blob: aca6345f6e191507a2ae4c3a15fa1bddbda34ee6 [file] [log] [blame]
/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Linux for s390 port by D.J. Barrow
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#include "defs.h"
#include <stdint.h>
#include <signal.h>
#include <sys/user.h>
#include <fcntl.h>
#ifdef SVR4
#include <sys/ucontext.h>
#endif /* SVR4 */
#ifdef HAVE_SYS_REG_H
# include <sys/reg.h>
#ifndef PTRACE_PEEKUSR
# define PTRACE_PEEKUSR PTRACE_PEEKUSER
#endif
#ifndef PTRACE_POKEUSR
# define PTRACE_POKEUSR PTRACE_POKEUSER
#endif
#elif defined(HAVE_LINUX_PTRACE_H)
#undef PTRACE_SYSCALL
# ifdef HAVE_STRUCT_IA64_FPREG
# define ia64_fpreg XXX_ia64_fpreg
# endif
# ifdef HAVE_STRUCT_PT_ALL_USER_REGS
# define pt_all_user_regs XXX_pt_all_user_regs
# endif
#include <linux/ptrace.h>
# undef ia64_fpreg
# undef pt_all_user_regs
#endif
#ifdef LINUX
#ifdef IA64
# include <asm/ptrace_offsets.h>
#endif
#if defined (LINUX) && defined (SPARC64)
# undef PTRACE_GETREGS
# define PTRACE_GETREGS PTRACE_GETREGS64
# undef PTRACE_SETREGS
# define PTRACE_SETREGS PTRACE_SETREGS64
#endif /* LINUX && SPARC64 */
#if defined (SPARC) || defined (SPARC64) || defined (MIPS)
typedef struct {
struct pt_regs si_regs;
int si_mask;
} m_siginfo_t;
#elif defined HAVE_ASM_SIGCONTEXT_H
#if !defined(IA64) && !defined(X86_64)
#include <asm/sigcontext.h>
#endif /* !IA64 && !X86_64 */
#else /* !HAVE_ASM_SIGCONTEXT_H */
#if defined I386 && !defined HAVE_STRUCT_SIGCONTEXT_STRUCT
struct sigcontext_struct {
unsigned short gs, __gsh;
unsigned short fs, __fsh;
unsigned short es, __esh;
unsigned short ds, __dsh;
unsigned long edi;
unsigned long esi;
unsigned long ebp;
unsigned long esp;
unsigned long ebx;
unsigned long edx;
unsigned long ecx;
unsigned long eax;
unsigned long trapno;
unsigned long err;
unsigned long eip;
unsigned short cs, __csh;
unsigned long eflags;
unsigned long esp_at_signal;
unsigned short ss, __ssh;
unsigned long i387;
unsigned long oldmask;
unsigned long cr2;
};
#else /* !I386 */
#if defined M68K && !defined HAVE_STRUCT_SIGCONTEXT
struct sigcontext
{
unsigned long sc_mask;
unsigned long sc_usp;
unsigned long sc_d0;
unsigned long sc_d1;
unsigned long sc_a0;
unsigned long sc_a1;
unsigned short sc_sr;
unsigned long sc_pc;
unsigned short sc_formatvec;
};
#endif /* M68K */
#endif /* !I386 */
#endif /* !HAVE_ASM_SIGCONTEXT_H */
#ifndef NSIG
#warning: NSIG is not defined, using 32
#define NSIG 32
#endif
#ifdef ARM
/* Ugh. Is this really correct? ARM has no RT signals?! */
#undef NSIG
#define NSIG 32
#endif
#endif /* LINUX */
#if defined(SUNOS4) || defined(FREEBSD)
static const struct xlat sigvec_flags[] = {
{ SV_ONSTACK, "SV_ONSTACK" },
{ SV_INTERRUPT, "SV_INTERRUPT" },
{ SV_RESETHAND, "SV_RESETHAND" },
{ SA_NOCLDSTOP, "SA_NOCLDSTOP" },
{ 0, NULL },
};
#endif /* SUNOS4 || FREEBSD */
#ifdef HAVE_SIGACTION
#if defined LINUX && (defined I386 || defined X86_64)
/* The libc headers do not define this constant since it should only be
used by the implementation. So we define it here. */
# ifndef SA_RESTORER
# define SA_RESTORER 0x04000000
# endif
#endif
static const struct xlat sigact_flags[] = {
#ifdef SA_RESTORER
{ SA_RESTORER, "SA_RESTORER" },
#endif
#ifdef SA_STACK
{ SA_STACK, "SA_STACK" },
#endif
#ifdef SA_RESTART
{ SA_RESTART, "SA_RESTART" },
#endif
#ifdef SA_INTERRUPT
{ SA_INTERRUPT, "SA_INTERRUPT" },
#endif
#ifdef SA_NODEFER
{ SA_NODEFER, "SA_NODEFER" },
#endif
#if defined SA_NOMASK && SA_NODEFER != SA_NOMASK
{ SA_NOMASK, "SA_NOMASK" },
#endif
#ifdef SA_RESETHAND
{ SA_RESETHAND, "SA_RESETHAND" },
#endif
#if defined SA_ONESHOT && SA_ONESHOT != SA_RESETHAND
{ SA_ONESHOT, "SA_ONESHOT" },
#endif
#ifdef SA_SIGINFO
{ SA_SIGINFO, "SA_SIGINFO" },
#endif
#ifdef SA_RESETHAND
{ SA_RESETHAND, "SA_RESETHAND" },
#endif
#ifdef SA_ONSTACK
{ SA_ONSTACK, "SA_ONSTACK" },
#endif
#ifdef SA_NODEFER
{ SA_NODEFER, "SA_NODEFER" },
#endif
#ifdef SA_NOCLDSTOP
{ SA_NOCLDSTOP, "SA_NOCLDSTOP" },
#endif
#ifdef SA_NOCLDWAIT
{ SA_NOCLDWAIT, "SA_NOCLDWAIT" },
#endif
#ifdef _SA_BSDCALL
{ _SA_BSDCALL, "_SA_BSDCALL" },
#endif
#ifdef SA_NOPTRACE
{ SA_NOPTRACE, "SA_NOPTRACE" },
#endif
{ 0, NULL },
};
static const struct xlat sigprocmaskcmds[] = {
{ SIG_BLOCK, "SIG_BLOCK" },
{ SIG_UNBLOCK, "SIG_UNBLOCK" },
{ SIG_SETMASK, "SIG_SETMASK" },
#ifdef SIG_SETMASK32
{ SIG_SETMASK32,"SIG_SETMASK32" },
#endif
{ 0, NULL },
};
#endif /* HAVE_SIGACTION */
/* Anonymous realtime signals. */
/* Under glibc 2.1, SIGRTMIN et al are functions, but __SIGRTMIN is a
constant. This is what we want. Otherwise, just use SIGRTMIN. */
#ifdef SIGRTMIN
#ifndef __SIGRTMIN
#define __SIGRTMIN SIGRTMIN
#define __SIGRTMAX SIGRTMAX /* likewise */
#endif
#endif
/* Note on the size of sigset_t:
*
* In glibc, sigset_t is an array with space for 1024 bits (!),
* even though all arches supported by Linux have only 64 signals
* except MIPS, which has 128. IOW, it is 128 bytes long.
