| /* |
| * Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl> |
| * Copyright (c) 1993 Branko Lankester <branko@hacktic.nl> |
| * Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com> |
| * Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl> |
| * Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation |
| * Linux for s390 port by D.J. Barrow |
| * <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com> |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * 3. The name of the author may not be used to endorse or promote products |
| * derived from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "defs.h" |
| #include <sys/user.h> |
| #include <sys/param.h> |
| |
| #ifdef HAVE_SYS_REG_H |
| # include <sys/reg.h> |
| # ifndef PTRACE_PEEKUSR |
| # define PTRACE_PEEKUSR PTRACE_PEEKUSER |
| # endif |
| #elif defined(HAVE_LINUX_PTRACE_H) |
| # undef PTRACE_SYSCALL |
| # ifdef HAVE_STRUCT_IA64_FPREG |
| # define ia64_fpreg XXX_ia64_fpreg |
| # endif |
| # ifdef HAVE_STRUCT_PT_ALL_USER_REGS |
| # define pt_all_user_regs XXX_pt_all_user_regs |
| # endif |
| # include <linux/ptrace.h> |
| # undef ia64_fpreg |
| # undef pt_all_user_regs |
| #endif |
| |
| #if defined(SPARC64) |
| # undef PTRACE_GETREGS |
| # define PTRACE_GETREGS PTRACE_GETREGS64 |
| # undef PTRACE_SETREGS |
| # define PTRACE_SETREGS PTRACE_SETREGS64 |
| #endif |
| |
| #if defined(IA64) |
| # include <asm/ptrace_offsets.h> |
| # include <asm/rse.h> |
| #endif |
| |
| /* for struct iovec */ |
| #include <sys/uio.h> |
| /* for NT_PRSTATUS */ |
| #ifdef HAVE_ELF_H |
| # include <elf.h> |
| #endif |
| |
| #if defined(AARCH64) |
| # include <asm/ptrace.h> |
| #endif |
| |
| #if defined(XTENSA) |
| # include <asm/ptrace.h> |
| #endif |
| |
| #ifndef NSIG |
| # warning: NSIG is not defined, using 32 |
| # define NSIG 32 |
| #endif |
| #ifdef ARM |
| /* Ugh. Is this really correct? ARM has no RT signals?! */ |
| # undef NSIG |
| # define NSIG 32 |
| #endif |
| |
| #include "syscall.h" |
| |
| /* Define these shorthand notations to simplify the syscallent files. */ |
| #define TD TRACE_DESC |
| #define TF TRACE_FILE |
| #define TI TRACE_IPC |
| #define TN TRACE_NETWORK |
| #define TP TRACE_PROCESS |
| #define TS TRACE_SIGNAL |
| #define TM TRACE_MEMORY |
| #define NF SYSCALL_NEVER_FAILS |
| #define MA MAX_ARGS |
| |
| const struct_sysent sysent0[] = { |
| #include "syscallent.h" |
| }; |
| |
| #if SUPPORTED_PERSONALITIES > 1 |
| static const struct_sysent sysent1[] = { |
| # include "syscallent1.h" |
| }; |
| #endif |
| |
| #if SUPPORTED_PERSONALITIES > 2 |
| static const struct_sysent sysent2[] = { |
| # include "syscallent2.h" |
| }; |
| #endif |
| |
| /* Now undef them since short defines cause wicked namespace pollution. */ |
| #undef TD |
| #undef TF |
| #undef TI |
| #undef TN |
| #undef TP |
| #undef TS |
| #undef TM |
| #undef NF |
| #undef MA |
| |
| /* |
| * `ioctlent.h' may be generated from `ioctlent.raw' by the auxiliary |
| * program `ioctlsort', such that the list is sorted by the `code' field. |
| * This has the side-effect of resolving the _IO.. macros into |
| * plain integers, eliminating the need to include here everything |
| * in "/usr/include". |
| */ |
| |
| const char *const errnoent0[] = { |
| #include "errnoent.h" |
| }; |
| const char *const signalent0[] = { |
| #include "signalent.h" |
| }; |
| const struct_ioctlent ioctlent0[] = { |
| #include "ioctlent.h" |
| }; |
| |
| #if SUPPORTED_PERSONALITIES > 1 |
| static const char *const errnoent1[] = { |
| # include "errnoent1.h" |
| }; |
| static const char *const signalent1[] = { |
| # include "signalent1.h" |
| }; |
| static const struct_ioctlent ioctlent1[] = { |
| # include "ioctlent1.h" |
| }; |
| #endif |
| |
| #if SUPPORTED_PERSONALITIES > 2 |
| static const char *const errnoent2[] = { |
| # include "errnoent2.h" |
| }; |
| static const char *const signalent2[] = { |
| # include "signalent2.h" |
| }; |
| static const struct_ioctlent ioctlent2[] = { |
| # include "ioctlent2.h" |
| }; |
| #endif |
| |
| enum { |
| nsyscalls0 = ARRAY_SIZE(sysent0) |
| #if SUPPORTED_PERSONALITIES > 1 |
| , nsyscalls1 = ARRAY_SIZE(sysent1) |
| # if SUPPORTED_PERSONALITIES > 2 |
| , nsyscalls2 = ARRAY_SIZE(sysent2) |
| # endif |
| #endif |
| }; |
| |
| enum { |
| nerrnos0 = ARRAY_SIZE(errnoent0) |
| #if SUPPORTED_PERSONALITIES > 1 |
| , nerrnos1 = ARRAY_SIZE(errnoent1) |
| # if SUPPORTED_PERSONALITIES > 2 |
| , nerrnos2 = ARRAY_SIZE(errnoent2) |
| # endif |
| #endif |
| }; |
| |
| enum { |
| nsignals0 = ARRAY_SIZE(signalent0) |
| #if SUPPORTED_PERSONALITIES > 1 |
| , nsignals1 = ARRAY_SIZE(signalent1) |
| # if SUPPORTED_PERSONALITIES > 2 |
| , nsignals2 = ARRAY_SIZE(signalent2) |
| # endif |
| #endif |
| }; |
| |
| enum { |
| nioctlents0 = ARRAY_SIZE(ioctlent0) |
| #if SUPPORTED_PERSONALITIES > 1 |
| , nioctlents1 = ARRAY_SIZE(ioctlent1) |
| # if SUPPORTED_PERSONALITIES > 2 |
| , nioctlents2 = ARRAY_SIZE(ioctlent2) |
| # endif |
| #endif |
| }; |
| |
| #if SUPPORTED_PERSONALITIES > 1 |
| const struct_sysent *sysent = sysent0; |
| const char *const *errnoent = errnoent0; |
| const char *const *signalent = signalent0; |
| const struct_ioctlent *ioctlent = ioctlent0; |
| #endif |
| unsigned nsyscalls = nsyscalls0; |
| unsigned nerrnos = nerrnos0; |
| unsigned nsignals = nsignals0; |
| unsigned nioctlents = nioctlents0; |
| |
| unsigned num_quals; |
| qualbits_t *qual_vec[SUPPORTED_PERSONALITIES]; |
| |
| static const unsigned nsyscall_vec[SUPPORTED_PERSONALITIES] = { |
| nsyscalls0, |
| #if SUPPORTED_PERSONALITIES > 1 |
| nsyscalls1, |
| #endif |
| #if SUPPORTED_PERSONALITIES > 2 |
| nsyscalls2, |
| #endif |
| }; |
| static const struct_sysent *const sysent_vec[SUPPORTED_PERSONALITIES] = { |
| sysent0, |
| #if SUPPORTED_PERSONALITIES > 1 |
| sysent1, |
| #endif |
| #if SUPPORTED_PERSONALITIES > 2 |
| sysent2, |
| #endif |
| }; |
| |
| enum { |
| MAX_NSYSCALLS1 = (nsyscalls0 |
| #if SUPPORTED_PERSONALITIES > 1 |
| > nsyscalls1 ? nsyscalls0 : nsyscalls1 |
| #endif |
| ), |
| MAX_NSYSCALLS2 = (MAX_NSYSCALLS1 |
| #if SUPPORTED_PERSONALITIES > 2 |
| > nsyscalls2 ? MAX_NSYSCALLS1 : nsyscalls2 |
| #endif |
| ), |
| MAX_NSYSCALLS = MAX_NSYSCALLS2, |
| /* We are ready for arches with up to 255 signals, |
| * even though the largest known signo is on MIPS and it is 128. |
| * The number of existing syscalls on all arches is |
| * larger that 255 anyway, so it is just a pedantic matter. |
| */ |
| MIN_QUALS = MAX_NSYSCALLS > 255 ? MAX_NSYSCALLS : 255 |
| }; |
| |
| #if SUPPORTED_PERSONALITIES > 1 |
| unsigned current_personality; |
| |
| # ifndef current_wordsize |
| unsigned current_wordsize; |
| static const int personality_wordsize[SUPPORTED_PERSONALITIES] = { |
| PERSONALITY0_WORDSIZE, |
| PERSONALITY1_WORDSIZE, |
| # if SUPPORTED_PERSONALITIES > 2 |
| PERSONALITY2_WORDSIZE, |
| # endif |
| }; |
| # endif |
| |
| void |
| set_personality(int personality) |
| { |
| nsyscalls = nsyscall_vec[personality]; |
| sysent = sysent_vec[personality]; |
| |
| switch (personality) { |
| case 0: |
| errnoent = errnoent0; |
| nerrnos = nerrnos0; |
| ioctlent = ioctlent0; |
| nioctlents = nioctlents0; |
| signalent = signalent0; |
| nsignals = nsignals0; |
| break; |
| |
| case 1: |
| errnoent = errnoent1; |
| nerrnos = nerrnos1; |
| ioctlent = ioctlent1; |
| nioctlents = nioctlents1; |
| signalent = signalent1; |
| nsignals = nsignals1; |
| break; |
| |
| # if SUPPORTED_PERSONALITIES > 2 |
| case 2: |
| errnoent = errnoent2; |
| nerrnos = nerrnos2; |
| ioctlent = ioctlent2; |
| nioctlents = nioctlents2; |
| signalent = signalent2; |
| nsignals = nsignals2; |
| break; |
| # endif |
| } |
| |
| current_personality = personality; |
| # ifndef current_wordsize |
| current_wordsize = personality_wordsize[personality]; |
| # endif |
| } |
| |
| static void |
| update_personality(struct tcb *tcp, int personality) |
| { |
| if (personality == current_personality) |
| return; |
| set_personality(personality); |
| |
| if (personality == tcp->currpers) |
| return; |
| tcp->currpers = personality; |
| |
| # if defined(POWERPC64) |
| if (!qflag) { |
| static const char *const names[] = {"64 bit", "32 bit"}; |
| fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", |
| tcp->pid, names[personality]); |
| } |
| # elif defined(X86_64) |
| if (!qflag) { |
| static const char *const names[] = {"64 bit", "32 bit", "x32"}; |
| fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", |
| tcp->pid, names[personality]); |
| } |
| # elif defined(X32) |
| if (!qflag) { |
| static const char *const names[] = {"x32", "32 bit"}; |
| fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", |
| tcp->pid, names[personality]); |
| } |
| # elif defined(AARCH64) |
| if (!qflag) { |
| static const char *const names[] = {"32-bit", "AArch64"}; |
| fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", |
| tcp->pid, names[personality]); |
| } |
| # elif defined(TILE) |
| if (!qflag) { |
| static const char *const names[] = {"64-bit", "32-bit"}; |
| fprintf(stderr, "[ Process PID=%d runs in %s mode. ]\n", |
| tcp->pid, names[personality]); |
| } |
| # endif |
| } |
| #endif |
| |
| static int qual_syscall(), qual_signal(), qual_desc(); |
| |
