blob: 2c1e5f5f4aafef7e04a21637c1e278d20a1225c4 [file] [log] [blame]
/*
* Copyright 2012 Google Inc.
*
* Use of this source code is governed by a BSD-style license that can be
* found in the LICENSE file.
*/
#include "CurveIntersection.h"
#include "LineIntersection.h"
#include "SkPath.h"
#include "SkRect.h"
#include "SkTArray.h"
#include "SkTDArray.h"
#include "TSearch.h"
static bool gShowDebugf = true; // FIXME: remove once debugging is complete
static bool gShowPath = false;
static bool gDebugLessThan = true;
static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
double aRange[2], double bRange[2]) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
_Line bLine = {{b[0].fX, b[0].fY}, {b[1].fX, b[1].fY}};
return intersect(aLine, bLine, aRange, bRange);
}
static int LineIntersect(const SkPoint a[2], SkScalar y, double aRange[2]) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
return horizontalIntersect(aLine, y, aRange);
}
static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
double x, y;
xy_at_t(aLine, t, x, y);
out->fX = SkDoubleToScalar(x);
out->fY = SkDoubleToScalar(y);
}
static SkScalar LineYAtT(const SkPoint a[2], double t) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
double y;
xy_at_t(aLine, t, *(double*) 0, y);
return SkDoubleToScalar(y);
}
static void LineSubDivide(const SkPoint a[2], double startT, double endT,
SkPoint sub[2]) {
_Line aLine = {{a[0].fX, a[0].fY}, {a[1].fX, a[1].fY}};
_Line dst;
sub_divide(aLine, startT, endT, dst);
sub[0].fX = SkDoubleToScalar(dst[0].x);
sub[0].fY = SkDoubleToScalar(dst[0].y);
sub[1].fX = SkDoubleToScalar(dst[1].x);
sub[1].fY = SkDoubleToScalar(dst[1].y);
}
// functions
void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray);
void simplify(const SkPath& path, bool asFill, SkPath& simple);
/*
list of edges
bounds for edge
sort
active T
if a contour's bounds is outside of the active area, no need to create edges
*/
/* given one or more paths,
find the bounds of each contour, select the active contours
for each active contour, compute a set of edges
each edge corresponds to one or more lines and curves
leave edges unbroken as long as possible
when breaking edges, compute the t at the break but leave the control points alone
*/
void contourBounds(const SkPath& path, SkTDArray<SkRect>& boundsArray) {
SkPath::Iter iter(path, false);
SkPoint pts[4];
SkPath::Verb verb;
SkRect bounds;
bounds.setEmpty();
int count = 0;
while ((verb = iter.next(pts)) != SkPath::kDone_Verb) {
switch (verb) {
case SkPath::kMove_Verb:
if (!bounds.isEmpty()) {
*boundsArray.append() = bounds;
}
bounds.set(pts[0].fX, pts[0].fY, pts[0].fX, pts[0].fY);
count = 0;
break;
case SkPath::kLine_Verb:
count = 1;
break;
case SkPath::kQuad_Verb:
count = 2;
break;
case SkPath::kCubic_Verb:
count = 3;
break;
case SkPath::kClose_Verb:
count = 0;
break;
default:
SkDEBUGFAIL("bad verb");
return;
}
for (int i = 1; i <= count; ++i) {
bounds.growToInclude(pts[i].fX, pts[i].fY);
}
}
}
static bool extendLine(const SkPoint line[2], const SkPoint& add) {
// FIXME: allow this to extend lines that have slopes that are nearly equal
SkScalar dx1 = line[1].fX - line[0].fX;
SkScalar dy1 = line[1].fY - line[0].fY;
SkScalar dx2 = add.fX - line[0].fX;
SkScalar dy2 = add.fY - line[0].fY;
return dx1 * dy2 == dx2 * dy1;
}
struct OutEdge {
bool operator<(const OutEdge& rh) const {
const SkPoint& first = fPts[0];
const SkPoint& rhFirst = rh.fPts[0];
return first.fY == rhFirst.fY
? first.fX < rhFirst.fX
: first.fY < rhFirst.fY;
}
SkPoint fPts[4];
uint8_t fVerb; // FIXME: not read from everywhere
};
class OutEdgeBuilder {
public:
OutEdgeBuilder(bool fill)
: fFill(fill) {
}
void addLine(const SkPoint line[2]) {
OutEdge& newEdge = fEdges.push_back();
newEdge.fPts[0] = line[0];
newEdge.fPts[1] = line[1];
newEdge.fVerb = SkPath::kLine_Verb;
}
void assemble(SkPath& simple) {
size_t listCount = fEdges.count();
if (listCount == 0) {
return;
}
do {
size_t listIndex = 0;
int advance = 1;
while (listIndex < listCount && fTops[listIndex] == 0) {
++listIndex;
}
if (listIndex >= listCount) {