*
* In-kernel sigset_t is sized correctly (it is either 64 or 128 bit long).
* However, some old syscall return only 32 lower bits (one word).
* Example: sys_sigpending vs sys_rt_sigpending.
*
* Be aware of this fact when you try to
* memcpy(&tcp->u_arg[1], &something, sizeof(sigset_t))
* - sizeof(sigset_t) is much bigger than you think,
* it may overflow tcp->u_arg[] array, and it may try to copy more data
* than is really available in <something>.
* Similarly,
* umoven(tcp, addr, sizeof(sigset_t), &sigset)
* may be a bad idea: it'll try to read much more data than needed
* to fetch a sigset_t.
* Use (NSIG / 8) as a size instead.
*/
const char *
signame(int sig)
{
static char buf[sizeof("SIGRT_%d") + sizeof(int)*3];
if (sig >= 0 && sig < nsignals)
return signalent[sig];
#ifdef SIGRTMIN
if (sig >= __SIGRTMIN && sig <= __SIGRTMAX) {
sprintf(buf, "SIGRT_%d", (int)(sig - __SIGRTMIN));
return buf;
}
#endif
sprintf(buf, "%d", sig);
return buf;
}
#ifndef UNIXWARE
static void
long_to_sigset(long l, sigset_t *s)
{
sigemptyset(s);
*(long *)s = l;
}
#endif
static int
copy_sigset_len(struct tcb *tcp, long addr, sigset_t *s, int len)
{
if (len > sizeof(*s))
len = sizeof(*s);
sigemptyset(s);
if (umoven(tcp, addr, len, (char *)s) < 0)
return -1;
return 0;
}
#ifdef LINUX
/* Original sigset is unsigned long */
#define copy_sigset(tcp, addr, s) copy_sigset_len(tcp, addr, s, sizeof(long))
#else
#define copy_sigset(tcp, addr, s) copy_sigset_len(tcp, addr, s, sizeof(sigset_t))
#endif
static const char *
sprintsigmask(const char *str, sigset_t *mask, int rt)
/* set might include realtime sigs */
{
/* Was [8 * sizeof(sigset_t) * 8], but
* glibc sigset_t is huge (1024 bits = 128 *bytes*),
* and we were ending up with 8k (!) buffer here.
*
* No Unix system can have sig > 255
* (waitpid API won't be able to indicate death from one)
* and sig 0 doesn't exist either.
* Therefore max possible no of sigs is 255: 1..255
*/
static char outstr[8 * 255];
int i, nsigs;
int maxsigs;
const char *format;
char *s;
strcpy(outstr, str);
s = outstr + strlen(outstr);
nsigs = 0;
maxsigs = nsignals;
#ifdef __SIGRTMAX
if (rt)
maxsigs = __SIGRTMAX; /* instead */
#endif
for (i = 1; i < maxsigs; i++) {
if (sigismember(mask, i) == 1)
nsigs++;
}
if (nsigs >= nsignals * 2 / 3) {
*s++ = '~';
for (i = 1; i < maxsigs; i++) {
switch (sigismember(mask, i)) {
case 1:
sigdelset(mask, i);
break;
case 0:
sigaddset(mask, i);
break;
}
}
}
format = "%s";
*s++ = '[';
for (i = 1; i < maxsigs; i++) {
if (sigismember(mask, i) == 1) {
/* real-time signals on solaris don't have
* signalent entries
*/
if (i < nsignals) {
sprintf(s, format, signalent[i] + 3);
}
#ifdef SIGRTMIN
else if (i >= __SIGRTMIN && i <= __SIGRTMAX) {
char tsig[40];
sprintf(tsig, "RT_%u", i - __SIGRTMIN);
sprintf(s, format, tsig);
}
#endif /* SIGRTMIN */
else {
char tsig[32];
sprintf(tsig, "%u", i);
sprintf(s, format, tsig);
}
s += strlen(s);
format = " %s";
}
}
*s++ = ']';
*s = '\0';
return outstr;
}
static void
printsigmask(sigset_t *mask, int rt)
{
tprints(sprintsigmask("", mask, rt));
}
void
printsignal(int nr)
{
tprints(signame(nr));
}
void
print_sigset(struct tcb *tcp, long addr, int rt)
{
sigset_t ss;
if (!addr)
tprints("NULL");
else if (copy_sigset(tcp, addr, &ss) < 0)
tprintf("%#lx", addr);
else
printsigmask(&ss, rt);
}
#ifdef LINUX
#ifndef ILL_ILLOPC
#define ILL_ILLOPC 1 /* illegal opcode */
#define ILL_ILLOPN 2 /* illegal operand */
#define ILL_ILLADR 3 /* illegal addressing mode */
#define ILL_ILLTRP 4 /* illegal trap */
#define ILL_PRVOPC 5 /* privileged opcode */
#define ILL_PRVREG 6 /* privileged register */
#define ILL_COPROC 7 /* coprocessor error */
#define ILL_BADSTK 8 /* internal stack error */
#define FPE_INTDIV 1 /* integer divide by zero */
#define FPE_INTOVF 2 /* integer overflow */
#define FPE_FLTDIV 3 /* floating point divide by zero */
#define FPE_FLTOVF 4 /* floating point overflow */
#define FPE_FLTUND 5 /* floating point underflow */
#define FPE_FLTRES 6 /* floating point inexact result */
#define FPE_FLTINV 7 /* floating point invalid operation */
#define FPE_FLTSUB 8 /* subscript out of range */
#define SEGV_MAPERR 1 /* address not mapped to object */
#define SEGV_ACCERR 2 /* invalid permissions for mapped object */
#define BUS_ADRALN 1 /* invalid address alignment */
#define BUS_ADRERR 2 /* non-existant physical address */
#define BUS_OBJERR 3 /* object specific hardware error */
