blob: b8bbf49c0c8235efd3e9adb14a01b4172c08911f [file] [log] [blame]
/*
* Copyright (c) 1991, 1992 Paul Kranenburg <pk@cs.few.eur.nl>
* Copyright (c) 1993 Branko Lankester <branko@hacktic.nl>
* Copyright (c) 1993, 1994, 1995, 1996 Rick Sladkey <jrs@world.std.com>
* Copyright (c) 1996-1999 Wichert Akkerman <wichert@cistron.nl>
* Copyright (c) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
* Linux for s390 port by D.J. Barrow
* <barrow_dj@mail.yahoo.com,djbarrow@de.ibm.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "defs.h"
#include <sys/param.h>
#include <fcntl.h>
#if HAVE_SYS_XATTR_H
# include <sys/xattr.h>
#endif
#include <sys/uio.h>
#include "ptrace.h"
#include "regs.h"
int
string_to_uint(const char *str)
{
char *error;
long value;
if (!*str)
return -1;
errno = 0;
value = strtol(str, &error, 10);
if (errno || *error || value < 0 || (long)(int)value != value)
return -1;
return (int)value;
}
int
tv_nz(const struct timeval *a)
{
return a->tv_sec || a->tv_usec;
}
int
tv_cmp(const struct timeval *a, const struct timeval *b)
{
if (a->tv_sec < b->tv_sec
|| (a->tv_sec == b->tv_sec && a->tv_usec < b->tv_usec))
return -1;
if (a->tv_sec > b->tv_sec
|| (a->tv_sec == b->tv_sec && a->tv_usec > b->tv_usec))
return 1;
return 0;
}
double
tv_float(const struct timeval *tv)
{
return tv->tv_sec + tv->tv_usec/1000000.0;
}
void
tv_add(struct timeval *tv, const struct timeval *a, const struct timeval *b)
{
tv->tv_sec = a->tv_sec + b->tv_sec;
tv->tv_usec = a->tv_usec + b->tv_usec;
if (tv->tv_usec >= 1000000) {
tv->tv_sec++;
tv->tv_usec -= 1000000;
}
}
void
tv_sub(struct timeval *tv, const struct timeval *a, const struct timeval *b)
{
tv->tv_sec = a->tv_sec - b->tv_sec;
tv->tv_usec = a->tv_usec - b->tv_usec;
if (((long) tv->tv_usec) < 0) {
tv->tv_sec--;
tv->tv_usec += 1000000;
}
}
void
tv_div(struct timeval *tv, const struct timeval *a, int n)
{
tv->tv_usec = (a->tv_sec % n * 1000000 + a->tv_usec + n / 2) / n;
tv->tv_sec = a->tv_sec / n + tv->tv_usec / 1000000;
tv->tv_usec %= 1000000;
}
void
tv_mul(struct timeval *tv, const struct timeval *a, int n)
{
tv->tv_usec = a->tv_usec * n;
tv->tv_sec = a->tv_sec * n + tv->tv_usec / 1000000;
tv->tv_usec %= 1000000;
}
const char *
xlookup(const struct xlat *xlat, const unsigned int val)
{
for (; xlat->str != NULL; xlat++)
if (xlat->val == val)
return xlat->str;
return NULL;
}
static int
xlat_bsearch_compare(const void *a, const void *b)
{
const unsigned int val1 = (const unsigned long) a;
const unsigned int val2 = ((const struct xlat *) b)->val;
return (val1 > val2) ? 1 : (val1 < val2) ? -1 : 0;
}
const char *
xlat_search(const struct xlat *xlat, const size_t nmemb, const unsigned int val)
{
const struct xlat *e =
bsearch((const void*) (const unsigned long) val,
xlat, nmemb, sizeof(*xlat), xlat_bsearch_compare);
return e ? e->str : NULL;
}
#if !defined HAVE_STPCPY
char *
stpcpy(char *dst, const char *src)
{
while ((*dst = *src++) != '\0')
dst++;
return dst;
}
#endif
/* Find a next bit which is set.
* Starts testing at cur_bit.
* Returns -1 if no more bits are set.
*
* We never touch bytes we don't need to.
* On big-endian, array is assumed to consist of
* current_wordsize wide words: for example, is current_wordsize is 4,
* the bytes are walked in 3,2,1,0, 7,6,5,4, 11,10,9,8 ... sequence.
* On little-endian machines, word size is immaterial.
*/
int
next_set_bit(const void *bit_array, unsigned cur_bit, unsigned size_bits)
{
const unsigned endian = 1;
int little_endian = *(char*)&endian;
const uint8_t *array = bit_array;
unsigned pos = cur_bit / 8;
unsigned pos_xor_mask = little_endian ? 0 : current_wordsize-1;
for (;;) {
uint8_t bitmask;
uint8_t cur_byte;
if (cur_bit >= size_bits)
return -1;
cur_byte = array[pos ^ pos_xor_mask];
if (cur_byte == 0) {
cur_bit = (cur_bit + 8) & (-8);
pos++;
continue;
}
bitmask = 1 << (cur_bit & 7);
for (;;) {
if (cur_byte & bitmask)
return cur_bit;
cur_bit++;
if (cur_bit >= size_bits)
return -1;
bitmask <<= 1;
/* This check *can't be* optimized out: */
if (bitmask == 0)
break;
}
pos++;
}
}
/*
* Print entry in struct xlat table, if there.
*/
void
printxval(const struct xlat *xlat, const unsigned int val, const char *dflt)
{
const char *str = xlookup(xlat, val);
if (str)
tprints(str);
else
tprintf("%#x /* %s */", val, dflt);
}
/*
* Fetch 64bit argument at position arg_no and
* return the index of the next argument.