break;
}
SkPoint firstPt, lastLine[2];
bool doMove = true;
bool closed = false;
int edgeIndex;
do {
SkPoint* ptArray = fEdges[listIndex].fPts;
uint8_t verb = fEdges[listIndex].fVerb;
SkPoint* start, * end;
if (advance < 0) {
start = &ptArray[verb];
end = &ptArray[0];
} else {
start = &ptArray[0];
end = &ptArray[verb];
}
switch (verb) {
case SkPath::kLine_Verb:
bool gap;
if (doMove) {
firstPt = *start;
simple.moveTo(start->fX, start->fY);
if (gShowDebugf) {
SkDebugf("%s moveTo (%g,%g)\n", __FUNCTION__,
start->fX, start->fY);
}
lastLine[0] = *start;
lastLine[1] = *end;
doMove = false;
closed = false;
break;
}
gap = lastLine[1] != *start;
if (gap) {
SkASSERT(fFill && lastLine[1].fY == start->fY);
simple.lineTo(lastLine[1].fX, lastLine[1].fY);
if (gShowDebugf) {
SkDebugf("%s lineTo x (%g,%g)\n", __FUNCTION__,
lastLine[1].fX, lastLine[1].fY);
}
}
if (gap || !extendLine(lastLine, *end)) {
SkASSERT(lastLine[1] == *start ||
(fFill && lastLine[1].fY == start->fY));
simple.lineTo(start->fX, start->fY);
if (gShowDebugf) {
SkDebugf("%s lineTo (%g,%g)\n", __FUNCTION__,
start->fX, start->fY);
}
lastLine[0] = *start;
}
lastLine[1] = *end;
if (firstPt == *end) {
simple.lineTo(end->fX, end->fY);
simple.close();
if (gShowDebugf) {
SkDebugf("%s close 1 (%g, %g)\n", __FUNCTION__,
end->fX, end->fY);
}
closed = true;
}
break;
default:
// FIXME: add other curve types
;
}
if (advance < 0) {
edgeIndex = fTops[listIndex];
fTops[listIndex] = 0;
} else {
edgeIndex = fBottoms[listIndex];
fBottoms[listIndex] = 0;
}
if (!edgeIndex) {
simple.lineTo(firstPt.fX, firstPt.fY);
simple.close();
if (gShowDebugf) {
SkDebugf("%s close 2 (%g,%g)\n", __FUNCTION__,
firstPt.fX, firstPt.fY);
}
break;
}
listIndex = abs(edgeIndex) - 1;
if (edgeIndex < 0) {
fTops[listIndex] = 0;
} else {
fBottoms[listIndex] = 0;
}
// if this and next edge go different directions
if (advance > 0 ^ edgeIndex < 0) {
advance = -advance;
}
} while (edgeIndex && !closed);
} while (true);
}
// sort points by y, then x
// if x/y is identical, sort bottoms before tops
// if identical and both tops/bottoms, sort by angle
static bool lessThan(SkTArray<OutEdge>& edges, const int one,
const int two) {
const OutEdge& oneEdge = edges[abs(one) - 1];
int oneIndex = one < 0 ? 0 : oneEdge.fVerb;
const SkPoint& startPt1 = oneEdge.fPts[oneIndex];
const OutEdge& twoEdge = edges[abs(two) - 1];
int twoIndex = two < 0 ? 0 : twoEdge.fVerb;
const SkPoint& startPt2 = twoEdge.fPts[twoIndex];
if (startPt1.fY != startPt2.fY) {
if (gDebugLessThan) {
SkDebugf("%s %d<%d (%g,%g) %s startPt1.fY < startPt2.fY\n", __FUNCTION__,
one, two, startPt1.fY, startPt2.fY,
startPt1.fY < startPt2.fY ? "true" : "false");
}
return startPt1.fY < startPt2.fY;
}
if (startPt1.fX != startPt2.fX) {
if (gDebugLessThan) {
SkDebugf("%s %d<%d (%g,%g) %s startPt1.fX < startPt2.fX\n", __FUNCTION__,
one, two, startPt1.fX, startPt2.fX,
startPt1.fX < startPt2.fX ? "true" : "false");
}
return startPt1.fX < startPt2.fX;
}
const SkPoint& endPt1 = oneEdge.fPts[oneIndex ^ oneEdge.fVerb];
const SkPoint& endPt2 = twoEdge.fPts[twoIndex ^ twoEdge.fVerb];
SkScalar dy1 = startPt1.fY - endPt1.fY;
SkScalar dy2 = startPt2.fY - endPt2.fY;
SkScalar dy1y2 = dy1 * dy2;
if (dy1y2 < 0) { // different signs
if (gDebugLessThan) {
SkDebugf("%s %d<%d %s dy1 > 0\n", __FUNCTION__, one, two,
dy1 > 0 ? "true" : "false");
}
return dy1 > 0; // one < two if one goes up and two goes down
}
if (dy1y2 == 0) {
if (gDebugLessThan) {
SkDebugf("%s %d<%d %s endPt1.fX < endPt2.fX\n", __FUNCTION__,
one, two, endPt1.fX < endPt2.fX ? "true" : "false");
}
return endPt1.fX < endPt2.fX;
}
SkScalar dx1y2 = (startPt1.fX - endPt1.fX) * dy2;
SkScalar dx2y1 = (startPt2.fX - endPt2.fX) * dy1;
if (gDebugLessThan) {
SkDebugf("%s %d<%d %s dy2 < 0 ^ dx1y2 < dx2y1\n", __FUNCTION__,
one, two, dy2 < 0 ^ dx1y2 < dx2y1 ? "true" : "false");
}
return dy2 > 0 ^ dx1y2 < dx2y1;
}
// Sort the indices of paired points and then create more indices so
// assemble() can find the next edge and connect the top or bottom
void bridge() {
size_t index;
