blob: 0d92b2eebe5be196e17be4614eaeb10873ebf652 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "hydrogen.h"
#include "codegen.h"
#include "data-flow.h"
#include "full-codegen.h"
#include "hashmap.h"
#include "lithium-allocator.h"
#include "parser.h"
#include "scopes.h"
#if V8_TARGET_ARCH_IA32
#include "ia32/lithium-codegen-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/lithium-codegen-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/lithium-codegen-arm.h"
#else
#error Unsupported target architecture.
#endif
namespace v8 {
namespace internal {
HBasicBlock::HBasicBlock(HGraph* graph)
: block_id_(graph->GetNextBlockID()),
graph_(graph),
phis_(4),
first_(NULL),
last_(NULL),
end_(NULL),
loop_information_(NULL),
predecessors_(2),
dominator_(NULL),
dominated_blocks_(4),
last_environment_(NULL),
argument_count_(-1),
first_instruction_index_(-1),
last_instruction_index_(-1),
deleted_phis_(4),
is_inline_return_target_(false) {
}
void HBasicBlock::AttachLoopInformation() {
ASSERT(!IsLoopHeader());
loop_information_ = new HLoopInformation(this);
}
void HBasicBlock::DetachLoopInformation() {
ASSERT(IsLoopHeader());
loop_information_ = NULL;
}
void HBasicBlock::AddPhi(HPhi* phi) {
ASSERT(!IsStartBlock());
phis_.Add(phi);
phi->SetBlock(this);
}
void HBasicBlock::RemovePhi(HPhi* phi) {
ASSERT(phi->block() == this);
ASSERT(phis_.Contains(phi));
ASSERT(phi->HasNoUses());
phi->ClearOperands();
phis_.RemoveElement(phi);
phi->SetBlock(NULL);
}
void HBasicBlock::AddInstruction(HInstruction* instr) {
ASSERT(!IsStartBlock() || !IsFinished());
ASSERT(!instr->IsLinked());
ASSERT(!IsFinished());
if (first_ == NULL) {
HBlockEntry* entry = new HBlockEntry();
entry->InitializeAsFirst(this);
first_ = entry;
}
instr->InsertAfter(GetLastInstruction());
}
HInstruction* HBasicBlock::GetLastInstruction() {
if (end_ != NULL) return end_->previous();
if (first_ == NULL) return NULL;
if (last_ == NULL) last_ = first_;
while (last_->next() != NULL) last_ = last_->next();
return last_;
}
HSimulate* HBasicBlock::CreateSimulate(int id) {
ASSERT(HasEnvironment());
HEnvironment* environment = last_environment();
ASSERT(id == AstNode::kNoNumber ||
environment->closure()->shared()->VerifyBailoutId(id));
int push_count = environment->push_count();
int pop_count = environment->pop_count();
int length = environment->length();
HSimulate* instr = new HSimulate(id, pop_count, length);
for (int i = push_count - 1; i >= 0; --i) {
instr->AddPushedValue(environment->ExpressionStackAt(i));
}
for (int i = 0; i < environment->assigned_variables()->length(); ++i) {
int index = environment->assigned_variables()->at(i);
instr->AddAssignedValue(index, environment->Lookup(index));
}
environment->ClearHistory();
return instr;
}
void HBasicBlock::Finish(HControlInstruction* end) {
ASSERT(!IsFinished());
AddInstruction(end);
end_ = end;
if (end->FirstSuccessor() != NULL) {
end->FirstSuccessor()->RegisterPredecessor(this);
if (end->SecondSuccessor() != NULL) {
end->SecondSuccessor()->RegisterPredecessor(this);
}
}
}
void HBasicBlock::Goto(HBasicBlock* block, bool include_stack_check) {
AddSimulate(AstNode::kNoNumber);
HGoto* instr = new HGoto(block);
instr->set_include_stack_check(include_stack_check);
Finish(instr);
}
void HBasicBlock::SetInitialEnvironment(HEnvironment* env) {
ASSERT(!HasEnvironment());
ASSERT(first() == NULL);
UpdateEnvironment(env);
}
void HBasicBlock::SetJoinId(int id) {
int length = predecessors_.length();
ASSERT(length > 0);
for (int i = 0; i < length; i++) {
HBasicBlock* predecessor = predecessors_[i];
ASSERT(predecessor->end()->IsGoto());
HSimulate* simulate = HSimulate::cast(predecessor->GetLastInstruction());
// We only need to verify the ID once.
ASSERT(i != 0 ||
predecessor->last_environment()->closure()->shared()
->VerifyBailoutId(id));
simulate->set_ast_id(id);
}
}
bool HBasicBlock::Dominates(HBasicBlock* other) const {
HBasicBlock* current = other->dominator();
while (current != NULL) {
if (current == this) return true;
current = current->dominator();
}
return false;
}
void HBasicBlock::PostProcessLoopHeader(IterationStatement* stmt) {
ASSERT(IsLoopHeader());
SetJoinId(stmt->EntryId());
if (predecessors()->length() == 1) {
// This is a degenerated loop.
DetachLoopInformation();
return;
}
// Only the first entry into the loop is from outside the loop. All other
// entries must be back edges.
for (int i = 1; i < predecessors()->length(); ++i) {
loop_information()->RegisterBackEdge(predecessors()->at(i));
}
}
void HBasicBlock::RegisterPredecessor(HBasicBlock* pred) {
if (!predecessors_.is_empty()) {
// Only loop header blocks can have a predecessor added after
// instructions have been added to the block (they have phis for all
// values in the environment, these phis may be eliminated later).