*/
int
getllval(struct tcb *tcp, unsigned long long *val, int arg_no)
{
#if SIZEOF_LONG > 4 && SIZEOF_LONG == SIZEOF_LONG_LONG
# if SUPPORTED_PERSONALITIES > 1
if (current_wordsize > 4) {
# endif
*val = tcp->u_arg[arg_no];
arg_no++;
# if SUPPORTED_PERSONALITIES > 1
} else {
# if defined(AARCH64) || defined(POWERPC64)
/* Align arg_no to the next even number. */
arg_no = (arg_no + 1) & 0xe;
# endif /* AARCH64 || POWERPC64 */
*val = LONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]);
arg_no += 2;
}
# endif /* SUPPORTED_PERSONALITIES > 1 */
#elif SIZEOF_LONG > 4
# error Unsupported configuration: SIZEOF_LONG > 4 && SIZEOF_LONG_LONG > SIZEOF_LONG
#elif defined LINUX_MIPSN32
*val = tcp->ext_arg[arg_no];
arg_no++;
#elif defined X32
if (current_personality == 0) {
*val = tcp->ext_arg[arg_no];
arg_no++;
} else {
*val = LONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]);
arg_no += 2;
}
#else
# if defined __ARM_EABI__ || \
defined LINUX_MIPSO32 || \
defined POWERPC || \
defined XTENSA
/* Align arg_no to the next even number. */
arg_no = (arg_no + 1) & 0xe;
# endif
*val = LONG_LONG(tcp->u_arg[arg_no], tcp->u_arg[arg_no + 1]);
arg_no += 2;
#endif
return arg_no;
}
/*
* Print 64bit argument at position arg_no and
* return the index of the next argument.
*/
int
printllval(struct tcb *tcp, const char *format, int arg_no)
{
unsigned long long val = 0;
arg_no = getllval(tcp, &val, arg_no);
tprintf(format, val);
return arg_no;
}
/*
* Interpret `xlat' as an array of flags
* print the entries whose bits are on in `flags'
* return # of flags printed.
*/
void
addflags(const struct xlat *xlat, int flags)
{
for (; xlat->str; xlat++) {
if (xlat->val && (flags & xlat->val) == xlat->val) {
tprintf("|%s", xlat->str);
flags &= ~xlat->val;
}
}
if (flags) {
tprintf("|%#x", flags);
}
}
/*
* Interpret `xlat' as an array of flags.
* Print to static string the entries whose bits are on in `flags'
* Return static string.
*/
const char *
sprintflags(const char *prefix, const struct xlat *xlat, int flags)
{
static char outstr[1024];
char *outptr;
int found = 0;
outptr = stpcpy(outstr, prefix);
for (; xlat->str; xlat++) {
if ((flags & xlat->val) == xlat->val) {
if (found)
*outptr++ = '|';
outptr = stpcpy(outptr, xlat->str);
found = 1;
flags &= ~xlat->val;
if (!flags)
break;
}
}
if (flags) {
if (found)
*outptr++ = '|';
outptr += sprintf(outptr, "%#x", flags);
}
return outstr;
}
int
printflags(const struct xlat *xlat, int flags, const char *dflt)
{
int n;
const char *sep;
if (flags == 0 && xlat->val == 0) {
tprints(xlat->str);
return 1;
}
sep = "";
for (n = 0; xlat->str; xlat++) {
if (xlat->val && (flags & xlat->val) == xlat->val) {
tprintf("%s%s", sep, xlat->str);
flags &= ~xlat->val;
sep = "|";
n++;
}
}
if (n) {
if (flags) {
tprintf("%s%#x", sep, flags);
n++;
}
} else {
if (flags) {
tprintf("%#x", flags);
if (dflt)
tprintf(" /* %s */", dflt);
} else {
if (dflt)
tprints("0");
}
}
return n;
}
void
printnum_long(struct tcb *tcp, long addr, const char *fmt)
{
long num;
if (!addr) {
tprints("NULL");
return;
}
if (umove(tcp, addr, &num) < 0) {
tprintf("%#lx", addr);
return;
}
tprints("[");
tprintf(fmt, num);
tprints("]");
}
void
printnum_int(struct tcb *tcp, long addr, const char *fmt)
{
int num;
if (!addr) {
tprints("NULL");
return;
}
if (umove(tcp, addr, &num) < 0) {
tprintf("%#lx", addr);
return;
}
tprints("[");
tprintf(fmt, num);
tprints("]");
}
const char *
sprinttime(time_t t)
{
struct tm *tmp;
static char buf[sizeof(int) * 3 * 6];
if (t == 0) {
strcpy(buf, "0");
return buf;
}
tmp = localtime(&t);
if (tmp)
snprintf(buf, sizeof buf, "%02d/%02d/%02d-%02d:%02d:%02d",
tmp->tm_year + 1900, tmp->tm_mon + 1, tmp->tm_mday,
tmp->tm_hour, tmp->tm_min, tmp->tm_sec);
else
snprintf(buf, sizeof buf, "%lu", (unsigned long) t);
return buf;
}
static char *
getfdproto(struct tcb *tcp, int fd, char *buf, unsigned bufsize)
{
#if HAVE_SYS_XATTR_H
ssize_t r;
char path[sizeof("/proc/%u/fd/%u") + 2 * sizeof(int)*3];
if (fd < 0)
return NULL;
sprintf(path, "/proc/%u/fd/%u", tcp->pid, fd);
r = getxattr(path, "system.sockprotoname", buf, bufsize - 1);
if (r <= 0)
return NULL;
else {
/*
* This is a protection for the case when the kernel
* side does not append a null byte to the buffer.