#define TRAP_BRKPT 1 /* process breakpoint */
#define TRAP_TRACE 2 /* process trace trap */
#define CLD_EXITED 1 /* child has exited */
#define CLD_KILLED 2 /* child was killed */
#define CLD_DUMPED 3 /* child terminated abnormally */
#define CLD_TRAPPED 4 /* traced child has trapped */
#define CLD_STOPPED 5 /* child has stopped */
#define CLD_CONTINUED 6 /* stopped child has continued */
#define POLL_IN 1 /* data input available */
#define POLL_OUT 2 /* output buffers available */
#define POLL_MSG 3 /* input message available */
#define POLL_ERR 4 /* i/o error */
#define POLL_PRI 5 /* high priority input available */
#define POLL_HUP 6 /* device disconnected */
#define SI_KERNEL 0x80 /* sent by kernel */
#define SI_USER 0 /* sent by kill, sigsend, raise */
#define SI_QUEUE -1 /* sent by sigqueue */
#define SI_TIMER -2 /* sent by timer expiration */
#define SI_MESGQ -3 /* sent by real time mesq state change */
#define SI_ASYNCIO -4 /* sent by AIO completion */
#define SI_SIGIO -5 /* sent by SIGIO */
#define SI_TKILL -6 /* sent by tkill */
#define SI_ASYNCNL -60 /* sent by asynch name lookup completion */
#define SI_FROMUSER(sip) ((sip)->si_code <= 0)
#endif /* LINUX */
#if __GLIBC_MINOR__ < 1
/* Type for data associated with a signal. */
typedef union sigval
{
int sival_int;
void *sival_ptr;
} sigval_t;
# define __SI_MAX_SIZE 128
# define __SI_PAD_SIZE ((__SI_MAX_SIZE / sizeof(int)) - 3)
typedef struct siginfo
{
int si_signo; /* Signal number. */
int si_errno; /* If non-zero, an errno value associated with
this signal, as defined in <errno.h>. */
int si_code; /* Signal code. */
union
{
int _pad[__SI_PAD_SIZE];
/* kill(). */
struct
{
__pid_t si_pid; /* Sending process ID. */
__uid_t si_uid; /* Real user ID of sending process. */
} _kill;
/* POSIX.1b timers. */
struct
{
unsigned int _timer1;
unsigned int _timer2;
} _timer;
/* POSIX.1b signals. */
struct
{
__pid_t si_pid; /* Sending process ID. */
__uid_t si_uid; /* Real user ID of sending process. */
sigval_t si_sigval; /* Signal value. */
} _rt;
/* SIGCHLD. */
struct
{
__pid_t si_pid; /* Which child. */
int si_status; /* Exit value or signal. */
__clock_t si_utime;
__clock_t si_stime;
} _sigchld;
/* SIGILL, SIGFPE, SIGSEGV, SIGBUS. */
struct
{
void *si_addr; /* Faulting insn/memory ref. */
} _sigfault;
/* SIGPOLL. */
struct
{
int si_band; /* Band event for SIGPOLL. */
int si_fd;
} _sigpoll;
} _sifields;
} siginfo_t;
#define si_pid _sifields._kill.si_pid
#define si_uid _sifields._kill.si_uid
#define si_status _sifields._sigchld.si_status
#define si_utime _sifields._sigchld.si_utime
#define si_stime _sifields._sigchld.si_stime
#define si_value _sifields._rt.si_sigval
#define si_int _sifields._rt.si_sigval.sival_int
#define si_ptr _sifields._rt.si_sigval.sival_ptr
#define si_addr _sifields._sigfault.si_addr
#define si_band _sifields._sigpoll.si_band
#define si_fd _sifields._sigpoll.si_fd
#endif
#endif
#if defined (SVR4) || defined (LINUX)
static const struct xlat siginfo_codes[] = {
#ifdef SI_KERNEL
{ SI_KERNEL, "SI_KERNEL" },
#endif
#ifdef SI_USER
{ SI_USER, "SI_USER" },
#endif
#ifdef SI_QUEUE
{ SI_QUEUE, "SI_QUEUE" },
#endif
#ifdef SI_TIMER
{ SI_TIMER, "SI_TIMER" },
#endif
#ifdef SI_MESGQ
{ SI_MESGQ, "SI_MESGQ" },
#endif
#ifdef SI_ASYNCIO
{ SI_ASYNCIO, "SI_ASYNCIO" },
#endif
#ifdef SI_SIGIO
{ SI_SIGIO, "SI_SIGIO" },
#endif
#ifdef SI_TKILL
{ SI_TKILL, "SI_TKILL" },
#endif
#ifdef SI_ASYNCNL
{ SI_ASYNCNL, "SI_ASYNCNL" },
#endif
#ifdef SI_NOINFO
{ SI_NOINFO, "SI_NOINFO" },
#endif
#ifdef SI_LWP
{ SI_LWP, "SI_LWP" },
#endif
{ 0, NULL },
};
static const struct xlat sigill_codes[] = {
{ ILL_ILLOPC, "ILL_ILLOPC" },
{ ILL_ILLOPN, "ILL_ILLOPN" },
{ ILL_ILLADR, "ILL_ILLADR" },
{ ILL_ILLTRP, "ILL_ILLTRP" },
{ ILL_PRVOPC, "ILL_PRVOPC" },
{ ILL_PRVREG, "ILL_PRVREG" },
{ ILL_COPROC, "ILL_COPROC" },
{ ILL_BADSTK, "ILL_BADSTK" },
{ 0, NULL },
};
static const struct xlat sigfpe_codes[] = {
{ FPE_INTDIV, "FPE_INTDIV" },
{ FPE_INTOVF, "FPE_INTOVF" },
{ FPE_FLTDIV, "FPE_FLTDIV" },
{ FPE_FLTOVF, "FPE_FLTOVF" },
{ FPE_FLTUND, "FPE_FLTUND" },
{ FPE_FLTRES, "FPE_FLTRES" },
{ FPE_FLTINV, "FPE_FLTINV" },
{ FPE_FLTSUB, "FPE_FLTSUB" },
{ 0, NULL },
};
static const struct xlat sigtrap_codes[] = {
{ TRAP_BRKPT, "TRAP_BRKPT" },
{ TRAP_TRACE, "TRAP_TRACE" },
{ 0, NULL },
};
static const struct xlat sigchld_codes[] = {
{ CLD_EXITED, "CLD_EXITED" },
{ CLD_KILLED, "CLD_KILLED" },
{ CLD_DUMPED, "CLD_DUMPED" },