size_t count = fEdges.count();
if (!count) {
return;
}
SkASSERT(!fFill || count > 1);
fTops.setCount(count);
sk_bzero(fTops.begin(), sizeof(fTops[0]) * count);
fBottoms.setCount(count);
sk_bzero(fBottoms.begin(), sizeof(fBottoms[0]) * count);
SkTDArray<int> order;
for (index = 1; index <= count; ++index) {
*order.append() = -index;
}
for (index = 1; index <= count; ++index) {
*order.append() = index;
}
QSort<SkTArray<OutEdge>, int>(fEdges, order.begin(), order.end() - 1, lessThan);
int* lastPtr = order.end() - 1;
int* leftPtr = order.begin();
while (leftPtr < lastPtr) {
int leftIndex = *leftPtr;
int leftOutIndex = abs(leftIndex) - 1;
const OutEdge& left = fEdges[leftOutIndex];
int* rightPtr = leftPtr + 1;
int rightIndex = *rightPtr;
int rightOutIndex = abs(rightIndex) - 1;
const OutEdge& right = fEdges[rightOutIndex];
bool pairUp = fFill;
if (!pairUp) {
const SkPoint& leftMatch =
left.fPts[leftIndex < 0 ? 0 : left.fVerb];
const SkPoint& rightMatch =
right.fPts[rightIndex < 0 ? 0 : right.fVerb];
pairUp = leftMatch == rightMatch;
} else {
SkASSERT(left.fPts[leftIndex < 0 ? 0 : left.fVerb].fY
== right.fPts[rightIndex < 0 ? 0 : right.fVerb].fY);
}
if (pairUp) {
if (leftIndex < 0) {
fTops[leftOutIndex] = rightIndex;
} else {
fBottoms[leftOutIndex] = rightIndex;
}
if (rightIndex < 0) {
fTops[rightOutIndex] = leftIndex;
} else {
fBottoms[rightOutIndex] = leftIndex;
}
++rightPtr;
}
leftPtr = rightPtr;
}
}
protected:
SkTArray<OutEdge> fEdges;
SkTDArray<int> fTops;
SkTDArray<int> fBottoms;
bool fFill;
};
// Bounds, unlike Rect, does not consider a vertical line to be empty.
struct Bounds : public SkRect {
static bool Intersects(const Bounds& a, const Bounds& b) {
return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
a.fTop <= b.fBottom && b.fTop <= a.fBottom;
}
bool isEmpty() {
return fLeft > fRight || fTop > fBottom
|| fLeft == fRight && fTop == fBottom
|| isnan(fLeft) || isnan(fRight)
|| isnan(fTop) || isnan(fBottom);
}
};
struct Intercepts {
SkTDArray<double> fTs;
};
struct InEdge {
bool operator<(const InEdge& rh) const {
return fBounds.fTop == rh.fBounds.fTop
? fBounds.fLeft < rh.fBounds.fLeft
: fBounds.fTop < rh.fBounds.fTop;
}
bool add(double* ts, size_t count, ptrdiff_t verbIndex) {
// FIXME: in the pathological case where there is a ton of intercepts, binary search?
bool foundIntercept = false;
Intercepts& intercepts = fIntercepts[verbIndex];
for (size_t index = 0; index < count; ++index) {
double t = ts[index];
if (t <= 0 || t >= 1) {
continue;
}
foundIntercept = true;
size_t tCount = intercepts.fTs.count();
for (size_t idx2 = 0; idx2 < tCount; ++idx2) {
if (t <= intercepts.fTs[idx2]) {
double delta = intercepts.fTs[idx2] - t;
if (delta > 0) {
*intercepts.fTs.insert(idx2) = t;
}
return foundIntercept;
}
}
if (tCount == 0 || t > intercepts.fTs[tCount - 1]) {
*intercepts.fTs.append() = t;
}
}
return foundIntercept;
}
bool cached(const InEdge* edge) {
// FIXME: in the pathological case where there is a ton of edges, binary search?
size_t count = fCached.count();
for (size_t index = 0; index < count; ++index) {
if (edge == fCached[index]) {
return true;
}
if (edge < fCached[index]) {
*fCached.insert(index) = edge;
return false;
}
}
*fCached.append() = edge;
return false;
}
void complete(signed char winding) {
SkPoint* ptPtr = fPts.begin();
SkPoint* ptLast = fPts.end();
if (ptPtr == ptLast) {
SkDebugf("empty edge\n");
SkASSERT(0);
// FIXME: delete empty edge?
return;
}
fBounds.set(ptPtr->fX, ptPtr->fY, ptPtr->fX, ptPtr->fY);
++ptPtr;
while (ptPtr != ptLast) {
fBounds.growToInclude(ptPtr->fX, ptPtr->fY);
++ptPtr;
}
fIntercepts.push_back_n(fVerbs.count());
if ((fWinding = winding) < 0) { // reverse verbs, pts, if bottom to top
size_t index;
size_t last = fPts.count() - 1;
for (index = 0; index < last; ++index, --last) {
SkTSwap<SkPoint>(fPts[index], fPts[last]);
}
last = fVerbs.count() - 1;
for (index = 0; index < last; ++index, --last) {
SkTSwap<uint8_t>(fVerbs[index], fVerbs[last]);
}
}
fContainsIntercepts = false;
}
// temporary data : move this to a separate struct?