| static const struct qual_options { |
| int bitflag; |
| const char *option_name; |
| int (*qualify)(const char *, int, int); |
| const char *argument_name; |
| } qual_options[] = { |
| { QUAL_TRACE, "trace", qual_syscall, "system call" }, |
| { QUAL_TRACE, "t", qual_syscall, "system call" }, |
| { QUAL_ABBREV, "abbrev", qual_syscall, "system call" }, |
| { QUAL_ABBREV, "a", qual_syscall, "system call" }, |
| { QUAL_VERBOSE, "verbose", qual_syscall, "system call" }, |
| { QUAL_VERBOSE, "v", qual_syscall, "system call" }, |
| { QUAL_RAW, "raw", qual_syscall, "system call" }, |
| { QUAL_RAW, "x", qual_syscall, "system call" }, |
| { QUAL_SIGNAL, "signal", qual_signal, "signal" }, |
| { QUAL_SIGNAL, "signals", qual_signal, "signal" }, |
| { QUAL_SIGNAL, "s", qual_signal, "signal" }, |
| { QUAL_READ, "read", qual_desc, "descriptor" }, |
| { QUAL_READ, "reads", qual_desc, "descriptor" }, |
| { QUAL_READ, "r", qual_desc, "descriptor" }, |
| { QUAL_WRITE, "write", qual_desc, "descriptor" }, |
| { QUAL_WRITE, "writes", qual_desc, "descriptor" }, |
| { QUAL_WRITE, "w", qual_desc, "descriptor" }, |
| { 0, NULL, NULL, NULL }, |
| }; |
| |
| static void |
| reallocate_qual(int n) |
| { |
| unsigned p; |
| qualbits_t *qp; |
| for (p = 0; p < SUPPORTED_PERSONALITIES; p++) { |
| qp = qual_vec[p] = realloc(qual_vec[p], n * sizeof(qualbits_t)); |
| if (!qp) |
| die_out_of_memory(); |
| memset(&qp[num_quals], 0, (n - num_quals) * sizeof(qualbits_t)); |
| } |
| num_quals = n; |
| } |
| |
| static void |
| qualify_one(int n, int bitflag, int not, int pers) |
| { |
| unsigned p; |
| |
| if (num_quals <= n) |
| reallocate_qual(n + 1); |
| |
| for (p = 0; p < SUPPORTED_PERSONALITIES; p++) { |
| if (pers == p || pers < 0) { |
| if (not) |
| qual_vec[p][n] &= ~bitflag; |
| else |
| qual_vec[p][n] |= bitflag; |
| } |
| } |
| } |
| |
| static int |
| qual_syscall(const char *s, int bitflag, int not) |
| { |
| unsigned p; |
| unsigned i; |
| int rc = -1; |
| |
| if (*s >= '0' && *s <= '9') { |
| i = string_to_uint(s); |
| if (i >= MAX_NSYSCALLS) |
| return -1; |
| qualify_one(i, bitflag, not, -1); |
| return 0; |
| } |
| |
| for (p = 0; p < SUPPORTED_PERSONALITIES; p++) { |
| for (i = 0; i < nsyscall_vec[p]; i++) { |
| if (sysent_vec[p][i].sys_name |
| && strcmp(s, sysent_vec[p][i].sys_name) == 0 |
| ) { |
| qualify_one(i, bitflag, not, p); |
| rc = 0; |
| } |
| } |
| } |
| |
| return rc; |
| } |
| |
| static int |
| qual_signal(const char *s, int bitflag, int not) |
| { |
| int i; |
| |
| if (*s >= '0' && *s <= '9') { |
| int signo = string_to_uint(s); |
| if (signo < 0 || signo > 255) |
| return -1; |
| qualify_one(signo, bitflag, not, -1); |
| return 0; |
| } |
| if (strncasecmp(s, "SIG", 3) == 0) |
| s += 3; |
| for (i = 0; i <= NSIG; i++) { |
| if (strcasecmp(s, signame(i) + 3) == 0) { |
| qualify_one(i, bitflag, not, -1); |
| return 0; |
| } |
| } |
| return -1; |
| } |
| |
| static int |
| qual_desc(const char *s, int bitflag, int not) |
| { |
| if (*s >= '0' && *s <= '9') { |
| int desc = string_to_uint(s); |
| if (desc < 0 || desc > 0x7fff) /* paranoia */ |
| return -1; |
| qualify_one(desc, bitflag, not, -1); |
| return 0; |
| } |
| return -1; |
| } |
| |
| static int |
| lookup_class(const char *s) |
| { |
| if (strcmp(s, "file") == 0) |
| return TRACE_FILE; |
| if (strcmp(s, "ipc") == 0) |
| return TRACE_IPC; |
| if (strcmp(s, "network") == 0) |
| return TRACE_NETWORK; |
| if (strcmp(s, "process") == 0) |
| return TRACE_PROCESS; |
| if (strcmp(s, "signal") == 0) |
| return TRACE_SIGNAL; |
| if (strcmp(s, "desc") == 0) |
| return TRACE_DESC; |
| if (strcmp(s, "memory") == 0) |
| return TRACE_MEMORY; |
| return -1; |
| } |
| |
| void |
| qualify(const char *s) |
| { |
| const struct qual_options *opt; |
| int not; |
| char *copy; |
| const char *p; |
| int i, n; |
| |
| if (num_quals == 0) |
| reallocate_qual(MIN_QUALS); |
| |
| opt = &qual_options[0]; |
| for (i = 0; (p = qual_options[i].option_name); i++) { |
| n = strlen(p); |
| if (strncmp(s, p, n) == 0 && s[n] == '=') { |
| opt = &qual_options[i]; |
| s += n + 1; |
| break; |
| } |
| } |
| not = 0; |
| if (*s == '!') { |
| not = 1; |
| s++; |
| } |
| if (strcmp(s, "none") == 0) { |
| not = 1 - not; |
| s = "all"; |
| } |
| if (strcmp(s, "all") == 0) { |
| for (i = 0; i < num_quals; i++) { |
| qualify_one(i, opt->bitflag, not, -1); |
| } |
| return; |
| } |
| for (i = 0; i < num_quals; i++) { |
| qualify_one(i, opt->bitflag, !not, -1); |
| } |
| copy = strdup(s); |
| if (!copy) |
| die_out_of_memory(); |
| for (p = strtok(copy, ","); p; p = strtok(NULL, ",")) { |
| if (opt->bitflag == QUAL_TRACE && (n = lookup_class(p)) > 0) { |
| unsigned pers; |
| for (pers = 0; pers < SUPPORTED_PERSONALITIES; pers++) { |
| for (i = 0; i < nsyscall_vec[pers]; i++) |
| if (sysent_vec[pers][i].sys_flags & n) |
| qualify_one(i, opt->bitflag, not, pers); |
| } |
| continue; |
| } |
| if (opt->qualify(p, opt->bitflag, not)) { |
| error_msg_and_die("invalid %s '%s'", |
| opt->argument_name, p); |
| } |
| } |
| free(copy); |
| return; |
| } |
| |
| #ifdef SYS_socket_subcall |
| static void |
| decode_socket_subcall(struct tcb *tcp) |
| { |
| unsigned long addr; |
| unsigned int i, n, size; |
| |
| if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_socket_nsubcalls) |
| return; |
| |
| tcp->scno = SYS_socket_subcall + tcp->u_arg[0]; |
| tcp->qual_flg = qual_flags[tcp->scno]; |
| tcp->s_ent = &sysent[tcp->scno]; |
| addr = tcp->u_arg[1]; |
| size = current_wordsize; |
| n = tcp->s_ent->nargs; |
| for (i = 0; i < n; ++i) { |
| if (size == sizeof(int)) { |
| unsigned int arg; |
| if (umove(tcp, addr, &arg) < 0) |
| arg = 0; |
| tcp->u_arg[i] = arg; |
| } |
| else { |
| unsigned long arg; |
| if (umove(tcp, addr, &arg) < 0) |
| arg = 0; |
| tcp->u_arg[i] = arg; |
| } |
| addr += size; |
| } |
| } |
| #endif |
| |
| #ifdef SYS_ipc_subcall |
| static void |
| decode_ipc_subcall(struct tcb *tcp) |
| { |
| unsigned int i, n; |
| |
| if (tcp->u_arg[0] < 0 || tcp->u_arg[0] >= SYS_ipc_nsubcalls) |
| return; |
| |
| tcp->scno = SYS_ipc_subcall + tcp->u_arg[0]; |
| tcp->qual_flg = qual_flags[tcp->scno]; |
| tcp->s_ent = &sysent[tcp->scno]; |
| n = tcp->s_ent->nargs; |
| for (i = 0; i < n; i++) |
| tcp->u_arg[i] = tcp->u_arg[i + 1]; |
| } |
| #endif |
| |
| int |
| printargs(struct tcb *tcp) |
| { |
| if (entering(tcp)) { |
| int i; |
| int n = tcp->s_ent->nargs; |
| for (i = 0; i < n; i++) |
| tprintf("%s%#lx", i ? ", " : "", tcp->u_arg[i]); |
| } |
| return 0; |
| } |
| |
| int |
| printargs_lu(struct tcb *tcp) |
| { |
| if (entering(tcp)) { |
| int i; |
| int n = tcp->s_ent->nargs; |
| for (i = 0; i < n; i++) |
| tprintf("%s%lu", i ? ", " : "", tcp->u_arg[i]); |
| } |
| return 0; |
| } |
| |
| int |
| printargs_ld(struct tcb *tcp) |
| { |
| if (entering(tcp)) { |
| int i; |
| int n = tcp->s_ent->nargs; |
| for (i = 0; i < n; i++) |
| tprintf("%s%ld", i ? ", " : "", tcp->u_arg[i]); |
| } |
| return 0; |
| } |
| |
| #if defined(SPARC) || defined(SPARC64) || defined(IA64) || defined(SH) |
| long |
| getrval2(struct tcb *tcp) |
| { |
| long val; |
| |
| # if defined(SPARC) || defined(SPARC64) |
| val = sparc_regs.u_regs[U_REG_O1]; |
| # elif defined(SH) |
| if (upeek(tcp->pid, 4*(REG_REG0+1), &val) < 0) |
| return -1; |
| # elif defined(IA64) |
| if (upeek(tcp->pid, PT_R9, &val) < 0) |
| return -1; |
| # endif |
| |
| return val; |
| } |
| #endif |
| |
| #if defined(I386) |
| struct user_regs_struct i386_regs; |
| # define ARCH_REGS_FOR_GETREGSET i386_regs |
| #elif defined(X86_64) || defined(X32) |
| /* |
| * On i386, pt_regs and user_regs_struct are the same, |
| * but on 64 bit x86, user_regs_struct has six more fields: |
| * fs_base, gs_base, ds, es, fs, gs. |
| * PTRACE_GETREGS fills them too, so struct pt_regs would overflow. |
| */ |
| struct i386_user_regs_struct { |
| uint32_t ebx; |
| uint32_t ecx; |
| uint32_t edx; |
| uint32_t esi; |
| uint32_t edi; |
| uint32_t ebp; |
| uint32_t eax; |
| uint32_t xds; |
| uint32_t xes; |
| uint32_t xfs; |
| uint32_t xgs; |
| uint32_t orig_eax; |
| uint32_t eip; |
| uint32_t xcs; |
| uint32_t eflags; |
| uint32_t esp; |
| uint32_t xss; |
| }; |
| static union { |
| struct user_regs_struct x86_64_r; |
| struct i386_user_regs_struct i386_r; |
| } x86_regs_union; |
| # define x86_64_regs x86_regs_union.x86_64_r |
| # define i386_regs x86_regs_union.i386_r |
| static struct iovec x86_io = { |
| .iov_base = &x86_regs_union |
| }; |
| #elif defined(IA64) |
| bool ia64_ia32mode = 0; /* not static */ |
| static long ia64_r8, ia64_r10; |
| #elif defined(POWERPC) |
| struct pt_regs ppc_regs; |
| #elif defined(M68K) |
| static long m68k_d0; |
| #elif defined(BFIN) |
| static long bfin_r0; |
| #elif defined(ARM) |
| struct pt_regs arm_regs; /* not static */ |
| # define ARCH_REGS_FOR_GETREGSET arm_regs |
| #elif defined(AARCH64) |
| static union { |
| struct user_pt_regs aarch64_r; |
| struct arm_pt_regs arm_r; |
| } arm_regs_union; |
| # define aarch64_regs arm_regs_union.aarch64_r |
| # define arm_regs arm_regs_union.arm_r |
| static struct iovec aarch64_io = { |
| .iov_base = &arm_regs_union |
| }; |
| #elif defined(ALPHA) |
| static long alpha_r0; |
| static long alpha_a3; |