{ CLD_TRAPPED, "CLD_TRAPPED" },
{ CLD_STOPPED, "CLD_STOPPED" },
{ CLD_CONTINUED,"CLD_CONTINUED" },
{ 0, NULL },
};
static const struct xlat sigpoll_codes[] = {
{ POLL_IN, "POLL_IN" },
{ POLL_OUT, "POLL_OUT" },
{ POLL_MSG, "POLL_MSG" },
{ POLL_ERR, "POLL_ERR" },
{ POLL_PRI, "POLL_PRI" },
{ POLL_HUP, "POLL_HUP" },
{ 0, NULL },
};
static const struct xlat sigprof_codes[] = {
#ifdef PROF_SIG
{ PROF_SIG, "PROF_SIG" },
#endif
{ 0, NULL },
};
#ifdef SIGEMT
static const struct xlat sigemt_codes[] = {
#ifdef EMT_TAGOVF
{ EMT_TAGOVF, "EMT_TAGOVF" },
#endif
{ 0, NULL },
};
#endif
static const struct xlat sigsegv_codes[] = {
{ SEGV_MAPERR, "SEGV_MAPERR" },
{ SEGV_ACCERR, "SEGV_ACCERR" },
{ 0, NULL },
};
static const struct xlat sigbus_codes[] = {
{ BUS_ADRALN, "BUS_ADRALN" },
{ BUS_ADRERR, "BUS_ADRERR" },
{ BUS_OBJERR, "BUS_OBJERR" },
{ 0, NULL },
};
void
printsiginfo(siginfo_t *sip, int verbose)
{
const char *code;
if (sip->si_signo == 0) {
tprints("{}");
return;
}
tprints("{si_signo=");
printsignal(sip->si_signo);
code = xlookup(siginfo_codes, sip->si_code);
if (!code) {
switch (sip->si_signo) {
case SIGTRAP:
code = xlookup(sigtrap_codes, sip->si_code);
break;
case SIGCHLD:
code = xlookup(sigchld_codes, sip->si_code);
break;
case SIGPOLL:
code = xlookup(sigpoll_codes, sip->si_code);
break;
case SIGPROF:
code = xlookup(sigprof_codes, sip->si_code);
break;
case SIGILL:
code = xlookup(sigill_codes, sip->si_code);
break;
#ifdef SIGEMT
case SIGEMT:
code = xlookup(sigemt_codes, sip->si_code);
break;
#endif
case SIGFPE:
code = xlookup(sigfpe_codes, sip->si_code);
break;
case SIGSEGV:
code = xlookup(sigsegv_codes, sip->si_code);
break;
case SIGBUS:
code = xlookup(sigbus_codes, sip->si_code);
break;
}
}
if (code)
tprintf(", si_code=%s", code);
else
tprintf(", si_code=%#x", sip->si_code);
#ifdef SI_NOINFO
if (sip->si_code != SI_NOINFO)
#endif
{
if (sip->si_errno) {
if (sip->si_errno < 0 || sip->si_errno >= nerrnos)
tprintf(", si_errno=%d", sip->si_errno);
else
tprintf(", si_errno=%s",
errnoent[sip->si_errno]);
}
#ifdef SI_FROMUSER
if (SI_FROMUSER(sip)) {
tprintf(", si_pid=%lu, si_uid=%lu",
(unsigned long) sip->si_pid,
(unsigned long) sip->si_uid);
switch (sip->si_code) {
#ifdef SI_USER
case SI_USER:
break;
#endif
#ifdef SI_TKILL
case SI_TKILL:
break;
#endif
#ifdef SI_TIMER
case SI_TIMER:
tprintf(", si_value=%d", sip->si_int);
break;
#endif
#ifdef LINUX
default:
if (!sip->si_ptr)
break;
if (!verbose)
tprints(", ...");
else
tprintf(", si_value={int=%u, ptr=%#lx}",
sip->si_int,
(unsigned long) sip->si_ptr);
break;
#endif
}
}
else
#endif /* SI_FROMUSER */
{
switch (sip->si_signo) {
case SIGCHLD:
tprintf(", si_pid=%ld, si_status=",
(long) sip->si_pid);
if (sip->si_code == CLD_EXITED)
tprintf("%d", sip->si_status);
else
printsignal(sip->si_status);
#if LINUX
if (!verbose)
tprints(", ...");
else
tprintf(", si_utime=%lu, si_stime=%lu",
sip->si_utime,
sip->si_stime);
#endif
break;
case SIGILL: case SIGFPE:
case SIGSEGV: case SIGBUS:
tprintf(", si_addr=%#lx",
(unsigned long) sip->si_addr);
break;
case SIGPOLL:
switch (sip->si_code) {
case POLL_IN: case POLL_OUT: case POLL_MSG:
tprintf(", si_band=%ld",
(long) sip->si_band);
break;
}
break;
#ifdef LINUX
default:
if (sip->si_pid || sip->si_uid)
tprintf(", si_pid=%lu, si_uid=%lu",
(unsigned long) sip->si_pid,
(unsigned long) sip->si_uid);
if (!sip->si_ptr)
break;
if (!verbose)
tprints(", ...");
else {
tprintf(", si_value={int=%u, ptr=%#lx}",
sip->si_int,
(unsigned long) sip->si_ptr);
}
#endif
}
}
}
tprints("}");
}
#endif /* SVR4 || LINUX */
#if defined(SUNOS4) || defined(FREEBSD)
int
sys_sigvec(struct tcb *tcp)
{
struct sigvec sv;
long addr;
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
addr = tcp->u_arg[1];
} else {
addr = tcp->u_arg[2];
}
if (addr == 0)
tprints("NULL");
else if (!verbose(tcp))
tprintf("%#lx", addr);
else if (umove(tcp, addr, &sv) < 0)
tprints("{...}");
else {
switch ((int) sv.sv_handler) {
case (int) SIG_ERR:
tprints("{SIG_ERR}");
break;
case (int) SIG_DFL:
tprints("{SIG_DFL}");
break;
case (int) SIG_IGN:
tprints("{SIG_IGN}");
break;
case (int) SIG_HOLD:
tprints("{SIG_HOLD}");
break;
default:
tprintf("{%#lx, ", (unsigned long) sv.sv_handler);
printsigmask(&sv.sv_mask, 0);
tprints(", ");
printflags(sigvec_flags, sv.sv_flags, "SV_???");
tprints("}");
}
}
if (entering(tcp))
tprints(", ");
return 0;
}
int
sys_sigpause(struct tcb *tcp)
{
if (entering(tcp)) { /* WTA: UD had a bug here: he forgot the braces */