ASSERT(IsLoopHeader() || first_ == NULL);
HEnvironment* incoming_env = pred->last_environment();
if (IsLoopHeader()) {
ASSERT(phis()->length() == incoming_env->length());
for (int i = 0; i < phis_.length(); ++i) {
phis_[i]->AddInput(incoming_env->values()->at(i));
}
} else {
last_environment()->AddIncomingEdge(this, pred->last_environment());
}
} else if (!HasEnvironment() && !IsFinished()) {
ASSERT(!IsLoopHeader());
SetInitialEnvironment(pred->last_environment()->Copy());
}
predecessors_.Add(pred);
}
void HBasicBlock::AddDominatedBlock(HBasicBlock* block) {
ASSERT(!dominated_blocks_.Contains(block));
// Keep the list of dominated blocks sorted such that if there is two
// succeeding block in this list, the predecessor is before the successor.
int index = 0;
while (index < dominated_blocks_.length() &&
dominated_blocks_[index]->block_id() < block->block_id()) {
++index;
}
dominated_blocks_.InsertAt(index, block);
}
void HBasicBlock::AssignCommonDominator(HBasicBlock* other) {
if (dominator_ == NULL) {
dominator_ = other;
other->AddDominatedBlock(this);
} else if (other->dominator() != NULL) {
HBasicBlock* first = dominator_;
HBasicBlock* second = other;
while (first != second) {
if (first->block_id() > second->block_id()) {
first = first->dominator();
} else {
second = second->dominator();
}
ASSERT(first != NULL && second != NULL);
}
if (dominator_ != first) {
ASSERT(dominator_->dominated_blocks_.Contains(this));
dominator_->dominated_blocks_.RemoveElement(this);
dominator_ = first;
first->AddDominatedBlock(this);
}
}
}
int HBasicBlock::PredecessorIndexOf(HBasicBlock* predecessor) const {
for (int i = 0; i < predecessors_.length(); ++i) {
if (predecessors_[i] == predecessor) return i;
}
UNREACHABLE();
return -1;
}
#ifdef DEBUG
void HBasicBlock::Verify() {
// Check that every block is finished.
ASSERT(IsFinished());
ASSERT(block_id() >= 0);
// Verify that all blocks targetting a branch target, have the same boolean
// value on top of their expression stack.
if (!cond().is_null()) {
ASSERT(predecessors()->length() > 0);
for (int i = 1; i < predecessors()->length(); i++) {
HBasicBlock* pred = predecessors()->at(i);
HValue* top = pred->last_environment()->Top();
ASSERT(top->IsConstant());
Object* a = *HConstant::cast(top)->handle();
Object* b = *cond();
ASSERT(a == b);
}
}
}
#endif
void HLoopInformation::RegisterBackEdge(HBasicBlock* block) {
this->back_edges_.Add(block);
AddBlock(block);
}
HBasicBlock* HLoopInformation::GetLastBackEdge() const {
int max_id = -1;
HBasicBlock* result = NULL;
for (int i = 0; i < back_edges_.length(); ++i) {
HBasicBlock* cur = back_edges_[i];
if (cur->block_id() > max_id) {
max_id = cur->block_id();
result = cur;
}
}
return result;
}
void HLoopInformation::AddBlock(HBasicBlock* block) {
if (block == loop_header()) return;
if (block->parent_loop_header() == loop_header()) return;
if (block->parent_loop_header() != NULL) {
AddBlock(block->parent_loop_header());
} else {
block->set_parent_loop_header(loop_header());
blocks_.Add(block);
for (int i = 0; i < block->predecessors()->length(); ++i) {
AddBlock(block->predecessors()->at(i));
}
}
}
#ifdef DEBUG
// Checks reachability of the blocks in this graph and stores a bit in
// the BitVector "reachable()" for every block that can be reached
// from the start block of the graph. If "dont_visit" is non-null, the given
// block is treated as if it would not be part of the graph. "visited_count()"
// returns the number of reachable blocks.
class ReachabilityAnalyzer BASE_EMBEDDED {
public:
ReachabilityAnalyzer(HBasicBlock* entry_block,
int block_count,
HBasicBlock* dont_visit)
: visited_count_(0),
stack_(16),
reachable_(block_count),
dont_visit_(dont_visit) {
PushBlock(entry_block);
Analyze();
}
int visited_count() const { return visited_count_; }
const BitVector* reachable() const { return &reachable_; }
private:
void PushBlock(HBasicBlock* block) {
if (block != NULL && block != dont_visit_ &&
!reachable_.Contains(block->block_id())) {
reachable_.Add(block->block_id());
stack_.Add(block);
visited_count_++;
}
}
void Analyze() {
while (!stack_.is_empty()) {
HControlInstruction* end = stack_.RemoveLast()->end();
PushBlock(end->FirstSuccessor());
PushBlock(end->SecondSuccessor());
}
}
int visited_count_;
ZoneList<HBasicBlock*> stack_;
BitVector reachable_;
HBasicBlock* dont_visit_;
};
void HGraph::Verify() const {
for (int i = 0; i < blocks_.length(); i++) {
HBasicBlock* block = blocks_.at(i);
block->Verify();
// Check that every block contains at least one node and that only the last
// node is a control instruction.
HInstruction* current = block->first();
ASSERT(current != NULL && current->IsBlockEntry());
while (current != NULL) {
ASSERT((current->next() == NULL) == current->IsControlInstruction());
ASSERT(current->block() == block);
current->Verify();
current = current->next();
}
// Check that successors are correctly set.
HBasicBlock* first = block->end()->FirstSuccessor();
HBasicBlock* second = block->end()->SecondSuccessor();
ASSERT(second == NULL || first != NULL);
// Check that the predecessor array is correct.
if (first != NULL) {
ASSERT(first->predecessors()->Contains(block));
if (second != NULL) {
ASSERT(second->predecessors()->Contains(block));
}
}
// Check that phis have correct arguments.
for (int j = 0; j < block->phis()->length(); j++) {
HPhi* phi = block->phis()->at(j);
phi->Verify();
}
// Check that all join blocks have predecessors that end with an
// unconditional goto and agree on their environment node id.
if (block->predecessors()->length() >= 2) {
int id = block->predecessors()->first()->last_environment()->ast_id();
for (int k = 0; k < block->predecessors()->length(); k++) {
HBasicBlock* predecessor = block->predecessors()->at(k);
ASSERT(predecessor->end()->IsGoto());
ASSERT(predecessor->last_environment()->ast_id() == id);
}
}
}
// Check special property of first block to have no predecessors.
