blob: a96cd665b83709bc21036b15987f6b20ed8aee2a [file] [log] [blame]
msarett74114382015-03-16 11:55:18 -07001/*
2 * Copyright 2015 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8#include "SkCodec_libbmp.h"
9#include "SkCodecPriv.h"
10#include "SkColorPriv.h"
11#include "SkStream.h"
12
13/*
14 *
15 * Checks if the conversion between the input image and the requested output
16 * image has been implemented
17 *
18 */
19static bool conversion_possible(const SkImageInfo& dst,
20 const SkImageInfo& src) {
21 // All of the swizzles convert to kN32
22 // TODO: Update this when more swizzles are supported
23 if (kN32_SkColorType != dst.colorType()) {
24 return false;
25 }
26 // Support the swizzle if the requested alpha type is the same as our guess
27 // for the input alpha type
28 if (src.alphaType() == dst.alphaType()) {
29 return true;
30 }
31 // TODO: Support more swizzles, especially premul
32 return false;
33}
34
35/*
36 *
37 * Defines the version and type of the second bitmap header
38 *
39 */
40enum BitmapHeaderType {
41 kInfoV1_BitmapHeaderType,
42 kInfoV2_BitmapHeaderType,
43 kInfoV3_BitmapHeaderType,
44 kInfoV4_BitmapHeaderType,
45 kInfoV5_BitmapHeaderType,
46 kOS2V1_BitmapHeaderType,
47 kOS2VX_BitmapHeaderType,
48 kUnknown_BitmapHeaderType
49};
50
51/*
52 *
53 * Possible bitmap compression types
54 *
55 */
56enum BitmapCompressionMethod {
57 kNone_BitmapCompressionMethod = 0,
58 k8BitRLE_BitmapCompressionMethod = 1,
59 k4BitRLE_BitmapCompressionMethod = 2,
60 kBitMasks_BitmapCompressionMethod = 3,
61 kJpeg_BitmapCompressionMethod = 4,
62 kPng_BitmapCompressionMethod = 5,
63 kAlphaBitMasks_BitmapCompressionMethod = 6,
64 kCMYK_BitmapCompressionMethod = 11,
65 kCMYK8BitRLE_BitmapCompressionMethod = 12,
66 kCMYK4BitRLE_BitmapCompressionMethod = 13
67};
68
69/*
70 *
71 * Checks the start of the stream to see if the image is a bitmap
72 *
73 */
74bool SkBmpCodec::IsBmp(SkStream* stream) {
75 // TODO: Support "IC", "PT", "CI", "CP", "BA"
76 // TODO: ICO files may contain a BMP and need to use this decoder
77 const char bmpSig[] = { 'B', 'M' };
78 char buffer[sizeof(bmpSig)];
79 return stream->read(buffer, sizeof(bmpSig)) == sizeof(bmpSig) &&
80 !memcmp(buffer, bmpSig, sizeof(bmpSig));
81}
82
83/*
84 *
85 * Assumes IsBmp was called and returned true
86 * Creates a bitmap decoder
87 * Reads enough of the stream to determine the image format
88 *
89 */
90SkCodec* SkBmpCodec::NewFromStream(SkStream* stream) {
91 // Header size constants
92 static const uint32_t kBmpHeaderBytes = 14;
93 static const uint32_t kBmpHeaderBytesPlusFour = kBmpHeaderBytes + 4;
94 static const uint32_t kBmpOS2V1Bytes = 12;
95 static const uint32_t kBmpOS2V2Bytes = 64;
96 static const uint32_t kBmpInfoBaseBytes = 16;
97 static const uint32_t kBmpInfoV1Bytes = 40;
98 static const uint32_t kBmpInfoV2Bytes = 52;
99 static const uint32_t kBmpInfoV3Bytes = 56;
100 static const uint32_t kBmpInfoV4Bytes = 108;
101 static const uint32_t kBmpInfoV5Bytes = 124;
102 static const uint32_t kBmpMaskBytes = 12;
103
104 // Read the first header and the size of the second header
105 SkAutoTDeleteArray<uint8_t> hBuffer(
106 SkNEW_ARRAY(uint8_t, kBmpHeaderBytesPlusFour));
107 if (stream->read(hBuffer.get(), kBmpHeaderBytesPlusFour) !=
108 kBmpHeaderBytesPlusFour) {
109 SkDebugf("Error: unable to read first bitmap header.\n");
110 return NULL;
111 }
112
113 // The total bytes in the bmp file
114 // We only need to use this value for RLE decoding, so we will only check
115 // that it is valid in the RLE case.
