| /* |
| * sha1.c |
| * |
| * an implementation of the Secure Hash Algorithm v.1 (SHA-1), |
| * specified in FIPS 180-1 |
| * |
| * David A. McGrew |
| * Cisco Systems, Inc. |
| */ |
| |
| /* |
| * |
| * Copyright (c) 2001-2006, Cisco Systems, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * Redistributions in binary form must reproduce the above |
| * copyright notice, this list of conditions and the following |
| * disclaimer in the documentation and/or other materials provided |
| * with the distribution. |
| * |
| * Neither the name of the Cisco Systems, Inc. nor the names of its |
| * contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS |
| * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE |
| * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, |
| * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR |
| * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, |
| * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED |
| * OF THE POSSIBILITY OF SUCH DAMAGE. |
| * |
| */ |
| |
| |
| #include "sha1.h" |
| |
| debug_module_t mod_sha1 = { |
| 0, /* debugging is off by default */ |
| "sha-1" /* printable module name */ |
| }; |
| |
| /* SN == Rotate left N bits */ |
| #define S1(X) ((X << 1) | (X >> 31)) |
| #define S5(X) ((X << 5) | (X >> 27)) |
| #define S30(X) ((X << 30) | (X >> 2)) |
| |
| #define f0(B,C,D) ((B & C) | (~B & D)) |
| #define f1(B,C,D) (B ^ C ^ D) |
| #define f2(B,C,D) ((B & C) | (B & D) | (C & D)) |
| #define f3(B,C,D) (B ^ C ^ D) |
| |
| /* |
| * nota bene: the variable K0 appears in the curses library, so we |
| * give longer names to these variables to avoid spurious warnings |
| * on systems that uses curses |
| */ |
| |
| uint32_t SHA_K0 = 0x5A827999; /* Kt for 0 <= t <= 19 */ |
| uint32_t SHA_K1 = 0x6ED9EBA1; /* Kt for 20 <= t <= 39 */ |
| uint32_t SHA_K2 = 0x8F1BBCDC; /* Kt for 40 <= t <= 59 */ |
| uint32_t SHA_K3 = 0xCA62C1D6; /* Kt for 60 <= t <= 79 */ |
| |
| void |
| sha1(const uint8_t *msg, int octets_in_msg, uint32_t hash_value[5]) { |
| sha1_ctx_t ctx; |
| |
| sha1_init(&ctx); |
| sha1_update(&ctx, msg, octets_in_msg); |
| sha1_final(&ctx, hash_value); |
| |
| } |
| |
| /* |
| * sha1_core(M, H) computes the core compression function, where M is |
| * the next part of the message (in network byte order) and H is the |
| * intermediate state { H0, H1, ...} (in host byte order) |
| * |
| * this function does not do any of the padding required in the |
| * complete SHA1 function |
| * |
| * this function is used in the SEAL 3.0 key setup routines |
| * (crypto/cipher/seal.c) |
| */ |
| |
| void |
| sha1_core(const uint32_t M[16], uint32_t hash_value[5]) { |
| uint32_t H0; |
| uint32_t H1; |
| uint32_t H2; |
| uint32_t H3; |
| uint32_t H4; |
| uint32_t W[80]; |
| uint32_t A, B, C, D, E, TEMP; |
| int t; |
| |
| /* copy hash_value into H0, H1, H2, H3, H4 */ |
| H0 = hash_value[0]; |
| H1 = hash_value[1]; |
| H2 = hash_value[2]; |
| H3 = hash_value[3]; |
| H4 = hash_value[4]; |
| |
| /* copy/xor message into array */ |
| |
| W[0] = be32_to_cpu(M[0]); |
| W[1] = be32_to_cpu(M[1]); |
| W[2] = be32_to_cpu(M[2]); |
| W[3] = be32_to_cpu(M[3]); |
| W[4] = be32_to_cpu(M[4]); |
| W[5] = be32_to_cpu(M[5]); |
| W[6] = be32_to_cpu(M[6]); |
| W[7] = be32_to_cpu(M[7]); |
| W[8] = be32_to_cpu(M[8]); |
| W[9] = be32_to_cpu(M[9]); |
| W[10] = be32_to_cpu(M[10]); |
| W[11] = be32_to_cpu(M[11]); |
| W[12] = be32_to_cpu(M[12]); |
| W[13] = be32_to_cpu(M[13]); |
| W[14] = be32_to_cpu(M[14]); |