SkTDArray<const InEdge*> fCached; // list of edges already intercepted
SkTArray<Intercepts> fIntercepts; // one per verb
// persistent data
SkTDArray<SkPoint> fPts;
SkTDArray<uint8_t> fVerbs;
Bounds fBounds;
signed char fWinding;
bool fContainsIntercepts;
};
class InEdgeBuilder {
public:
InEdgeBuilder(const SkPath& path, bool ignoreHorizontal, SkTArray<InEdge>& edges)
: fPath(path)
, fCurrentEdge(NULL)
, fEdges(edges)
, fIgnoreHorizontal(ignoreHorizontal)
{
walk();
}
protected:
void addEdge() {
SkASSERT(fCurrentEdge);
fCurrentEdge->fPts.append(fPtCount - fPtOffset, &fPts[fPtOffset]);
fPtOffset = 1;
*fCurrentEdge->fVerbs.append() = fVerb;
}
bool complete() {
if (fCurrentEdge && fCurrentEdge->fVerbs.count()) {
fCurrentEdge->complete(fWinding);
fCurrentEdge = NULL;
return true;
}
return false;
}
int direction(int count) {
fPtCount = count;
fIgnorableHorizontal = fIgnoreHorizontal && isHorizontal();
if (fIgnorableHorizontal) {
return 0;
}
int last = count - 1;
return fPts[0].fY == fPts[last].fY
? fPts[0].fX == fPts[last].fX ? 0 : fPts[0].fX < fPts[last].fX
? 1 : -1 : fPts[0].fY < fPts[last].fY ? 1 : -1;
}
bool isHorizontal() {
SkScalar y = fPts[0].fY;
for (int i = 1; i < fPtCount; ++i) {
if (fPts[i].fY != y) {
return false;
}
}
return true;
}
void startEdge() {
if (!fCurrentEdge) {
fCurrentEdge = fEdges.push_back_n(1);
}
fWinding = 0;
fPtOffset = 0;
}
void walk() {
SkPath::Iter iter(fPath, true);
int winding;
while ((fVerb = iter.next(fPts)) != SkPath::kDone_Verb) {
switch (fVerb) {
case SkPath::kMove_Verb:
if (gShowPath) {
SkDebugf("path.moveTo(%g, %g);\n", fPts[0].fX, fPts[0].fY);
}
startEdge();
continue;
case SkPath::kLine_Verb:
if (gShowPath) {
SkDebugf("path.lineTo(%g, %g);\n", fPts[1].fX, fPts[1].fY);
}
winding = direction(2);
break;
case SkPath::kQuad_Verb:
if (gShowPath) {
SkDebugf("path.quadTo(%g, %g, %g, %g);\n",
fPts[1].fX, fPts[1].fY, fPts[2].fX, fPts[2].fY);
}
winding = direction(3);
break;
case SkPath::kCubic_Verb:
if (gShowPath) {
SkDebugf("path.cubicTo(%g, %g, %g, %g);\n",
fPts[1].fX, fPts[1].fY, fPts[2].fX, fPts[2].fY,
fPts[3].fX, fPts[3].fY);
}
winding = direction(4);
break;
case SkPath::kClose_Verb:
if (gShowPath) {
SkDebugf("path.close();\n");
}
SkASSERT(fCurrentEdge);
complete();
continue;
default:
SkDEBUGFAIL("bad verb");
return;
}
if (fIgnorableHorizontal) {
if (complete()) {
startEdge();
}
continue;
}
if (fWinding + winding == 0) {
// FIXME: if prior verb or this verb is a horizontal line, reverse
// it instead of starting a new edge
SkASSERT(fCurrentEdge);
if (complete()) {
startEdge();
}
}
fWinding = winding;
addEdge();
}
if (!complete()) {
if (fCurrentEdge) {
fEdges.pop_back();
}
}
if (gShowPath) {
SkDebugf("\n");
}
}
private:
const SkPath& fPath;
InEdge* fCurrentEdge;
SkTArray<InEdge>& fEdges;
SkPoint fPts[4];
SkPath::Verb fVerb;
int fPtCount;
int fPtOffset;
int8_t fWinding;
bool fIgnorableHorizontal;
bool fIgnoreHorizontal;
};
struct WorkEdge {
SkScalar bottom() const {
return fPts[verb()].fY;
}
void init(const InEdge* edge) {
fEdge = edge;
fPts = edge->fPts.begin();
fVerb = edge->fVerbs.begin();
}
bool advance() {
SkASSERT(fVerb < fEdge->fVerbs.end());
fPts += *fVerb++;
return fVerb != fEdge->fVerbs.end();
}
SkPath::Verb lastVerb() const {
SkASSERT(fVerb > fEdge->fVerbs.begin());
return (SkPath::Verb) fVerb[-1];
}
SkPath::Verb verb() const {
return (SkPath::Verb) *fVerb;
}
ptrdiff_t verbIndex() const {
return fVerb - fEdge->fVerbs.begin();
}
int winding() const {
return fEdge->fWinding;
}
const InEdge* fEdge;
const SkPoint* fPts;
const uint8_t* fVerb;
};
// always constructed with SkTDArray because new edges are inserted
// this may be a inappropriate optimization, suggesting that a separate array of