*/
buf[r] = '\0';
return buf;
}
#else
return NULL;
#endif
}
void
printfd(struct tcb *tcp, int fd)
{
char path[PATH_MAX + 1];
if (show_fd_path && getfdpath(tcp, fd, path, sizeof(path)) >= 0) {
static const char socket_prefix[] = "socket:[";
const size_t socket_prefix_len = sizeof(socket_prefix) - 1;
const size_t path_len = strlen(path);
tprintf("%d<", fd);
if (show_fd_path > 1 &&
strncmp(path, socket_prefix, socket_prefix_len) == 0 &&
path[path_len - 1] == ']') {
unsigned long inodenr;
#define PROTO_NAME_LEN 32
char proto_buf[PROTO_NAME_LEN];
const char *proto =
getfdproto(tcp, fd, proto_buf, PROTO_NAME_LEN);
inodenr = strtoul(path + socket_prefix_len, NULL, 10);
if (!print_sockaddr_by_inode(inodenr, proto)) {
if (proto)
tprintf("%s:[%lu]", proto, inodenr);
else
tprints(path);
}
} else {
print_quoted_string(path, path_len,
QUOTE_OMIT_LEADING_TRAILING_QUOTES);
}
tprints(">");
} else
tprintf("%d", fd);
}
/*
* Quote string `instr' of length `size'
* Write up to (3 + `size' * 4) bytes to `outstr' buffer.
*
* If QUOTE_0_TERMINATED `style' flag is set,
* treat `instr' as a NUL-terminated string,
* checking up to (`size' + 1) bytes of `instr'.
*
* If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set,
* do not add leading and trailing quoting symbols.
*
* Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise.
* Note that if QUOTE_0_TERMINATED is not set, always returns 1.
*/
static int
string_quote(const char *instr, char *outstr, const unsigned int size,
const unsigned int style)
{
const unsigned char *ustr = (const unsigned char *) instr;
char *s = outstr;
unsigned int i;
int usehex, c, eol;
if (style & QUOTE_0_TERMINATED)
eol = '\0';
else
eol = 0x100; /* this can never match a char */
usehex = 0;
if (xflag > 1)
usehex = 1;
else if (xflag) {
/* Check for presence of symbol which require
to hex-quote the whole string. */
for (i = 0; i < size; ++i) {
c = ustr[i];
/* Check for NUL-terminated string. */
if (c == eol)
break;
/* Force hex unless c is printable or whitespace */
if (c > 0x7e) {
usehex = 1;
break;
}
/* In ASCII isspace is only these chars: "\t\n\v\f\r".
* They happen to have ASCII codes 9,10,11,12,13.
*/
if (c < ' ' && (unsigned)(c - 9) >= 5) {
usehex = 1;
break;
}
}
}
if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES))
*s++ = '\"';
if (usehex) {
/* Hex-quote the whole string. */
for (i = 0; i < size; ++i) {
c = ustr[i];
/* Check for NUL-terminated string. */
if (c == eol)
goto asciz_ended;
*s++ = '\\';
*s++ = 'x';
*s++ = "0123456789abcdef"[c >> 4];
*s++ = "0123456789abcdef"[c & 0xf];
}
} else {
for (i = 0; i < size; ++i) {
c = ustr[i];
/* Check for NUL-terminated string. */
if (c == eol)
goto asciz_ended;
switch (c) {
case '\"': case '\\':
*s++ = '\\';
*s++ = c;
break;
case '\f':
*s++ = '\\';
*s++ = 'f';
break;
case '\n':
*s++ = '\\';
*s++ = 'n';
break;
case '\r':
*s++ = '\\';
*s++ = 'r';
break;
case '\t':
*s++ = '\\';
*s++ = 't';
break;
case '\v':
*s++ = '\\';
*s++ = 'v';
break;
default:
if (c >= ' ' && c <= 0x7e)
*s++ = c;
else {
/* Print \octal */
*s++ = '\\';
if (i + 1 < size
&& ustr[i + 1] >= '0'
&& ustr[i + 1] <= '9'
) {
/* Print \ooo */
*s++ = '0' + (c >> 6);
*s++ = '0' + ((c >> 3) & 0x7);
} else {
/* Print \[[o]o]o */
if ((c >> 3) != 0) {
if ((c >> 6) != 0)
*s++ = '0' + (c >> 6);
*s++ = '0' + ((c >> 3) & 0x7);
}
}
*s++ = '0' + (c & 0x7);
}
break;
}
}
}
if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES))
*s++ = '\"';
*s = '\0';
/* Return zero if we printed entire ASCIZ string (didn't truncate it) */
if (style & QUOTE_0_TERMINATED && ustr[i] == '\0') {
/* We didn't see NUL yet (otherwise we'd jump to 'asciz_ended')
* but next char is NUL.
*/
return 0;
}
return 1;
asciz_ended:
if (!(style & QUOTE_OMIT_LEADING_TRAILING_QUOTES))
*s++ = '\"';
*s = '\0';
/* Return zero: we printed entire ASCIZ string (didn't truncate it) */
return 0;
}
#ifndef ALLOCA_CUTOFF
# define ALLOCA_CUTOFF 4032
#endif
#define use_alloca(n) ((n) <= ALLOCA_CUTOFF)
/*
* Quote string `str' of length `size' and print the result.
*
* If QUOTE_0_TERMINATED `style' flag is set,
* treat `str' as a NUL-terminated string and
* quote at most (`size' - 1) bytes.
*
* If QUOTE_OMIT_LEADING_TRAILING_QUOTES `style' flag is set,
* do not add leading and trailing quoting symbols.
*
* Returns 0 if QUOTE_0_TERMINATED is set and NUL was seen, 1 otherwise.
* Note that if QUOTE_0_TERMINATED is not set, always returns 1.
*/
int
print_quoted_string(const char *str, unsigned int size,
const unsigned int style)
{
char *buf;
char *outstr;
unsigned int alloc_size;
int rc;
if (size && style & QUOTE_0_TERMINATED)
--size;
alloc_size = 4 * size;
if (alloc_size / 4 != size) {
error_msg("Out of memory");
tprints("???");
return -1;
}
alloc_size += 1 + (style & QUOTE_OMIT_LEADING_TRAILING_QUOTES ? 0 : 2);
if (use_alloca(alloc_size)) {
outstr = alloca(alloc_size);
buf = NULL;
} else {
outstr = buf = malloc(alloc_size);
if (!buf) {
error_msg("Out of memory");
tprints("???");
return -1;
}
}
rc = string_quote(str, outstr, size, style);
tprints(outstr);
free(buf);
return rc;
}
/*
* Print path string specified by address `addr' and length `n'.
