blob: 8d7ca8d1bc8257970e3ac0d8141a615f7da59b27 [file] [log] [blame]
/*
* Copyright 2013 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#ifndef GrGLProgramDesc_DEFINED
#define GrGLProgramDesc_DEFINED
#include "GrGLEffect.h"
#include "GrDrawState.h"
#include "GrGLShaderBuilder.h"
class GrGpuGL;
// optionally compile the experimental GS code. Set to GR_DEBUG so that debug build bots will
// execute the code.
#define GR_GL_EXPERIMENTAL_GS GR_DEBUG
/** This class describes a program to generate. It also serves as a program cache key. Very little
of this is GL-specific. There is the generation of GrGLEffect::EffectKeys and the dst-read part
of the key set by GrGLShaderBuilder. If the interfaces that set those portions were abstracted
to be API-neutral then so could this class. */
class GrGLProgramDesc {
public:
GrGLProgramDesc() {
// since we use this as part of a key we can't have any uninitialized padding
memset(this, 0, sizeof(GrGLProgramDesc));
}
// Returns this as a uint32_t array to be used as a key in the program cache
const uint32_t* asKey() const {
return reinterpret_cast<const uint32_t*>(this);
}
// For unit testing.
void setRandom(SkMWCRandom*,
const GrGpuGL* gpu,
const GrTexture* dummyDstTexture,
const GrEffectStage stages[GrDrawState::kNumStages],
int currAttribIndex);
/**
* Builds a program descriptor from a GrDrawState. Whether the primitive type is points, the
* output of GrDrawState::getBlendOpts, and the caps of the GrGpuGL are also inputs.
*/
static void Build(const GrDrawState&,
bool isPoints,
GrDrawState::BlendOptFlags,
GrBlendCoeff srcCoeff,
GrBlendCoeff dstCoeff,
const GrGpuGL* gpu,
const GrDeviceCoordTexture* dstCopy,
GrGLProgramDesc* outDesc);
private:
// Specifies where the initial color comes from before the stages are applied.
enum ColorInput {
kSolidWhite_ColorInput,
kTransBlack_ColorInput,
kAttribute_ColorInput,
kUniform_ColorInput,
kColorInputCnt
};
enum CoverageOutput {
// modulate color and coverage, write result as the color output.
kModulate_CoverageOutput,
// Writes color*coverage as the primary color output and also writes coverage as the
// secondary output. Only set if dual source blending is supported.
kSecondaryCoverage_CoverageOutput,
// Writes color*coverage as the primary color output and also writes coverage * (1 - colorA)
// as the secondary output. Only set if dual source blending is supported.
kSecondaryCoverageISA_CoverageOutput,
// Writes color*coverage as the primary color output and also writes coverage *
// (1 - colorRGB) as the secondary output. Only set if dual source blending is supported.
kSecondaryCoverageISC_CoverageOutput,
// Combines the coverage, dst, and color as coverage * color + (1 - coverage) * dst. This
// can only be set if fDstRead is set.
kCombineWithDst_CoverageOutput,
kCoverageOutputCnt
};
static bool CoverageOutputUsesSecondaryOutput(CoverageOutput co) {
switch (co) {
case kSecondaryCoverage_CoverageOutput: // fallthru
case kSecondaryCoverageISA_CoverageOutput:
case kSecondaryCoverageISC_CoverageOutput:
return true;
default:
return false;
}
}
/** Non-zero if this stage has an effect */
GrGLEffect::EffectKey fEffectKeys[GrDrawState::kNumStages];
// To enable experimental geometry shader code (not for use in
// production)
#if GR_GL_EXPERIMENTAL_GS
bool fExperimentalGS;
#endif
GrGLShaderBuilder::DstReadKey fDstRead; // set by GrGLShaderBuilder if there
// are effects that must read the dst.
// Otherwise, 0.
// should the FS discard if the coverage is zero (to avoid stencil manipulation)
SkBool8 fDiscardIfZeroCoverage;
uint8_t fColorInput; // casts to enum ColorInput
uint8_t fCoverageInput; // casts to enum ColorInput
uint8_t fCoverageOutput; // casts to enum CoverageOutput
int8_t fFirstCoverageStage;
SkBool8 fEmitsPointSize;
uint8_t fColorFilterXfermode; // casts to enum SkXfermode::Mode
int8_t fPositionAttributeIndex;
int8_t fLocalCoordAttributeIndex;
int8_t fColorAttributeIndex;
int8_t fCoverageAttributeIndex;
// GrGLProgram and GrGLShaderBuilder read the private fields to generate code. TODO: Move all
// code generation to GrGLShaderBuilder (and maybe add getters rather than friending).
friend class GrGLProgram;
friend class GrGLShaderBuilder;
};
#endif