| #elif defined(AVR32) |
| static struct pt_regs avr32_regs; |
| #elif defined(SPARC) || defined(SPARC64) |
| struct pt_regs sparc_regs; /* not static */ |
| #elif defined(LINUX_MIPSN32) |
| static long long mips_a3; |
| static long long mips_r2; |
| #elif defined(MIPS) |
| static long mips_a3; |
| static long mips_r2; |
| #elif defined(S390) || defined(S390X) |
| static long s390_gpr2; |
| #elif defined(HPPA) |
| static long hppa_r28; |
| #elif defined(SH) |
| static long sh_r0; |
| #elif defined(SH64) |
| static long sh64_r9; |
| #elif defined(CRISV10) || defined(CRISV32) |
| static long cris_r10; |
| #elif defined(TILE) |
| struct pt_regs tile_regs; |
| #elif defined(MICROBLAZE) |
| static long microblaze_r3; |
| #elif defined(OR1K) |
| static struct user_regs_struct or1k_regs; |
| # define ARCH_REGS_FOR_GETREGSET or1k_regs |
| #elif defined(METAG) |
| static struct user_gp_regs metag_regs; |
| # define ARCH_REGS_FOR_GETREGSET metag_regs |
| #elif defined(XTENSA) |
| static long xtensa_a2; |
| #endif |
| |
| void |
| print_pc(struct tcb *tcp) |
| { |
| #define PRINTBADPC tprintf(sizeof(long) == 4 ? "[????????] " : \ |
| sizeof(long) == 8 ? "[????????????????] " : \ |
| NULL /* crash */) |
| if (get_regs_error) { |
| PRINTBADPC; |
| return; |
| } |
| #if defined(I386) |
| tprintf("[%08lx] ", i386_regs.eip); |
| #elif defined(S390) || defined(S390X) |
| long psw; |
| if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) { |
| PRINTBADPC; |
| return; |
| } |
| # ifdef S390 |
| tprintf("[%08lx] ", psw); |
| # elif S390X |
| tprintf("[%016lx] ", psw); |
| # endif |
| #elif defined(X86_64) || defined(X32) |
| if (x86_io.iov_len == sizeof(i386_regs)) { |
| tprintf("[%08x] ", (unsigned) i386_regs.eip); |
| } else { |
| # if defined(X86_64) |
| tprintf("[%016lx] ", (unsigned long) x86_64_regs.rip); |
| # elif defined(X32) |
| /* Note: this truncates 64-bit rip to 32 bits */ |
| tprintf("[%08lx] ", (unsigned long) x86_64_regs.rip); |
| # endif |
| } |
| #elif defined(IA64) |
| long ip; |
| if (upeek(tcp->pid, PT_B0, &ip) < 0) { |
| PRINTBADPC; |
| return; |
| } |
| tprintf("[%08lx] ", ip); |
| #elif defined(POWERPC) |
| long pc = ppc_regs.nip; |
| # ifdef POWERPC64 |
| tprintf("[%016lx] ", pc); |
| # else |
| tprintf("[%08lx] ", pc); |
| # endif |
| #elif defined(M68K) |
| long pc; |
| if (upeek(tcp->pid, 4*PT_PC, &pc) < 0) { |
| tprints("[????????] "); |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(ALPHA) |
| long pc; |
| if (upeek(tcp->pid, REG_PC, &pc) < 0) { |
| tprints("[????????????????] "); |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(SPARC) |
| tprintf("[%08lx] ", sparc_regs.pc); |
| #elif defined(SPARC64) |
| tprintf("[%08lx] ", sparc_regs.tpc); |
| #elif defined(HPPA) |
| long pc; |
| if (upeek(tcp->pid, PT_IAOQ0, &pc) < 0) { |
| tprints("[????????] "); |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(MIPS) |
| long pc; |
| if (upeek(tcp->pid, REG_EPC, &pc) < 0) { |
| tprints("[????????] "); |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(SH) |
| long pc; |
| if (upeek(tcp->pid, 4*REG_PC, &pc) < 0) { |
| tprints("[????????] "); |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(SH64) |
| long pc; |
| if (upeek(tcp->pid, REG_PC, &pc) < 0) { |
| tprints("[????????????????] "); |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(ARM) |
| tprintf("[%08lx] ", arm_regs.ARM_pc); |
| #elif defined(AARCH64) |
| /* tprintf("[%016lx] ", aarch64_regs.regs[???]); */ |
| #elif defined(AVR32) |
| tprintf("[%08lx] ", avr32_regs.pc); |
| #elif defined(BFIN) |
| long pc; |
| if (upeek(tcp->pid, PT_PC, &pc) < 0) { |
| PRINTBADPC; |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(CRISV10) |
| long pc; |
| if (upeek(tcp->pid, 4*PT_IRP, &pc) < 0) { |
| PRINTBADPC; |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(CRISV32) |
| long pc; |
| if (upeek(tcp->pid, 4*PT_ERP, &pc) < 0) { |
| PRINTBADPC; |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #elif defined(TILE) |
| # ifdef _LP64 |
| tprintf("[%016lx] ", (unsigned long) tile_regs.pc); |
| # else |
| tprintf("[%08lx] ", (unsigned long) tile_regs.pc); |
| # endif |
| #elif defined(OR1K) |
| tprintf("[%08lx] ", or1k_regs.pc); |
| #elif defined(METAG) |
| tprintf("[%08lx] ", metag_regs.pc); |
| #elif defined(XTENSA) |
| long pc; |
| if (upeek(tcp->pid, REG_PC, &pc) < 0) { |
| PRINTBADPC; |
| return; |
| } |
| tprintf("[%08lx] ", pc); |
| #endif /* architecture */ |
| } |
| |
| /* Shuffle syscall numbers so that we don't have huge gaps in syscall table. |
| * The shuffling should be reversible: shuffle_scno(shuffle_scno(n)) == n. |
| */ |
| #if defined(ARM) /* So far only ARM needs this */ |
| static long |
| shuffle_scno(unsigned long scno) |
| { |
| if (scno <= ARM_LAST_ORDINARY_SYSCALL) |
| return scno; |
| |
| /* __ARM_NR_cmpxchg? Swap with LAST_ORDINARY+1 */ |
| if (scno == 0x000ffff0) |
| return ARM_LAST_ORDINARY_SYSCALL+1; |
| if (scno == ARM_LAST_ORDINARY_SYSCALL+1) |
| return 0x000ffff0; |
| |
| /* Is it ARM specific syscall? |
| * Swap with [LAST_ORDINARY+2, LAST_ORDINARY+2 + LAST_SPECIAL] range. |
| */ |
| if (scno >= 0x000f0000 |
| && scno <= 0x000f0000 + ARM_LAST_SPECIAL_SYSCALL |
| ) { |
| return scno - 0x000f0000 + (ARM_LAST_ORDINARY_SYSCALL+2); |
| } |
| if (/* scno >= ARM_LAST_ORDINARY_SYSCALL+2 - always true */ 1 |
| && scno <= (ARM_LAST_ORDINARY_SYSCALL+2) + ARM_LAST_SPECIAL_SYSCALL |
| ) { |
| return scno + 0x000f0000 - (ARM_LAST_ORDINARY_SYSCALL+2); |
| } |
| |
| return scno; |
| } |
| #else |
| # define shuffle_scno(scno) ((long)(scno)) |
| #endif |
| |
| static char* |
| undefined_scno_name(struct tcb *tcp) |
| { |
| static char buf[sizeof("syscall_%lu") + sizeof(long)*3]; |
| |
| sprintf(buf, "syscall_%lu", shuffle_scno(tcp->scno)); |
| return buf; |
| } |
| |
| #ifdef POWERPC |
| /* |
| * PTRACE_GETREGS was added to the PowerPC kernel in v2.6.23, |
| * we provide a slow fallback for old kernels. |
| */ |
| static int powerpc_getregs_old(pid_t pid) |
| { |
| int i; |
| long r; |
| |
| if (iflag) { |
| r = upeek(pid, sizeof(long) * PT_NIP, (long *)&ppc_regs.nip); |
| if (r) |
| goto out; |
| } |
| #ifdef POWERPC64 /* else we never use it */ |
| r = upeek(pid, sizeof(long) * PT_MSR, (long *)&ppc_regs.msr); |
| if (r) |
| goto out; |
| #endif |
| r = upeek(pid, sizeof(long) * PT_CCR, (long *)&ppc_regs.ccr); |
| if (r) |
| goto out; |
| r = upeek(pid, sizeof(long) * PT_ORIG_R3, (long *)&ppc_regs.orig_gpr3); |
| if (r) |
| goto out; |
| for (i = 0; i <= 8; i++) { |
| r = upeek(pid, sizeof(long) * (PT_R0 + i), |
| (long *)&ppc_regs.gpr[i]); |
| if (r) |
| goto out; |
| } |
| out: |
| return r; |
| } |
| #endif |
| |
| #ifndef get_regs |
| long get_regs_error; |
| |
| #if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS) |
| static void get_regset(pid_t pid) |
| { |
| /* constant iovec */ |
| # if defined(ARM) \ |
| || defined(I386) \ |
| || defined(METAG) \ |
| || defined(OR1K) |
| static struct iovec io = { |
| .iov_base = &ARCH_REGS_FOR_GETREGSET, |
| .iov_len = sizeof(ARCH_REGS_FOR_GETREGSET) |
| }; |
| get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &io); |
| |
| /* variable iovec */ |
| # elif defined(X86_64) || defined(X32) |
| /* x86_io.iov_base = &x86_regs_union; - already is */ |
| x86_io.iov_len = sizeof(x86_regs_union); |
| get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &x86_io); |
| # elif defined(AARCH64) |
| /* aarch64_io.iov_base = &arm_regs_union; - already is */ |
| aarch64_io.iov_len = sizeof(arm_regs_union); |
| get_regs_error = ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, &aarch64_io); |
| # else |
| # warning both PTRACE_GETREGSET and NT_PRSTATUS are available but not yet used |
| # endif |
| } |
| #endif /* PTRACE_GETREGSET && NT_PRSTATUS */ |
| |
| void |
| get_regs(pid_t pid) |
| { |
| /* PTRACE_GETREGSET only */ |
| # if defined(METAG) || defined(OR1K) || defined(X32) || defined(AARCH64) |
| get_regset(pid); |
| |
| /* PTRACE_GETREGS only */ |
| # elif defined(AVR32) |
| get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &avr32_regs); |
| # elif defined(TILE) |
| get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &tile_regs); |
| # elif defined(SPARC) || defined(SPARC64) |
| get_regs_error = ptrace(PTRACE_GETREGS, pid, (char *)&sparc_regs, 0); |
| # elif defined(POWERPC) |
| static bool old_kernel = 0; |
| if (old_kernel) |
| goto old; |
| get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, (long) &ppc_regs); |
| if (get_regs_error && errno == EIO) { |
| old_kernel = 1; |
| old: |
| get_regs_error = powerpc_getregs_old(pid); |
| } |
| |
| /* try PTRACE_GETREGSET first, fallback to PTRACE_GETREGS */ |
| # else |
| # if defined(PTRACE_GETREGSET) && defined(NT_PRSTATUS) |
| static int getregset_support; |
| |
| if (getregset_support >= 0) { |
| get_regset(pid); |
| if (getregset_support > 0) |
| return; |
| if (get_regs_error >= 0) { |
| getregset_support = 1; |
| return; |
| } |
| if (errno == EPERM || errno == ESRCH) |
| return; |
| getregset_support = -1; |
| } |
| # endif /* PTRACE_GETREGSET && NT_PRSTATUS */ |
| # if defined(ARM) |
| get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &arm_regs); |
| # elif defined(I386) |