| W[15] = be32_to_cpu(M[15]); |
| TEMP = W[13] ^ W[8] ^ W[2] ^ W[0]; W[16] = S1(TEMP); |
| TEMP = W[14] ^ W[9] ^ W[3] ^ W[1]; W[17] = S1(TEMP); |
| TEMP = W[15] ^ W[10] ^ W[4] ^ W[2]; W[18] = S1(TEMP); |
| TEMP = W[16] ^ W[11] ^ W[5] ^ W[3]; W[19] = S1(TEMP); |
| TEMP = W[17] ^ W[12] ^ W[6] ^ W[4]; W[20] = S1(TEMP); |
| TEMP = W[18] ^ W[13] ^ W[7] ^ W[5]; W[21] = S1(TEMP); |
| TEMP = W[19] ^ W[14] ^ W[8] ^ W[6]; W[22] = S1(TEMP); |
| TEMP = W[20] ^ W[15] ^ W[9] ^ W[7]; W[23] = S1(TEMP); |
| TEMP = W[21] ^ W[16] ^ W[10] ^ W[8]; W[24] = S1(TEMP); |
| TEMP = W[22] ^ W[17] ^ W[11] ^ W[9]; W[25] = S1(TEMP); |
| TEMP = W[23] ^ W[18] ^ W[12] ^ W[10]; W[26] = S1(TEMP); |
| TEMP = W[24] ^ W[19] ^ W[13] ^ W[11]; W[27] = S1(TEMP); |
| TEMP = W[25] ^ W[20] ^ W[14] ^ W[12]; W[28] = S1(TEMP); |
| TEMP = W[26] ^ W[21] ^ W[15] ^ W[13]; W[29] = S1(TEMP); |
| TEMP = W[27] ^ W[22] ^ W[16] ^ W[14]; W[30] = S1(TEMP); |
| TEMP = W[28] ^ W[23] ^ W[17] ^ W[15]; W[31] = S1(TEMP); |
| |
| /* process the remainder of the array */ |
| for (t=32; t < 80; t++) { |
| TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; |
| W[t] = S1(TEMP); |
| } |
| |
| A = H0; B = H1; C = H2; D = H3; E = H4; |
| |
| for (t=0; t < 20; t++) { |
| TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 40; t++) { |
| TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 60; t++) { |
| TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 80; t++) { |
| TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| |
| hash_value[0] = H0 + A; |
| hash_value[1] = H1 + B; |
| hash_value[2] = H2 + C; |
| hash_value[3] = H3 + D; |
| hash_value[4] = H4 + E; |
| |
| return; |
| } |
| |
| void |
| sha1_init(sha1_ctx_t *ctx) { |
| |
| /* initialize state vector */ |
| ctx->H[0] = 0x67452301; |
| ctx->H[1] = 0xefcdab89; |
| ctx->H[2] = 0x98badcfe; |
| ctx->H[3] = 0x10325476; |
| ctx->H[4] = 0xc3d2e1f0; |
| |
| /* indicate that message buffer is empty */ |
| ctx->octets_in_buffer = 0; |
| |
| /* reset message bit-count to zero */ |
| ctx->num_bits_in_msg = 0; |
| |
| } |
| |
| void |
| sha1_update(sha1_ctx_t *ctx, const uint8_t *msg, int octets_in_msg) { |
| int i; |
| uint8_t *buf = (uint8_t *)ctx->M; |
| |
| /* update message bit-count */ |
| ctx->num_bits_in_msg += octets_in_msg * 8; |
| |
| /* loop over 16-word blocks of M */ |
| while (octets_in_msg > 0) { |
| |
| if (octets_in_msg + ctx->octets_in_buffer >= 64) { |
| |
| /* |
| * copy words of M into msg buffer until that buffer is full, |
| * converting them into host byte order as needed |
| */ |
| octets_in_msg -= (64 - ctx->octets_in_buffer); |
| for (i=ctx->octets_in_buffer; i < 64; i++) |
| buf[i] = *msg++; |
| ctx->octets_in_buffer = 0; |
| |
| /* process a whole block */ |
| |
| debug_print(mod_sha1, "(update) running sha1_core()", NULL); |
| |
| sha1_core(ctx->M, ctx->H); |
| |
| } else { |
| |
| debug_print(mod_sha1, "(update) not running sha1_core()", NULL); |
| |
| for (i=ctx->octets_in_buffer; |
| i < (ctx->octets_in_buffer + octets_in_msg); i++) |
| buf[i] = *msg++; |
| ctx->octets_in_buffer += octets_in_msg; |
| octets_in_msg = 0; |
| } |
| |
| } |
| |
| } |
| |
| /* |
| * sha1_final(ctx, output) computes the result for ctx and copies it |
| * into the twenty octets located at *output |
| */ |
| |
| void |
| sha1_final(sha1_ctx_t *ctx, uint32_t *output) { |
| uint32_t A, B, C, D, E, TEMP; |
| uint32_t W[80]; |
| int i, t; |
| |
| /* |
| * process the remaining octets_in_buffer, padding and terminating as |