// ActiveEdge* may be faster to insert and search
// OPTIMIZATION: Brian suggests that global sorting should be unnecessary, since
// as active edges are introduced, only local sorting should be required
struct ActiveEdge {
// OPTIMIZATION: fold return statements into one
bool operator<(const ActiveEdge& rh) const {
if (rh.fAbove.fY - fAbove.fY > fBelow.fY - rh.fAbove.fY
&& fBelow.fY < rh.fBelow.fY
|| fAbove.fY - rh.fAbove.fY < rh.fBelow.fY - fAbove.fY
&& rh.fBelow.fY < fBelow.fY) {
// FIXME: need to compute distance, not check for points equal
const SkPoint& check = rh.fBelow.fY <= fBelow.fY
&& fBelow != rh.fBelow ? rh.fBelow :
rh.fAbove;
if (gDebugLessThan) {
SkDebugf("%s < %c %cthis (%d){%1.2g,%1.2g %1.2g,%1.2g}"
" < rh (%d){%1.2g,%1.2g %1.2g,%1.2g}\n", __FUNCTION__,
rh.fBelow.fY <= fBelow.fY && fBelow != rh.fBelow ? 'B' : 'A',
(check.fY - fAbove.fY) * (fBelow.fX - fAbove.fX)
< (fBelow.fY - fAbove.fY) * (check.fX - fAbove.fX)
? ' ' : '!',
fIndex, fAbove.fX, fAbove.fY, fBelow.fX, fBelow.fY,
rh.fIndex, rh.fAbove.fX, rh.fAbove.fY,
rh.fBelow.fX, rh.fBelow.fY);
}
return (check.fY - fAbove.fY) * (fBelow.fX - fAbove.fX)
< (fBelow.fY - fAbove.fY) * (check.fX - fAbove.fX);
}
// FIXME: need to compute distance, not check for points equal
const SkPoint& check = fBelow.fY <= rh.fBelow.fY
&& fBelow != rh.fBelow ? fBelow : fAbove;
if (gDebugLessThan) {
SkDebugf("%s > %c %cthis (%d){%1.2g,%1.2g %1.2g,%1.2g}"
" < rh (%d){%1.2g,%1.2g %1.2g,%1.2g}\n", __FUNCTION__,
fBelow.fY <= rh.fBelow.fY & fBelow != rh.fBelow ? 'B' : 'A',
(rh.fBelow.fY - rh.fAbove.fY) * (check.fX - rh.fAbove.fX)
< (check.fY - rh.fAbove.fY) * (rh.fBelow.fX - rh.fAbove.fX)
? ' ' : '!',
fIndex, fAbove.fX, fAbove.fY, fBelow.fX, fBelow.fY,
rh.fIndex, rh.fAbove.fX, rh.fAbove.fY,
rh.fBelow.fX, rh.fBelow.fY);
}
return (rh.fBelow.fY - rh.fAbove.fY) * (check.fX - rh.fAbove.fX)
< (check.fY - rh.fAbove.fY) * (rh.fBelow.fX - rh.fAbove.fX);
}
bool advanceT() {
SkASSERT(fTIndex <= fTs->count());
return ++fTIndex <= fTs->count();
}
bool advance() {
// FIXME: flip sense of next
bool result = fWorkEdge.advance();
fDone = !result;
initT();
return result;
}
void calcLeft(SkScalar y) {
// OPTIMIZE: put a kDone_Verb at the end of the verb list?
if (done(y))
return; // nothing to do; use last
calcLeft();
}
void calcLeft() {
switch (fWorkEdge.verb()) {
case SkPath::kLine_Verb: {
// OPTIMIZATION: if fXAbove, fXBelow have already been computed
// for the fTIndex, don't do it again
// For identical x, this lets us know which edge is first.
// If both edges have T values < 1, check x at next T (fXBelow).
int add = (fTIndex <= fTs->count()) - 1;
double tAbove = t(fTIndex + add);
// OPTIMIZATION: may not need Y
LineXYAtT(fWorkEdge.fPts, tAbove, &fAbove);
double tBelow = t(fTIndex - ~add);
LineXYAtT(fWorkEdge.fPts, tBelow, &fBelow);
break;
}
default:
// FIXME: add support for all curve types
SkASSERT(0);
}
}
bool done(SkScalar y) {
return fDone || fYBottom > y;
}
void init(const InEdge* edge) {
fWorkEdge.init(edge);
initT();
fDone = false;
fYBottom = SK_ScalarMin;
}
void initT() {
const Intercepts& intercepts = fWorkEdge.fEdge->fIntercepts.front();
SkASSERT(fWorkEdge.verbIndex() <= fWorkEdge.fEdge->fIntercepts.count());
const Intercepts* interceptPtr = &intercepts + fWorkEdge.verbIndex();
fTs = &interceptPtr->fTs;
// the above is conceptually the same as
// fTs = &fWorkEdge.fEdge->fIntercepts[fWorkEdge.verbIndex()].fTs;
// but templated arrays don't allow returning a pointer to the end() element
fTIndex = 0;
}
// OPTIMIZATION: record if two edges are coincident when the are intersected
// It's unclear how to do this -- seems more complicated than recording the
// t values, since the same t values could exist intersecting non-coincident
// edges.
