| caryclark@google.com | 07393ca | 2013-04-08 11:47:37 +0000 | [diff] [blame^] | 1 | // Another approach is to start with the implicit form of one curve and solve |
| 2 | // (seek implicit coefficients in QuadraticParameter.cpp |
| 3 | // by substituting in the parametric form of the other. |
| 4 | // The downside of this approach is that early rejects are difficult to come by. |
| 5 | // http://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html#step |
| 6 | |
| 7 | |
| 8 | #include "SkDQuadImplicit.h" |
| 9 | #include "SkIntersections.h" |
| 10 | #include "SkPathOpsLine.h" |
| 11 | #include "SkQuarticRoot.h" |
| 12 | #include "SkTDArray.h" |
| 13 | #include "TSearch.h" |
| 14 | |
| 15 | /* given the implicit form 0 = Ax^2 + Bxy + Cy^2 + Dx + Ey + F |
| 16 | * and given x = at^2 + bt + c (the parameterized form) |
| 17 | * y = dt^2 + et + f |
| 18 | * then |
| 19 | * 0 = A(at^2+bt+c)(at^2+bt+c)+B(at^2+bt+c)(dt^2+et+f)+C(dt^2+et+f)(dt^2+et+f)+D(at^2+bt+c)+E(dt^2+et+f)+F |
| 20 | */ |
| 21 | |
| 22 | static int findRoots(const SkDQuadImplicit& i, const SkDQuad& q2, double roots[4], |
| 23 | bool oneHint, int firstCubicRoot) { |
| 24 | double a, b, c; |
| 25 | SkDQuad::SetABC(&q2[0].fX, &a, &b, &c); |
| 26 | double d, e, f; |
| 27 | SkDQuad::SetABC(&q2[0].fY, &d, &e, &f); |
| 28 | const double t4 = i.x2() * a * a |
| 29 | + i.xy() * a * d |
| 30 | + i.y2() * d * d; |
| 31 | const double t3 = 2 * i.x2() * a * b |
| 32 | + i.xy() * (a * e + b * d) |
| 33 | + 2 * i.y2() * d * e; |
| 34 | const double t2 = i.x2() * (b * b + 2 * a * c) |
| 35 | + i.xy() * (c * d + b * e + a * f) |
| 36 | + i.y2() * (e * e + 2 * d * f) |
| 37 | + i.x() * a |
| 38 | + i.y() * d; |
| 39 | const double t1 = 2 * i.x2() * b * c |
| 40 | + i.xy() * (c * e + b * f) |
| 41 | + 2 * i.y2() * e * f |
| 42 | + i.x() * b |
| 43 | + i.y() * e; |
| 44 | const double t0 = i.x2() * c * c |
| 45 | + i.xy() * c * f |
| 46 | + i.y2() * f * f |
| 47 | + i.x() * c |
| 48 | + i.y() * f |
| 49 | + i.c(); |
| 50 | int rootCount = SkReducedQuarticRoots(t4, t3, t2, t1, t0, oneHint, roots); |
| 51 | if (rootCount >= 0) { |
| 52 | return rootCount; |
| 53 | } |
| 54 | return SkQuarticRootsReal(firstCubicRoot, t4, t3, t2, t1, t0, roots); |
| 55 | } |
| 56 | |
| 57 | static int addValidRoots(const double roots[4], const int count, double valid[4]) { |
| 58 | int result = 0; |
| 59 | int index; |
| 60 | for (index = 0; index < count; ++index) { |
| 61 | if (!approximately_zero_or_more(roots[index]) || !approximately_one_or_less(roots[index])) { |
| 62 | continue; |
| 63 | } |
| 64 | double t = 1 - roots[index]; |
| 65 | if (approximately_less_than_zero(t)) { |
| 66 | t = 0; |
| 67 | } else if (approximately_greater_than_one(t)) { |
| 68 | t = 1; |
| 69 | } |
| 70 | valid[result++] = t; |
| 71 | } |
| 72 | return result; |
| 73 | } |
| 74 | |
| 75 | static bool only_end_pts_in_common(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
| 76 | // the idea here is to see at minimum do a quick reject by rotating all points |
| 77 | // to either side of the line formed by connecting the endpoints |