ASSERT(blocks_.at(0)->predecessors()->is_empty());
// Check that the graph is fully connected.
ReachabilityAnalyzer analyzer(entry_block_, blocks_.length(), NULL);
ASSERT(analyzer.visited_count() == blocks_.length());
// Check that entry block dominator is NULL.
ASSERT(entry_block_->dominator() == NULL);
// Check dominators.
for (int i = 0; i < blocks_.length(); ++i) {
HBasicBlock* block = blocks_.at(i);
if (block->dominator() == NULL) {
// Only start block may have no dominator assigned to.
ASSERT(i == 0);
} else {
// Assert that block is unreachable if dominator must not be visited.
ReachabilityAnalyzer dominator_analyzer(entry_block_,
blocks_.length(),
block->dominator());
ASSERT(!dominator_analyzer.reachable()->Contains(block->block_id()));
}
}
}
#endif
HConstant* HGraph::GetConstant(SetOncePointer<HConstant>* pointer,
Object* value) {
if (!pointer->is_set()) {
HConstant* constant = new HConstant(Handle<Object>(value),
Representation::Tagged());
constant->InsertAfter(GetConstantUndefined());
pointer->set(constant);
}
return pointer->get();
}
HConstant* HGraph::GetConstant1() {
return GetConstant(&constant_1_, Smi::FromInt(1));
}
HConstant* HGraph::GetConstantMinus1() {
return GetConstant(&constant_minus1_, Smi::FromInt(-1));
}
HConstant* HGraph::GetConstantTrue() {
return GetConstant(&constant_true_, Heap::true_value());
}
HConstant* HGraph::GetConstantFalse() {
return GetConstant(&constant_false_, Heap::false_value());
}
void HSubgraph::AppendOptional(HSubgraph* graph,
bool on_true_branch,
HValue* boolean_value) {
ASSERT(HasExit() && graph->HasExit());
HBasicBlock* other_block = graph_->CreateBasicBlock();
HBasicBlock* join_block = graph_->CreateBasicBlock();
HBasicBlock* true_branch = other_block;
HBasicBlock* false_branch = graph->entry_block();
if (on_true_branch) {
true_branch = graph->entry_block();
false_branch = other_block;
}
exit_block_->Finish(new HBranch(true_branch, false_branch, boolean_value));
other_block->Goto(join_block);
graph->exit_block()->Goto(join_block);
exit_block_ = join_block;
}
void HSubgraph::AppendJoin(HSubgraph* then_graph,
HSubgraph* else_graph,
AstNode* node) {
if (then_graph->HasExit() && else_graph->HasExit()) {
// We need to merge, create new merge block.
HBasicBlock* join_block = graph_->CreateBasicBlock();
then_graph->exit_block()->Goto(join_block);
else_graph->exit_block()->Goto(join_block);
join_block->SetJoinId(node->id());
exit_block_ = join_block;
} else if (then_graph->HasExit()) {
exit_block_ = then_graph->exit_block_;
} else if (else_graph->HasExit()) {
exit_block_ = else_graph->exit_block_;
} else {
exit_block_ = NULL;
}
}
void HSubgraph::ResolveContinue(IterationStatement* statement) {
HBasicBlock* continue_block = BundleContinue(statement);
if (continue_block != NULL) {
exit_block_ = JoinBlocks(exit_block(),
continue_block,
statement->ContinueId());
}
}
HBasicBlock* HSubgraph::BundleBreak(BreakableStatement* statement) {
return BundleBreakContinue(statement, false, statement->ExitId());
}
HBasicBlock* HSubgraph::BundleContinue(IterationStatement* statement) {
return BundleBreakContinue(statement, true, statement->ContinueId());
}
HBasicBlock* HSubgraph::BundleBreakContinue(BreakableStatement* statement,
bool is_continue,
int join_id) {
HBasicBlock* result = NULL;
const ZoneList<BreakContinueInfo*>* infos = break_continue_info();
for (int i = 0; i < infos->length(); ++i) {
BreakContinueInfo* info = infos->at(i);
if (info->is_continue() == is_continue &&
info->target() == statement &&
!info->IsResolved()) {
if (result == NULL) {
result = graph_->CreateBasicBlock();
}
info->block()->Goto(result);
info->Resolve();
}
}
if (result != NULL) result->SetJoinId(join_id);
return result;
}
HBasicBlock* HSubgraph::JoinBlocks(HBasicBlock* a, HBasicBlock* b, int id) {
if (a == NULL) return b;
if (b == NULL) return a;
HBasicBlock* target = graph_->CreateBasicBlock();
a->Goto(target);
b->Goto(target);
target->SetJoinId(id);
return target;
}
void HSubgraph::AppendEndless(HSubgraph* body, IterationStatement* statement) {
ConnectExitTo(body->entry_block());
body->ResolveContinue(statement);
body->ConnectExitTo(body->entry_block(), true);
exit_block_ = body->BundleBreak(statement);
body->entry_block()->PostProcessLoopHeader(statement);
}
void HSubgraph::AppendDoWhile(HSubgraph* body,
IterationStatement* statement,
HSubgraph* go_back,
HSubgraph* exit) {
ConnectExitTo(body->entry_block());
go_back->ConnectExitTo(body->entry_block(), true);
HBasicBlock* break_block = body->BundleBreak(statement);
exit_block_ =
JoinBlocks(exit->exit_block(), break_block, statement->ExitId());
body->entry_block()->PostProcessLoopHeader(statement);
}
void HSubgraph::AppendWhile(HSubgraph* condition,
HSubgraph* body,
IterationStatement* statement,
HSubgraph* continue_subgraph,
HSubgraph* exit) {
ConnectExitTo(condition->entry_block());
HBasicBlock* break_block = body->BundleBreak(statement);
exit_block_ =
JoinBlocks(exit->exit_block(), break_block, statement->ExitId());
if (continue_subgraph != NULL) {
body->ConnectExitTo(continue_subgraph->entry_block(), true);
continue_subgraph->entry_block()->SetJoinId(statement->EntryId());
exit_block_ = JoinBlocks(exit_block_,
continue_subgraph->exit_block(),
statement->ExitId());
} else {
body->ConnectExitTo(condition->entry_block(), true);