116 const uint32_t totalBytes = get_int(hBuffer.get(), 2);
117
118 // The offset from the start of the file where the pixel data begins
119 const uint32_t offset = get_int(hBuffer.get(), 10);
120 if (offset < kBmpHeaderBytes + kBmpOS2V1Bytes) {
121 SkDebugf("Error: invalid starting location for pixel data\n");
122 return NULL;
123 }
124
125 // The size of the second (info) header in bytes
126 // The size is the first field of the second header, so we have already
127 // read the first four infoBytes.
128 const uint32_t infoBytes = get_int(hBuffer.get(), 14);
129 if (infoBytes < kBmpOS2V1Bytes) {
130 SkDebugf("Error: invalid second header size.\n");
131 return NULL;
132 }
133 const uint32_t infoBytesRemaining = infoBytes - 4;
134 hBuffer.free();
135
136 // Read the second header
137 SkAutoTDeleteArray<uint8_t> iBuffer(
138 SkNEW_ARRAY(uint8_t, infoBytesRemaining));
139 if (stream->read(iBuffer.get(), infoBytesRemaining) != infoBytesRemaining) {
140 SkDebugf("Error: unable to read second bitmap header.\n");
141 return NULL;
142 }
143
144 // The number of bits used per pixel in the pixel data
145 uint16_t bitsPerPixel;
146
147 // The compression method for the pixel data
148 uint32_t compression = kNone_BitmapCompressionMethod;
149
150 // Number of colors in the color table, defaults to 0 or max (see below)
151 uint32_t numColors = 0;
152
153 // Bytes per color in the color table, early versions use 3, most use 4
154 uint32_t bytesPerColor;
155
156 // The image width and height
157 int width, height;
158
159 // Determine image information depending on second header format
160 BitmapHeaderType headerType;
161 if (infoBytes >= kBmpInfoBaseBytes) {
162 // Check the version of the header
163 switch (infoBytes) {
164 case kBmpInfoV1Bytes:
165 headerType = kInfoV1_BitmapHeaderType;
166 break;
167 case kBmpInfoV2Bytes:
168 headerType = kInfoV2_BitmapHeaderType;
169 break;
170 case kBmpInfoV3Bytes:
171 headerType = kInfoV3_BitmapHeaderType;
172 break;
173 case kBmpInfoV4Bytes:
174 headerType = kInfoV4_BitmapHeaderType;
175 break;
176 case kBmpInfoV5Bytes:
177 headerType = kInfoV5_BitmapHeaderType;
178 break;
179 case 16:
180 case 20:
181 case 24:
182 case 28:
183 case 32:
184 case 36:
185 case 42:
186 case 46:
187 case 48:
188 case 60:
189 case kBmpOS2V2Bytes:
190 headerType = kOS2VX_BitmapHeaderType;
191 break;
192 default:
193 // We do not signal an error here because there is the
194 // possibility of new or undocumented bmp header types. Most
195 // of the newer versions of bmp headers are similar to and
196 // build off of the older versions, so we may still be able to
197 // decode the bmp.
198 SkDebugf("Warning: unknown bmp header format.\n");
199 headerType = kUnknown_BitmapHeaderType;
200 break;
201 }
202 // We check the size of the header before entering the if statement.
203 // We should not reach this point unless the size is large enough for
204 // these required fields.
205 SkASSERT(infoBytesRemaining >= 12);
206 width = get_int(iBuffer.get(), 0);
207 height = get_int(iBuffer.get(), 4);
208 bitsPerPixel = get_short(iBuffer.get(), 10);
209
210 // Some versions do not have these fields, so we check before
211 // overwriting the default value.
212 if (infoBytesRemaining >= 16) {
213 compression = get_int(iBuffer.get(), 12);
214 if (infoBytesRemaining >= 32) {
215 numColors = get_int(iBuffer.get(), 28);
216 }
217 }
218
219 // All of the headers that reach this point, store color table entries
220 // using 4 bytes per pixel.