| * necessary |
| */ |
| { |
| int tail = ctx->octets_in_buffer % 4; |
| |
| /* copy/xor message into array */ |
| for (i=0; i < (ctx->octets_in_buffer+3)/4; i++) |
| W[i] = be32_to_cpu(ctx->M[i]); |
| |
| /* set the high bit of the octet immediately following the message */ |
| switch (tail) { |
| case (3): |
| W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffffff00) | 0x80; |
| W[i] = 0x0; |
| break; |
| case (2): |
| W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xffff0000) | 0x8000; |
| W[i] = 0x0; |
| break; |
| case (1): |
| W[i-1] = (be32_to_cpu(ctx->M[i-1]) & 0xff000000) | 0x800000; |
| W[i] = 0x0; |
| break; |
| case (0): |
| W[i] = 0x80000000; |
| break; |
| } |
| |
| /* zeroize remaining words */ |
| for (i++ ; i < 15; i++) |
| W[i] = 0x0; |
| |
| /* |
| * if there is room at the end of the word array, then set the |
| * last word to the bit-length of the message; otherwise, set that |
| * word to zero and then we need to do one more run of the |
| * compression algo. |
| */ |
| if (ctx->octets_in_buffer < 56) |
| W[15] = ctx->num_bits_in_msg; |
| else if (ctx->octets_in_buffer < 60) |
| W[15] = 0x0; |
| |
| /* process the word array */ |
| for (t=16; t < 80; t++) { |
| TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; |
| W[t] = S1(TEMP); |
| } |
| |
| A = ctx->H[0]; |
| B = ctx->H[1]; |
| C = ctx->H[2]; |
| D = ctx->H[3]; |
| E = ctx->H[4]; |
| |
| for (t=0; t < 20; t++) { |
| TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 40; t++) { |
| TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 60; t++) { |
| TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 80; t++) { |
| TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| |
| ctx->H[0] += A; |
| ctx->H[1] += B; |
| ctx->H[2] += C; |
| ctx->H[3] += D; |
| ctx->H[4] += E; |
| |
| } |
| |
| debug_print(mod_sha1, "(final) running sha1_core()", NULL); |
| |
| if (ctx->octets_in_buffer >= 56) { |
| |
| debug_print(mod_sha1, "(final) running sha1_core() again", NULL); |
| |
| /* we need to do one final run of the compression algo */ |
| |
| /* |
| * set initial part of word array to zeros, and set the |
| * final part to the number of bits in the message |
| */ |
| for (i=0; i < 15; i++) |
| W[i] = 0x0; |
| W[15] = ctx->num_bits_in_msg; |
| |
| /* process the word array */ |
| for (t=16; t < 80; t++) { |
| TEMP = W[t-3] ^ W[t-8] ^ W[t-14] ^ W[t-16]; |
| W[t] = S1(TEMP); |
| } |
| |
| A = ctx->H[0]; |
| B = ctx->H[1]; |
| C = ctx->H[2]; |
| D = ctx->H[3]; |
| E = ctx->H[4]; |
| |
| for (t=0; t < 20; t++) { |
| TEMP = S5(A) + f0(B,C,D) + E + W[t] + SHA_K0; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 40; t++) { |
| TEMP = S5(A) + f1(B,C,D) + E + W[t] + SHA_K1; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 60; t++) { |
| TEMP = S5(A) + f2(B,C,D) + E + W[t] + SHA_K2; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| for ( ; t < 80; t++) { |
| TEMP = S5(A) + f3(B,C,D) + E + W[t] + SHA_K3; |
| E = D; D = C; C = S30(B); B = A; A = TEMP; |
| } |
| |
| ctx->H[0] += A; |
| ctx->H[1] += B; |
| ctx->H[2] += C; |
| ctx->H[3] += D; |
| ctx->H[4] += E; |
| } |
| |
| /* copy result into output buffer */ |
| output[0] = be32_to_cpu(ctx->H[0]); |
| output[1] = be32_to_cpu(ctx->H[1]); |
| output[2] = be32_to_cpu(ctx->H[2]); |
| output[3] = be32_to_cpu(ctx->H[3]); |
| output[4] = be32_to_cpu(ctx->H[4]); |
| |
| /* indicate that message buffer in context is empty */ |
| ctx->octets_in_buffer = 0; |
| |
| return; |
| } |
| |
| |
| |