}
condition->entry_block()->PostProcessLoopHeader(statement);
}
void HSubgraph::Append(HSubgraph* next, BreakableStatement* stmt) {
exit_block_->Goto(next->entry_block());
exit_block_ = next->exit_block_;
if (stmt != NULL) {
next->entry_block()->SetJoinId(stmt->EntryId());
HBasicBlock* break_block = next->BundleBreak(stmt);
exit_block_ = JoinBlocks(exit_block(), break_block, stmt->ExitId());
}
}
void HSubgraph::FinishExit(HControlInstruction* instruction) {
ASSERT(HasExit());
exit_block_->Finish(instruction);
exit_block_->ClearEnvironment();
exit_block_ = NULL;
}
void HSubgraph::FinishBreakContinue(BreakableStatement* target,
bool is_continue) {
ASSERT(!exit_block_->IsFinished());
BreakContinueInfo* info = new BreakContinueInfo(target, exit_block_,
is_continue);
break_continue_info_.Add(info);
exit_block_ = NULL;
}
HGraph::HGraph(CompilationInfo* info)
: HSubgraph(this),
next_block_id_(0),
info_(info),
blocks_(8),
values_(16),
phi_list_(NULL) {
start_environment_ = new HEnvironment(NULL, info->scope(), info->closure());
start_environment_->set_ast_id(info->function()->id());
}
Handle<Code> HGraph::Compile() {
int values = GetMaximumValueID();
if (values > LAllocator::max_initial_value_ids()) {
if (FLAG_trace_bailout) PrintF("Function is too big\n");
return Handle<Code>::null();
}
LAllocator allocator(values, this);
LChunkBuilder builder(this, &allocator);
LChunk* chunk = builder.Build();
if (chunk == NULL) return Handle<Code>::null();
if (!FLAG_alloc_lithium) return Handle<Code>::null();
allocator.Allocate(chunk);
if (!FLAG_use_lithium) return Handle<Code>::null();
MacroAssembler assembler(NULL, 0);
LCodeGen generator(chunk, &assembler, info());
if (FLAG_eliminate_empty_blocks) {
chunk->MarkEmptyBlocks();
}
if (generator.GenerateCode()) {
if (FLAG_trace_codegen) {
PrintF("Crankshaft Compiler - ");
}
CodeGenerator::MakeCodePrologue(info());
Code::Flags flags =
Code::ComputeFlags(Code::OPTIMIZED_FUNCTION, NOT_IN_LOOP);
Handle<Code> code =
CodeGenerator::MakeCodeEpilogue(&assembler, flags, info());
generator.FinishCode(code);
CodeGenerator::PrintCode(code, info());
return code;
}
return Handle<Code>::null();
}
HBasicBlock* HGraph::CreateBasicBlock() {
HBasicBlock* result = new HBasicBlock(this);
blocks_.Add(result);
return result;
}
void HGraph::Canonicalize() {
HPhase phase("Canonicalize", this);
if (FLAG_use_canonicalizing) {
for (int i = 0; i < blocks()->length(); ++i) {
HBasicBlock* b = blocks()->at(i);
for (HInstruction* insn = b->first(); insn != NULL; insn = insn->next()) {
HValue* value = insn->Canonicalize();
if (value != insn) {
if (value != NULL) {
insn->ReplaceAndDelete(value);
} else {
insn->Delete();
}
}
}
}
}
}
void HGraph::OrderBlocks() {
HPhase phase("Block ordering");
BitVector visited(blocks_.length());
ZoneList<HBasicBlock*> reverse_result(8);
HBasicBlock* start = blocks_[0];
Postorder(start, &visited, &reverse_result, NULL);
blocks_.Clear();
int index = 0;
for (int i = reverse_result.length() - 1; i >= 0; --i) {
HBasicBlock* b = reverse_result[i];
blocks_.Add(b);
b->set_block_id(index++);
}
}
void HGraph::PostorderLoopBlocks(HLoopInformation* loop,
BitVector* visited,
ZoneList<HBasicBlock*>* order,
HBasicBlock* loop_header) {
for (int i = 0; i < loop->blocks()->length(); ++i) {
HBasicBlock* b = loop->blocks()->at(i);
Postorder(b->end()->SecondSuccessor(), visited, order, loop_header);
Postorder(b->end()->FirstSuccessor(), visited, order, loop_header);
if (b->IsLoopHeader() && b != loop->loop_header()) {
PostorderLoopBlocks(b->loop_information(), visited, order, loop_header);
}
}
}
void HGraph::Postorder(HBasicBlock* block,
BitVector* visited,
ZoneList<HBasicBlock*>* order,
HBasicBlock* loop_header) {
if (block == NULL || visited->Contains(block->block_id())) return;
if (block->parent_loop_header() != loop_header) return;
visited->Add(block->block_id());
if (block->IsLoopHeader()) {
PostorderLoopBlocks(block->loop_information(), visited, order, loop_header);
Postorder(block->end()->SecondSuccessor(), visited, order, block);
Postorder(block->end()->FirstSuccessor(), visited, order, block);
} else {
Postorder(block->end()->SecondSuccessor(), visited, order, loop_header);
Postorder(block->end()->FirstSuccessor(), visited, order, loop_header);
}
ASSERT(block->end()->FirstSuccessor() == NULL ||
order->Contains(block->end()->FirstSuccessor()) ||
block->end()->FirstSuccessor()->IsLoopHeader());
ASSERT(block->end()->SecondSuccessor() == NULL ||
order->Contains(block->end()->SecondSuccessor()) ||
block->end()->SecondSuccessor()->IsLoopHeader());
order->Add(block);
}
void HGraph::AssignDominators() {
HPhase phase("Assign dominators", this);
for (int i = 0; i < blocks_.length(); ++i) {
if (blocks_[i]->IsLoopHeader()) {
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->first());
} else {
for (int j = 0; j < blocks_[i]->predecessors()->length(); ++j) {
blocks_[i]->AssignCommonDominator(blocks_[i]->predecessors()->at(j));
}
}
}
}
void HGraph::EliminateRedundantPhis() {
HPhase phase("Phi elimination", this);
ZoneList<HValue*> uses_to_replace(2);
// Worklist of phis that can potentially be eliminated. Initialized
// with all phi nodes. When elimination of a phi node modifies
// another phi node the modified phi node is added to the worklist.