221 bytesPerColor = 4;
222 } else if (infoBytes >= kBmpOS2V1Bytes) {
223 // The OS2V1 is treated separately because it has a unique format
224 headerType = kOS2V1_BitmapHeaderType;
225 width = (int) get_short(iBuffer.get(), 0);
226 height = (int) get_short(iBuffer.get(), 2);
227 bitsPerPixel = get_short(iBuffer.get(), 6);
228 bytesPerColor = 3;
229 } else {
230 // There are no valid bmp headers
231 SkDebugf("Error: second bitmap header size is invalid.\n");
232 return NULL;
233 }
234
235 // Check for valid dimensions from header
236 RowOrder rowOrder = kBottomUp_RowOrder;
237 if (height < 0) {
238 height = -height;
239 rowOrder = kTopDown_RowOrder;
240 }
241 static const int kBmpMaxDim = 1 << 16;
242 if (width < 0 || width >= kBmpMaxDim || height >= kBmpMaxDim) {
243 // TODO: Decide if we want to support really large bmps.
244 SkDebugf("Error: invalid bitmap dimensions.\n");
245 return NULL;
246 }
247
248 // Create mask struct
249 SkMasks::InputMasks inputMasks;
250 memset(&inputMasks, 0, 4*sizeof(uint32_t));
251
252 // Determine the input compression format and set bit masks if necessary
253 uint32_t maskBytes = 0;
254 BitmapInputFormat inputFormat = kUnknown_BitmapInputFormat;
255 switch (compression) {
256 case kNone_BitmapCompressionMethod:
257 inputFormat = kStandard_BitmapInputFormat;
258 break;
259 case k8BitRLE_BitmapCompressionMethod:
260 if (bitsPerPixel != 8) {
261 SkDebugf("Warning: correcting invalid bitmap format.\n");
262 bitsPerPixel = 8;
263 }
264 inputFormat = kRLE_BitmapInputFormat;
265 break;
266 case k4BitRLE_BitmapCompressionMethod:
267 if (bitsPerPixel != 4) {
268 SkDebugf("Warning: correcting invalid bitmap format.\n");
269 bitsPerPixel = 4;
270 }
271 inputFormat = kRLE_BitmapInputFormat;
272 break;
273 case kAlphaBitMasks_BitmapCompressionMethod:
274 case kBitMasks_BitmapCompressionMethod:
275 // Load the masks
276 inputFormat = kBitMask_BitmapInputFormat;
277 switch (headerType) {
278 case kInfoV1_BitmapHeaderType: {
279 // The V1 header stores the bit masks after the header
280 SkAutoTDeleteArray<uint8_t> mBuffer(
281 SkNEW_ARRAY(uint8_t, kBmpMaskBytes));
282 if (stream->read(mBuffer.get(), kBmpMaskBytes) !=
283 kBmpMaskBytes) {
284 SkDebugf("Error: unable to read bit inputMasks.\n");
285 return NULL;
286 }
287 maskBytes = kBmpMaskBytes;
288 inputMasks.red = get_int(mBuffer.get(), 0);
289 inputMasks.green = get_int(mBuffer.get(), 4);
290 inputMasks.blue = get_int(mBuffer.get(), 8);
291 break;
292 }
293 case kInfoV2_BitmapHeaderType:
294 case kInfoV3_BitmapHeaderType:
295 case kInfoV4_BitmapHeaderType:
296 case kInfoV5_BitmapHeaderType:
297 // Header types are matched based on size. If the header
298 // is V2+, we are guaranteed to be able to read at least
299 // this size.
300 SkASSERT(infoBytesRemaining >= 48);
301 inputMasks.red = get_int(iBuffer.get(), 36);
302 inputMasks.green = get_int(iBuffer.get(), 40);
303 inputMasks.blue = get_int(iBuffer.get(), 44);
304 break;
305 case kOS2VX_BitmapHeaderType:
306 // TODO: Decide if we intend to support this.
307 // It is unsupported in the previous version and
308 // in chromium. I have not come across a test case
309 // that uses this format.
310 SkDebugf("Error: huffman format unsupported.\n");
311 return NULL;
312 default:
313 SkDebugf("Error: invalid bmp bit masks header.\n");
314 return NULL;
315 }
316 break;
317 case kJpeg_BitmapCompressionMethod:
318 if (24 == bitsPerPixel) {
319 inputFormat = kRLE_BitmapInputFormat;
320 break;
321 }
322 // Fall through
323 case kPng_BitmapCompressionMethod:
324 // TODO: Decide if we intend to support this.
325 // It is unsupported in the previous version and
326 // in chromium. I think it is used mostly for printers.
327 SkDebugf("Error: compression format not supported.\n");
328 return NULL;
329 case kCMYK_BitmapCompressionMethod:
330 case kCMYK8BitRLE_BitmapCompressionMethod:
331 case kCMYK4BitRLE_BitmapCompressionMethod:
332 // TODO: Same as above.