* If path length exceeds `n', append `...' to the output.
*/
void
printpathn(struct tcb *tcp, long addr, unsigned int n)
{
char path[PATH_MAX + 1];
int nul_seen;
if (!addr) {
tprints("NULL");
return;
}
/* Cap path length to the path buffer size */
if (n > sizeof path - 1)
n = sizeof path - 1;
/* Fetch one byte more to find out whether path length > n. */
nul_seen = umovestr(tcp, addr, n + 1, path);
if (nul_seen < 0)
tprintf("%#lx", addr);
else {
path[n++] = '\0';
print_quoted_string(path, n, QUOTE_0_TERMINATED);
if (!nul_seen)
tprints("...");
}
}
void
printpath(struct tcb *tcp, long addr)
{
/* Size must correspond to char path[] size in printpathn */
printpathn(tcp, addr, PATH_MAX);
}
/*
* Print string specified by address `addr' and length `len'.
* If `len' < 0, treat the string as a NUL-terminated string.
* If string length exceeds `max_strlen', append `...' to the output.
*/
void
printstr(struct tcb *tcp, long addr, long len)
{
static char *str = NULL;
static char *outstr;
unsigned int size;
unsigned int style;
int ellipsis;
if (!addr) {
tprints("NULL");
return;
}
/* Allocate static buffers if they are not allocated yet. */
if (!str) {
unsigned int outstr_size = 4 * max_strlen + /*for quotes and NUL:*/ 3;
if (outstr_size / 4 != max_strlen)
die_out_of_memory();
str = malloc(max_strlen + 1);
if (!str)
die_out_of_memory();
outstr = malloc(outstr_size);
if (!outstr)
die_out_of_memory();
}
size = max_strlen;
if (len == -1) {
/*
* Treat as a NUL-terminated string: fetch one byte more
* because string_quote may look one byte ahead.
*/
if (umovestr(tcp, addr, size + 1, str) < 0) {
tprintf("%#lx", addr);
return;
}
style = QUOTE_0_TERMINATED;
}
else {
if (size > (unsigned long)len)
size = (unsigned long)len;
if (umoven(tcp, addr, size, str) < 0) {
tprintf("%#lx", addr);
return;
}
style = 0;
}
/* If string_quote didn't see NUL and (it was supposed to be ASCIZ str
* or we were requested to print more than -s NUM chars)...
*/
ellipsis = (string_quote(str, outstr, size, style) &&
(len < 0 || (unsigned long) len > max_strlen));
tprints(outstr);
if (ellipsis)
tprints("...");
}
void
dumpiov(struct tcb *tcp, int len, long addr)
{
#if SUPPORTED_PERSONALITIES > 1
union {
struct { u_int32_t base; u_int32_t len; } *iov32;
struct { u_int64_t base; u_int64_t len; } *iov64;
} iovu;
#define iov iovu.iov64
#define sizeof_iov \
(current_wordsize == 4 ? sizeof(*iovu.iov32) : sizeof(*iovu.iov64))
#define iov_iov_base(i) \
(current_wordsize == 4 ? (uint64_t) iovu.iov32[i].base : iovu.iov64[i].base)
#define iov_iov_len(i) \
(current_wordsize == 4 ? (uint64_t) iovu.iov32[i].len : iovu.iov64[i].len)
#else
struct iovec *iov;
#define sizeof_iov sizeof(*iov)
#define iov_iov_base(i) iov[i].iov_base
#define iov_iov_len(i) iov[i].iov_len
#endif
int i;
unsigned size;
size = sizeof_iov * len;
/* Assuming no sane program has millions of iovs */
if ((unsigned)len > 1024*1024 /* insane or negative size? */
|| (iov = malloc(size)) == NULL) {
fprintf(stderr, "Out of memory\n");
return;
}
if (umoven(tcp, addr, size, (char *) iov) >= 0) {
for (i = 0; i < len; i++) {
/* include the buffer number to make it easy to
* match up the trace with the source */
tprintf(" * %lu bytes in buffer %d\n",
(unsigned long)iov_iov_len(i), i);
dumpstr(tcp, (long) iov_iov_base(i),
iov_iov_len(i));
}
}
free(iov);
#undef sizeof_iov
#undef iov_iov_base
#undef iov_iov_len
#undef iov
}
void
dumpstr(struct tcb *tcp, long addr, int len)
{
static int strsize = -1;
static unsigned char *str;
char outbuf[
(
(sizeof(
"xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx xx "
"1234567890123456") + /*in case I'm off by few:*/ 4)
/*align to 8 to make memset easier:*/ + 7) & -8
];
const unsigned char *src;
int i;
memset(outbuf, ' ', sizeof(outbuf));
if (strsize < len + 16) {
free(str);
str = malloc(len + 16);
if (!str) {
strsize = -1;
fprintf(stderr, "Out of memory\n");
return;
}
strsize = len + 16;
}
if (umoven(tcp, addr, len, (char *) str) < 0)
return;
/* Space-pad to 16 bytes */
i = len;
while (i & 0xf)
str[i++] = ' ';
i = 0;
src = str;
while (i < len) {
char *dst = outbuf;
/* Hex dump */
do {
if (i < len) {
*dst++ = "0123456789abcdef"[*src >> 4];
*dst++ = "0123456789abcdef"[*src & 0xf];
}
else {
*dst++ = ' ';
*dst++ = ' ';
}
dst++; /* space is there by memset */
i++;
if ((i & 7) == 0)
dst++; /* space is there by memset */
src++;
} while (i & 0xf);
/* ASCII dump */
i -= 16;
src -= 16;
do {
if (*src >= ' ' && *src < 0x7f)
*dst++ = *src;
else
*dst++ = '.';
src++;
} while (++i & 0xf);
*dst = '\0';
tprintf(" | %05x %s |\n", i - 16, outbuf);
}
}
#ifdef HAVE_PROCESS_VM_READV
/* C library supports this, but the kernel might not. */
static bool process_vm_readv_not_supported = 0;
#else
/* Need to do this since process_vm_readv() is not yet available in libc.