| 78 | // if the opposite curves points are on the line or on the other side, the |
| 79 | // curves at most intersect at the endpoints |
| 80 | for (int oddMan = 0; oddMan < 3; ++oddMan) { |
| 81 | const SkDPoint* endPt[2]; |
| 82 | for (int opp = 1; opp < 3; ++opp) { |
| 83 | int end = oddMan ^ opp; |
| 84 | if (end == 3) { |
| 85 | end = opp; |
| 86 | } |
| 87 | endPt[opp - 1] = &q1[end]; |
| 88 | } |
| 89 | double origX = endPt[0]->fX; |
| 90 | double origY = endPt[0]->fY; |
| 91 | double adj = endPt[1]->fX - origX; |
| 92 | double opp = endPt[1]->fY - origY; |
| 93 | double sign = (q1[oddMan].fY - origY) * adj - (q1[oddMan].fX - origX) * opp; |
| 94 | if (approximately_zero(sign)) { |
| 95 | goto tryNextHalfPlane; |
| 96 | } |
| 97 | for (int n = 0; n < 3; ++n) { |
| 98 | double test = (q2[n].fY - origY) * adj - (q2[n].fX - origX) * opp; |
| 99 | if (test * sign > 0) { |
| 100 | goto tryNextHalfPlane; |
| 101 | } |
| 102 | } |
| 103 | for (int i1 = 0; i1 < 3; i1 += 2) { |
| 104 | for (int i2 = 0; i2 < 3; i2 += 2) { |
| 105 | if (q1[i1] == q2[i2]) { |
| 106 | i->insert(i1 >> 1, i2 >> 1, q1[i1]); |
| 107 | } |
| 108 | } |
| 109 | } |
| 110 | SkASSERT(i->used() < 3); |
| 111 | return true; |
| 112 | tryNextHalfPlane: |
| 113 | ; |
| 114 | } |
| 115 | return false; |
| 116 | } |
| 117 | |
| 118 | // returns false if there's more than one intercept or the intercept doesn't match the point |
| 119 | // returns true if the intercept was successfully added or if the |
| 120 | // original quads need to be subdivided |
| 121 | static bool add_intercept(const SkDQuad& q1, const SkDQuad& q2, double tMin, double tMax, |
| 122 | SkIntersections* i, bool* subDivide) { |
| 123 | double tMid = (tMin + tMax) / 2; |
| 124 | SkDPoint mid = q2.xyAtT(tMid); |
| 125 | SkDLine line; |
| 126 | line[0] = line[1] = mid; |
| 127 | SkDVector dxdy = q2.dxdyAtT(tMid); |
| 128 | line[0] -= dxdy; |
| 129 | line[1] += dxdy; |
| 130 | SkIntersections rootTs; |
| 131 | int roots = rootTs.intersect(q1, line); |
| 132 | if (roots == 0) { |
| 133 | if (subDivide) { |
| 134 | *subDivide = true; |
| 135 | } |
| 136 | return true; |
| 137 | } |
| 138 | if (roots == 2) { |
| 139 | return false; |
| 140 | } |
| 141 | SkDPoint pt2 = q1.xyAtT(rootTs[0][0]); |
| 142 | if (!pt2.approximatelyEqualHalf(mid)) { |
| 143 | return false; |
| 144 | } |
| 145 | i->insertSwap(rootTs[0][0], tMid, pt2); |
| 146 | return true; |
| 147 | } |
| 148 | |
| 149 | static bool is_linear_inner(const SkDQuad& q1, double t1s, double t1e, const SkDQuad& q2, |
| 150 | double t2s, double t2e, SkIntersections* i, bool* subDivide) { |
| 151 | SkDQuad hull = q1.subDivide(t1s, t1e); |
| 152 | SkDLine line = {{hull[2], hull[0]}}; |
| 153 | const SkDLine* testLines[] = { &line, (const SkDLine*) &hull[0], (const SkDLine*) &hull[1] }; |
| 154 | size_t testCount = sizeof(testLines) / sizeof(testLines[0]); |
| 155 | SkTDArray<double> tsFound; |
| 156 | for (size_t index = 0; index < testCount; ++index) { |
| 157 | SkIntersections rootTs; |
| 158 | int roots = rootTs.intersect(q2, *testLines[index]); |
| 159 | for (int idx2 = 0; idx2 < roots; ++idx2) { |
| 160 | double t = rootTs[0][idx2]; |