sigset_t sigm;
long_to_sigset(tcp->u_arg[0], &sigm);
printsigmask(&sigm, 0);
}
return 0;
}
int
sys_sigstack(struct tcb *tcp)
{
struct sigstack ss;
long addr;
if (entering(tcp))
addr = tcp->u_arg[0];
else
addr = tcp->u_arg[1];
if (addr == 0)
tprints("NULL");
else if (umove(tcp, addr, &ss) < 0)
tprintf("%#lx", addr);
else {
tprintf("{ss_sp %#lx ", (unsigned long) ss.ss_sp);
tprintf("ss_onstack %s}", ss.ss_onstack ? "YES" : "NO");
}
if (entering(tcp))
tprints(", ");
return 0;
}
int
sys_sigcleanup(struct tcb *tcp)
{
return 0;
}
#endif /* SUNOS4 || FREEBSD */
#ifndef SVR4
int
sys_sigsetmask(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_arg[0], &sigm);
printsigmask(&sigm, 0);
}
else if (!syserror(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_rval, &sigm);
tcp->auxstr = sprintsigmask("old mask ", &sigm, 0);
return RVAL_HEX | RVAL_STR;
}
return 0;
}
#if defined(SUNOS4) || defined(FREEBSD)
int
sys_sigblock(struct tcb *tcp)
{
return sys_sigsetmask(tcp);
}
#endif /* SUNOS4 || FREEBSD */
#endif /* !SVR4 */
#ifdef HAVE_SIGACTION
#ifdef LINUX
struct old_sigaction {
__sighandler_t __sa_handler;
unsigned long sa_mask;
unsigned long sa_flags;
void (*sa_restorer)(void);
};
#define SA_HANDLER __sa_handler
#endif /* LINUX */
#ifndef SA_HANDLER
#define SA_HANDLER sa_handler
#endif
int
sys_sigaction(struct tcb *tcp)
{
long addr;
#ifdef LINUX
sigset_t sigset;
struct old_sigaction sa;
#else
struct sigaction sa;
#endif
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
addr = tcp->u_arg[1];
} else
addr = tcp->u_arg[2];
if (addr == 0)
tprints("NULL");
else if (!verbose(tcp))
tprintf("%#lx", addr);
else if (umove(tcp, addr, &sa) < 0)
tprints("{...}");
else {
/* Architectures using function pointers, like
* hppa, may need to manipulate the function pointer
* to compute the result of a comparison. However,
* the SA_HANDLER function pointer exists only in
* the address space of the traced process, and can't
* be manipulated by strace. In order to prevent the
* compiler from generating code to manipulate
* SA_HANDLER we cast the function pointers to long. */
if ((long)sa.SA_HANDLER == (long)SIG_ERR)
tprints("{SIG_ERR, ");
else if ((long)sa.SA_HANDLER == (long)SIG_DFL)
tprints("{SIG_DFL, ");
else if ((long)sa.SA_HANDLER == (long)SIG_IGN)
tprints("{SIG_IGN, ");
else
tprintf("{%#lx, ", (long) sa.SA_HANDLER);
#ifndef LINUX
printsigmask(&sa.sa_mask, 0);
#else
long_to_sigset(sa.sa_mask, &sigset);
printsigmask(&sigset, 0);
#endif
tprints(", ");
printflags(sigact_flags, sa.sa_flags, "SA_???");
#ifdef SA_RESTORER
if (sa.sa_flags & SA_RESTORER)
tprintf(", %p", sa.sa_restorer);
#endif
tprints("}");
}
if (entering(tcp))
tprints(", ");
#ifdef LINUX
else
tprintf(", %#lx", (unsigned long) sa.sa_restorer);
#endif
return 0;
}
int
sys_signal(struct tcb *tcp)
{
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
switch (tcp->u_arg[1]) {
case (long) SIG_ERR:
tprints("SIG_ERR");
break;
case (long) SIG_DFL:
tprints("SIG_DFL");
break;
case (long) SIG_IGN:
tprints("SIG_IGN");
break;
default:
tprintf("%#lx", tcp->u_arg[1]);
}
return 0;
}
else if (!syserror(tcp)) {
switch (tcp->u_rval) {
case (long) SIG_ERR:
tcp->auxstr = "SIG_ERR"; break;
case (long) SIG_DFL:
tcp->auxstr = "SIG_DFL"; break;
case (long) SIG_IGN:
tcp->auxstr = "SIG_IGN"; break;
default:
tcp->auxstr = NULL;
}
return RVAL_HEX | RVAL_STR;
}
return 0;
}
#ifdef SVR4
int
sys_sighold(struct tcb *tcp)
{
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
}
return 0;
}
#endif /* SVR4 */
#endif /* HAVE_SIGACTION */
#ifdef LINUX
int
sys_sigreturn(struct tcb *tcp)
{
#if defined(ARM)
if (entering(tcp)) {
struct pt_regs regs;
struct sigcontext_struct sc;
sigset_t sigm;
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (void *)&regs) == -1)
return 0;
if (umove(tcp, regs.ARM_sp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(S390) || defined(S390X)
if (entering(tcp)) {
long usp;
struct sigcontext_struct sc;
if (upeek(tcp, PT_GPR15, &usp) < 0)
return 0;
if (umove(tcp, usp + __SIGNAL_FRAMESIZE, &sc) < 0)
return 0;
tprints(sprintsigmask(") (mask ", (sigset_t *)&sc.oldmask[0], 0));
}
return 0;
#elif defined(I386)
if (entering(tcp)) {
struct sigcontext_struct sc;
/* Note: on i386, sc is followed on stack by struct fpstate
* and after it an additional u32 extramask[1] which holds
* upper half of the mask. We can fetch it there
* if/when we'd want to display the full mask...
