| /* | 
 |  * Copyright 2013 Google Inc. | 
 |  * | 
 |  * Use of this source code is governed by a BSD-style license that can be | 
 |  * found in the LICENSE file. | 
 |  */ | 
 |  | 
 | #include "Test.h" | 
 | #include "TestClassDef.h" | 
 | #include "SkRandom.h" | 
 | #include "SkTSort.h" | 
 |  | 
 | static bool anderson_darling_test(double p[32]) { | 
 |     // Min and max Anderson-Darling values allowable for k=32 | 
 |     const double kADMin32 = 0.202;        // p-value of ~0.1 | 
 |     const double kADMax32 = 3.89;         // p-value of ~0.99 | 
 |  | 
 |     // sort p values | 
 |     SkTQSort<double>(p, p + 31); | 
 |  | 
 |     // and compute Anderson-Darling statistic to ensure these are uniform | 
 |     double s = 0.0; | 
 |     for(int k = 0; k < 32; k++) { | 
 |         double v = p[k]*(1.0 - p[31-k]); | 
 |         if (v < 1.0e-30) { | 
 |            v = 1.0e-30; | 
 |         } | 
 |         s += (2.0*(k+1)-1.0)*log(v); | 
 |     } | 
 |     double a2 = -32.0 - 0.03125*s; | 
 |  | 
 |     return (kADMin32 < a2 && a2 < kADMax32); | 
 | } | 
 |  | 
 | static bool chi_square_test(int bins[256], int e) { | 
 |     // Min and max chisquare values allowable | 
 |     const double kChiSqMin256 = 206.3179;        // probability of chance = 0.99 with k=256 | 
 |     const double kChiSqMax256 = 311.5603;        // probability of chance = 0.01 with k=256 | 
 |  | 
 |     // compute chi-square | 
 |     double chi2 = 0.0; | 
 |     for (int j = 0; j < 256; ++j) { | 
 |         double delta = bins[j] - e; | 
 |         chi2 += delta*delta/e; | 
 |     } | 
 |  | 
 |     return (kChiSqMin256 < chi2 && chi2 < kChiSqMax256); | 
 | } | 
 |  | 
 | // Approximation to the normal distribution CDF | 
 | // From Waissi and Rossin, 1996 | 
 | static double normal_cdf(double z) { | 
 |     double t = ((-0.0004406*z*z* + 0.0418198)*z*z + 0.9)*z; | 
 |     t *= -1.77245385091;  // -sqrt(PI) | 
 |     double p = 1.0/(1.0 + exp(t)); | 
 |  | 
 |     return p; | 
 | } | 
 |  | 
 | static void test_random_byte(skiatest::Reporter* reporter, int shift) { | 
 |     int bins[256]; | 
 |     memset(bins, 0, sizeof(int)*256); | 
 |  | 
 |     SkRandom rand; | 
 |     for (int i = 0; i < 256*10000; ++i) { | 
 |         bins[(rand.nextU() >> shift) & 0xff]++; | 
 |     } | 
 |  | 
 |     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000)); | 
 | } | 
 |  | 
 | static void test_random_float(skiatest::Reporter* reporter) { | 
 |     int bins[256]; | 
 |     memset(bins, 0, sizeof(int)*256); | 
 |  | 
 |     SkRandom rand; | 
 |     for (int i = 0; i < 256*10000; ++i) { | 
 |         float f = rand.nextF(); | 
 |         REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f); | 
 |         bins[(int)(f*256.f)]++; | 
 |     } | 
 |     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000)); | 
 |  | 
 |     double p[32]; | 
 |     for (int j = 0; j < 32; ++j) { | 
 |         float f = rand.nextF(); | 
 |         REPORTER_ASSERT(reporter, 0.0f <= f && f < 1.0f); | 
 |         p[j] = f; | 
 |     } | 
 |     REPORTER_ASSERT(reporter, anderson_darling_test(p)); | 
 | } | 
 |  | 
 | // This is a test taken from tuftests by Marsaglia and Tsang. The idea here is that | 
 | // we are using the random bit generated from a single shift position to generate | 
 | // "strings" of 16 bits in length, shifting the string and adding a new bit with each | 
 | // iteration. We track the numbers generated. The ones that we don't generate will | 