| 161 | #ifdef SK_DEBUG |
| 162 | SkDPoint qPt = q2.xyAtT(t); |
| 163 | SkDPoint lPt = testLines[index]->xyAtT(rootTs[1][idx2]); |
| 164 | SkASSERT(qPt.approximatelyEqual(lPt)); |
| 165 | #endif |
| 166 | if (approximately_negative(t - t2s) || approximately_positive(t - t2e)) { |
| 167 | continue; |
| 168 | } |
| 169 | *tsFound.append() = rootTs[0][idx2]; |
| 170 | } |
| 171 | } |
| 172 | int tCount = tsFound.count(); |
| 173 | if (tCount <= 0) { |
| 174 | return true; |
| 175 | } |
| 176 | double tMin, tMax; |
| 177 | if (tCount == 1) { |
| 178 | tMin = tMax = tsFound[0]; |
| 179 | } else if (tCount > 1) { |
| 180 | QSort<double>(tsFound.begin(), tsFound.end() - 1); |
| 181 | tMin = tsFound[0]; |
| 182 | tMax = tsFound[tsFound.count() - 1]; |
| 183 | } |
| 184 | SkDPoint end = q2.xyAtT(t2s); |
| 185 | bool startInTriangle = hull.pointInHull(end); |
| 186 | if (startInTriangle) { |
| 187 | tMin = t2s; |
| 188 | } |
| 189 | end = q2.xyAtT(t2e); |
| 190 | bool endInTriangle = hull.pointInHull(end); |
| 191 | if (endInTriangle) { |
| 192 | tMax = t2e; |
| 193 | } |
| 194 | int split = 0; |
| 195 | SkDVector dxy1, dxy2; |
| 196 | if (tMin != tMax || tCount > 2) { |
| 197 | dxy2 = q2.dxdyAtT(tMin); |
| 198 | for (int index = 1; index < tCount; ++index) { |
| 199 | dxy1 = dxy2; |
| 200 | dxy2 = q2.dxdyAtT(tsFound[index]); |
| 201 | double dot = dxy1.dot(dxy2); |
| 202 | if (dot < 0) { |
| 203 | split = index - 1; |
| 204 | break; |
| 205 | } |
| 206 | } |
| 207 | } |
| 208 | if (split == 0) { // there's one point |
| 209 | if (add_intercept(q1, q2, tMin, tMax, i, subDivide)) { |
| 210 | return true; |
| 211 | } |
| 212 | i->swap(); |
| 213 | return is_linear_inner(q2, tMin, tMax, q1, t1s, t1e, i, subDivide); |
| 214 | } |
| 215 | // At this point, we have two ranges of t values -- treat each separately at the split |
| 216 | bool result; |
| 217 | if (add_intercept(q1, q2, tMin, tsFound[split - 1], i, subDivide)) { |
| 218 | result = true; |
| 219 | } else { |
| 220 | i->swap(); |
| 221 | result = is_linear_inner(q2, tMin, tsFound[split - 1], q1, t1s, t1e, i, subDivide); |
| 222 | } |
| 223 | if (add_intercept(q1, q2, tsFound[split], tMax, i, subDivide)) { |
| 224 | result = true; |
| 225 | } else { |
| 226 | i->swap(); |
| 227 | result |= is_linear_inner(q2, tsFound[split], tMax, q1, t1s, t1e, i, subDivide); |
| 228 | } |
| 229 | return result; |
| 230 | } |
| 231 | |
| 232 | static double flat_measure(const SkDQuad& q) { |
| 233 | SkDVector mid = q[1] - q[0]; |
| 234 | SkDVector dxy = q[2] - q[0]; |
| 235 | double length = dxy.length(); // OPTIMIZE: get rid of sqrt |
| 236 | return fabs(mid.cross(dxy) / length); |
| 237 | } |
| 238 | |
| 239 | // FIXME ? should this measure both and then use the quad that is the flattest as the line? |
| 240 | static bool is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
| 241 | double measure = flat_measure(q1); |
| 242 | // OPTIMIZE: (get rid of sqrt) use approximately_zero |
| 243 | if (!approximately_zero_sqrt(measure)) { |
| 244 | return false; |
| 245 | } |
| 246 | return is_linear_inner(q1, 0, 1, q2, 0, 1, i, NULL); |
| 247 | } |
| 248 | |