ZoneList<HPhi*> worklist(blocks_.length());
for (int i = 0; i < blocks_.length(); ++i) {
worklist.AddAll(*blocks_[i]->phis());
}
while (!worklist.is_empty()) {
HPhi* phi = worklist.RemoveLast();
HBasicBlock* block = phi->block();
// Skip phi node if it was already replaced.
if (block == NULL) continue;
// Get replacement value if phi is redundant.
HValue* value = phi->GetRedundantReplacement();
if (value != NULL) {
// Iterate through uses finding the ones that should be
// replaced.
const ZoneList<HValue*>* uses = phi->uses();
for (int i = 0; i < uses->length(); ++i) {
HValue* use = uses->at(i);
if (!use->block()->IsStartBlock()) {
uses_to_replace.Add(use);
}
}
// Replace the uses and add phis modified to the work list.
for (int i = 0; i < uses_to_replace.length(); ++i) {
HValue* use = uses_to_replace[i];
phi->ReplaceAtUse(use, value);
if (use->IsPhi()) worklist.Add(HPhi::cast(use));
}
uses_to_replace.Rewind(0);
block->RemovePhi(phi);
} else if (phi->HasNoUses() &&
!phi->HasReceiverOperand() &&
FLAG_eliminate_dead_phis) {
// We can't eliminate phis that have the receiver as an operand
// because in case of throwing an error we need the correct
// receiver value in the environment to construct a corrent
// stack trace.
block->RemovePhi(phi);
block->RecordDeletedPhi(phi->merged_index());
}
}
}
bool HGraph::CollectPhis() {
const ZoneList<HBasicBlock*>* blocks = graph_->blocks();
phi_list_ = new ZoneList<HPhi*>(blocks->length());
for (int i = 0; i < blocks->length(); ++i) {
for (int j = 0; j < blocks->at(i)->phis()->length(); j++) {
HPhi* phi = blocks->at(i)->phis()->at(j);
phi_list_->Add(phi);
// We don't support phi uses of arguments for now.
if (phi->CheckFlag(HValue::kIsArguments)) return false;
}
}
return true;
}
void HGraph::InferTypes(ZoneList<HValue*>* worklist) {
BitVector in_worklist(GetMaximumValueID());
for (int i = 0; i < worklist->length(); ++i) {
ASSERT(!in_worklist.Contains(worklist->at(i)->id()));
in_worklist.Add(worklist->at(i)->id());
}
while (!worklist->is_empty()) {
HValue* current = worklist->RemoveLast();
in_worklist.Remove(current->id());
if (current->UpdateInferredType()) {
for (int j = 0; j < current->uses()->length(); j++) {
HValue* use = current->uses()->at(j);
if (!in_worklist.Contains(use->id())) {
in_worklist.Add(use->id());
worklist->Add(use);
}
}
}
}
}
class HRangeAnalysis BASE_EMBEDDED {
public:
explicit HRangeAnalysis(HGraph* graph) : graph_(graph), changed_ranges_(16) {}
void Analyze();
private:
void TraceRange(const char* msg, ...);
void Analyze(HBasicBlock* block);
void InferControlFlowRange(HBranch* branch, HBasicBlock* dest);
void InferControlFlowRange(Token::Value op, HValue* value, HValue* other);
void InferPhiRange(HPhi* phi);
void InferRange(HValue* value);
void RollBackTo(int index);
void AddRange(HValue* value, Range* range);
HGraph* graph_;
ZoneList<HValue*> changed_ranges_;
};
void HRangeAnalysis::TraceRange(const char* msg, ...) {
if (FLAG_trace_range) {
va_list arguments;
va_start(arguments, msg);
OS::VPrint(msg, arguments);
va_end(arguments);
}
}
void HRangeAnalysis::Analyze() {
HPhase phase("Range analysis", graph_);
Analyze(graph_->blocks()->at(0));
}
void HRangeAnalysis::Analyze(HBasicBlock* block) {
TraceRange("Analyzing block B%d\n", block->block_id());
int last_changed_range = changed_ranges_.length() - 1;
// Infer range based on control flow.
if (block->predecessors()->length() == 1) {
HBasicBlock* pred = block->predecessors()->first();
if (pred->end()->IsBranch()) {
InferControlFlowRange(HBranch::cast(pred->end()), block);
}
}
// Process phi instructions.
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
InferPhiRange(phi);
}
// Go through all instructions of the current block.
HInstruction* instr = block->first();
while (instr != block->end()) {
InferRange(instr);
instr = instr->next();
}
// Continue analysis in all dominated blocks.
for (int i = 0; i < block->dominated_blocks()->length(); ++i) {
Analyze(block->dominated_blocks()->at(i));
}
RollBackTo(last_changed_range);
}
void HRangeAnalysis::InferControlFlowRange(HBranch* branch, HBasicBlock* dest) {
ASSERT(branch->FirstSuccessor() == dest || branch->SecondSuccessor() == dest);
ASSERT(branch->FirstSuccessor() != dest || branch->SecondSuccessor() != dest);
if (branch->value()->IsCompare()) {
HCompare* compare = HCompare::cast(branch->value());
Token::Value op = compare->token();
if (branch->SecondSuccessor() == dest) {
op = Token::NegateCompareOp(op);
}
Token::Value inverted_op = Token::InvertCompareOp(op);
InferControlFlowRange(op, compare->left(), compare->right());
InferControlFlowRange(inverted_op, compare->right(), compare->left());
}
}
// We know that value [op] other. Use this information to update the range on
// value.