| get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &i386_regs); |
| # elif defined(X86_64) |
| /* Use old method, with unreliable heuristical detection of 32-bitness. */ |
| x86_io.iov_len = sizeof(x86_64_regs); |
| get_regs_error = ptrace(PTRACE_GETREGS, pid, NULL, &x86_64_regs); |
| if (!get_regs_error && x86_64_regs.cs == 0x23) { |
| x86_io.iov_len = sizeof(i386_regs); |
| /* |
| * The order is important: i386_regs and x86_64_regs |
| * are overlaid in memory! |
| */ |
| i386_regs.ebx = x86_64_regs.rbx; |
| i386_regs.ecx = x86_64_regs.rcx; |
| i386_regs.edx = x86_64_regs.rdx; |
| i386_regs.esi = x86_64_regs.rsi; |
| i386_regs.edi = x86_64_regs.rdi; |
| i386_regs.ebp = x86_64_regs.rbp; |
| i386_regs.eax = x86_64_regs.rax; |
| /* i386_regs.xds = x86_64_regs.ds; unused by strace */ |
| /* i386_regs.xes = x86_64_regs.es; ditto... */ |
| /* i386_regs.xfs = x86_64_regs.fs; */ |
| /* i386_regs.xgs = x86_64_regs.gs; */ |
| i386_regs.orig_eax = x86_64_regs.orig_rax; |
| i386_regs.eip = x86_64_regs.rip; |
| /* i386_regs.xcs = x86_64_regs.cs; */ |
| /* i386_regs.eflags = x86_64_regs.eflags; */ |
| i386_regs.esp = x86_64_regs.rsp; |
| /* i386_regs.xss = x86_64_regs.ss; */ |
| } |
| # else |
| # error unhandled architecture |
| # endif /* ARM || I386 || X86_64 */ |
| # endif |
| } |
| #endif /* !get_regs */ |
| |
| /* Returns: |
| * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently. |
| * 1: ok, continue in trace_syscall_entering(). |
| * other: error, trace_syscall_entering() should print error indicator |
| * ("????" etc) and bail out. |
| */ |
| static int |
| get_scno(struct tcb *tcp) |
| { |
| long scno = 0; |
| |
| #if defined(S390) || defined(S390X) |
| if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0) |
| return -1; |
| |
| if (s390_gpr2 != -ENOSYS) { |
| /* |
| * Since kernel version 2.5.44 the scno gets passed in gpr2. |
| */ |
| scno = s390_gpr2; |
| } else { |
| /* |
| * Old style of "passing" the scno via the SVC instruction. |
| */ |
| long psw; |
| long opcode, offset_reg, tmp; |
| void *svc_addr; |
| static const int gpr_offset[16] = { |
| PT_GPR0, PT_GPR1, PT_ORIGGPR2, PT_GPR3, |
| PT_GPR4, PT_GPR5, PT_GPR6, PT_GPR7, |
| PT_GPR8, PT_GPR9, PT_GPR10, PT_GPR11, |
| PT_GPR12, PT_GPR13, PT_GPR14, PT_GPR15 |
| }; |
| |
| if (upeek(tcp->pid, PT_PSWADDR, &psw) < 0) |
| return -1; |
| errno = 0; |
| opcode = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)(psw - sizeof(long)), 0); |
| if (errno) { |
| perror_msg("peektext(psw-oneword)"); |
| return -1; |
| } |
| |
| /* |
| * We have to check if the SVC got executed directly or via an |
| * EXECUTE instruction. In case of EXECUTE it is necessary to do |
| * instruction decoding to derive the system call number. |
| * Unfortunately the opcode sizes of EXECUTE and SVC are differently, |
| * so that this doesn't work if a SVC opcode is part of an EXECUTE |
| * opcode. Since there is no way to find out the opcode size this |
| * is the best we can do... |
| */ |
| if ((opcode & 0xff00) == 0x0a00) { |
| /* SVC opcode */ |
| scno = opcode & 0xff; |
| } |
| else { |
| /* SVC got executed by EXECUTE instruction */ |
| |
| /* |
| * Do instruction decoding of EXECUTE. If you really want to |
| * understand this, read the Principles of Operations. |
| */ |
| svc_addr = (void *) (opcode & 0xfff); |
| |
| tmp = 0; |
| offset_reg = (opcode & 0x000f0000) >> 16; |
| if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0)) |
| return -1; |
| svc_addr += tmp; |
| |
| tmp = 0; |
| offset_reg = (opcode & 0x0000f000) >> 12; |
| if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0)) |
| return -1; |
| svc_addr += tmp; |
| |
| scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, svc_addr, 0); |
| if (errno) |
| return -1; |
| # if defined(S390X) |
| scno >>= 48; |
| # else |
| scno >>= 16; |
| # endif |
| tmp = 0; |
| offset_reg = (opcode & 0x00f00000) >> 20; |
| if (offset_reg && (upeek(tcp->pid, gpr_offset[offset_reg], &tmp) < 0)) |
| return -1; |
| |
| scno = (scno | tmp) & 0xff; |
| } |
| } |
| #elif defined(POWERPC) |
| scno = ppc_regs.gpr[0]; |
| # ifdef POWERPC64 |
| int currpers; |
| |
| /* Check for 64/32 bit mode. */ |
| /* SF is bit 0 of MSR */ |
| if ((ppc_regs.msr >> 63) & 1) |
| currpers = 0; |
| else |
| currpers = 1; |
| update_personality(tcp, currpers); |
| # endif |
| #elif defined(AVR32) |
| scno = avr32_regs.r8; |
| #elif defined(BFIN) |
| if (upeek(tcp->pid, PT_ORIG_P0, &scno)) |
| return -1; |
| #elif defined(I386) |
| scno = i386_regs.orig_eax; |
| #elif defined(X86_64) || defined(X32) |
| # ifndef __X32_SYSCALL_BIT |
| # define __X32_SYSCALL_BIT 0x40000000 |
| # endif |
| int currpers; |
| # if 1 |
| /* GETREGSET of NT_PRSTATUS tells us regset size, |
| * which unambiguously detects i386. |
| * |
| * Linux kernel distinguishes x86-64 and x32 processes |
| * solely by looking at __X32_SYSCALL_BIT: |
| * arch/x86/include/asm/compat.h::is_x32_task(): |
| * if (task_pt_regs(current)->orig_ax & __X32_SYSCALL_BIT) |
| * return true; |
| */ |
| if (x86_io.iov_len == sizeof(i386_regs)) { |
| scno = i386_regs.orig_eax; |
| currpers = 1; |
| } else { |
| scno = x86_64_regs.orig_rax; |
| currpers = 0; |
| if (scno & __X32_SYSCALL_BIT) { |
| scno -= __X32_SYSCALL_BIT; |
| currpers = 2; |
| } |
| } |
| # elif 0 |
| /* cs = 0x33 for long mode (native 64 bit and x32) |
| * cs = 0x23 for compatibility mode (32 bit) |
| * ds = 0x2b for x32 mode (x86-64 in 32 bit) |
| */ |
| scno = x86_64_regs.orig_rax; |
| switch (x86_64_regs.cs) { |
| case 0x23: currpers = 1; break; |
| case 0x33: |
| if (x86_64_regs.ds == 0x2b) { |
| currpers = 2; |
| scno &= ~__X32_SYSCALL_BIT; |
| } else |
| currpers = 0; |
| break; |
| default: |
| fprintf(stderr, "Unknown value CS=0x%08X while " |
| "detecting personality of process " |
| "PID=%d\n", (int)x86_64_regs.cs, tcp->pid); |
| currpers = current_personality; |
| break; |
| } |
| # elif 0 |
| /* This version analyzes the opcode of a syscall instruction. |
| * (int 0x80 on i386 vs. syscall on x86-64) |
| * It works, but is too complicated, and strictly speaking, unreliable. |
| */ |
| unsigned long call, rip = x86_64_regs.rip; |
| /* sizeof(syscall) == sizeof(int 0x80) == 2 */ |
| rip -= 2; |
| errno = 0; |
| call = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)rip, (char *)0); |
| if (errno) |
| fprintf(stderr, "ptrace_peektext failed: %s\n", |
| strerror(errno)); |
| switch (call & 0xffff) { |
| /* x86-64: syscall = 0x0f 0x05 */ |
| case 0x050f: currpers = 0; break; |
| /* i386: int 0x80 = 0xcd 0x80 */ |
| case 0x80cd: currpers = 1; break; |
| default: |
| currpers = current_personality; |
| fprintf(stderr, |
| "Unknown syscall opcode (0x%04X) while " |
| "detecting personality of process " |
| "PID=%d\n", (int)call, tcp->pid); |
| break; |
| } |
| # endif |
| |
| # ifdef X32 |
| /* If we are built for a x32 system, then personality 0 is x32 |
| * (not x86_64), and stracing of x86_64 apps is not supported. |
| * Stracing of i386 apps is still supported. |
| */ |
| if (currpers == 0) { |
| fprintf(stderr, "syscall_%lu(...) in unsupported " |
| "64-bit mode of process PID=%d\n", |
| scno, tcp->pid); |
| return 0; |
| } |
| currpers &= ~2; /* map 2,1 to 0,1 */ |
| # endif |
| update_personality(tcp, currpers); |
| #elif defined(IA64) |
| # define IA64_PSR_IS ((long)1 << 34) |
| long psr; |
| if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0) |
| ia64_ia32mode = ((psr & IA64_PSR_IS) != 0); |
| if (ia64_ia32mode) { |
| if (upeek(tcp->pid, PT_R1, &scno) < 0) |
| return -1; |
| } else { |
| if (upeek(tcp->pid, PT_R15, &scno) < 0) |
| return -1; |
| } |
| #elif defined(AARCH64) |
| switch (aarch64_io.iov_len) { |
| case sizeof(aarch64_regs): |
| /* We are in 64-bit mode */ |
| scno = aarch64_regs.regs[8]; |
| update_personality(tcp, 1); |
| break; |
| case sizeof(arm_regs): |
| /* We are in 32-bit mode */ |
| /* Note: we don't support OABI, unlike 32-bit ARM build */ |
| scno = arm_regs.ARM_r7; |
| update_personality(tcp, 0); |
| break; |
| } |
| #elif defined(ARM) |
| if (arm_regs.ARM_ip != 0) { |
| /* It is not a syscall entry */ |
| fprintf(stderr, "pid %d stray syscall exit\n", tcp->pid); |
| tcp->flags |= TCB_INSYSCALL; |
| return 0; |
| } |
| /* Note: we support only 32-bit CPUs, not 26-bit */ |
| |
| # ifndef STRACE_KNOWS_ONLY_EABI |
| # warning STRACE_KNOWS_ONLY_EABI not set, will PTRACE_PEEKTEXT on every syscall (slower tracing) |
| if (arm_regs.ARM_cpsr & 0x20) |
| /* Thumb mode */ |
| goto scno_in_r7; |
| /* ARM mode */ |
| /* Check EABI/OABI by examining SVC insn's low 24 bits */ |
| errno = 0; |
| scno = ptrace(PTRACE_PEEKTEXT, tcp->pid, (void *)(arm_regs.ARM_pc - 4), NULL); |
| if (errno) |
| return -1; |
| /* EABI syscall convention? */ |
| if (scno != 0xef000000) { |
| /* No, it's OABI */ |
| if ((scno & 0x0ff00000) != 0x0f900000) { |
| fprintf(stderr, "pid %d unknown syscall trap 0x%08lx\n", |
| tcp->pid, scno); |
| return -1; |
| } |
| /* Fixup the syscall number */ |
| scno &= 0x000fffff; |
| } else { |
| scno_in_r7: |
| scno = arm_regs.ARM_r7; |
| } |
| # else |
| scno = arm_regs.ARM_r7; |
| # endif |
| scno = shuffle_scno(scno); |
| #elif defined(M68K) |
| if (upeek(tcp->pid, 4*PT_ORIG_D0, &scno) < 0) |