bool isCoincidentWith(const ActiveEdge* edge, SkScalar y) const {
if (fAbove.fX != edge->fAbove.fX || fBelow.fX != edge->fBelow.fX) {
return false;
}
uint8_t verb = fDone ? fWorkEdge.lastVerb() : fWorkEdge.verb();
uint8_t edgeVerb = edge->fDone ? edge->fWorkEdge.lastVerb()
: edge->fWorkEdge.verb();
if (verb != edgeVerb) {
return false;
}
switch (verb) {
case SkPath::kLine_Verb: {
int offset = fDone ? -1 : 1;
int edgeOffset = edge->fDone ? -1 : 1;
const SkPoint* pts = fWorkEdge.fPts;
const SkPoint* edgePts = edge->fWorkEdge.fPts;
return (pts->fX - pts[offset].fX)
* (edgePts->fY - edgePts[edgeOffset].fY)
== (pts->fY - pts[offset].fY)
* (edgePts->fX - edgePts[edgeOffset].fX);
}
default:
// FIXME: add support for all curve types
SkASSERT(0);
}
return false;
}
bool swapCoincident(const ActiveEdge* edge, SkScalar bottom) const {
if (fBelow.fY >= bottom || fDone || edge->fDone) {
return false;
}
ActiveEdge thisWork = *this;
ActiveEdge edgeWork = *edge;
while ((thisWork.advanceT() || thisWork.advance())
&& (edgeWork.advanceT() || edgeWork.advance())) {
thisWork.calcLeft();
edgeWork.calcLeft();
if (thisWork < edgeWork) {
return false;
}
if (edgeWork < thisWork) {
return true;
}
}
return false;
}
double nextT() {
SkASSERT(fTIndex <= fTs->count());
return t(fTIndex + 1);
}
double t() const {
if (fTIndex == 0) {
return 0;
}
if (fTIndex > fTs->count()) {
return 1;
}
return (*fTs)[fTIndex - 1];
}
double t(int tIndex) const {
if (tIndex == 0) {
return 0;
}
if (tIndex > fTs->count()) {
return 1;
}
return (*fTs)[tIndex - 1];
}
WorkEdge fWorkEdge;
const SkTDArray<double>* fTs;
SkPoint fAbove;
SkPoint fBelow;
SkScalar fYBottom;
int fTIndex;
bool fSkip;
bool fDone;
int fIndex; // REMOVE: debugging only
};
static void addToActive(SkTDArray<ActiveEdge>& activeEdges, const InEdge* edge) {
size_t count = activeEdges.count();
for (size_t index = 0; index < count; ++index) {
if (edge == activeEdges[index].fWorkEdge.fEdge) {
return;
}
}
ActiveEdge* active = activeEdges.append();
active->init(edge);
}
// find any intersections in the range of active edges
static void addBottomT(InEdge** currentPtr, InEdge** lastPtr, SkScalar bottom) {
InEdge** testPtr = currentPtr;
InEdge* test = *testPtr;
while (testPtr != lastPtr) {
if (test->fBounds.fBottom > bottom) {
WorkEdge wt;
wt.init(test);
do {
// OPTIMIZATION: if bottom intersection does not change
// the winding on either side of the split, don't intersect
if (wt.verb() == SkPath::kLine_Verb) {
double wtTs[2];
int pts = LineIntersect(wt.fPts, bottom, wtTs);
if (pts) {
test->fContainsIntercepts |= test->add(wtTs, pts,
wt.verbIndex());
}
} else {
// FIXME: add all curve types
SkASSERT(0);
}
} while (wt.advance());
}
test = *++testPtr;
}
}
static void addIntersectingTs(InEdge** currentPtr, InEdge** lastPtr) {
InEdge** testPtr = currentPtr - 1;
while (++testPtr != lastPtr - 1) {
InEdge* test = *testPtr;
InEdge** nextPtr = testPtr;
do {
InEdge* next = *++nextPtr;
if (test->cached(next)) {
continue;
}
if (!Bounds::Intersects(test->fBounds, next->fBounds)) {
continue;
}
WorkEdge wt, wn;
wt.init(test);
wn.init(next);
do {
if (wt.verb() == SkPath::kLine_Verb
&& wn.verb() == SkPath::kLine_Verb) {
double wtTs[2], wnTs[2];
int pts = LineIntersect(wt.fPts, wn.fPts, wtTs, wnTs);
if (pts) {
test->fContainsIntercepts |= test->add(wtTs, pts,
wt.verbIndex());
next->fContainsIntercepts |= next->add(wnTs, pts,
wn.verbIndex());
}
} else {
// FIXME: add all combinations of curve types
SkASSERT(0);
}
} while (wt.bottom() <= wn.bottom() ? wt.advance() : wn.advance());
} while (nextPtr != lastPtr);
}
}
static InEdge** advanceEdges(SkTDArray<ActiveEdge>& activeEdges,
InEdge** currentPtr, InEdge** lastPtr, SkScalar y) {
InEdge** testPtr = currentPtr - 1;
while (++testPtr != lastPtr) {
if ((*testPtr)->fBounds.fBottom > y) {
continue;
}
InEdge* test = *testPtr;
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
while (++activePtr != lastActive) {
if (activePtr->fWorkEdge.fEdge == test) {