333 SkDebugf("Error: CMYK not supported for bitmap decoding.\n");
334 return NULL;
335 default:
336 SkDebugf("Error: invalid format for bitmap decoding.\n");
337 return NULL;
338 }
339
340 // Most versions of bmps should be rendered as opaque. Either they do
341 // not have an alpha channel, or they expect the alpha channel to be
342 // ignored. V4+ bmp files introduce an alpha mask and allow the creator
343 // of the image to use the alpha channels. However, many of these images
344 // leave the alpha channel blank and expect to be rendered as opaque. For
345 // this reason, we set the alpha type to kUnknown for V4+ bmps and figure
346 // out the alpha type during the decode.
347 SkAlphaType alphaType = kOpaque_SkAlphaType;
348 if (kInfoV4_BitmapHeaderType == headerType ||
349 kInfoV5_BitmapHeaderType == headerType) {
350 // Header types are matched based on size. If the header is
351 // V4+, we are guaranteed to be able to read at least this size.
352 SkASSERT(infoBytesRemaining > 52);
353 inputMasks.alpha = get_int(iBuffer.get(), 48);
354 if (inputMasks.alpha != 0) {
355 alphaType = kUnpremul_SkAlphaType;
356 }
357 }
358 iBuffer.free();
359
360 // Check for valid bits per pixel input
361 switch (bitsPerPixel) {
362 // In addition to more standard pixel compression formats, bmp supports
363 // the use of bit masks to determine pixel components. The standard
364 // format for representing 16-bit colors is 555 (XRRRRRGGGGGBBBBB),
365 // which does not map well to any Skia color formats. For this reason,
366 // we will always enable mask mode with 16 bits per pixel.
367 case 16:
368 if (kBitMask_BitmapInputFormat != inputFormat) {
369 inputMasks.red = 0x7C00;
370 inputMasks.green = 0x03E0;
371 inputMasks.blue = 0x001F;
372 inputFormat = kBitMask_BitmapInputFormat;
373 }
374 break;
375 case 1:
376 case 2:
377 case 4:
378 case 8:
379 case 24:
380 case 32:
381 break;
382 default:
383 SkDebugf("Error: invalid input value for bits per pixel.\n");
384 return NULL;
385 }
386
387 // Check that input bit masks are valid and create the masks object
388 SkAutoTDelete<SkMasks>
389 masks(SkMasks::CreateMasks(inputMasks, bitsPerPixel));
390 if (NULL == masks) {
391 SkDebugf("Error: invalid input masks.\n");
392 return NULL;
393 }
394
395 // Process the color table
396 uint32_t colorBytes = 0;
397 SkPMColor* colorTable = NULL;
398 if (bitsPerPixel < 16) {
399 // Verify the number of colors for the color table
400 const uint32_t maxColors = 1 << bitsPerPixel;
401 // Zero is a default for maxColors
402 // Also set numColors to maxColors when input is too large
403 if (numColors <= 0 || numColors > maxColors) {
404 numColors = maxColors;
405 }
406 colorTable = SkNEW_ARRAY(SkPMColor, maxColors);
407
408 // Construct the color table
409 colorBytes = numColors * bytesPerColor;
410 SkAutoTDeleteArray<uint8_t> cBuffer(SkNEW_ARRAY(uint8_t, colorBytes));
411 if (stream->read(cBuffer.get(), colorBytes) != colorBytes) {
412 SkDebugf("Error: unable to read color table.\n");
413 return NULL;
414 }
415
416 // Fill in the color table (colors are stored unpremultiplied)
417 uint32_t i = 0;
418 for (; i < numColors; i++) {
419 uint8_t blue = get_byte(cBuffer.get(), i*bytesPerColor);
420 uint8_t green = get_byte(cBuffer.get(), i*bytesPerColor + 1);
421 uint8_t red = get_byte(cBuffer.get(), i*bytesPerColor + 2);
422 uint8_t alpha = 0xFF;
423 if (kOpaque_SkAlphaType != alphaType) {
424 alpha = (inputMasks.alpha >> 24) &
425 get_byte(cBuffer.get(), i*bytesPerColor + 3);
426 }
427 // Store the unpremultiplied color
428 colorTable[i] = SkPackARGB32NoCheck(alpha, red, green, blue);
429 }
430
431 // To avoid segmentation faults on bad pixel data, fill the end of the
432 // color table with black. This is the same the behavior as the
433 // chromium decoder.