| return -1; |
| #elif defined(LINUX_MIPSN32) |
| unsigned long long regs[38]; |
| |
| if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) |
| return -1; |
| mips_a3 = regs[REG_A3]; |
| mips_r2 = regs[REG_V0]; |
| |
| scno = mips_r2; |
| if (!SCNO_IN_RANGE(scno)) { |
| if (mips_a3 == 0 || mips_a3 == -1) { |
| if (debug_flag) |
| fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno); |
| return 0; |
| } |
| } |
| #elif defined(MIPS) |
| if (upeek(tcp->pid, REG_A3, &mips_a3) < 0) |
| return -1; |
| if (upeek(tcp->pid, REG_V0, &scno) < 0) |
| return -1; |
| |
| if (!SCNO_IN_RANGE(scno)) { |
| if (mips_a3 == 0 || mips_a3 == -1) { |
| if (debug_flag) |
| fprintf(stderr, "stray syscall exit: v0 = %ld\n", scno); |
| return 0; |
| } |
| } |
| #elif defined(ALPHA) |
| if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0) |
| return -1; |
| if (upeek(tcp->pid, REG_R0, &scno) < 0) |
| return -1; |
| |
| /* |
| * Do some sanity checks to figure out if it's |
| * really a syscall entry |
| */ |
| if (!SCNO_IN_RANGE(scno)) { |
| if (alpha_a3 == 0 || alpha_a3 == -1) { |
| if (debug_flag) |
| fprintf(stderr, "stray syscall exit: r0 = %ld\n", scno); |
| return 0; |
| } |
| } |
| #elif defined(SPARC) || defined(SPARC64) |
| /* Disassemble the syscall trap. */ |
| /* Retrieve the syscall trap instruction. */ |
| unsigned long trap; |
| errno = 0; |
| # if defined(SPARC64) |
| trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.tpc, 0); |
| trap >>= 32; |
| # else |
| trap = ptrace(PTRACE_PEEKTEXT, tcp->pid, (char *)sparc_regs.pc, 0); |
| # endif |
| if (errno) |
| return -1; |
| |
| /* Disassemble the trap to see what personality to use. */ |
| switch (trap) { |
| case 0x91d02010: |
| /* Linux/SPARC syscall trap. */ |
| update_personality(tcp, 0); |
| break; |
| case 0x91d0206d: |
| /* Linux/SPARC64 syscall trap. */ |
| update_personality(tcp, 2); |
| break; |
| case 0x91d02000: |
| /* SunOS syscall trap. (pers 1) */ |
| fprintf(stderr, "syscall: SunOS no support\n"); |
| return -1; |
| case 0x91d02008: |
| /* Solaris 2.x syscall trap. (per 2) */ |
| update_personality(tcp, 1); |
| break; |
| case 0x91d02009: |
| /* NetBSD/FreeBSD syscall trap. */ |
| fprintf(stderr, "syscall: NetBSD/FreeBSD not supported\n"); |
| return -1; |
| case 0x91d02027: |
| /* Solaris 2.x gettimeofday */ |
| update_personality(tcp, 1); |
| break; |
| default: |
| # if defined(SPARC64) |
| fprintf(stderr, "syscall: unknown syscall trap %08lx %016lx\n", trap, sparc_regs.tpc); |
| # else |
| fprintf(stderr, "syscall: unknown syscall trap %08lx %08lx\n", trap, sparc_regs.pc); |
| # endif |
| return -1; |
| } |
| |
| /* Extract the system call number from the registers. */ |
| if (trap == 0x91d02027) |
| scno = 156; |
| else |
| scno = sparc_regs.u_regs[U_REG_G1]; |
| if (scno == 0) { |
| scno = sparc_regs.u_regs[U_REG_O0]; |
| memmove(&sparc_regs.u_regs[U_REG_O0], &sparc_regs.u_regs[U_REG_O1], 7*sizeof(sparc_regs.u_regs[0])); |
| } |
| #elif defined(HPPA) |
| if (upeek(tcp->pid, PT_GR20, &scno) < 0) |
| return -1; |
| #elif defined(SH) |
| /* |
| * In the new syscall ABI, the system call number is in R3. |
| */ |
| if (upeek(tcp->pid, 4*(REG_REG0+3), &scno) < 0) |
| return -1; |
| |
| if (scno < 0) { |
| /* Odd as it may seem, a glibc bug has been known to cause |
| glibc to issue bogus negative syscall numbers. So for |
| our purposes, make strace print what it *should* have been */ |
| long correct_scno = (scno & 0xff); |
| if (debug_flag) |
| fprintf(stderr, |
| "Detected glibc bug: bogus system call" |
| " number = %ld, correcting to %ld\n", |
| scno, |
| correct_scno); |
| scno = correct_scno; |
| } |
| #elif defined(SH64) |
| if (upeek(tcp->pid, REG_SYSCALL, &scno) < 0) |
| return -1; |
| scno &= 0xFFFF; |
| #elif defined(CRISV10) || defined(CRISV32) |
| if (upeek(tcp->pid, 4*PT_R9, &scno) < 0) |
| return -1; |
| #elif defined(TILE) |
| int currpers; |
| scno = tile_regs.regs[10]; |
| # ifdef __tilepro__ |
| currpers = 1; |
| # else |
| # ifndef PT_FLAGS_COMPAT |
| # define PT_FLAGS_COMPAT 0x10000 /* from Linux 3.8 on */ |
| # endif |
| if (tile_regs.flags & PT_FLAGS_COMPAT) |
| currpers = 1; |
| else |
| currpers = 0; |
| # endif |
| update_personality(tcp, currpers); |
| #elif defined(MICROBLAZE) |
| if (upeek(tcp->pid, 0, &scno) < 0) |
| return -1; |
| #elif defined(OR1K) |
| scno = or1k_regs.gpr[11]; |
| #elif defined(METAG) |
| scno = metag_regs.dx[0][1]; /* syscall number in D1Re0 (D1.0) */ |
| #elif defined(XTENSA) |
| if (upeek(tcp->pid, SYSCALL_NR, &scno) < 0) |
| return -1; |
| #endif |
| |
| tcp->scno = scno; |
| if (SCNO_IS_VALID(tcp->scno)) { |
| tcp->s_ent = &sysent[scno]; |
| tcp->qual_flg = qual_flags[scno]; |
| } else { |
| static const struct_sysent unknown = { |
| .nargs = MAX_ARGS, |
| .sys_flags = 0, |
| .sys_func = printargs, |
| .sys_name = "unknown", /* not used */ |
| }; |
| tcp->s_ent = &unknown; |
| tcp->qual_flg = UNDEFINED_SCNO | QUAL_RAW | DEFAULT_QUAL_FLAGS; |
| } |
| return 1; |
| } |
| |
| /* Called at each syscall entry. |
| * Returns: |
| * 0: "ignore this ptrace stop", bail out of trace_syscall_entering() silently. |
| * 1: ok, continue in trace_syscall_entering(). |
| * other: error, trace_syscall_entering() should print error indicator |
| * ("????" etc) and bail out. |
| */ |
| static int |
| syscall_fixup_on_sysenter(struct tcb *tcp) |
| { |
| /* A common case of "not a syscall entry" is post-execve SIGTRAP */ |
| #if defined(I386) |
| if (i386_regs.eax != -ENOSYS) { |
| if (debug_flag) |
| fprintf(stderr, "not a syscall entry (eax = %ld)\n", i386_regs.eax); |
| return 0; |
| } |
| #elif defined(X86_64) || defined(X32) |
| { |
| long rax; |
| if (x86_io.iov_len == sizeof(i386_regs)) { |
| /* Sign extend from 32 bits */ |
| rax = (int32_t)i386_regs.eax; |
| } else { |
| /* Note: in X32 build, this truncates 64 to 32 bits */ |
| rax = x86_64_regs.rax; |
| } |
| if (rax != -ENOSYS) { |
| if (debug_flag) |
| fprintf(stderr, "not a syscall entry (rax = %ld)\n", rax); |
| return 0; |
| } |
| } |
| #elif defined(M68K) |
| /* TODO? Eliminate upeek's in arches below like we did in x86 */ |
| if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0) |
| return -1; |
| if (m68k_d0 != -ENOSYS) { |
| if (debug_flag) |
| fprintf(stderr, "not a syscall entry (d0 = %ld)\n", m68k_d0); |
| return 0; |
| } |
| #elif defined(IA64) |
| if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0) |
| return -1; |
| if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0) |
| return -1; |
| if (ia64_ia32mode && ia64_r8 != -ENOSYS) { |
| if (debug_flag) |
| fprintf(stderr, "not a syscall entry (r8 = %ld)\n", ia64_r8); |
| return 0; |
| } |
| #elif defined(CRISV10) || defined(CRISV32) |
| if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0) |
| return -1; |
| if (cris_r10 != -ENOSYS) { |
| if (debug_flag) |
| fprintf(stderr, "not a syscall entry (r10 = %ld)\n", cris_r10); |
| return 0; |
| } |
| #elif defined(MICROBLAZE) |
| if (upeek(tcp->pid, 3 * 4, µblaze_r3) < 0) |
| return -1; |
| if (microblaze_r3 != -ENOSYS) { |
| if (debug_flag) |
| fprintf(stderr, "not a syscall entry (r3 = %ld)\n", microblaze_r3); |
| return 0; |
| } |
| #endif |
| return 1; |
| } |
| |
| static void |
| internal_fork(struct tcb *tcp) |
| { |
| #if defined S390 || defined S390X || defined CRISV10 || defined CRISV32 |
| # define ARG_FLAGS 1 |
| #else |
| # define ARG_FLAGS 0 |
| #endif |
| #ifndef CLONE_UNTRACED |
| # define CLONE_UNTRACED 0x00800000 |
| #endif |
| if ((ptrace_setoptions |
| & (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK)) |
| == (PTRACE_O_TRACECLONE | PTRACE_O_TRACEFORK | PTRACE_O_TRACEVFORK)) |
| return; |
| |
| if (!followfork) |
| return; |
| |
| if (entering(tcp)) { |
| /* |
| * We won't see the new child if clone is called with |
| * CLONE_UNTRACED, so we keep the same logic with that option |
| * and don't trace it. |
| */ |
| if ((tcp->s_ent->sys_func == sys_clone) |
| && (tcp->u_arg[ARG_FLAGS] & CLONE_UNTRACED) |
| ) |
| return; |
| setbpt(tcp); |
| } else { |
| if (tcp->flags & TCB_BPTSET) |
| clearbpt(tcp); |
| } |
| } |
| |
| #if defined(TCB_WAITEXECVE) |
| static void |
| internal_exec(struct tcb *tcp) |
| { |
| /* Maybe we have post-execve SIGTRAP suppressed? */ |
| if (ptrace_setoptions & PTRACE_O_TRACEEXEC) |
| return; /* yes, no need to do anything */ |
| |
| if (exiting(tcp) && syserror(tcp)) |
| /* Error in execve, no post-execve SIGTRAP expected */ |
| tcp->flags &= ~TCB_WAITEXECVE; |
| else |
| tcp->flags |= TCB_WAITEXECVE; |
| } |
| #endif |
| |
| static void |
| syscall_fixup_for_fork_exec(struct tcb *tcp) |
| { |
| /* |
| * We must always trace a few critical system calls in order to |
| * correctly support following forks in the presence of tracing |
| * qualifiers. |
| */ |
| int (*func)(); |
| |
| func = tcp->s_ent->sys_func; |
| |
| if ( sys_fork == func |
| || sys_vfork == func |
| || sys_clone == func |
| ) { |
| internal_fork(tcp); |
| return; |
| } |
| |
| #if defined(TCB_WAITEXECVE) |
| if ( sys_execve == func |
| # if defined(SPARC) || defined(SPARC64) |
| || sys_execv == func |
| # endif |
| ) { |
| internal_exec(tcp); |
| return; |
| } |
| #endif |
| } |
| |