* When libc is be updated, only "static bool process_vm_readv_not_supported"
* line should remain.
*/
#if !defined(__NR_process_vm_readv)
# if defined(I386)
# define __NR_process_vm_readv 347
# elif defined(X86_64)
# define __NR_process_vm_readv 310
# elif defined(POWERPC)
# define __NR_process_vm_readv 351
# endif
#endif
#if defined(__NR_process_vm_readv)
static bool process_vm_readv_not_supported = 0;
/* Have to avoid duplicating with the C library headers. */
static ssize_t strace_process_vm_readv(pid_t pid,
const struct iovec *lvec,
unsigned long liovcnt,
const struct iovec *rvec,
unsigned long riovcnt,
unsigned long flags)
{
return syscall(__NR_process_vm_readv, (long)pid, lvec, liovcnt, rvec, riovcnt, flags);
}
#define process_vm_readv strace_process_vm_readv
#else
static bool process_vm_readv_not_supported = 1;
# define process_vm_readv(...) (errno = ENOSYS, -1)
#endif
#endif /* end of hack */
#define PAGMASK (~(PAGSIZ - 1))
/*
* move `len' bytes of data from process `pid'
* at address `addr' to our space at `laddr'
*/
int
umoven(struct tcb *tcp, long addr, unsigned int len, char *laddr)
{
int pid = tcp->pid;
unsigned int n, m, nread;
union {
long val;
char x[sizeof(long)];
} u;
#if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4
if (current_wordsize < sizeof(addr))
addr &= (1ul << 8 * current_wordsize) - 1;
#endif
if (!process_vm_readv_not_supported) {
struct iovec local[1], remote[1];
int r;
local[0].iov_base = laddr;
remote[0].iov_base = (void*)addr;
local[0].iov_len = remote[0].iov_len = len;
r = process_vm_readv(pid, local, 1, remote, 1, 0);
if ((unsigned int) r == len)
return 0;
if (r >= 0) {
error_msg("umoven: short read (%u < %u) @0x%lx",
(unsigned int) r, len, addr);
return -1;
}
switch (errno) {
case ENOSYS:
process_vm_readv_not_supported = 1;
break;
case ESRCH:
/* the process is gone */
return -1;
case EFAULT: case EIO: case EPERM:
/* address space is inaccessible */
return -1;
default:
/* all the rest is strange and should be reported */
perror_msg("process_vm_readv");
return -1;
}
}
nread = 0;
if (addr & (sizeof(long) - 1)) {
/* addr not a multiple of sizeof(long) */
n = addr & (sizeof(long) - 1); /* residue */
addr &= -sizeof(long); /* aligned address */
errno = 0;
u.val = ptrace(PTRACE_PEEKDATA, pid, (char *) addr, 0);
switch (errno) {
case 0:
break;
case ESRCH: case EINVAL:
/* these could be seen if the process is gone */
return -1;
case EFAULT: case EIO: case EPERM:
/* address space is inaccessible */
return -1;
default:
/* all the rest is strange and should be reported */
perror_msg("umoven: PTRACE_PEEKDATA pid:%d @0x%lx",
pid, addr);
return -1;
}
m = MIN(sizeof(long) - n, len);
memcpy(laddr, &u.x[n], m);
addr += sizeof(long);
laddr += m;
nread += m;
len -= m;
}
while (len) {
errno = 0;
u.val = ptrace(PTRACE_PEEKDATA, pid, (char *) addr, 0);
switch (errno) {
case 0:
break;
case ESRCH: case EINVAL:
/* these could be seen if the process is gone */
return -1;
case EFAULT: case EIO: case EPERM:
/* address space is inaccessible */
if (nread) {
perror_msg("umoven: short read (%u < %u) @0x%lx",
nread, nread + len, addr - nread);
}
return -1;
default:
/* all the rest is strange and should be reported */
perror_msg("umoven: PTRACE_PEEKDATA pid:%d @0x%lx",
pid, addr);
return -1;
}
m = MIN(sizeof(long), len);
memcpy(laddr, u.x, m);
addr += sizeof(long);
laddr += m;
nread += m;
len -= m;
}
return 0;
}
/*
* Like `umove' but make the additional effort of looking
* for a terminating zero byte.
*
* Returns < 0 on error, > 0 if NUL was seen,
* (TODO if useful: return count of bytes including NUL),
* else 0 if len bytes were read but no NUL byte seen.
*
* Note: there is no guarantee we won't overwrite some bytes
* in laddr[] _after_ terminating NUL (but, of course,
* we never write past laddr[len-1]).
*/
int
umovestr(struct tcb *tcp, long addr, unsigned int len, char *laddr)
{
#if SIZEOF_LONG == 4
const unsigned long x01010101 = 0x01010101ul;
const unsigned long x80808080 = 0x80808080ul;
#elif SIZEOF_LONG == 8
const unsigned long x01010101 = 0x0101010101010101ul;
const unsigned long x80808080 = 0x8080808080808080ul;
#else
# error SIZEOF_LONG > 8
#endif
int pid = tcp->pid;
unsigned int n, m, nread;
union {
unsigned long val;
char x[sizeof(long)];
} u;
#if SUPPORTED_PERSONALITIES > 1 && SIZEOF_LONG > 4
if (current_wordsize < sizeof(addr))
addr &= (1ul << 8 * current_wordsize) - 1;
#endif
nread = 0;
if (!process_vm_readv_not_supported) {
struct iovec local[1], remote[1];
local[0].iov_base = laddr;
remote[0].iov_base = (void*)addr;
while (len > 0) {
unsigned int chunk_len;
unsigned int end_in_page;
int r;
/* Don't read kilobytes: most strings are short */
chunk_len = len;
if (chunk_len > 256)
chunk_len = 256;
/* Don't cross pages. I guess otherwise we can get EFAULT
* and fail to notice that terminating NUL lies
* in the existing (first) page.