| 249 | // FIXME: if flat measure is sufficiently large, then probably the quartic solution failed |
| 250 | static void relaxed_is_linear(const SkDQuad& q1, const SkDQuad& q2, SkIntersections* i) { |
| 251 | double m1 = flat_measure(q1); |
| 252 | double m2 = flat_measure(q2); |
| 253 | #if DEBUG_FLAT_QUADS |
| 254 | double min = SkTMin<double>(m1, m2); |
| 255 | if (min > 5) { |
| 256 | SkDebugf("%s maybe not flat enough.. %1.9g\n", __FUNCTION__, min); |
| 257 | } |
| 258 | #endif |
| 259 | i->reset(); |
| 260 | const SkDQuad& rounder = m2 < m1 ? q1 : q2; |
| 261 | const SkDQuad& flatter = m2 < m1 ? q2 : q1; |
| 262 | bool subDivide = false; |
| 263 | is_linear_inner(flatter, 0, 1, rounder, 0, 1, i, &subDivide); |
| 264 | if (subDivide) { |
| 265 | SkDQuadPair pair = flatter.chopAt(0.5); |
| 266 | SkIntersections firstI, secondI; |
| 267 | relaxed_is_linear(pair.first(), rounder, &firstI); |
| 268 | for (int index = 0; index < firstI.used(); ++index) { |
| 269 | i->insert(firstI[0][index] * 0.5, firstI[1][index], firstI.pt(index)); |
| 270 | } |
| 271 | relaxed_is_linear(pair.second(), rounder, &secondI); |
| 272 | for (int index = 0; index < secondI.used(); ++index) { |
| 273 | i->insert(0.5 + secondI[0][index] * 0.5, secondI[1][index], secondI.pt(index)); |
| 274 | } |
| 275 | } |
| 276 | if (m2 < m1) { |
| 277 | i->swapPts(); |
| 278 | } |
| 279 | } |
| 280 | |
| 281 | // each time through the loop, this computes values it had from the last loop |
| 282 | // if i == j == 1, the center values are still good |
| 283 | // otherwise, for i != 1 or j != 1, four of the values are still good |
| 284 | // and if i == 1 ^ j == 1, an additional value is good |
| 285 | static bool binary_search(const SkDQuad& quad1, const SkDQuad& quad2, double* t1Seed, |
| 286 | double* t2Seed, SkDPoint* pt) { |
| 287 | double tStep = ROUGH_EPSILON; |
| 288 | SkDPoint t1[3], t2[3]; |
| 289 | int calcMask = ~0; |
| 290 | do { |
| 291 | if (calcMask & (1 << 1)) t1[1] = quad1.xyAtT(*t1Seed); |
| 292 | if (calcMask & (1 << 4)) t2[1] = quad2.xyAtT(*t2Seed); |
| 293 | if (t1[1].approximatelyEqual(t2[1])) { |
| 294 | *pt = t1[1]; |
| 295 | #if ONE_OFF_DEBUG |
| 296 | SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) == (%1.9g,%1.9g)\n", __FUNCTION__, |
| 297 | t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); |
| 298 | #endif |
| 299 | return true; |
| 300 | } |
| 301 | if (calcMask & (1 << 0)) t1[0] = quad1.xyAtT(*t1Seed - tStep); |
| 302 | if (calcMask & (1 << 2)) t1[2] = quad1.xyAtT(*t1Seed + tStep); |
| 303 | if (calcMask & (1 << 3)) t2[0] = quad2.xyAtT(*t2Seed - tStep); |
| 304 | if (calcMask & (1 << 5)) t2[2] = quad2.xyAtT(*t2Seed + tStep); |
| 305 | double dist[3][3]; |
| 306 | // OPTIMIZE: using calcMask value permits skipping some distance calcuations |
| 307 | // if prior loop's results are moved to correct slot for reuse |
| 308 | dist[1][1] = t1[1].distanceSquared(t2[1]); |
| 309 | int best_i = 1, best_j = 1; |
| 310 | for (int i = 0; i < 3; ++i) { |
| 311 | for (int j = 0; j < 3; ++j) { |
| 312 | if (i == 1 && j == 1) { |
| 313 | continue; |
| 314 | } |
| 315 | dist[i][j] = t1[i].distanceSquared(t2[j]); |
