicType == cType) { | 
 |         SkASSERT(0.f == d[0]); | 
 |         set_cusp_klm(d, controlK, controlL, controlM); | 
 |     } else if (kQuadratic_CubicType == cType) { | 
 |         set_quadratic_klm(d, controlK, controlL, controlM); | 
 |     } | 
 |  | 
 |     calc_cubic_klm(p, controlK, controlL, controlM, klm, &klm[3], &klm[6]); | 
 | } |