void HRangeAnalysis::InferControlFlowRange(Token::Value op,
HValue* value,
HValue* other) {
Range* range = other->range();
if (range == NULL) range = new Range();
Range* new_range = NULL;
TraceRange("Control flow range infer %d %s %d\n",
value->id(),
Token::Name(op),
other->id());
if (op == Token::EQ || op == Token::EQ_STRICT) {
// The same range has to apply for value.
new_range = range->Copy();
} else if (op == Token::LT || op == Token::LTE) {
new_range = range->CopyClearLower();
if (op == Token::LT) {
new_range->AddConstant(-1);
}
} else if (op == Token::GT || op == Token::GTE) {
new_range = range->CopyClearUpper();
if (op == Token::GT) {
new_range->AddConstant(1);
}
}
if (new_range != NULL && !new_range->IsMostGeneric()) {
AddRange(value, new_range);
}
}
void HRangeAnalysis::InferPhiRange(HPhi* phi) {
// TODO(twuerthinger): Infer loop phi ranges.
InferRange(phi);
}
void HRangeAnalysis::InferRange(HValue* value) {
ASSERT(!value->HasRange());
if (!value->representation().IsNone()) {
value->ComputeInitialRange();
Range* range = value->range();
TraceRange("Initial inferred range of %d (%s) set to [%d,%d]\n",
value->id(),
value->Mnemonic(),
range->lower(),
range->upper());
}
}
void HRangeAnalysis::RollBackTo(int index) {
for (int i = index + 1; i < changed_ranges_.length(); ++i) {
changed_ranges_[i]->RemoveLastAddedRange();
}
changed_ranges_.Rewind(index + 1);
}
void HRangeAnalysis::AddRange(HValue* value, Range* range) {
Range* original_range = value->range();
value->AddNewRange(range);
changed_ranges_.Add(value);
Range* new_range = value->range();
TraceRange("Updated range of %d set to [%d,%d]\n",
value->id(),
new_range->lower(),
new_range->upper());
if (original_range != NULL) {
TraceRange("Original range was [%d,%d]\n",
original_range->lower(),
original_range->upper());
}
TraceRange("New information was [%d,%d]\n",
range->lower(),
range->upper());
}
void TraceGVN(const char* msg, ...) {
if (FLAG_trace_gvn) {
va_list arguments;
va_start(arguments, msg);
OS::VPrint(msg, arguments);
va_end(arguments);
}
}
HValueMap::HValueMap(const HValueMap* other)
: array_size_(other->array_size_),
lists_size_(other->lists_size_),
count_(other->count_),
present_flags_(other->present_flags_),
array_(Zone::NewArray<HValueMapListElement>(other->array_size_)),
lists_(Zone::NewArray<HValueMapListElement>(other->lists_size_)),
free_list_head_(other->free_list_head_) {
memcpy(array_, other->array_, array_size_ * sizeof(HValueMapListElement));
memcpy(lists_, other->lists_, lists_size_ * sizeof(HValueMapListElement));
}
void HValueMap::Kill(int flags) {
int depends_flags = HValue::ConvertChangesToDependsFlags(flags);
if ((present_flags_ & depends_flags) == 0) return;
present_flags_ = 0;
for (int i = 0; i < array_size_; ++i) {
HValue* value = array_[i].value;
if (value != NULL) {
// Clear list of collisions first, so we know if it becomes empty.
int kept = kNil; // List of kept elements.
int next;
for (int current = array_[i].next; current != kNil; current = next) {
next = lists_[current].next;
if ((lists_[current].value->flags() & depends_flags) != 0) {
// Drop it.
count_--;
lists_[current].next = free_list_head_;
free_list_head_ = current;
} else {
// Keep it.
lists_[current].next = kept;
kept = current;
present_flags_ |= lists_[current].value->flags();
}
}
array_[i].next = kept;
// Now possibly drop directly indexed element.
if ((array_[i].value->flags() & depends_flags) != 0) { // Drop it.
count_--;
int head = array_[i].next;
if (head == kNil) {
array_[i].value = NULL;
} else {
array_[i].value = lists_[head].value;
array_[i].next = lists_[head].next;
lists_[head].next = free_list_head_;
free_list_head_ = head;
}
} else {
present_flags_ |= array_[i].value->flags(); // Keep it.
}
}
}
}
HValue* HValueMap::Lookup(HValue* value) const {
uint32_t hash = static_cast<uint32_t>(value->Hashcode());
uint32_t pos = Bound(hash);
if (array_[pos].value != NULL) {
if (array_[pos].value->Equals(value)) return array_[pos].value;
int next = array_[pos].next;
while (next != kNil) {
if (lists_[next].value->Equals(value)) return lists_[next].value;
next = lists_[next].next;
}
}
return NULL;
}
void HValueMap::Resize(int new_size) {
ASSERT(new_size > count_);
// Hashing the values into the new array has no more collisions than in the
// old hash map, so we can use the existing lists_ array, if we are careful.
// Make sure we have at least one free element.
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1);
}
HValueMapListElement* new_array =
Zone::NewArray<HValueMapListElement>(new_size);
memset(new_array, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_array = array_;
int old_size = array_size_;
int old_count = count_;
count_ = 0;
// Do not modify present_flags_. It is currently correct.
array_size_ = new_size;
array_ = new_array;
if (old_array != NULL) {
// Iterate over all the elements in lists, rehashing them.
for (int i = 0; i < old_size; ++i) {
if (old_array[i].value != NULL) {
int current = old_array[i].next;
while (current != kNil) {
Insert(lists_[current].value);
int next = lists_[current].next;
lists_[current].next = free_list_head_;
free_list_head_ = current;
current = next;
}
// Rehash the directly stored value.