434 for (; i < maxColors; i++) {
435 colorTable[i] = SkPackARGB32NoCheck(0xFF, 0, 0, 0);
436 }
437 }
438
439 // Ensure that the stream now points to the start of the pixel array
440 uint32_t bytesRead = kBmpHeaderBytes + infoBytes + maskBytes + colorBytes;
441
442 // Check that we have not read past the pixel array offset
443 if(bytesRead > offset) {
444 // This may occur on OS 2.1 and other old versions where the color
445 // table defaults to max size, and the bmp tries to use a smaller color
446 // table. This is invalid, and our decision is to indicate an error,
447 // rather than try to guess the intended size of the color table and
448 // rewind the stream to display the image.
449 SkDebugf("Error: pixel data offset less than header size.\n");
450 return NULL;
451 }
452
453 // Skip to the start of the pixel array
454 if (stream->skip(offset - bytesRead) != offset - bytesRead) {
455 SkDebugf("Error: unable to skip to image data.\n");
456 return NULL;
457 }
458
459 // Remaining bytes is only used for RLE
460 const int remainingBytes = totalBytes - offset;
461 if (remainingBytes <= 0 && kRLE_BitmapInputFormat == inputFormat) {
462 SkDebugf("Error: RLE requires valid input size.\n");
463 return NULL;
464 }
465
466 // Return the codec
467 // We will use ImageInfo to store width, height, and alpha type. We will
468 // choose kN32_SkColorType as the input color type because that is the
469 // expected choice for a destination color type. In reality, the input
470 // color type has many possible formats.
471 const SkImageInfo& imageInfo = SkImageInfo::Make(width, height,
472 kN32_SkColorType, alphaType);
473 return SkNEW_ARGS(SkBmpCodec, (imageInfo, stream, bitsPerPixel,
474 inputFormat, masks.detach(), colorTable,
475 rowOrder, remainingBytes));
476}
477
478/*
479 *
480 * Creates an instance of the decoder
481 * Called only by NewFromStream
482 *
483 */
484SkBmpCodec::SkBmpCodec(const SkImageInfo& info, SkStream* stream,
485 uint16_t bitsPerPixel, BitmapInputFormat inputFormat,
486 SkMasks* masks, SkPMColor* colorTable,
487 RowOrder rowOrder,
488 const uint32_t remainingBytes)
489 : INHERITED(info, stream)
490 , fBitsPerPixel(bitsPerPixel)
491 , fInputFormat(inputFormat)
492 , fMasks(masks)
493 , fColorTable(colorTable)
494 , fRowOrder(rowOrder)
495 , fRemainingBytes(remainingBytes)
496{}
497
498/*
499 *
500 * Initiates the bitmap decode
501 *
502 */
503SkCodec::Result SkBmpCodec::onGetPixels(const SkImageInfo& dstInfo,
504 void* dst, size_t dstRowBytes,
scroggo95526622015-03-17 05:02:17 -0700505 const Options&,
msarett74114382015-03-16 11:55:18 -0700506 SkPMColor*, int*) {
507 if (!this->rewindIfNeeded()) {
508 return kCouldNotRewind;
509 }
510 if (dstInfo.dimensions() != this->getOriginalInfo().dimensions()) {
511 SkDebugf("Error: scaling not supported.\n");
512 return kInvalidScale;
513 }
514 if (!conversion_possible(dstInfo, this->getOriginalInfo())) {
515 SkDebugf("Error: cannot convert input type to output type.\n");
516 return kInvalidConversion;
517 }
518
519 switch (fInputFormat) {
520 case kBitMask_BitmapInputFormat:
521 return decodeMask(dstInfo, dst, dstRowBytes);
522 case kRLE_BitmapInputFormat:
523 return decodeRLE(dstInfo, dst, dstRowBytes);
524 case kStandard_BitmapInputFormat:
525 return decode(dstInfo, dst, dstRowBytes);
526 default:
527 SkASSERT(false);
528 return kInvalidInput;
529 }
530}
531
532/*
533 *
534 * Performs the bitmap decoding for bit masks input format
535 *
536 */
537SkCodec::Result SkBmpCodec::decodeMask(const SkImageInfo& dstInfo,
538 void* dst, size_t dstRowBytes) {
539 // Set constant values
540 const int width = dstInfo.width();
541 const int height = dstInfo.height();
542 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
543
544 // Allocate space for a row buffer and a source for the swizzler