| /* Return -1 on error or 1 on success (never 0!) */ |
| static int |
| get_syscall_args(struct tcb *tcp) |
| { |
| int i, nargs; |
| |
| nargs = tcp->s_ent->nargs; |
| |
| #if defined(S390) || defined(S390X) |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, i==0 ? PT_ORIGGPR2 : PT_GPR2 + i*sizeof(long), &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(ALPHA) |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, REG_A0+i, &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(IA64) |
| if (!ia64_ia32mode) { |
| unsigned long *out0, cfm, sof, sol; |
| long rbs_end; |
| /* be backwards compatible with kernel < 2.4.4... */ |
| # ifndef PT_RBS_END |
| # define PT_RBS_END PT_AR_BSP |
| # endif |
| |
| if (upeek(tcp->pid, PT_RBS_END, &rbs_end) < 0) |
| return -1; |
| if (upeek(tcp->pid, PT_CFM, (long *) &cfm) < 0) |
| return -1; |
| |
| sof = (cfm >> 0) & 0x7f; |
| sol = (cfm >> 7) & 0x7f; |
| out0 = ia64_rse_skip_regs((unsigned long *) rbs_end, -sof + sol); |
| |
| for (i = 0; i < nargs; ++i) { |
| if (umoven(tcp, (unsigned long) ia64_rse_skip_regs(out0, i), |
| sizeof(long), (char *) &tcp->u_arg[i]) < 0) |
| return -1; |
| } |
| } else { |
| static const int argreg[MAX_ARGS] = { PT_R11 /* EBX = out0 */, |
| PT_R9 /* ECX = out1 */, |
| PT_R10 /* EDX = out2 */, |
| PT_R14 /* ESI = out3 */, |
| PT_R15 /* EDI = out4 */, |
| PT_R13 /* EBP = out5 */}; |
| |
| for (i = 0; i < nargs; ++i) { |
| if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0) |
| return -1; |
| /* truncate away IVE sign-extension */ |
| tcp->u_arg[i] &= 0xffffffff; |
| } |
| } |
| #elif defined(LINUX_MIPSN32) || defined(LINUX_MIPSN64) |
| /* N32 and N64 both use up to six registers. */ |
| unsigned long long regs[38]; |
| |
| if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) |
| return -1; |
| |
| for (i = 0; i < nargs; ++i) { |
| tcp->u_arg[i] = regs[REG_A0 + i]; |
| # if defined(LINUX_MIPSN32) |
| tcp->ext_arg[i] = regs[REG_A0 + i]; |
| # endif |
| } |
| #elif defined(MIPS) |
| if (nargs > 4) { |
| long sp; |
| |
| if (upeek(tcp->pid, REG_SP, &sp) < 0) |
| return -1; |
| for (i = 0; i < 4; ++i) |
| if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0) |
| return -1; |
| umoven(tcp, sp + 16, (nargs - 4) * sizeof(tcp->u_arg[0]), |
| (char *)(tcp->u_arg + 4)); |
| } else { |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, REG_A0 + i, &tcp->u_arg[i]) < 0) |
| return -1; |
| } |
| #elif defined(POWERPC) |
| (void)i; |
| (void)nargs; |
| tcp->u_arg[0] = ppc_regs.orig_gpr3; |
| tcp->u_arg[1] = ppc_regs.gpr[4]; |
| tcp->u_arg[2] = ppc_regs.gpr[5]; |
| tcp->u_arg[3] = ppc_regs.gpr[6]; |
| tcp->u_arg[4] = ppc_regs.gpr[7]; |
| tcp->u_arg[5] = ppc_regs.gpr[8]; |
| #elif defined(SPARC) || defined(SPARC64) |
| for (i = 0; i < nargs; ++i) |
| tcp->u_arg[i] = sparc_regs.u_regs[U_REG_O0 + i]; |
| #elif defined(HPPA) |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, PT_GR26-4*i, &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(ARM) || defined(AARCH64) |
| # if defined(AARCH64) |
| if (tcp->currpers == 1) |
| for (i = 0; i < nargs; ++i) |
| tcp->u_arg[i] = aarch64_regs.regs[i]; |
| else |
| # endif |
| for (i = 0; i < nargs; ++i) |
| tcp->u_arg[i] = arm_regs.uregs[i]; |
| #elif defined(AVR32) |
| (void)i; |
| (void)nargs; |
| tcp->u_arg[0] = avr32_regs.r12; |
| tcp->u_arg[1] = avr32_regs.r11; |
| tcp->u_arg[2] = avr32_regs.r10; |
| tcp->u_arg[3] = avr32_regs.r9; |
| tcp->u_arg[4] = avr32_regs.r5; |
| tcp->u_arg[5] = avr32_regs.r3; |
| #elif defined(BFIN) |
| static const int argreg[MAX_ARGS] = { PT_R0, PT_R1, PT_R2, PT_R3, PT_R4, PT_R5 }; |
| |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, argreg[i], &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(SH) |
| static const int syscall_regs[MAX_ARGS] = { |
| 4 * (REG_REG0+4), 4 * (REG_REG0+5), 4 * (REG_REG0+6), |
| 4 * (REG_REG0+7), 4 * (REG_REG0 ), 4 * (REG_REG0+1) |
| }; |
| |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, syscall_regs[i], &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(SH64) |
| int i; |
| /* Registers used by SH5 Linux system calls for parameters */ |
| static const int syscall_regs[MAX_ARGS] = { 2, 3, 4, 5, 6, 7 }; |
| |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, REG_GENERAL(syscall_regs[i]), &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(I386) |
| (void)i; |
| (void)nargs; |
| tcp->u_arg[0] = i386_regs.ebx; |
| tcp->u_arg[1] = i386_regs.ecx; |
| tcp->u_arg[2] = i386_regs.edx; |
| tcp->u_arg[3] = i386_regs.esi; |
| tcp->u_arg[4] = i386_regs.edi; |
| tcp->u_arg[5] = i386_regs.ebp; |
| #elif defined(X86_64) || defined(X32) |
| (void)i; |
| (void)nargs; |
| if (x86_io.iov_len != sizeof(i386_regs)) { |
| /* x86-64 or x32 ABI */ |
| tcp->u_arg[0] = x86_64_regs.rdi; |
| tcp->u_arg[1] = x86_64_regs.rsi; |
| tcp->u_arg[2] = x86_64_regs.rdx; |
| tcp->u_arg[3] = x86_64_regs.r10; |
| tcp->u_arg[4] = x86_64_regs.r8; |
| tcp->u_arg[5] = x86_64_regs.r9; |
| # ifdef X32 |
| tcp->ext_arg[0] = x86_64_regs.rdi; |
| tcp->ext_arg[1] = x86_64_regs.rsi; |
| tcp->ext_arg[2] = x86_64_regs.rdx; |
| tcp->ext_arg[3] = x86_64_regs.r10; |
| tcp->ext_arg[4] = x86_64_regs.r8; |
| tcp->ext_arg[5] = x86_64_regs.r9; |
| # endif |
| } else { |
| /* i386 ABI */ |
| /* Zero-extend from 32 bits */ |
| /* Use widen_to_long(tcp->u_arg[N]) in syscall handlers |
| * if you need to use *sign-extended* parameter. |
| */ |
| tcp->u_arg[0] = (long)(uint32_t)i386_regs.ebx; |
| tcp->u_arg[1] = (long)(uint32_t)i386_regs.ecx; |
| tcp->u_arg[2] = (long)(uint32_t)i386_regs.edx; |
| tcp->u_arg[3] = (long)(uint32_t)i386_regs.esi; |
| tcp->u_arg[4] = (long)(uint32_t)i386_regs.edi; |
| tcp->u_arg[5] = (long)(uint32_t)i386_regs.ebp; |
| } |
| #elif defined(MICROBLAZE) |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, (5 + i) * 4, &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(CRISV10) || defined(CRISV32) |
| static const int crisregs[MAX_ARGS] = { |
| 4*PT_ORIG_R10, 4*PT_R11, 4*PT_R12, |
| 4*PT_R13 , 4*PT_MOF, 4*PT_SRP |
| }; |
| |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, crisregs[i], &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(TILE) |
| for (i = 0; i < nargs; ++i) |
| tcp->u_arg[i] = tile_regs.regs[i]; |
| #elif defined(M68K) |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, (i < 5 ? i : i + 2)*4, &tcp->u_arg[i]) < 0) |
| return -1; |
| #elif defined(OR1K) |
| (void)nargs; |
| for (i = 0; i < 6; ++i) |
| tcp->u_arg[i] = or1k_regs.gpr[3 + i]; |
| #elif defined(METAG) |
| for (i = 0; i < nargs; i++) |
| /* arguments go backwards from D1Ar1 (D1.3) */ |
| tcp->u_arg[i] = ((unsigned long *)&metag_regs.dx[3][1])[-i]; |
| #elif defined(XTENSA) |
| /* arg0: a6, arg1: a3, arg2: a4, arg3: a5, arg4: a8, arg5: a9 */ |
| static const int xtensaregs[MAX_ARGS] = { 6, 3, 4, 5, 8, 9 }; |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, REG_A_BASE + xtensaregs[i], &tcp->u_arg[i]) < 0) |
| return -1; |
| #else /* Other architecture (32bits specific) */ |
| for (i = 0; i < nargs; ++i) |
| if (upeek(tcp->pid, i*4, &tcp->u_arg[i]) < 0) |
| return -1; |
| #endif |
| return 1; |
| } |
| |
| static int |
| trace_syscall_entering(struct tcb *tcp) |
| { |
| int res, scno_good; |
| |
| #if defined TCB_WAITEXECVE |
| if (tcp->flags & TCB_WAITEXECVE) { |
| /* This is the post-execve SIGTRAP. */ |
| tcp->flags &= ~TCB_WAITEXECVE; |
| return 0; |
| } |
| #endif |
| |
| scno_good = res = (get_regs_error ? -1 : get_scno(tcp)); |
| if (res == 0) |
| return res; |
| if (res == 1) { |
| res = syscall_fixup_on_sysenter(tcp); |
| if (res == 0) |
| return res; |
| if (res == 1) |
| res = get_syscall_args(tcp); |
| } |
| |
| if (res != 1) { |
| printleader(tcp); |
| if (scno_good != 1) |
| tprints("????" /* anti-trigraph gap */ "("); |
| else if (tcp->qual_flg & UNDEFINED_SCNO) |
| tprintf("%s(", undefined_scno_name(tcp)); |
| else |
| tprintf("%s(", tcp->s_ent->sys_name); |
| /* |
| * " <unavailable>" will be added later by the code which |
| * detects ptrace errors. |
| */ |
| goto ret; |
| } |
| |
| if ( sys_execve == tcp->s_ent->sys_func |
| # if defined(SPARC) || defined(SPARC64) |
| || sys_execv == tcp->s_ent->sys_func |
| # endif |
| ) { |
| hide_log_until_execve = 0; |
| } |
| |
| #if defined(SYS_socket_subcall) || defined(SYS_ipc_subcall) |
| while (1) { |
| # ifdef SYS_socket_subcall |
| if (tcp->s_ent->sys_func == sys_socketcall) { |
| decode_socket_subcall(tcp); |
| break; |
| } |
| # endif |
| # ifdef SYS_ipc_subcall |
| if (tcp->s_ent->sys_func == sys_ipc) { |
| decode_ipc_subcall(tcp); |
| break; |
| } |
| # endif |
| break; |
| } |
| #endif |
| |
| if (need_fork_exec_workarounds) |
| syscall_fixup_for_fork_exec(tcp); |
| |
| if (!(tcp->qual_flg & QUAL_TRACE) |
| || (tracing_paths && !pathtrace_match(tcp)) |
| ) { |
| tcp->flags |= TCB_INSYSCALL | TCB_FILTERED; |
| return 0; |
| } |
| |
| tcp->flags &= ~TCB_FILTERED; |
| |
| if (cflag == CFLAG_ONLY_STATS || hide_log_until_execve) { |
| res = 0; |
| goto ret; |
| } |
| |
| printleader(tcp); |
| if (tcp->qual_flg & UNDEFINED_SCNO) |
| tprintf("%s(", undefined_scno_name(tcp)); |
| else |
| tprintf("%s(", tcp->s_ent->sys_name); |
| if ((tcp->qual_flg & QUAL_RAW) && tcp->s_ent->sys_func != sys_exit) |
| res = printargs(tcp); |