Insert(old_array[i].value);
}
}
}
USE(old_count);
ASSERT(count_ == old_count);
}
void HValueMap::ResizeLists(int new_size) {
ASSERT(new_size > lists_size_);
HValueMapListElement* new_lists =
Zone::NewArray<HValueMapListElement>(new_size);
memset(new_lists, 0, sizeof(HValueMapListElement) * new_size);
HValueMapListElement* old_lists = lists_;
int old_size = lists_size_;
lists_size_ = new_size;
lists_ = new_lists;
if (old_lists != NULL) {
memcpy(lists_, old_lists, old_size * sizeof(HValueMapListElement));
}
for (int i = old_size; i < lists_size_; ++i) {
lists_[i].next = free_list_head_;
free_list_head_ = i;
}
}
void HValueMap::Insert(HValue* value) {
ASSERT(value != NULL);
// Resizing when half of the hashtable is filled up.
if (count_ >= array_size_ >> 1) Resize(array_size_ << 1);
ASSERT(count_ < array_size_);
count_++;
uint32_t pos = Bound(static_cast<uint32_t>(value->Hashcode()));
if (array_[pos].value == NULL) {
array_[pos].value = value;
array_[pos].next = kNil;
} else {
if (free_list_head_ == kNil) {
ResizeLists(lists_size_ << 1);
}
int new_element_pos = free_list_head_;
ASSERT(new_element_pos != kNil);
free_list_head_ = lists_[free_list_head_].next;
lists_[new_element_pos].value = value;
lists_[new_element_pos].next = array_[pos].next;
ASSERT(array_[pos].next == kNil || lists_[array_[pos].next].value != NULL);
array_[pos].next = new_element_pos;
}
}
class HStackCheckEliminator BASE_EMBEDDED {
public:
explicit HStackCheckEliminator(HGraph* graph) : graph_(graph) { }
void Process();
private:
void RemoveStackCheck(HBasicBlock* block);
HGraph* graph_;
};
void HStackCheckEliminator::Process() {
// For each loop block walk the dominator tree from the backwards branch to
// the loop header. If a call instruction is encountered the backwards branch
// is dominated by a call and the stack check in the backwards branch can be
// removed.
for (int i = 0; i < graph_->blocks()->length(); i++) {
HBasicBlock* block = graph_->blocks()->at(i);
if (block->IsLoopHeader()) {
HBasicBlock* back_edge = block->loop_information()->GetLastBackEdge();
HBasicBlock* dominator = back_edge;
bool back_edge_dominated_by_call = false;
while (dominator != block && !back_edge_dominated_by_call) {
HInstruction* instr = dominator->first();
while (instr != NULL && !back_edge_dominated_by_call) {
if (instr->IsCall()) {
RemoveStackCheck(back_edge);
back_edge_dominated_by_call = true;
}
instr = instr->next();
}
dominator = dominator->dominator();
}
}
}
}
void HStackCheckEliminator::RemoveStackCheck(HBasicBlock* block) {
HInstruction* instr = block->first();
while (instr != NULL) {
if (instr->IsGoto()) {
HGoto::cast(instr)->set_include_stack_check(false);
return;
}
instr = instr->next();
}
}
class HGlobalValueNumberer BASE_EMBEDDED {
public:
explicit HGlobalValueNumberer(HGraph* graph)
: graph_(graph),
block_side_effects_(graph_->blocks()->length()),
loop_side_effects_(graph_->blocks()->length()) {
ASSERT(Heap::allow_allocation(false));
block_side_effects_.AddBlock(0, graph_->blocks()->length());
loop_side_effects_.AddBlock(0, graph_->blocks()->length());
}
~HGlobalValueNumberer() {
ASSERT(!Heap::allow_allocation(true));
}
void Analyze();
private:
void AnalyzeBlock(HBasicBlock* block, HValueMap* map);
void ComputeBlockSideEffects();
void LoopInvariantCodeMotion();
void ProcessLoopBlock(HBasicBlock* block,
HBasicBlock* before_loop,
int loop_kills);
bool ShouldMove(HInstruction* instr, HBasicBlock* loop_header);
HGraph* graph_;
// A map of block IDs to their side effects.
ZoneList<int> block_side_effects_;
// A map of loop header block IDs to their loop's side effects.
ZoneList<int> loop_side_effects_;
};
void HGlobalValueNumberer::Analyze() {
ComputeBlockSideEffects();
if (FLAG_loop_invariant_code_motion) {
LoopInvariantCodeMotion();
}
HValueMap* map = new HValueMap();
AnalyzeBlock(graph_->blocks()->at(0), map);
}
void HGlobalValueNumberer::ComputeBlockSideEffects() {
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
// Compute side effects for the block.
HBasicBlock* block = graph_->blocks()->at(i);
HInstruction* instr = block->first();
int id = block->block_id();
int side_effects = 0;
while (instr != NULL) {
side_effects |= (instr->flags() & HValue::ChangesFlagsMask());
instr = instr->next();
}
block_side_effects_[id] |= side_effects;
// Loop headers are part of their loop.
if (block->IsLoopHeader()) {
loop_side_effects_[id] |= side_effects;
}
// Propagate loop side effects upwards.
if (block->HasParentLoopHeader()) {
int header_id = block->parent_loop_header()->block_id();
loop_side_effects_[header_id] |=
block->IsLoopHeader() ? loop_side_effects_[id] : side_effects;
}
}
}
void HGlobalValueNumberer::LoopInvariantCodeMotion() {
for (int i = graph_->blocks()->length() - 1; i >= 0; --i) {
HBasicBlock* block = graph_->blocks()->at(i);
if (block->IsLoopHeader()) {
int side_effects = loop_side_effects_[block->block_id()];
TraceGVN("Try loop invariant motion for block B%d effects=0x%x\n",
block->block_id(),
side_effects);
HBasicBlock* last = block->loop_information()->GetLastBackEdge();
for (int j = block->block_id(); j <= last->block_id(); ++j) {
ProcessLoopBlock(graph_->blocks()->at(j), block, side_effects);
}
}
}
}
void HGlobalValueNumberer::ProcessLoopBlock(HBasicBlock* block,
HBasicBlock* loop_header,
int loop_kills) {
HBasicBlock* pre_header = loop_header->predecessors()->at(0);
int depends_flags = HValue::ConvertChangesToDependsFlags(loop_kills);
TraceGVN("Loop invariant motion for B%d depends_flags=0x%x\n",
block->block_id(),
depends_flags);
HInstruction* instr = block->first();
while (instr != NULL) {
HInstruction* next = instr->next();
if (instr->CheckFlag(HValue::kUseGVN) &&
(instr->flags() & depends_flags) == 0) {
TraceGVN("Checking instruction %d (%s)\n",
instr->id(),
instr->Mnemonic());
bool inputs_loop_invariant = true;
for (int i = 0; i < instr->OperandCount(); ++i) {
if (instr->OperandAt(i)->IsDefinedAfter(pre_header)) {
inputs_loop_invariant = false;
}
}
if (inputs_loop_invariant && ShouldMove(instr, loop_header)) {
TraceGVN("Found loop invariant instruction %d\n", instr->id());
// Move the instruction out of the loop.