545 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
546
547 // Get the destination start row and delta
548 SkPMColor* dstRow;
549 int delta;
550 if (kTopDown_RowOrder == fRowOrder) {
551 dstRow = (SkPMColor*) dst;
552 delta = (int) dstRowBytes;
553 } else {
554 dstRow = (SkPMColor*) SkTAddOffset<void>(dst, (height-1) * dstRowBytes);
555 delta = -((int) dstRowBytes);
556 }
557
558 // Create the swizzler
559 SkMaskSwizzler* swizzler = SkMaskSwizzler::CreateMaskSwizzler(
560 dstInfo, fMasks, fBitsPerPixel);
561
562 // Iterate over rows of the image
563 bool transparent = true;
564 for (int y = 0; y < height; y++) {
565 // Read a row of the input
566 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
567 SkDebugf("Warning: incomplete input stream.\n");
568 return kIncompleteInput;
569 }
570
571 // Decode the row in destination format
572 SkSwizzler::ResultAlpha r = swizzler->next(dstRow, srcBuffer.get());
573 transparent &= SkSwizzler::IsTransparent(r);
574
575 // Move to the next row
576 dstRow = SkTAddOffset<SkPMColor>(dstRow, delta);
577 }
578
579 // Some fully transparent bmp images are intended to be opaque. Here, we
580 // correct for this possibility.
581 dstRow = (SkPMColor*) dst;
582 if (transparent) {
583 for (int y = 0; y < height; y++) {
584 for (int x = 0; x < width; x++) {
585 dstRow[x] |= 0xFF000000;
586 }
587 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
588 }
589 }
590
591 // Finished decoding the entire image
592 return kSuccess;
593}
594
595/*
596 *
597 * Set an RLE pixel using the color table
598 *
599 */
600void SkBmpCodec::setRLEPixel(SkPMColor* dst, size_t dstRowBytes, int height,
601 uint32_t x, uint32_t y, uint8_t index) {
602 if (kBottomUp_RowOrder == fRowOrder) {
603 y = height - y - 1;
604 }
605 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(dst, y * dstRowBytes);
606 dstRow[x] = fColorTable.get()[index];
607}
608
609/*
610 *
611 * Performs the bitmap decoding for RLE input format
612 * RLE decoding is performed all at once, rather than a one row at a time
613 *
614 */
615SkCodec::Result SkBmpCodec::decodeRLE(const SkImageInfo& dstInfo,
616 void* dst, size_t dstRowBytes) {
617 // Set RLE flags
618 static const uint8_t RLE_ESCAPE = 0;
619 static const uint8_t RLE_EOL = 0;
620 static const uint8_t RLE_EOF = 1;
621 static const uint8_t RLE_DELTA = 2;
622
623 // Set constant values
624 const int width = dstInfo.width();
625 const int height = dstInfo.height();
626
627 // Input buffer parameters
628 uint32_t currByte = 0;
629 SkAutoTDeleteArray<uint8_t> buffer(SkNEW_ARRAY(uint8_t, fRemainingBytes));
630 size_t totalBytes = stream()->read(buffer.get(), fRemainingBytes);
631 if ((uint32_t) totalBytes < fRemainingBytes) {
632 SkDebugf("Warning: incomplete RLE file.\n");
633 } else if (totalBytes <= 0) {
634 SkDebugf("Error: could not read RLE image data.\n");
635 return kInvalidInput;
636 }
637
638 // Destination parameters
639 int x = 0;
640 int y = 0;
641 // If the code skips pixels, remaining pixels are transparent or black
642 // TODO: Skip this if memory was already zeroed.
643 memset(dst, 0, dstRowBytes * height);
644 SkPMColor* dstPtr = (SkPMColor*) dst;
645
646 while (true) {
647 // Every entry takes at least two bytes
648 if ((int) totalBytes - currByte < 2) {
649 SkDebugf("Warning: incomplete RLE input.\n");
650 return kIncompleteInput;
651 }
652
653 // Read the next two bytes. These bytes have different meanings
654 // depending on their values. In the first interpretation, the first
655 // byte is an escape flag and the second byte indicates what special
656 // task to perform.
657 const uint8_t flag = buffer.get()[currByte++];
658 const uint8_t task = buffer.get()[currByte++];
659
660 // If we have reached a row that is beyond the image size, and the RLE
661 // code does not indicate end of file, abort and signal a warning.