*/
sigset_t sigm;
if (umove(tcp, i386_regs.esp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(IA64)
if (entering(tcp)) {
struct sigcontext sc;
long sp;
sigset_t sigm;
/* offset of sigcontext in the kernel's sigframe structure: */
# define SIGFRAME_SC_OFFSET 0x90
if (upeek(tcp, PT_R12, &sp) < 0)
return 0;
if (umove(tcp, sp + 16 + SIGFRAME_SC_OFFSET, &sc) < 0)
return 0;
sigemptyset(&sigm);
memcpy(&sigm, &sc.sc_mask, NSIG / 8);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(POWERPC)
if (entering(tcp)) {
long esp;
struct sigcontext_struct sc;
sigset_t sigm;
if (upeek(tcp, sizeof(unsigned long) * PT_R1, &esp) < 0)
return 0;
/* Skip dummy stack frame. */
#ifdef POWERPC64
if (current_personality == 0)
esp += 128;
else
esp += 64;
#else
esp += 64;
#endif
if (umove(tcp, esp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(M68K)
if (entering(tcp)) {
long usp;
struct sigcontext sc;
sigset_t sigm;
if (upeek(tcp, 4*PT_USP, &usp) < 0)
return 0;
if (umove(tcp, usp, &sc) < 0)
return 0;
long_to_sigset(sc.sc_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(ALPHA)
if (entering(tcp)) {
long fp;
struct sigcontext_struct sc;
sigset_t sigm;
if (upeek(tcp, REG_FP, &fp) < 0)
return 0;
if (umove(tcp, fp, &sc) < 0)
return 0;
long_to_sigset(sc.sc_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined (SPARC) || defined (SPARC64)
if (entering(tcp)) {
long i1;
struct pt_regs regs;
m_siginfo_t si;
sigset_t sigm;
if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0) {
perror("sigreturn: PTRACE_GETREGS");
return 0;
}
i1 = regs.u_regs[U_REG_O1];
if (umove(tcp, i1, &si) < 0) {
perror("sigreturn: umove");
return 0;
}
long_to_sigset(si.si_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined (LINUX_MIPSN32) || defined (LINUX_MIPSN64)
/* This decodes rt_sigreturn. The 64-bit ABIs do not have
sigreturn. */
if (entering(tcp)) {
long sp;
struct ucontext uc;
sigset_t sigm;
if (upeek(tcp, REG_SP, &sp) < 0)
return 0;
/* There are six words followed by a 128-byte siginfo. */
sp = sp + 6 * 4 + 128;
if (umove(tcp, sp, &uc) < 0)
return 0;
long_to_sigset(*(long *) &uc.uc_sigmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(MIPS)
if (entering(tcp)) {
long sp;
struct pt_regs regs;
m_siginfo_t si;
sigset_t sigm;
if (ptrace(PTRACE_GETREGS, tcp->pid, (char *)&regs, 0) < 0) {
perror("sigreturn: PTRACE_GETREGS");
return 0;
}
sp = regs.regs[29];
if (umove(tcp, sp, &si) < 0)
return 0;
long_to_sigset(si.si_mask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(CRISV10) || defined(CRISV32)
if (entering(tcp)) {
struct sigcontext sc;
long regs[PT_MAX+1];
sigset_t sigm;
if (ptrace(PTRACE_GETREGS, tcp->pid, NULL, (long)regs) < 0) {
perror("sigreturn: PTRACE_GETREGS");
return 0;
}
if (umove(tcp, regs[PT_USP], &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(TILE)
if (entering(tcp)) {
struct ucontext uc;
long sp;
sigset_t sigm;
/* offset of ucontext in the kernel's sigframe structure */
# define SIGFRAME_UC_OFFSET C_ABI_SAVE_AREA_SIZE + sizeof(struct siginfo)
if (upeek(tcp, PTREGS_OFFSET_SP, &sp) < 0)
return 0;
if (umove(tcp, sp + SIGFRAME_UC_OFFSET, &uc) < 0)
return 0;
sigemptyset(&sigm);
memcpy(&sigm, &uc.uc_sigmask, NSIG / 8);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#elif defined(MICROBLAZE)
/* TODO: Verify that this is correct... */
if (entering(tcp)) {
struct sigcontext sc;
long sp;
sigset_t sigm;
/* Read r1, the stack pointer. */
if (upeek(tcp, 1 * 4, &sp) < 0)
return 0;
if (umove(tcp, sp, &sc) < 0)
return 0;
long_to_sigset(sc.oldmask, &sigm);
tprints(sprintsigmask(") (mask ", &sigm, 0));
}
return 0;
#else
#warning No sys_sigreturn() for this architecture
#warning (no problem, just a reminder :-)
return 0;
#endif
}
int
sys_siggetmask(struct tcb *tcp)
{
if (exiting(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_rval, &sigm);
tcp->auxstr = sprintsigmask("mask ", &sigm, 0);
}
return RVAL_HEX | RVAL_STR;
}
int
sys_sigsuspend(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigm;
long_to_sigset(tcp->u_arg[2], &sigm);
printsigmask(&sigm, 0);
}
return 0;
}
#endif /* LINUX */
#if defined(SVR4) || defined(FREEBSD)
int
sys_sigsuspend(struct tcb *tcp)
{
sigset_t sigset;
if (entering(tcp)) {
if (umove(tcp, tcp->u_arg[0], &sigset) < 0)
tprints("[?]");
else
printsigmask(&sigset, 0);
}
return 0;
}
#ifndef FREEBSD
static const struct xlat ucontext_flags[] = {
{ UC_SIGMASK, "UC_SIGMASK" },
{ UC_STACK, "UC_STACK" },
{ UC_CPU, "UC_CPU" },
#ifdef UC_FPU
{ UC_FPU, "UC_FPU" },
#endif
#ifdef UC_INTR
{ UC_INTR, "UC_INTR" },
#endif
{ 0, NULL },
};
#endif /* !FREEBSD */
#endif /* SVR4 || FREEBSD */
#if defined SVR4 || defined LINUX || defined FREEBSD
#if defined LINUX && !defined SS_ONSTACK
#define SS_ONSTACK 1
#define SS_DISABLE 2
#if __GLIBC_MINOR__ == 0
typedef struct
{
__ptr_t ss_sp;
int ss_flags;
size_t ss_size;
} stack_t;
#endif
#endif
#ifdef FREEBSD
#define stack_t struct sigaltstack
#endif
static const struct xlat sigaltstack_flags[] = {
{ SS_ONSTACK, "SS_ONSTACK" },
{ SS_DISABLE, "SS_DISABLE" },
{ 0, NULL },
};
#endif
#ifdef SVR4
static void
printcontext(struct tcb *tcp, ucontext_t *ucp)
{
tprints("{");
if (!abbrev(tcp)) {
tprints("uc_flags=");
printflags(ucontext_flags, ucp->uc_flags, "UC_???");
tprintf(", uc_link=%#lx, ", (unsigned long) ucp->uc_link);
}
tprints("uc_sigmask=");
printsigmask(&ucp->uc_sigmask, 0);
if (!abbrev(tcp)) {