| else |
| res = tcp->s_ent->sys_func(tcp); |
| |
| fflush(tcp->outf); |
| ret: |
| tcp->flags |= TCB_INSYSCALL; |
| /* Measure the entrance time as late as possible to avoid errors. */ |
| if (Tflag || cflag) |
| gettimeofday(&tcp->etime, NULL); |
| return res; |
| } |
| |
| /* Returns: |
| * 1: ok, continue in trace_syscall_exiting(). |
| * -1: error, trace_syscall_exiting() should print error indicator |
| * ("????" etc) and bail out. |
| */ |
| static int |
| get_syscall_result(struct tcb *tcp) |
| { |
| #if defined(S390) || defined(S390X) |
| if (upeek(tcp->pid, PT_GPR2, &s390_gpr2) < 0) |
| return -1; |
| #elif defined(POWERPC) |
| /* already done by get_regs */ |
| #elif defined(AVR32) |
| /* already done by get_regs */ |
| #elif defined(BFIN) |
| if (upeek(tcp->pid, PT_R0, &bfin_r0) < 0) |
| return -1; |
| #elif defined(I386) |
| /* already done by get_regs */ |
| #elif defined(X86_64) || defined(X32) |
| /* already done by get_regs */ |
| #elif defined(IA64) |
| # define IA64_PSR_IS ((long)1 << 34) |
| long psr; |
| if (upeek(tcp->pid, PT_CR_IPSR, &psr) >= 0) |
| ia64_ia32mode = ((psr & IA64_PSR_IS) != 0); |
| if (upeek(tcp->pid, PT_R8, &ia64_r8) < 0) |
| return -1; |
| if (upeek(tcp->pid, PT_R10, &ia64_r10) < 0) |
| return -1; |
| #elif defined(ARM) |
| /* already done by get_regs */ |
| #elif defined(AARCH64) |
| /* register reading already done by get_regs */ |
| |
| /* Used to do this, but we did it on syscall entry already: */ |
| /* We are in 64-bit mode (personality 1) if register struct is aarch64_regs, |
| * else it's personality 0. |
| */ |
| /*update_personality(tcp, aarch64_io.iov_len == sizeof(aarch64_regs));*/ |
| #elif defined(M68K) |
| if (upeek(tcp->pid, 4*PT_D0, &m68k_d0) < 0) |
| return -1; |
| #elif defined(LINUX_MIPSN32) |
| unsigned long long regs[38]; |
| |
| if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long) ®s) < 0) |
| return -1; |
| mips_a3 = regs[REG_A3]; |
| mips_r2 = regs[REG_V0]; |
| #elif defined(MIPS) |
| if (upeek(tcp->pid, REG_A3, &mips_a3) < 0) |
| return -1; |
| if (upeek(tcp->pid, REG_V0, &mips_r2) < 0) |
| return -1; |
| #elif defined(ALPHA) |
| if (upeek(tcp->pid, REG_A3, &alpha_a3) < 0) |
| return -1; |
| if (upeek(tcp->pid, REG_R0, &alpha_r0) < 0) |
| return -1; |
| #elif defined(SPARC) || defined(SPARC64) |
| /* already done by get_regs */ |
| #elif defined(HPPA) |
| if (upeek(tcp->pid, PT_GR28, &hppa_r28) < 0) |
| return -1; |
| #elif defined(SH) |
| /* new syscall ABI returns result in R0 */ |
| if (upeek(tcp->pid, 4*REG_REG0, (long *)&sh_r0) < 0) |
| return -1; |
| #elif defined(SH64) |
| /* ABI defines result returned in r9 */ |
| if (upeek(tcp->pid, REG_GENERAL(9), (long *)&sh64_r9) < 0) |
| return -1; |
| #elif defined(CRISV10) || defined(CRISV32) |
| if (upeek(tcp->pid, 4*PT_R10, &cris_r10) < 0) |
| return -1; |
| #elif defined(TILE) |
| /* already done by get_regs */ |
| #elif defined(MICROBLAZE) |
| if (upeek(tcp->pid, 3 * 4, µblaze_r3) < 0) |
| return -1; |
| #elif defined(OR1K) |
| /* already done by get_regs */ |
| #elif defined(METAG) |
| /* already done by get_regs */ |
| #elif defined(XTENSA) |
| if (upeek(tcp->pid, REG_A_BASE + 2, &xtensa_a2) < 0) |
| return -1; |
| #endif |
| return 1; |
| } |
| |
| /* Called at each syscall exit */ |
| static void |
| syscall_fixup_on_sysexit(struct tcb *tcp) |
| { |
| #if defined(S390) || defined(S390X) |
| if ((tcp->flags & TCB_WAITEXECVE) |
| && (s390_gpr2 == -ENOSYS || s390_gpr2 == tcp->scno)) { |
| /* |
| * Return from execve. |
| * Fake a return value of zero. We leave the TCB_WAITEXECVE |
| * flag set for the post-execve SIGTRAP to see and reset. |
| */ |
| s390_gpr2 = 0; |
| } |
| #endif |
| } |
| |
| /* |
| * Check the syscall return value register value for whether it is |
| * a negated errno code indicating an error, or a success return value. |
| */ |
| static inline int |
| is_negated_errno(unsigned long int val) |
| { |
| unsigned long int max = -(long int) nerrnos; |
| #if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4 |
| if (current_wordsize < sizeof(val)) { |
| val = (unsigned int) val; |
| max = (unsigned int) max; |
| } |
| #endif |
| return val > max; |
| } |
| |
| #if defined(X32) |
| static inline int |
| is_negated_errno_x32(unsigned long long val) |
| { |
| unsigned long long max = -(long long) nerrnos; |
| /* |
| * current_wordsize is 4 even in personality 0 (native X32) |
| * but truncation _must not_ be done in it. |
| * can't check current_wordsize here! |
| */ |
| if (current_personality != 0) { |
| val = (uint32_t) val; |
| max = (uint32_t) max; |
| } |
| return val > max; |
| } |
| #endif |
| |
| /* Returns: |
| * 1: ok, continue in trace_syscall_exiting(). |
| * -1: error, trace_syscall_exiting() should print error indicator |
| * ("????" etc) and bail out. |
| */ |
| static void |
| get_error(struct tcb *tcp) |
| { |
| int u_error = 0; |
| int check_errno = 1; |
| if (tcp->s_ent->sys_flags & SYSCALL_NEVER_FAILS) { |
| check_errno = 0; |
| } |
| #if defined(S390) || defined(S390X) |
| if (check_errno && is_negated_errno(s390_gpr2)) { |
| tcp->u_rval = -1; |
| u_error = -s390_gpr2; |
| } |
| else { |
| tcp->u_rval = s390_gpr2; |
| } |
| #elif defined(I386) |
| if (check_errno && is_negated_errno(i386_regs.eax)) { |
| tcp->u_rval = -1; |
| u_error = -i386_regs.eax; |
| } |
| else { |
| tcp->u_rval = i386_regs.eax; |
| } |
| #elif defined(X86_64) |
| long rax; |
| if (x86_io.iov_len == sizeof(i386_regs)) { |
| /* Sign extend from 32 bits */ |
| rax = (int32_t)i386_regs.eax; |
| } else { |
| rax = x86_64_regs.rax; |
| } |
| if (check_errno && is_negated_errno(rax)) { |
| tcp->u_rval = -1; |
| u_error = -rax; |
| } |
| else { |
| tcp->u_rval = rax; |
| } |
| #elif defined(X32) |
| /* In X32, return value is 64-bit (llseek uses one). |
| * Using merely "long rax" would not work. |
| */ |
| long long rax; |
| if (x86_io.iov_len == sizeof(i386_regs)) { |
| /* Sign extend from 32 bits */ |
| rax = (int32_t)i386_regs.eax; |
| } else { |
| rax = x86_64_regs.rax; |
| } |
| /* Careful: is_negated_errno() works only on longs */ |
| if (check_errno && is_negated_errno_x32(rax)) { |
| tcp->u_rval = -1; |
| u_error = -rax; |
| } |
| else { |
| tcp->u_rval = rax; /* truncating */ |
| tcp->u_lrval = rax; |
| } |
| #elif defined(IA64) |
| if (ia64_ia32mode) { |
| int err; |
| |
| err = (int)ia64_r8; |
| if (check_errno && is_negated_errno(err)) { |
| tcp->u_rval = -1; |
| u_error = -err; |
| } |
| else { |
| tcp->u_rval = err; |
| } |
| } else { |
| if (check_errno && ia64_r10) { |
| tcp->u_rval = -1; |
| u_error = ia64_r8; |
| } else { |
| tcp->u_rval = ia64_r8; |
| } |
| } |
| #elif defined(MIPS) |
| if (check_errno && mips_a3) { |
| tcp->u_rval = -1; |
| u_error = mips_r2; |
| } else { |
| tcp->u_rval = mips_r2; |
| # if defined(LINUX_MIPSN32) |
| tcp->u_lrval = mips_r2; |
| # endif |
| } |
| #elif defined(POWERPC) |
| if (check_errno && (ppc_regs.ccr & 0x10000000)) { |
| tcp->u_rval = -1; |
| u_error = ppc_regs.gpr[3]; |
| } |
| else { |
| tcp->u_rval = ppc_regs.gpr[3]; |
| } |
| #elif defined(M68K) |
| if (check_errno && is_negated_errno(m68k_d0)) { |
| tcp->u_rval = -1; |
| u_error = -m68k_d0; |
| } |
| else { |
| tcp->u_rval = m68k_d0; |
| } |
| #elif defined(ARM) || defined(AARCH64) |
| # if defined(AARCH64) |
| if (tcp->currpers == 1) { |
| if (check_errno && is_negated_errno(aarch64_regs.regs[0])) { |
| tcp->u_rval = -1; |
| u_error = -aarch64_regs.regs[0]; |
| } |
| else { |
| tcp->u_rval = aarch64_regs.regs[0]; |
| } |
| } |
| else |
| # endif |
| { |
| if (check_errno && is_negated_errno(arm_regs.ARM_r0)) { |
| tcp->u_rval = -1; |
| u_error = -arm_regs.ARM_r0; |
| } |
| else { |
| tcp->u_rval = arm_regs.ARM_r0; |
| } |
| } |
| #elif defined(AVR32) |
| if (check_errno && avr32_regs.r12 && (unsigned) -avr32_regs.r12 < nerrnos) { |
| tcp->u_rval = -1; |
| u_error = -avr32_regs.r12; |
| } |
| else { |
| tcp->u_rval = avr32_regs.r12; |
| } |
| #elif defined(BFIN) |
| if (check_errno && is_negated_errno(bfin_r0)) { |
| tcp->u_rval = -1; |
| u_error = -bfin_r0; |
| } else { |
| tcp->u_rval = bfin_r0; |
| } |
| #elif defined(ALPHA) |
| if (check_errno && alpha_a3) { |
| tcp->u_rval = -1; |
| u_error = alpha_r0; |
| } |
| else { |
| tcp->u_rval = alpha_r0; |
| } |
| #elif defined(SPARC) |
| if (check_errno && sparc_regs.psr & PSR_C) { |
| tcp->u_rval = -1; |
| u_error = sparc_regs.u_regs[U_REG_O0]; |
| } |
| else { |
| tcp->u_rval = sparc_regs.u_regs[U_REG_O0]; |
| } |
| #elif defined(SPARC64) |
| if (check_errno && sparc_regs.tstate & 0x1100000000UL) { |
| tcp->u_rval = -1; |
| u_error = sparc_regs.u_regs[U_REG_O0]; |
| } |
| else { |
| tcp->u_rval = sparc_regs.u_regs[U_REG_O0]; |
| } |
| #elif defined(HPPA) |
| if (check_errno && is_negated_errno(hppa_r28)) { |
| tcp->u_rval = -1; |
| u_error = -hppa_r28; |
| } |
| else { |
| tcp->u_rval = hppa_r28; |
| } |
| #elif defined(SH) |
| if (check_errno && is_negated_errno(sh_r0)) { |
| tcp->u_rval = -1; |
| u_error = -sh_r0; |
| } |
| else { |
| tcp->u_rval = sh_r0; |
| } |
| #elif defined(SH64) |
| if (check_errno && is_negated_errno(sh64_r9)) { |
| tcp->u_rval = -1; |
| u_error = -sh64_r9; |
| } |
| else { |
| tcp->u_rval = sh64_r9; |