662 if (y >= height && (flag != RLE_ESCAPE || (task != RLE_EOF))) {
663 SkDebugf("Warning: invalid RLE input.\n");
664 return kIncompleteInput;
665 }
666
667 // Perform decoding
668 if (RLE_ESCAPE == flag) {
669 switch (task) {
670 case RLE_EOL:
671 x = 0;
672 y++;
673 break;
674 case RLE_EOF:
675 return kSuccess;
676 case RLE_DELTA: {
677 // Two bytes are needed to specify delta
678 if ((int) totalBytes - currByte < 2) {
679 SkDebugf("Warning: incomplete RLE input\n");
680 return kIncompleteInput;
681 }
682 // Modify x and y
683 const uint8_t dx = buffer.get()[currByte++];
684 const uint8_t dy = buffer.get()[currByte++];
685 x += dx;
686 y += dy;
687 if (x > width || y > height) {
688 SkDebugf("Warning: invalid RLE input.\n");
689 return kIncompleteInput;
690 }
691 break;
692 }
693 default: {
694 // If task does not match any of the above signals, it
695 // indicates that we have a sequence of non-RLE pixels.
696 // Furthermore, the value of task is equal to the number
697 // of pixels to interpret.
698 uint8_t numPixels = task;
699 const size_t rowBytes = compute_row_bytes(numPixels,
700 fBitsPerPixel);
701 // Abort if setting numPixels moves us off the edge of the
702 // image. Also abort if there are not enough bytes
703 // remaining in the stream to set numPixels.
704 if (x + numPixels > width ||
705 (int) totalBytes - currByte < SkAlign2(rowBytes)) {
706 SkDebugf("Warning: invalid RLE input.\n");
707 return kIncompleteInput;
708 }
709 // Set numPixels number of pixels
710 SkPMColor* dstRow = SkTAddOffset<SkPMColor>(
711 dstPtr, y * dstRowBytes);
712 while (numPixels > 0) {
713 switch(fBitsPerPixel) {
714 case 4: {
715 SkASSERT(currByte < totalBytes);
716 uint8_t val = buffer.get()[currByte++];
717 setRLEPixel(dstPtr, dstRowBytes, height, x++, y,
718 val >> 4);
719 numPixels--;
720 if (numPixels != 0) {
721 setRLEPixel(dstPtr, dstRowBytes, height,
722 x++, y, val & 0xF);
723 numPixels--;
724 }
725 break;
726 }
727 case 8:
728 SkASSERT(currByte < totalBytes);
729 setRLEPixel(dstPtr, dstRowBytes, height, x++, y,
730 buffer.get()[currByte++]);
731 numPixels--;
732 break;
733 case 24: {
734 SkASSERT(currByte + 2 < totalBytes);
735 uint8_t blue = buffer.get()[currByte++];
736 uint8_t green = buffer.get()[currByte++];
737 uint8_t red = buffer.get()[currByte++];
738 SkPMColor color = SkPackARGB32NoCheck(
739 0xFF, red, green, blue);
740 dstRow[x++] = color;
741 numPixels--;
742 }
743 default:
744 SkASSERT(false);
745 return kInvalidInput;
746 }
747 }
748 // Skip a byte if necessary to maintain alignment
749 if (!SkIsAlign2(rowBytes)) {
750 currByte++;
751 }
752 break;
753 }
754 }
755 } else {
756 // If the first byte read is not a flag, it indicates the number of
757 // pixels to set in RLE mode.
758 const uint8_t numPixels = flag;
759 const int endX = SkTMin<int>(x + numPixels, width);
760
761 if (24 == fBitsPerPixel) {
762 // In RLE24, the second byte read is part of the pixel color.
763 // There are two more required bytes to finish encoding the
764 // color.
765 if ((int) totalBytes - currByte < 2) {
766 SkDebugf("Warning: incomplete RLE input\n");
767 return kIncompleteInput;
768 }
769
770 // Fill the pixels up to endX with the specified color
771 uint8_t blue = task;
772 uint8_t green = buffer.get()[currByte++];
773 uint8_t red = buffer.get()[currByte++];
774 SkPMColor color = SkPackARGB32NoCheck(0xFF, red, green, blue);
775 SkPMColor* dstRow =
776 SkTAddOffset<SkPMColor>(dstPtr, y * dstRowBytes);
777 while (x < endX) {
778 dstRow[x++] = color;
779 }
780 } else {
781 // In RLE8 or RLE4, the second byte read gives the index in the
782 // color table to look up the pixel color.