| 316 | if (dist[best_i][best_j] > dist[i][j]) { |
| 317 | best_i = i; |
| 318 | best_j = j; |
| 319 | } |
| 320 | } |
| 321 | } |
| 322 | if (best_i == 1 && best_j == 1) { |
| 323 | tStep /= 2; |
| 324 | if (tStep < FLT_EPSILON_HALF) { |
| 325 | break; |
| 326 | } |
| 327 | calcMask = (1 << 0) | (1 << 2) | (1 << 3) | (1 << 5); |
| 328 | continue; |
| 329 | } |
| 330 | if (best_i == 0) { |
| 331 | *t1Seed -= tStep; |
| 332 | t1[2] = t1[1]; |
| 333 | t1[1] = t1[0]; |
| 334 | calcMask = 1 << 0; |
| 335 | } else if (best_i == 2) { |
| 336 | *t1Seed += tStep; |
| 337 | t1[0] = t1[1]; |
| 338 | t1[1] = t1[2]; |
| 339 | calcMask = 1 << 2; |
| 340 | } else { |
| 341 | calcMask = 0; |
| 342 | } |
| 343 | if (best_j == 0) { |
| 344 | *t2Seed -= tStep; |
| 345 | t2[2] = t2[1]; |
| 346 | t2[1] = t2[0]; |
| 347 | calcMask |= 1 << 3; |
| 348 | } else if (best_j == 2) { |
| 349 | *t2Seed += tStep; |
| 350 | t2[0] = t2[1]; |
| 351 | t2[1] = t2[2]; |
| 352 | calcMask |= 1 << 5; |
| 353 | } |
| 354 | } while (true); |
| 355 | #if ONE_OFF_DEBUG |
| 356 | SkDebugf("%s t1=%1.9g t2=%1.9g (%1.9g,%1.9g) != (%1.9g,%1.9g) %s\n", __FUNCTION__, |
| 357 | t1Seed, t2Seed, t1[1].fX, t1[1].fY, t1[2].fX, t1[2].fY); |
| 358 | #endif |
| 359 | return false; |
| 360 | } |
| 361 | |
| 362 | int SkIntersections::intersect(const SkDQuad& q1, const SkDQuad& q2) { |
| 363 | // if the quads share an end point, check to see if they overlap |
| 364 | |
| 365 | if (only_end_pts_in_common(q1, q2, this)) { |
| 366 | return fUsed; |
| 367 | } |
| 368 | if (only_end_pts_in_common(q2, q1, this)) { |
| 369 | swapPts(); |
| 370 | return fUsed; |
| 371 | } |
| 372 | // see if either quad is really a line |
| 373 | if (is_linear(q1, q2, this)) { |
| 374 | return fUsed; |
| 375 | } |
| 376 | if (is_linear(q2, q1, this)) { |
| 377 | swapPts(); |
| 378 | return fUsed; |
| 379 | } |
| 380 | SkDQuadImplicit i1(q1); |
| 381 | SkDQuadImplicit i2(q2); |
| 382 | if (i1.match(i2)) { |
| 383 | // FIXME: compute T values |
| 384 | // compute the intersections of the ends to find the coincident span |
| 385 | bool useVertical = fabs(q1[0].fX - q1[2].fX) < fabs(q1[0].fY - q1[2].fY); |
| 386 | double t; |
| 387 | if ((t = SkIntersections::Axial(q1, q2[0], useVertical)) >= 0) { |
| 388 | insertCoincident(t, 0, q2[0]); |
| 389 | } |
| 390 | if ((t = SkIntersections::Axial(q1, q2[2], useVertical)) >= 0) { |
| 391 | insertCoincident(t, 1, q2[2]); |
| 392 | } |
| 393 | useVertical = fabs(q2[0].fX - q2[2].fX) < fabs(q2[0].fY - q2[2].fY); |
| 394 | if ((t = SkIntersections::Axial(q2, q1[0], useVertical)) >= 0) { |
| 395 | insertCoincident(0, t, q1[0]); |
| 396 | } |
| 397 | if ((t = SkIntersections::Axial(q2, q1[2], useVertical)) >= 0) { |
| 398 | insertCoincident(1, t, q1[2]); |
| 399 | } |
| 400 | SkASSERT(coincidentUsed() <= 2); |
| 401 | return fUsed; |
| 402 | } |
| 403 | int index; |
| 404 | bool useCubic = q1[0] == q2[0] || q1[0] == q2[2] || q1[2] == q2[0]; |
| 405 | double roots1[4]; |
| 406 | int rootCount = findRoots(i2, q1, roots1, useCubic, 0); |
| 407 | // OPTIMIZATION: could short circuit here if all roots are < 0 or > 1 |