| } |
| #elif defined(METAG) |
| /* result pointer in D0Re0 (D0.0) */ |
| if (check_errno && is_negated_errno(metag_regs.dx[0][0])) { |
| tcp->u_rval = -1; |
| u_error = -metag_regs.dx[0][0]; |
| } |
| else { |
| tcp->u_rval = metag_regs.dx[0][0]; |
| } |
| #elif defined(CRISV10) || defined(CRISV32) |
| if (check_errno && cris_r10 && (unsigned) -cris_r10 < nerrnos) { |
| tcp->u_rval = -1; |
| u_error = -cris_r10; |
| } |
| else { |
| tcp->u_rval = cris_r10; |
| } |
| #elif defined(TILE) |
| /* |
| * The standard tile calling convention returns the value (or negative |
| * errno) in r0, and zero (or positive errno) in r1. |
| * Until at least kernel 3.8, however, the r1 value is not reflected |
| * in ptregs at this point, so we use r0 here. |
| */ |
| if (check_errno && is_negated_errno(tile_regs.regs[0])) { |
| tcp->u_rval = -1; |
| u_error = -tile_regs.regs[0]; |
| } else { |
| tcp->u_rval = tile_regs.regs[0]; |
| } |
| #elif defined(MICROBLAZE) |
| if (check_errno && is_negated_errno(microblaze_r3)) { |
| tcp->u_rval = -1; |
| u_error = -microblaze_r3; |
| } |
| else { |
| tcp->u_rval = microblaze_r3; |
| } |
| #elif defined(OR1K) |
| if (check_errno && is_negated_errno(or1k_regs.gpr[11])) { |
| tcp->u_rval = -1; |
| u_error = -or1k_regs.gpr[11]; |
| } |
| else { |
| tcp->u_rval = or1k_regs.gpr[11]; |
| } |
| #elif defined(XTENSA) |
| if (check_errno && is_negated_errno(xtensa_a2)) { |
| tcp->u_rval = -1; |
| u_error = -xtensa_a2; |
| } |
| else { |
| tcp->u_rval = xtensa_a2; |
| } |
| #endif |
| tcp->u_error = u_error; |
| } |
| |
| static void |
| dumpio(struct tcb *tcp) |
| { |
| int (*func)(); |
| |
| if (syserror(tcp)) |
| return; |
| if ((unsigned long) tcp->u_arg[0] >= num_quals) |
| return; |
| func = tcp->s_ent->sys_func; |
| if (func == printargs) |
| return; |
| if (qual_flags[tcp->u_arg[0]] & QUAL_READ) { |
| if (func == sys_read || |
| func == sys_pread || |
| func == sys_recv || |
| func == sys_recvfrom) |
| dumpstr(tcp, tcp->u_arg[1], tcp->u_rval); |
| else if (func == sys_readv) |
| dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); |
| return; |
| } |
| if (qual_flags[tcp->u_arg[0]] & QUAL_WRITE) { |
| if (func == sys_write || |
| func == sys_pwrite || |
| func == sys_send || |
| func == sys_sendto) |
| dumpstr(tcp, tcp->u_arg[1], tcp->u_arg[2]); |
| else if (func == sys_writev) |
| dumpiov(tcp, tcp->u_arg[2], tcp->u_arg[1]); |
| return; |
| } |
| } |
| |
| static int |
| trace_syscall_exiting(struct tcb *tcp) |
| { |
| int sys_res; |
| struct timeval tv; |
| int res; |
| long u_error; |
| |
| /* Measure the exit time as early as possible to avoid errors. */ |
| if (Tflag || cflag) |
| gettimeofday(&tv, NULL); |
| |
| #if SUPPORTED_PERSONALITIES > 1 |
| update_personality(tcp, tcp->currpers); |
| #endif |
| res = (get_regs_error ? -1 : get_syscall_result(tcp)); |
| if (res == 1) { |
| syscall_fixup_on_sysexit(tcp); /* never fails */ |
| get_error(tcp); /* never fails */ |
| if (need_fork_exec_workarounds) |
| syscall_fixup_for_fork_exec(tcp); |
| if (filtered(tcp) || hide_log_until_execve) |
| goto ret; |
| } |
| |
| if (cflag) { |
| struct timeval t = tv; |
| count_syscall(tcp, &t); |
| if (cflag == CFLAG_ONLY_STATS) { |
| goto ret; |
| } |
| } |
| |
| /* If not in -ff mode, and printing_tcp != tcp, |
| * then the log currently does not end with output |
| * of _our syscall entry_, but with something else. |
| * We need to say which syscall's return is this. |
| * |
| * Forced reprinting via TCB_REPRINT is used only by |
| * "strace -ff -oLOG test/threaded_execve" corner case. |
| * It's the only case when -ff mode needs reprinting. |
| */ |
| if ((followfork < 2 && printing_tcp != tcp) || (tcp->flags & TCB_REPRINT)) { |
| tcp->flags &= ~TCB_REPRINT; |
| printleader(tcp); |
| if (tcp->qual_flg & UNDEFINED_SCNO) |
| tprintf("<... %s resumed> ", undefined_scno_name(tcp)); |
| else |
| tprintf("<... %s resumed> ", tcp->s_ent->sys_name); |
| } |
| printing_tcp = tcp; |
| |
| if (res != 1) { |
| /* There was error in one of prior ptrace ops */ |
| tprints(") "); |
| tabto(); |
| tprints("= ? <unavailable>\n"); |
| line_ended(); |
| tcp->flags &= ~TCB_INSYSCALL; |
| return res; |
| } |
| |
| sys_res = 0; |
| if (tcp->qual_flg & QUAL_RAW) { |
| /* sys_res = printargs(tcp); - but it's nop on sysexit */ |
| } else { |
| /* FIXME: not_failing_only (IOW, option -z) is broken: |
| * failure of syscall is known only after syscall return. |
| * Thus we end up with something like this on, say, ENOENT: |
| * open("doesnt_exist", O_RDONLY <unfinished ...> |
| * {next syscall decode} |
| * whereas the intended result is that open(...) line |
| * is not shown at all. |
| */ |
| if (not_failing_only && tcp->u_error) |
| goto ret; /* ignore failed syscalls */ |
| sys_res = tcp->s_ent->sys_func(tcp); |
| } |
| |
| tprints(") "); |
| tabto(); |
| u_error = tcp->u_error; |
| if (tcp->qual_flg & QUAL_RAW) { |
| if (u_error) |
| tprintf("= -1 (errno %ld)", u_error); |
| else |
| tprintf("= %#lx", tcp->u_rval); |
| } |
| else if (!(sys_res & RVAL_NONE) && u_error) { |
| switch (u_error) { |
| /* Blocked signals do not interrupt any syscalls. |
| * In this case syscalls don't return ERESTARTfoo codes. |
| * |
| * Deadly signals set to SIG_DFL interrupt syscalls |
| * and kill the process regardless of which of the codes below |
| * is returned by the interrupted syscall. |
| * In some cases, kernel forces a kernel-generated deadly |
| * signal to be unblocked and set to SIG_DFL (and thus cause |
| * death) if it is blocked or SIG_IGNed: for example, SIGSEGV |
| * or SIGILL. (The alternative is to leave process spinning |
| * forever on the faulty instruction - not useful). |
| * |
| * SIG_IGNed signals and non-deadly signals set to SIG_DFL |
| * (for example, SIGCHLD, SIGWINCH) interrupt syscalls, |
| * but kernel will always restart them. |
| */ |
| case ERESTARTSYS: |
| /* Most common type of signal-interrupted syscall exit code. |
| * The system call will be restarted with the same arguments |
| * if SA_RESTART is set; otherwise, it will fail with EINTR. |
| */ |
| tprints("= ? ERESTARTSYS (To be restarted if SA_RESTART is set)"); |
| break; |
| case ERESTARTNOINTR: |
| /* Rare. For example, fork() returns this if interrupted. |
| * SA_RESTART is ignored (assumed set): the restart is unconditional. |
| */ |
| tprints("= ? ERESTARTNOINTR (To be restarted)"); |
| break; |
| case ERESTARTNOHAND: |
| /* pause(), rt_sigsuspend() etc use this code. |
| * SA_RESTART is ignored (assumed not set): |
| * syscall won't restart (will return EINTR instead) |
| * even after signal with SA_RESTART set. However, |
| * after SIG_IGN or SIG_DFL signal it will restart |
| * (thus the name "restart only if has no handler"). |
| */ |
| tprints("= ? ERESTARTNOHAND (To be restarted if no handler)"); |
| break; |
| case ERESTART_RESTARTBLOCK: |
| /* Syscalls like nanosleep(), poll() which can't be |
| * restarted with their original arguments use this |
| * code. Kernel will execute restart_syscall() instead, |
| * which changes arguments before restarting syscall. |
| * SA_RESTART is ignored (assumed not set) similarly |
| * to ERESTARTNOHAND. (Kernel can't honor SA_RESTART |
| * since restart data is saved in "restart block" |
| * in task struct, and if signal handler uses a syscall |
| * which in turn saves another such restart block, |
| * old data is lost and restart becomes impossible) |
| */ |
| tprints("= ? ERESTART_RESTARTBLOCK (Interrupted by signal)"); |
| break; |
| default: |
| if (u_error < 0) |
| tprintf("= -1 E??? (errno %ld)", u_error); |
| else if (u_error < nerrnos) |
| tprintf("= -1 %s (%s)", errnoent[u_error], |
| strerror(u_error)); |
| else |
| tprintf("= -1 ERRNO_%ld (%s)", u_error, |
| strerror(u_error)); |
| break; |
| } |
| if ((sys_res & RVAL_STR) && tcp->auxstr) |
| tprintf(" (%s)", tcp->auxstr); |
| } |
| else { |
| if (sys_res & RVAL_NONE) |
| tprints("= ?"); |
| else { |
| switch (sys_res & RVAL_MASK) { |
| case RVAL_HEX: |
| tprintf("= %#lx", tcp->u_rval); |
| break; |
| case RVAL_OCTAL: |
| tprintf("= %#lo", tcp->u_rval); |
| break; |
| case RVAL_UDECIMAL: |
| tprintf("= %lu", tcp->u_rval); |
| break; |
| case RVAL_DECIMAL: |
| tprintf("= %ld", tcp->u_rval); |
| break; |
| #if defined(LINUX_MIPSN32) || defined(X32) |
| /* |
| case RVAL_LHEX: |
| tprintf("= %#llx", tcp->u_lrval); |
| break; |
| case RVAL_LOCTAL: |
| tprintf("= %#llo", tcp->u_lrval); |
| break; |
| */ |
| case RVAL_LUDECIMAL: |
| tprintf("= %llu", tcp->u_lrval); |
| break; |
| /* |
| case RVAL_LDECIMAL: |
| tprintf("= %lld", tcp->u_lrval); |
| break; |
| */ |
| #endif |
| default: |
| fprintf(stderr, |
| "invalid rval format\n"); |
| break; |
| } |
| } |
| if ((sys_res & RVAL_STR) && tcp->auxstr) |
| tprintf(" (%s)", tcp->auxstr); |
| } |
| if (Tflag) { |
| tv_sub(&tv, &tv, &tcp->etime); |
| tprintf(" <%ld.%06ld>", |
| (long) tv.tv_sec, (long) tv.tv_usec); |
| } |
| tprints("\n"); |
| dumpio(tcp); |
| line_ended(); |
| |
| ret: |
| tcp->flags &= ~TCB_INSYSCALL; |
| return 0; |
| } |
| |
| int |
| trace_syscall(struct tcb *tcp) |
| { |
| return exiting(tcp) ? |
| trace_syscall_exiting(tcp) : trace_syscall_entering(tcp); |
| } |