tprintf(", uc_stack={ss_sp=%#lx, ss_size=%d, ss_flags=",
(unsigned long) ucp->uc_stack.ss_sp,
ucp->uc_stack.ss_size);
printflags(sigaltstack_flags, ucp->uc_stack.ss_flags, "SS_???");
tprints("}");
}
tprints(", ...}");
}
int
sys_getcontext(struct tcb *tcp)
{
ucontext_t uc;
if (exiting(tcp)) {
if (tcp->u_error)
tprintf("%#lx", tcp->u_arg[0]);
else if (!tcp->u_arg[0])
tprints("NULL");
else if (umove(tcp, tcp->u_arg[0], &uc) < 0)
tprints("{...}");
else
printcontext(tcp, &uc);
}
return 0;
}
int
sys_setcontext(struct tcb *tcp)
{
ucontext_t uc;
if (entering(tcp)) {
if (!tcp->u_arg[0])
tprints("NULL");
else if (umove(tcp, tcp->u_arg[0], &uc) < 0)
tprints("{...}");
else
printcontext(tcp, &uc);
}
else {
tcp->u_rval = tcp->u_error = 0;
if (tcp->u_arg[0] == 0)
return 0;
return RVAL_NONE;
}
return 0;
}
#endif /* SVR4 */
#if defined(LINUX) || defined(FREEBSD)
static int
print_stack_t(struct tcb *tcp, unsigned long addr)
{
stack_t ss;
if (umove(tcp, addr, &ss) < 0)
return -1;
tprintf("{ss_sp=%#lx, ss_flags=", (unsigned long) ss.ss_sp);
printflags(sigaltstack_flags, ss.ss_flags, "SS_???");
tprintf(", ss_size=%lu}", (unsigned long) ss.ss_size);
return 0;
}
int
sys_sigaltstack(struct tcb *tcp)
{
if (entering(tcp)) {
if (tcp->u_arg[0] == 0)
tprints("NULL");
else if (print_stack_t(tcp, tcp->u_arg[0]) < 0)
return -1;
}
else {
tprints(", ");
if (tcp->u_arg[1] == 0)
tprints("NULL");
else if (print_stack_t(tcp, tcp->u_arg[1]) < 0)
return -1;
}
return 0;
}
#endif
#ifdef HAVE_SIGACTION
int
sys_sigprocmask(struct tcb *tcp)
{
#ifdef ALPHA
if (entering(tcp)) {
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
printsigmask(tcp->u_arg[1], 0);
}
else if (!syserror(tcp)) {
tcp->auxstr = sprintsigmask("old mask ", tcp->u_rval, 0);
return RVAL_HEX | RVAL_STR;
}
#else /* !ALPHA */
if (entering(tcp)) {
#ifdef SVR4
if (tcp->u_arg[0] == 0)
tprints("0");
else
#endif /* SVR4 */
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
print_sigset(tcp, tcp->u_arg[1], 0);
tprints(", ");
}
else {
if (!tcp->u_arg[2])
tprints("NULL");
else if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[2]);
else
print_sigset(tcp, tcp->u_arg[2], 0);
}
#endif /* !ALPHA */
return 0;
}
#endif /* HAVE_SIGACTION */
int
sys_kill(struct tcb *tcp)
{
if (entering(tcp)) {
long pid = tcp->u_arg[0];
#if SUPPORTED_PERSONALITIES > 1
/* Sign-extend a 32-bit value when that's what it is. */
if (personality_wordsize[current_personality] < sizeof pid)
pid = (long) (int) pid;
#endif
tprintf("%ld, %s", pid, signame(tcp->u_arg[1]));
}
return 0;
}
#if defined(FREEBSD) || defined(SUNOS4)
int
sys_killpg(struct tcb *tcp)
{
return sys_kill(tcp);
}
#endif /* FREEBSD || SUNOS4 */
#ifdef LINUX
int
sys_tgkill(struct tcb *tcp)
{
if (entering(tcp)) {
tprintf("%ld, %ld, %s",
tcp->u_arg[0], tcp->u_arg[1], signame(tcp->u_arg[2]));
}
return 0;
}
#endif
int
sys_sigpending(struct tcb *tcp)
{
sigset_t sigset;
if (exiting(tcp)) {
if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[0]);
else if (copy_sigset(tcp, tcp->u_arg[0], &sigset) < 0)
tprints("[?]");
else
printsigmask(&sigset, 0);
}
return 0;
}
#ifdef SVR4
int sys_sigwait(struct tcb *tcp)
{
sigset_t sigset;
if (entering(tcp)) {
if (copy_sigset(tcp, tcp->u_arg[0], &sigset) < 0)
tprints("[?]");
else
printsigmask(&sigset, 0);
}
else {
if (!syserror(tcp)) {
tcp->auxstr = signalent[tcp->u_rval];
return RVAL_DECIMAL | RVAL_STR;
}
}
return 0;
}
#endif /* SVR4 */
#ifdef LINUX
int
sys_rt_sigprocmask(struct tcb *tcp)
{
sigset_t sigset;
/* Note: arg[3] is the length of the sigset. */
if (entering(tcp)) {
printxval(sigprocmaskcmds, tcp->u_arg[0], "SIG_???");
tprints(", ");
if (!tcp->u_arg[1])
tprints("NULL, ");
else if (copy_sigset_len(tcp, tcp->u_arg[1], &sigset, tcp->u_arg[3]) < 0)
tprintf("%#lx, ", tcp->u_arg[1]);
else {
printsigmask(&sigset, 1);
tprints(", ");
}
}
else {
if (!tcp->u_arg[2])
tprints("NULL");
else if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[2]);
else if (copy_sigset_len(tcp, tcp->u_arg[2], &sigset, tcp->u_arg[3]) < 0)
tprints("[?]");
else
printsigmask(&sigset, 1);
tprintf(", %lu", tcp->u_arg[3]);
}
return 0;
}
/* Structure describing the action to be taken when a signal arrives. */
struct new_sigaction
{
__sighandler_t __sa_handler;
unsigned long sa_flags;
void (*sa_restorer) (void);
/* Kernel treats sa_mask as an array of longs. */
unsigned long sa_mask[NSIG / sizeof(long) ? NSIG / sizeof(long) : 1];
};
/* Same for i386-on-x86_64 and similar cases */
struct new_sigaction32
{
uint32_t __sa_handler;
uint32_t sa_flags;
uint32_t sa_restorer;
uint32_t sa_mask[2 * (NSIG / sizeof(long) ? NSIG / sizeof(long) : 1)];
};
int
sys_rt_sigaction(struct tcb *tcp)
{
struct new_sigaction sa;
sigset_t sigset;
long addr;
int r;
if (entering(tcp)) {
printsignal(tcp->u_arg[0]);
tprints(", ");
addr = tcp->u_arg[1];
} else
addr = tcp->u_arg[2];
if (addr == 0) {
tprints("NULL");
goto after_sa;
}
if (!verbose(tcp)) {
tprintf("%#lx", addr);
goto after_sa;
}
#if SUPPORTED_PERSONALITIES > 1
if (personality_wordsize[current_personality] != sizeof(sa.sa_flags)
&& personality_wordsize[current_personality] == 4
) {
struct new_sigaction32 sa32;
r = umove(tcp, addr, &sa32);
if (r >= 0) {
memset(&sa, 0, sizeof(sa));
sa.__sa_handler = (void*)(unsigned long)sa32.__sa_handler;
sa.sa_flags = sa32.sa_flags;
sa.sa_restorer = (void*)(unsigned long)sa32.sa_restorer;
/* Kernel treats sa_mask as an array of longs.