| 408 | double roots1Copy[4]; |
| 409 | int r1Count = addValidRoots(roots1, rootCount, roots1Copy); |
| 410 | SkDPoint pts1[4]; |
| 411 | for (index = 0; index < r1Count; ++index) { |
| 412 | pts1[index] = q1.xyAtT(roots1Copy[index]); |
| 413 | } |
| 414 | double roots2[4]; |
| 415 | int rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); |
| 416 | double roots2Copy[4]; |
| 417 | int r2Count = addValidRoots(roots2, rootCount2, roots2Copy); |
| 418 | SkDPoint pts2[4]; |
| 419 | for (index = 0; index < r2Count; ++index) { |
| 420 | pts2[index] = q2.xyAtT(roots2Copy[index]); |
| 421 | } |
| 422 | if (r1Count == r2Count && r1Count <= 1) { |
| 423 | if (r1Count == 1) { |
| 424 | if (pts1[0].approximatelyEqualHalf(pts2[0])) { |
| 425 | insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
| 426 | } else if (pts1[0].moreRoughlyEqual(pts2[0])) { |
| 427 | // experiment: try to find intersection by chasing t |
| 428 | rootCount = findRoots(i2, q1, roots1, useCubic, 0); |
| 429 | (void) addValidRoots(roots1, rootCount, roots1Copy); |
| 430 | rootCount2 = findRoots(i1, q2, roots2, useCubic, 0); |
| 431 | (void) addValidRoots(roots2, rootCount2, roots2Copy); |
| 432 | if (binary_search(q1, q2, roots1Copy, roots2Copy, pts1)) { |
| 433 | insert(roots1Copy[0], roots2Copy[0], pts1[0]); |
| 434 | } |
| 435 | } |
| 436 | } |
| 437 | return fUsed; |
| 438 | } |
| 439 | int closest[4]; |
| 440 | double dist[4]; |
| 441 | bool foundSomething = false; |
| 442 | for (index = 0; index < r1Count; ++index) { |
| 443 | dist[index] = DBL_MAX; |
| 444 | closest[index] = -1; |
| 445 | for (int ndex2 = 0; ndex2 < r2Count; ++ndex2) { |
| 446 | if (!pts2[ndex2].approximatelyEqualHalf(pts1[index])) { |
| 447 | continue; |
| 448 | } |
| 449 | double dx = pts2[ndex2].fX - pts1[index].fX; |
| 450 | double dy = pts2[ndex2].fY - pts1[index].fY; |
| 451 | double distance = dx * dx + dy * dy; |
| 452 | if (dist[index] <= distance) { |
| 453 | continue; |
| 454 | } |
| 455 | for (int outer = 0; outer < index; ++outer) { |
| 456 | if (closest[outer] != ndex2) { |
| 457 | continue; |
| 458 | } |
| 459 | if (dist[outer] < distance) { |
| 460 | goto next; |
| 461 | } |
| 462 | closest[outer] = -1; |
| 463 | } |
| 464 | dist[index] = distance; |
| 465 | closest[index] = ndex2; |
| 466 | foundSomething = true; |
| 467 | next: |
| 468 | ; |
| 469 | } |
| 470 | } |
| 471 | if (r1Count && r2Count && !foundSomething) { |
| 472 | relaxed_is_linear(q1, q2, this); |
| 473 | return fUsed; |
| 474 | } |
| 475 | int used = 0; |
| 476 | do { |
| 477 | double lowest = DBL_MAX; |
| 478 | int lowestIndex = -1; |
| 479 | for (index = 0; index < r1Count; ++index) { |
| 480 | if (closest[index] < 0) { |
| 481 | continue; |
| 482 | } |
| 483 | if (roots1Copy[index] < lowest) { |
| 484 | lowestIndex = index; |
| 485 | lowest = roots1Copy[index]; |
| 486 | } |
| 487 | } |
| 488 | if (lowestIndex < 0) { |
| 489 | break; |
| 490 | } |
| 491 | insert(roots1Copy[lowestIndex], roots2Copy[closest[lowestIndex]], |
| 492 | pts1[lowestIndex]); |
| 493 | closest[lowestIndex] = -1; |
| 494 | } while (++used < r1Count); |
| 495 | return fUsed; |
| 496 | } |