* (I hope there aren't arches with pages < 4K)
*/
end_in_page = ((addr + chunk_len) & 4095);
if (chunk_len > end_in_page) /* crosses to the next page */
chunk_len -= end_in_page;
local[0].iov_len = remote[0].iov_len = chunk_len;
r = process_vm_readv(pid, local, 1, remote, 1, 0);
if (r > 0) {
if (memchr(local[0].iov_base, '\0', r))
return 1;
local[0].iov_base += r;
remote[0].iov_base += r;
len -= r;
nread += r;
continue;
}
switch (errno) {
case ENOSYS:
process_vm_readv_not_supported = 1;
goto vm_readv_didnt_work;
case ESRCH:
/* the process is gone */
return -1;
case EFAULT: case EIO: case EPERM:
/* address space is inaccessible */
if (nread) {
perror_msg("umovestr: short read (%d < %d) @0x%lx",
nread, nread + len, addr);
}
return -1;
default:
/* all the rest is strange and should be reported */
perror_msg("process_vm_readv");
return -1;
}
}
return 0;
}
vm_readv_didnt_work:
if (addr & (sizeof(long) - 1)) {
/* addr not a multiple of sizeof(long) */
n = addr & (sizeof(long) - 1); /* residue */
addr &= -sizeof(long); /* aligned address */
errno = 0;
u.val = ptrace(PTRACE_PEEKDATA, pid, (char *)addr, 0);
switch (errno) {
case 0:
break;
case ESRCH: case EINVAL:
/* these could be seen if the process is gone */
return -1;
case EFAULT: case EIO: case EPERM:
/* address space is inaccessible */
return -1;
default:
/* all the rest is strange and should be reported */
perror_msg("umovestr: PTRACE_PEEKDATA pid:%d @0x%lx",
pid, addr);
return -1;
}
m = MIN(sizeof(long) - n, len);
memcpy(laddr, &u.x[n], m);
while (n & (sizeof(long) - 1))
if (u.x[n++] == '\0')
return 1;
addr += sizeof(long);
laddr += m;
nread += m;
len -= m;
}
while (len) {
errno = 0;
u.val = ptrace(PTRACE_PEEKDATA, pid, (char *)addr, 0);
switch (errno) {
case 0:
break;
case ESRCH: case EINVAL:
/* these could be seen if the process is gone */
return -1;
case EFAULT: case EIO: case EPERM:
/* address space is inaccessible */
if (nread) {
perror_msg("umovestr: short read (%d < %d) @0x%lx",
nread, nread + len, addr - nread);
}
return -1;
default:
/* all the rest is strange and should be reported */
perror_msg("umovestr: PTRACE_PEEKDATA pid:%d @0x%lx",
pid, addr);
return -1;
}
m = MIN(sizeof(long), len);
memcpy(laddr, u.x, m);
/* "If a NUL char exists in this word" */
if ((u.val - x01010101) & ~u.val & x80808080)
return 1;
addr += sizeof(long);
laddr += m;
nread += m;
len -= m;
}
return 0;
}
int
upeek(int pid, long off, long *res)
{
long val;
errno = 0;
val = ptrace(PTRACE_PEEKUSER, (pid_t)pid, (char *) off, 0);
if (val == -1 && errno) {
if (errno != ESRCH) {
perror_msg("upeek: PTRACE_PEEKUSER pid:%d @0x%lx)", pid, off);
}
return -1;
}
*res = val;
return 0;
}
/* Note! On new kernels (about 2.5.46+), we use PTRACE_O_TRACECLONE
* and PTRACE_O_TRACE[V]FORK for tracing children.
* If you are adding a new arch which is only supported by newer kernels,
* you most likely don't need to add any code below
* beside a dummy "return 0" block in change_syscall().
*/
/*
* These #if's are huge, please indent them correctly.
* It's easy to get confused otherwise.
*/
#include "syscall.h"
#ifndef CLONE_PTRACE
# define CLONE_PTRACE 0x00002000
#endif
#ifndef CLONE_VFORK
# define CLONE_VFORK 0x00004000
#endif
#ifndef CLONE_VM
# define CLONE_VM 0x00000100
#endif
#ifdef IA64
typedef unsigned long *arg_setup_state;
static int
arg_setup(struct tcb *tcp, arg_setup_state *state)
{
unsigned long cfm, sof, sol;
long bsp;
if (ia64_ia32mode) {
/* Satisfy a false GCC warning. */
*state = NULL;
return 0;
}
if (upeek(tcp->pid, PT_AR_BSP, &bsp) < 0)
return -1;
if (upeek(tcp->pid, PT_CFM, (long *) &cfm) < 0)
return -1;
sof = (cfm >> 0) & 0x7f;
sol = (cfm >> 7) & 0x7f;
bsp = (long) ia64_rse_skip_regs((unsigned long *) bsp, -sof + sol);
*state = (unsigned long *) bsp;
return 0;
}
# define arg_finish_change(tcp, state) 0
static int
get_arg0(struct tcb *tcp, arg_setup_state *state, long *valp)
{
int ret;
if (ia64_ia32mode)
ret = upeek(tcp->pid, PT_R11, valp);
else
ret = umoven(tcp,
(unsigned long) ia64_rse_skip_regs(*state, 0),
sizeof(long), (void *) valp);
return ret;
}
static int
get_arg1(struct tcb *tcp, arg_setup_state *state, long *valp)
{
int ret;
if (ia64_ia32mode)
ret = upeek(tcp->pid, PT_R9, valp);
else
ret = umoven(tcp,
(unsigned long) ia64_rse_skip_regs(*state, 1),
sizeof(long), (void *) valp);
return ret;
}
static int
set_arg0(struct tcb *tcp, arg_setup_state *state, long val)
{
int req = PTRACE_POKEDATA;
void *ap;
if (ia64_ia32mode) {
ap = (void *) (intptr_t) PT_R11; /* r11 == EBX */
req = PTRACE_POKEUSER;
} else
ap = ia64_rse_skip_regs(*state, 0);
errno = 0;
ptrace(req, tcp->pid, ap, val);
return errno ? -1 : 0;
}
static int
set_arg1(struct tcb *tcp, arg_setup_state *state, long val)
{
int req = PTRACE_POKEDATA;
void *ap;
if (ia64_ia32mode) {
ap = (void *) (intptr_t) PT_R9; /* r9 == ECX */
req = PTRACE_POKEUSER;
} else
ap = ia64_rse_skip_regs(*state, 1);
errno = 0;
ptrace(req, tcp->pid, ap, val);
return errno ? -1 : 0;
}
/* ia64 does not return the input arguments from functions (and syscalls)
according to ia64 RSE (Register Stack Engine) behavior. */
# define restore_arg0(tcp, state, val) ((void) (state), 0)
# define restore_arg1(tcp, state, val) ((void) (state), 0)
#elif defined(SPARC) || defined(SPARC64)