* For 32-bit process, "long" is uint32_t, thus, for example,
* 32th bit in sa_mask will end up as bit 0 in sa_mask[1].
* But for (64-bit) kernel, 32th bit in sa_mask is
* 32th bit in 0th (64-bit) long!
* For little-endian, it's the same.
* For big-endian, we swap 32-bit words.
*/
sa.sa_mask[0] = sa32.sa_mask[0] + ((long)(sa32.sa_mask[1]) << 32);
}
} else
#endif
{
r = umove(tcp, addr, &sa);
}
if (r < 0) {
tprints("{...}");
goto after_sa;
}
/* Architectures using function pointers, like
* hppa, may need to manipulate the function pointer
* to compute the result of a comparison. However,
* the SA_HANDLER function pointer exists only in
* the address space of the traced process, and can't
* be manipulated by strace. In order to prevent the
* compiler from generating code to manipulate
* SA_HANDLER we cast the function pointers to long. */
if ((long)sa.__sa_handler == (long)SIG_ERR)
tprints("{SIG_ERR, ");
else if ((long)sa.__sa_handler == (long)SIG_DFL)
tprints("{SIG_DFL, ");
else if ((long)sa.__sa_handler == (long)SIG_IGN)
tprints("{SIG_IGN, ");
else
tprintf("{%#lx, ", (long) sa.__sa_handler);
/* Questionable code below.
* Kernel won't handle sys_rt_sigaction
* with wrong sigset size (just returns EINVAL)
* therefore tcp->u_arg[3(4)] _must_ be NSIG / 8 here,
* and we always use smaller memcpy. */
sigemptyset(&sigset);
#ifdef LINUXSPARC
if (tcp->u_arg[4] <= sizeof(sigset))
memcpy(&sigset, &sa.sa_mask, tcp->u_arg[4]);
#else
if (tcp->u_arg[3] <= sizeof(sigset))
memcpy(&sigset, &sa.sa_mask, tcp->u_arg[3]);
#endif
else
memcpy(&sigset, &sa.sa_mask, sizeof(sigset));
printsigmask(&sigset, 1);
tprints(", ");
printflags(sigact_flags, sa.sa_flags, "SA_???");
#ifdef SA_RESTORER
if (sa.sa_flags & SA_RESTORER)
tprintf(", %p", sa.sa_restorer);
#endif
tprints("}");
after_sa:
if (entering(tcp))
tprints(", ");
else
#ifdef LINUXSPARC
tprintf(", %#lx, %lu", tcp->u_arg[3], tcp->u_arg[4]);
#elif defined(ALPHA)
tprintf(", %lu, %#lx", tcp->u_arg[3], tcp->u_arg[4]);
#else
tprintf(", %lu", tcp->u_arg[3]);
#endif
return 0;
}
int
sys_rt_sigpending(struct tcb *tcp)
{
sigset_t sigset;
if (exiting(tcp)) {
if (syserror(tcp))
tprintf("%#lx", tcp->u_arg[0]);
else if (copy_sigset_len(tcp, tcp->u_arg[0],
&sigset, tcp->u_arg[1]) < 0)
tprints("[?]");
else
printsigmask(&sigset, 1);
}
return 0;
}
int
sys_rt_sigsuspend(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigm;
if (copy_sigset_len(tcp, tcp->u_arg[0], &sigm, tcp->u_arg[1]) < 0)
tprints("[?]");
else
printsigmask(&sigm, 1);
}
return 0;
}
int
sys_rt_sigqueueinfo(struct tcb *tcp)
{
if (entering(tcp)) {
siginfo_t si;
tprintf("%lu, ", tcp->u_arg[0]);
printsignal(tcp->u_arg[1]);
tprints(", ");
if (umove(tcp, tcp->u_arg[2], &si) < 0)
tprintf("%#lx", tcp->u_arg[2]);
else
printsiginfo(&si, verbose(tcp));
}
return 0;
}
int sys_rt_sigtimedwait(struct tcb *tcp)
{
if (entering(tcp)) {
sigset_t sigset;
if (copy_sigset_len(tcp, tcp->u_arg[0],
&sigset, tcp->u_arg[3]) < 0)
tprints("[?]");
else
printsigmask(&sigset, 1);
tprints(", ");
/* This is the only "return" parameter, */
if (tcp->u_arg[1] != 0)
return 0;
/* ... if it's NULL, can decode all on entry */
tprints("NULL, ");
}
else if (tcp->u_arg[1] != 0) {
/* syscall exit, and u_arg[1] wasn't NULL */
if (syserror(tcp))
tprintf("%#lx, ", tcp->u_arg[1]);
else {
siginfo_t si;
if (umove(tcp, tcp->u_arg[1], &si) < 0)
tprintf("%#lx, ", tcp->u_arg[1]);
else {
printsiginfo(&si, verbose(tcp));
tprints(", ");
}
}
}
else {
/* syscall exit, and u_arg[1] was NULL */
return 0;
}
print_timespec(tcp, tcp->u_arg[2]);
tprintf(", %d", (int) tcp->u_arg[3]);
return 0;
};
int
sys_restart_syscall(struct tcb *tcp)
{
if (entering(tcp))
tprints("<... resuming interrupted call ...>");
return 0;
}
static int
do_signalfd(struct tcb *tcp, int flags_arg)
{
if (entering(tcp)) {
printfd(tcp, tcp->u_arg[0]);
tprints(", ");
print_sigset(tcp, tcp->u_arg[1], 1);
tprintf(", %lu", tcp->u_arg[2]);
if (flags_arg >= 0) {
tprints(", ");
printflags(open_mode_flags, tcp->u_arg[flags_arg], "O_???");
}
}
return 0;
}
int
sys_signalfd(struct tcb *tcp)
{
return do_signalfd(tcp, -1);
}
int
sys_signalfd4(struct tcb *tcp)
{
return do_signalfd(tcp, 3);
}
#endif /* LINUX */