 | // have a normal distribution with mean ~24108 and standard deviation ~127. By | 
 | // creating a z-score (# of deviations from the mean) for one iteration of this step | 
 | // we can determine its probability. | 
 | // | 
 | // The original test used 26 bit strings, but is somewhat slow. This version uses 16 | 
 | // bits which is less rigorous but much faster to generate. | 
 | static double test_single_gorilla(skiatest::Reporter* reporter, int shift) { | 
 |     const int kWordWidth = 16; | 
 |     const double kMean = 24108.0; | 
 |     const double kStandardDeviation = 127.0; | 
 |     const int kN = (1 << kWordWidth); | 
 |     const int kNumEntries = kN >> 5;  // dividing by 32 | 
 |     unsigned int entries[kNumEntries]; | 
 |  | 
 |     SkRandom rand; | 
 |     memset(entries, 0, sizeof(unsigned int)*kNumEntries); | 
 |     // pre-seed our string value | 
 |     int value = 0; | 
 |     for (int i = 0; i < kWordWidth-1; ++i) { | 
 |         value <<= 1; | 
 |         unsigned int rnd = rand.nextU(); | 
 |         value |= ((rnd >> shift) & 0x1); | 
 |     } | 
 |  | 
 |     // now make some strings and track them | 
 |     for (int i = 0; i < kN; ++i) { | 
 |         value <<= 1; | 
 |         unsigned int rnd = rand.nextU(); | 
 |         value |= ((rnd >> shift) & 0x1); | 
 |  | 
 |         int index = value & (kNumEntries-1); | 
 |         SkASSERT(index < kNumEntries); | 
 |         int entry_shift = (value >> (kWordWidth-5)) & 0x1f; | 
 |         entries[index] |= (0x1 << entry_shift); | 
 |     } | 
 |  | 
 |     // count entries | 
 |     int total = 0; | 
 |     for (int i = 0; i < kNumEntries; ++i) { | 
 |         unsigned int entry = entries[i]; | 
 |         while (entry) { | 
 |             total += (entry & 0x1); | 
 |             entry >>= 1; | 
 |         } | 
 |     } | 
 |  | 
 |     // convert counts to normal distribution z-score | 
 |     double z = ((kN-total)-kMean)/kStandardDeviation; | 
 |  | 
 |     // compute probability from normal distibution CDF | 
 |     double p = normal_cdf(z); | 
 |  | 
 |     REPORTER_ASSERT(reporter, 0.01 < p && p < 0.99); | 
 |     return p; | 
 | } | 
 |  | 
 | static void test_gorilla(skiatest::Reporter* reporter) { | 
 |  | 
 |     double p[32]; | 
 |     for (int bit_position = 0; bit_position < 32; ++bit_position) { | 
 |         p[bit_position] = test_single_gorilla(reporter, bit_position); | 
 |     } | 
 |  | 
 |     REPORTER_ASSERT(reporter, anderson_darling_test(p)); | 
 | } | 
 |  | 
 | static void test_range(skiatest::Reporter* reporter) { | 
 |     SkRandom rand; | 
 |  | 
 |     // just to make sure we don't crash in this case | 
 |     (void) rand.nextRangeU(0, 0xffffffff); | 
 |  | 
 |     // check a case to see if it's uniform | 
 |     int bins[256]; | 
 |     memset(bins, 0, sizeof(int)*256); | 
 |     for (int i = 0; i < 256*10000; ++i) { | 
 |         unsigned int u = rand.nextRangeU(17, 17+255); | 
 |         REPORTER_ASSERT(reporter, 17 <= u && u <= 17+255); | 
 |         bins[u - 17]++; | 
 |     } | 
 |  | 
 |     REPORTER_ASSERT(reporter, chi_square_test(bins, 10000)); | 
 | } | 
 |  | 
 | DEF_TEST(Random, reporter) { | 
 |     // check uniform distributions of each byte in 32-bit word | 
 |     test_random_byte(reporter, 0); | 
 |     test_random_byte(reporter, 8); | 
 |     test_random_byte(reporter, 16); | 
 |     test_random_byte(reporter, 24); | 
 |  | 
 |     test_random_float(reporter); | 
 |  | 
 |     test_gorilla(reporter); | 
 |  | 
 |     test_range(reporter); | 
 | } |