activeEdges.remove(activePtr - activeEdges.begin());
break;
}
}
if (testPtr == currentPtr) {
++currentPtr;
}
}
return currentPtr;
}
// compute bottom taking into account any intersected edges
static void computeInterceptBottom(SkTDArray<ActiveEdge>& activeEdges,
SkScalar y, SkScalar& bottom) {
ActiveEdge* activePtr = activeEdges.begin() - 1;
ActiveEdge* lastActive = activeEdges.end();
while (++activePtr != lastActive) {
const InEdge* test = activePtr->fWorkEdge.fEdge;
if (!test->fContainsIntercepts) {
continue;
}
WorkEdge wt;
wt.init(test);
do {
const Intercepts& intercepts = test->fIntercepts[wt.verbIndex()];
const SkTDArray<double>& fTs = intercepts.fTs;
size_t count = fTs.count();
for (size_t index = 0; index < count; ++index) {
if (wt.verb() == SkPath::kLine_Verb) {
SkScalar yIntercept = LineYAtT(wt.fPts, fTs[index]);
if (yIntercept > y && bottom > yIntercept) {
bottom = yIntercept;
}
} else {
// FIXME: add all curve types
SkASSERT(0);
}
}
} while (wt.advance());
}
}
static SkScalar findBottom(InEdge** currentPtr,
InEdge** edgeListEnd, SkTDArray<ActiveEdge>& activeEdges, SkScalar y,
bool asFill, InEdge**& testPtr) {
InEdge* current = *currentPtr;
SkScalar bottom = current->fBounds.fBottom;
// find the list of edges that cross y
InEdge* test = *testPtr;
while (testPtr != edgeListEnd) {
SkScalar testTop = test->fBounds.fTop;
if (bottom <= testTop) {
break;
}
SkScalar testBottom = test->fBounds.fBottom;
// OPTIMIZATION: Shortening the bottom is only interesting when filling
// and when the edge is to the left of a longer edge. If it's a framing
// edge, or part of the right, it won't effect the longer edges.
if (testTop > y) {
bottom = testTop;
break;
}
if (y < testBottom) {
if (bottom > testBottom) {
bottom = testBottom;
}
addToActive(activeEdges, test);
}
test = *++testPtr;
}
return bottom;
}
static void makeEdgeList(SkTArray<InEdge>& edges, InEdge& edgeSentinel,
SkTDArray<InEdge*>& edgeList) {
size_t edgeCount = edges.count();
if (edgeCount == 0) {
return;
}
for (size_t index = 0; index < edgeCount; ++index) {
*edgeList.append() = &edges[index];
}
edgeSentinel.fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
*edgeList.append() = &edgeSentinel;
QSort<InEdge>(edgeList.begin(), edgeList.end() - 1);
}
static void skipCoincidence(int lastWinding, int winding, int windingMask,
ActiveEdge* activePtr, ActiveEdge* firstCoincident) {
if (((lastWinding & windingMask) == 0) ^ (winding & windingMask) != 0) {
return;
}
if (lastWinding) {
activePtr->fSkip = false;
} else {
firstCoincident->fSkip = false;
}
}
static void sortHorizontal(SkTDArray<ActiveEdge>& activeEdges,
SkTDArray<ActiveEdge*>& edgeList, int windingMask, SkScalar y,
SkScalar bottom) {
size_t edgeCount = activeEdges.count();
if (edgeCount == 0) {
return;
}
size_t index;
for (index = 0; index < edgeCount; ++index) {
ActiveEdge& activeEdge = activeEdges[index];
activeEdge.calcLeft(y);
activeEdge.fSkip = false;
activeEdge.fIndex = index; // REMOVE: debugging only
*edgeList.append() = &activeEdge;
}
QSort<ActiveEdge>(edgeList.begin(), edgeList.end() - 1);
// remove coincident edges
// OPTIMIZE: remove edges? This is tricky because the current logic expects
// the winding count to be maintained while skipping coincident edges. In
// addition to removing the coincident edges, the remaining edges would need
// to have a different winding value, possibly different per intercept span.
int lastWinding = 0;
bool lastSkipped = false;
ActiveEdge* activePtr = edgeList[0];
ActiveEdge* firstCoincident = NULL;
int winding = 0;
for (index = 1; index < edgeCount; ++index) {
winding += activePtr->fWorkEdge.winding();
ActiveEdge* nextPtr = edgeList[index];
if (activePtr->isCoincidentWith(nextPtr, y)) {
// the coincident edges may not have been sorted above -- advance
// the edges and resort if needed
// OPTIMIZE: if sorting is done incrementally as new edges are added
// and not all at once as is done here, fold this test into the
// current less than test.