# if defined(SPARC64)
# undef PTRACE_GETREGS
# define PTRACE_GETREGS PTRACE_GETREGS64
# undef PTRACE_SETREGS
# define PTRACE_SETREGS PTRACE_SETREGS64
# endif
typedef struct pt_regs arg_setup_state;
# define arg_setup(tcp, state) \
(ptrace(PTRACE_GETREGS, (tcp)->pid, (char *) (state), 0))
# define arg_finish_change(tcp, state) \
(ptrace(PTRACE_SETREGS, (tcp)->pid, (char *) (state), 0))
# define get_arg0(tcp, state, valp) (*(valp) = (state)->u_regs[U_REG_O0], 0)
# define get_arg1(tcp, state, valp) (*(valp) = (state)->u_regs[U_REG_O1], 0)
# define set_arg0(tcp, state, val) ((state)->u_regs[U_REG_O0] = (val), 0)
# define set_arg1(tcp, state, val) ((state)->u_regs[U_REG_O1] = (val), 0)
# define restore_arg0(tcp, state, val) 0
#else /* other architectures */
# if defined S390 || defined S390X
/* Note: this is only true for the `clone' system call, which handles
arguments specially. We could as well say that its first two arguments
are swapped relative to other architectures, but that would just be
another #ifdef in the calls. */
# define arg0_offset PT_GPR3
# define arg1_offset PT_ORIGGPR2
# define restore_arg0(tcp, state, val) ((void) (state), 0)
# define restore_arg1(tcp, state, val) ((void) (state), 0)
# define arg0_index 1
# define arg1_index 0
# elif defined(ALPHA) || defined(MIPS)
# define arg0_offset REG_A0
# define arg1_offset (REG_A0+1)
# elif defined(POWERPC)
# define arg0_offset (sizeof(unsigned long)*PT_R3)
# define arg1_offset (sizeof(unsigned long)*PT_R4)
# define restore_arg0(tcp, state, val) ((void) (state), 0)
# elif defined(HPPA)
# define arg0_offset PT_GR26
# define arg1_offset (PT_GR26-4)
# elif defined(X86_64) || defined(X32)
# define arg0_offset ((long)(8*(current_personality ? RBX : RDI)))
# define arg1_offset ((long)(8*(current_personality ? RCX : RSI)))
# elif defined(SH)
# define arg0_offset (4*(REG_REG0+4))
# define arg1_offset (4*(REG_REG0+5))
# elif defined(SH64)
/* ABI defines arg0 & 1 in r2 & r3 */
# define arg0_offset (REG_OFFSET+16)
# define arg1_offset (REG_OFFSET+24)
# define restore_arg0(tcp, state, val) 0
# elif defined CRISV10 || defined CRISV32
# define arg0_offset (4*PT_R11)
# define arg1_offset (4*PT_ORIG_R10)
# define restore_arg0(tcp, state, val) 0
# define restore_arg1(tcp, state, val) 0
# define arg0_index 1
# define arg1_index 0
# else
# define arg0_offset 0
# define arg1_offset 4
# if defined ARM
# define restore_arg0(tcp, state, val) 0
# endif
# endif
typedef int arg_setup_state;
# define arg_setup(tcp, state) (0)
# define arg_finish_change(tcp, state) 0
# define get_arg0(tcp, cookie, valp) (upeek((tcp)->pid, arg0_offset, (valp)))
# define get_arg1(tcp, cookie, valp) (upeek((tcp)->pid, arg1_offset, (valp)))
static int
set_arg0(struct tcb *tcp, void *cookie, long val)
{
return ptrace(PTRACE_POKEUSER, tcp->pid, (char*)arg0_offset, val);
}
static int
set_arg1(struct tcb *tcp, void *cookie, long val)
{
return ptrace(PTRACE_POKEUSER, tcp->pid, (char*)arg1_offset, val);
}
#endif /* architectures */
#ifndef restore_arg0
# define restore_arg0(tcp, state, val) set_arg0((tcp), (state), (val))
#endif
#ifndef restore_arg1
# define restore_arg1(tcp, state, val) set_arg1((tcp), (state), (val))
#endif
#ifndef arg0_index
# define arg0_index 0
# define arg1_index 1
#endif
static int
change_syscall(struct tcb *tcp, arg_setup_state *state, int new)
{
#if defined(I386)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(ORIG_EAX * 4), new) < 0)
return -1;
return 0;
#elif defined(X86_64)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(ORIG_RAX * 8), new) < 0)
return -1;
return 0;
#elif defined(X32)
/* setbpt/clearbpt never used: */
/* X32 is only supported since about linux-3.0.30 */
#elif defined(POWERPC)
if (ptrace(PTRACE_POKEUSER, tcp->pid,
(char*)(sizeof(unsigned long)*PT_R0), new) < 0)
return -1;
return 0;
#elif defined(S390) || defined(S390X)
/* s390 linux after 2.4.7 has a hook in entry.S to allow this */
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_GPR2), new) < 0)
return -1;
return 0;
#elif defined(M68K)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*PT_ORIG_D0), new) < 0)
return -1;
return 0;
#elif defined(SPARC) || defined(SPARC64)
state->u_regs[U_REG_G1] = new;
return 0;
#elif defined(MIPS)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_V0), new) < 0)
return -1;
return 0;
#elif defined(ALPHA)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_A3), new) < 0)
return -1;
return 0;
#elif defined(AVR32)
/* setbpt/clearbpt never used: */
/* AVR32 is only supported since about linux-2.6.19 */
#elif defined(BFIN)
/* setbpt/clearbpt never used: */
/* Blackfin is only supported since about linux-2.6.23 */
#elif defined(IA64)
if (ia64_ia32mode) {
switch (new) {
case 2:
break; /* x86 SYS_fork */
case SYS_clone:
new = 120;
break;
default:
fprintf(stderr, "%s: unexpected syscall %d\n",
__FUNCTION__, new);
return -1;
}
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R1), new) < 0)
return -1;
} else if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_R15), new) < 0)
return -1;
return 0;
#elif defined(HPPA)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(PT_GR20), new) < 0)
return -1;
return 0;
#elif defined(SH)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*(REG_REG0+3)), new) < 0)
return -1;
return 0;
#elif defined(SH64)
/* Top half of reg encodes the no. of args n as 0x1n.