783 // RLE8 has one color index that gets repeated
784 // RLE4 has two color indexes in the upper and lower 4 bits of
785 // the bytes, which are alternated
786 uint8_t indices[2] = { task, task };
787 if (4 == fBitsPerPixel) {
788 indices[0] >>= 4;
789 indices[1] &= 0xf;
790 }
791
792 // Set the indicated number of pixels
793 for (int which = 0; x < endX; x++) {
794 setRLEPixel(dstPtr, dstRowBytes, height, x, y,
795 indices[which]);
796 which = !which;
797 }
798 }
799 }
800 }
801}
802
803/*
804 *
805 * Performs the bitmap decoding for standard input format
806 *
807 */
808SkCodec::Result SkBmpCodec::decode(const SkImageInfo& dstInfo,
809 void* dst, size_t dstRowBytes) {
810 // Set constant values
811 const int width = dstInfo.width();
812 const int height = dstInfo.height();
813 const size_t rowBytes = SkAlign4(compute_row_bytes(width, fBitsPerPixel));
814 const uint32_t alphaMask = fMasks->getAlphaMask();
815
816 // Get swizzler configuration
817 SkSwizzler::SrcConfig config;
818 switch (fBitsPerPixel) {
819 case 1:
820 config = SkSwizzler::kIndex1;
821 break;
822 case 2:
823 config = SkSwizzler::kIndex2;
824 break;
825 case 4:
826 config = SkSwizzler::kIndex4;
827 break;
828 case 8:
829 config = SkSwizzler::kIndex;
830 break;
831 case 24:
832 config = SkSwizzler::kBGR;
833 break;
834 case 32:
835 if (0 == alphaMask) {
836 config = SkSwizzler::kBGRX;
837 } else {
838 config = SkSwizzler::kBGRA;
839 }
840 break;
841 default:
842 SkASSERT(false);
843 return kInvalidInput;
844 }
845
846 // Create swizzler
847 SkSwizzler* swizzler = SkSwizzler::CreateSwizzler(config, fColorTable.get(),
scroggo95526622015-03-17 05:02:17 -0700848 dstInfo, dst, dstRowBytes, SkImageGenerator::kNo_ZeroInitialized);
msarett74114382015-03-16 11:55:18 -0700849
850 // Allocate space for a row buffer and a source for the swizzler
851 SkAutoTDeleteArray<uint8_t> srcBuffer(SkNEW_ARRAY(uint8_t, rowBytes));
852
853 // Iterate over rows of the image
854 // FIXME: bool transparent = true;
855 for (int y = 0; y < height; y++) {
856 // Read a row of the input
857 if (stream()->read(srcBuffer.get(), rowBytes) != rowBytes) {
858 SkDebugf("Warning: incomplete input stream.\n");
859 return kIncompleteInput;
860 }
861
862 // Decode the row in destination format
863 uint32_t row;
864 if (kTopDown_RowOrder == fRowOrder) {
865 row = y;
866 } else {
867 row = height - 1 - y;
868 }
869
870 swizzler->next(srcBuffer.get(), row);
871 // FIXME: SkSwizzler::ResultAlpha r =
872 // swizzler->next(srcBuffer.get(), row);
873 // FIXME: transparent &= SkSwizzler::IsTransparent(r);
874 }
875
876 // FIXME: This code exists to match the behavior in the chromium decoder
877 // and to follow the bmp specification as it relates to alpha masks. It is
878 // commented out because we have yet to discover a test image that provides
879 // an alpha mask and uses this decode mode.
880
881 // Now we adjust the output image with some additional behavior that
882 // SkSwizzler does not support. Firstly, all bmp images that contain
883 // alpha are masked by the alpha mask. Secondly, many fully transparent
884 // bmp images are intended to be opaque. Here, we make those corrections.
885 // Modifying alpha is safe because colors are stored unpremultiplied.
886 /*
887 SkPMColor* dstRow = (SkPMColor*) dst;
888 if (SkSwizzler::kBGRA == config) {
889 for (int y = 0; y < height; y++) {
890 for (int x = 0; x < width; x++) {
891 if (transparent) {
892 dstRow[x] |= 0xFF000000;
893 } else {
894 dstRow[x] &= alphaMask;
895 }
896 dstRow = SkTAddOffset<SkPMColor>(dstRow, dstRowBytes);
897 }
898 }
899 }
900 */
901
902 // Finished decoding the entire image
903 return kSuccess;
904}