if (activePtr->swapCoincident(nextPtr, bottom)) {
SkTSwap<ActiveEdge*>(edgeList[index - 1], edgeList[index]);
SkTSwap<ActiveEdge*>(activePtr, nextPtr);
}
if (!firstCoincident) {
firstCoincident = activePtr;
}
activePtr->fSkip = nextPtr->fSkip = lastSkipped = true;
} else if (lastSkipped) {
skipCoincidence(lastWinding, winding, windingMask, activePtr,
firstCoincident);
lastSkipped = false;
firstCoincident = NULL;
}
if (!lastSkipped) {
lastWinding = winding;
}
activePtr = nextPtr;
}
if (lastSkipped) {
winding += activePtr->fWorkEdge.winding();
skipCoincidence(lastWinding, winding, windingMask, activePtr,
firstCoincident);
}
}
// stitch edge and t range that satisfies operation
static void stitchEdge(SkTDArray<ActiveEdge*>& edgeList, SkScalar y,
SkScalar bottom, int windingMask, OutEdgeBuilder& outBuilder) {
int winding = 0;
ActiveEdge** activeHandle = edgeList.begin() - 1;
ActiveEdge** lastActive = edgeList.end();
if (gShowDebugf) {
SkDebugf("%s y=%g bottom=%g\n", __FUNCTION__, y, bottom);
}
while (++activeHandle != lastActive) {
ActiveEdge* activePtr = *activeHandle;
const WorkEdge& wt = activePtr->fWorkEdge;
int lastWinding = winding;
winding += wt.winding();
if (activePtr->done(y)) {
// FIXME: if this is successful, rewrite done to take bottom as well
if (activePtr->fDone) {
continue;
}
if (activePtr->fYBottom >= bottom) {
continue;
}
if (0) {
SkDebugf("%s bot %g,%g\n", __FUNCTION__, activePtr->fYBottom, bottom);
}
}
int opener = (lastWinding & windingMask) == 0;
bool closer = (winding & windingMask) == 0;
SkASSERT(!opener | !closer);
bool inWinding = opener | closer;
const SkPoint* clipped;
uint8_t verb = wt.verb();
bool moreToDo, aboveBottom;
do {
double currentT = activePtr->t();
SkASSERT(currentT < 1);
const SkPoint* points = wt.fPts;
double nextT;
do {
nextT = activePtr->nextT();
if (verb == SkPath::kLine_Verb) {
SkPoint clippedPts[2];
// FIXME: obtuse: want efficient way to say
// !currentT && currentT != 1 || !nextT && nextT != 1
if (currentT * nextT != 0 || currentT + nextT != 1) {
// OPTIMIZATION: if !inWinding, we only need
// clipped[1].fY
LineSubDivide(points, currentT, nextT, clippedPts);
clipped = clippedPts;
} else {
clipped = points;
}
if (inWinding && !activePtr->fSkip) {
if (gShowDebugf) {
SkDebugf("%s line %g,%g %g,%g\n", __FUNCTION__,
clipped[0].fX, clipped[0].fY,
clipped[1].fX, clipped[1].fY);
}
outBuilder.addLine(clipped);
}
activePtr->fSkip = false;
} else {
// FIXME: add all curve types
SkASSERT(0);
}
currentT = nextT;
moreToDo = activePtr->advanceT();
activePtr->fYBottom = clipped[verb].fY;
aboveBottom = activePtr->fYBottom < bottom;
} while (moreToDo & aboveBottom);
} while ((moreToDo || activePtr->advance()) & aboveBottom);
}
}
void simplify(const SkPath& path, bool asFill, SkPath& simple) {
// returns 1 for evenodd, -1 for winding, regardless of inverse-ness
int windingMask = (path.getFillType() & 1) ? 1 : -1;
simple.reset();
simple.setFillType(SkPath::kEvenOdd_FillType);
// turn path into list of edges increasing in y
// if an edge is a quad or a cubic with a y extrema, note it, but leave it
// unbroken. Once we have a list, sort it, then walk the list (walk edges
// twice that have y extrema's on top) and detect crossings -- look for raw
// bounds that cross over, then tight bounds that cross
SkTArray<InEdge> edges;
InEdgeBuilder builder(path, asFill, edges);
SkTDArray<InEdge*> edgeList;
InEdge edgeSentinel;
makeEdgeList(edges, edgeSentinel, edgeList);
InEdge** currentPtr = edgeList.begin();
// walk the sorted edges from top to bottom, computing accumulated winding
SkTDArray<ActiveEdge> activeEdges;
OutEdgeBuilder outBuilder(asFill);
SkScalar y = (*currentPtr)->fBounds.fTop;
do {
InEdge** lastPtr = currentPtr; // find the edge below the bottom of the first set
SkScalar bottom = findBottom(currentPtr, edgeList.end(),
activeEdges, y, asFill, lastPtr);
if (lastPtr > currentPtr) {
addBottomT(currentPtr, lastPtr, bottom);
addIntersectingTs(currentPtr, lastPtr);
computeInterceptBottom(activeEdges, y, bottom);
SkTDArray<ActiveEdge*> activeEdgeList;
sortHorizontal(activeEdges, activeEdgeList, windingMask, y, bottom);
stitchEdge(activeEdgeList, y, bottom, windingMask, outBuilder);
}
y = bottom;
currentPtr = advanceEdges(activeEdges, currentPtr, lastPtr, y);
} while (*currentPtr != &edgeSentinel);
// assemble output path from string of pts, verbs
outBuilder.bridge();
outBuilder.assemble(simple);
}