Assume 0 args as kernel never actually checks... */
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(REG_SYSCALL),
0x100000 | new) < 0)
return -1;
return 0;
#elif defined(CRISV10) || defined(CRISV32)
if (ptrace(PTRACE_POKEUSER, tcp->pid, (char*)(4*PT_R9), new) < 0)
return -1;
return 0;
#elif defined(ARM)
/* Some kernels support this, some (pre-2.6.16 or so) don't. */
# ifndef PTRACE_SET_SYSCALL
# define PTRACE_SET_SYSCALL 23
# endif
if (ptrace(PTRACE_SET_SYSCALL, tcp->pid, 0, new & 0xffff) != 0)
return -1;
return 0;
#elif defined(AARCH64)
/* setbpt/clearbpt never used: */
/* AARCH64 is only supported since about linux-3.0.31 */
#elif defined(TILE)
/* setbpt/clearbpt never used: */
/* Tilera CPUs are only supported since about linux-2.6.34 */
#elif defined(MICROBLAZE)
/* setbpt/clearbpt never used: */
/* microblaze is only supported since about linux-2.6.30 */
#elif defined(OR1K)
/* never reached; OR1K is only supported by kernels since 3.1.0. */
#elif defined(METAG)
/* setbpt/clearbpt never used: */
/* Meta is only supported since linux-3.7 */
#elif defined(XTENSA)
/* setbpt/clearbpt never used: */
/* Xtensa is only supported since linux 2.6.13 */
#elif defined(ARC)
/* setbpt/clearbpt never used: */
/* ARC only supported since 3.9 */
#else
#warning Do not know how to handle change_syscall for this architecture
#endif /* architecture */
return -1;
}
int
setbpt(struct tcb *tcp)
{
static int clone_scno[SUPPORTED_PERSONALITIES] = { SYS_clone };
arg_setup_state state;
if (tcp->flags & TCB_BPTSET) {
fprintf(stderr, "PANIC: TCB already set in pid %u\n", tcp->pid);
return -1;
}
/*
* It's a silly kludge to initialize this with a search at runtime.
* But it's better than maintaining another magic thing in the
* godforsaken tables.
*/
if (clone_scno[current_personality] == 0) {
unsigned int i;
for (i = 0; i < nsyscalls; ++i)
if (sysent[i].sys_func == sys_clone) {
clone_scno[current_personality] = i;
break;
}
}
if (tcp->s_ent->sys_func == sys_fork) {
if (arg_setup(tcp, &state) < 0
|| get_arg0(tcp, &state, &tcp->inst[0]) < 0
|| get_arg1(tcp, &state, &tcp->inst[1]) < 0
|| change_syscall(tcp, &state,
clone_scno[current_personality]) < 0
|| set_arg0(tcp, &state, CLONE_PTRACE|SIGCHLD) < 0
|| set_arg1(tcp, &state, 0) < 0
|| arg_finish_change(tcp, &state) < 0)
return -1;
tcp->u_arg[arg0_index] = CLONE_PTRACE|SIGCHLD;
tcp->u_arg[arg1_index] = 0;
tcp->flags |= TCB_BPTSET;
return 0;
}
if (tcp->s_ent->sys_func == sys_clone) {
/* ia64 calls directly `clone (CLONE_VFORK | CLONE_VM)'
contrary to x86 vfork above. Even on x86 we turn the
vfork semantics into plain fork - each application must not
depend on the vfork specifics according to POSIX. We would
hang waiting for the parent resume otherwise. We need to
clear also CLONE_VM but only in the CLONE_VFORK case as
otherwise we would break pthread_create. */
long new_arg0 = (tcp->u_arg[arg0_index] | CLONE_PTRACE);
if (new_arg0 & CLONE_VFORK)
new_arg0 &= ~(unsigned long)(CLONE_VFORK | CLONE_VM);
if (arg_setup(tcp, &state) < 0
|| set_arg0(tcp, &state, new_arg0) < 0
|| arg_finish_change(tcp, &state) < 0)
return -1;
tcp->inst[0] = tcp->u_arg[arg0_index];
tcp->inst[1] = tcp->u_arg[arg1_index];
tcp->flags |= TCB_BPTSET;
return 0;
}
fprintf(stderr, "PANIC: setbpt for syscall %ld on %u???\n",
tcp->scno, tcp->pid);
return -1;
}
int
clearbpt(struct tcb *tcp)
{
arg_setup_state state;
if (arg_setup(tcp, &state) < 0
|| change_syscall(tcp, &state, tcp->scno) < 0
|| restore_arg0(tcp, &state, tcp->inst[0]) < 0
|| restore_arg1(tcp, &state, tcp->inst[1]) < 0
|| arg_finish_change(tcp, &state))
if (errno != ESRCH)
return -1;
tcp->flags &= ~TCB_BPTSET;
return 0;
}