instr->Unlink();
instr->InsertBefore(pre_header->end());
}
}
instr = next;
}
}
// Only move instructions that postdominate the loop header (i.e. are
// always executed inside the loop). This is to avoid unnecessary
// deoptimizations assuming the loop is executed at least once.
// TODO(fschneider): Better type feedback should give us information
// about code that was never executed.
bool HGlobalValueNumberer::ShouldMove(HInstruction* instr,
HBasicBlock* loop_header) {
if (!instr->IsChange() &&
FLAG_aggressive_loop_invariant_motion) return true;
HBasicBlock* block = instr->block();
bool result = true;
if (block != loop_header) {
for (int i = 1; i < loop_header->predecessors()->length(); ++i) {
bool found = false;
HBasicBlock* pred = loop_header->predecessors()->at(i);
while (pred != loop_header) {
if (pred == block) found = true;
pred = pred->dominator();
}
if (!found) {
result = false;
break;
}
}
}
return result;
}
void HGlobalValueNumberer::AnalyzeBlock(HBasicBlock* block, HValueMap* map) {
TraceGVN("Analyzing block B%d\n", block->block_id());
// If this is a loop header kill everything killed by the loop.
if (block->IsLoopHeader()) {
map->Kill(loop_side_effects_[block->block_id()]);
}
// Go through all instructions of the current block.
HInstruction* instr = block->first();
while (instr != NULL) {
HInstruction* next = instr->next();
int flags = (instr->flags() & HValue::ChangesFlagsMask());
if (flags != 0) {
ASSERT(!instr->CheckFlag(HValue::kUseGVN));
// Clear all instructions in the map that are affected by side effects.
map->Kill(flags);
TraceGVN("Instruction %d kills\n", instr->id());
} else if (instr->CheckFlag(HValue::kUseGVN)) {
HValue* other = map->Lookup(instr);
if (other != NULL) {
ASSERT(instr->Equals(other) && other->Equals(instr));
TraceGVN("Replacing value %d (%s) with value %d (%s)\n",
instr->id(),
instr->Mnemonic(),
other->id(),
other->Mnemonic());
instr->ReplaceValue(other);
instr->Delete();
} else {
map->Add(instr);
}
}
instr = next;
}
// Recursively continue analysis for all immediately dominated blocks.
int length = block->dominated_blocks()->length();
for (int i = 0; i < length; ++i) {
HBasicBlock* dominated = block->dominated_blocks()->at(i);
// No need to copy the map for the last child in the dominator tree.
HValueMap* successor_map = (i == length - 1) ? map : map->Copy();
// If the dominated block is not a successor to this block we have to
// kill everything killed on any path between this block and the
// dominated block. Note we rely on the block ordering.
bool is_successor = false;
int predecessor_count = dominated->predecessors()->length();
for (int j = 0; !is_successor && j < predecessor_count; ++j) {
is_successor = (dominated->predecessors()->at(j) == block);
}
if (!is_successor) {
int side_effects = 0;
for (int j = block->block_id() + 1; j < dominated->block_id(); ++j) {
side_effects |= block_side_effects_[j];
}
successor_map->Kill(side_effects);
}
AnalyzeBlock(dominated, successor_map);
}
}
class HInferRepresentation BASE_EMBEDDED {
public:
explicit HInferRepresentation(HGraph* graph)
: graph_(graph), worklist_(8), in_worklist_(graph->GetMaximumValueID()) {}
void Analyze();
private:
Representation TryChange(HValue* current);
void AddToWorklist(HValue* current);
void InferBasedOnInputs(HValue* current);
void AddDependantsToWorklist(HValue* current);
void InferBasedOnUses(HValue* current);
HGraph* graph_;
ZoneList<HValue*> worklist_;
BitVector in_worklist_;
};
void HInferRepresentation::AddToWorklist(HValue* current) {
if (current->representation().IsSpecialization()) return;
if (!current->CheckFlag(HValue::kFlexibleRepresentation)) return;
if (in_worklist_.Contains(current->id())) return;
worklist_.Add(current);
in_worklist_.Add(current->id());
}
// This method tries to specialize the representation type of the value
// given as a parameter. The value is asked to infer its representation type
// based on its inputs. If the inferred type is more specialized, then this
// becomes the new representation type of the node.
void HInferRepresentation::InferBasedOnInputs(HValue* current) {
Representation r = current->representation();
if (r.IsSpecialization()) return;
ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation));
Representation inferred = current->InferredRepresentation();
if (inferred.IsSpecialization()) {
current->ChangeRepresentation(inferred);
AddDependantsToWorklist(current);
}
}
void HInferRepresentation::AddDependantsToWorklist(HValue* current) {
for (int i = 0; i < current->uses()->length(); ++i) {
AddToWorklist(current->uses()->at(i));
}
for (int i = 0; i < current->OperandCount(); ++i) {
AddToWorklist(current->OperandAt(i));
}
}
// This method calculates whether specializing the representation of the value
// given as the parameter has a benefit in terms of less necessary type
// conversions. If there is a benefit, then the representation of the value is
// specialized.
void HInferRepresentation::InferBasedOnUses(HValue* current) {
Representation r = current->representation();
if (r.IsSpecialization() || current->HasNoUses()) return;
ASSERT(current->CheckFlag(HValue::kFlexibleRepresentation));
Representation new_rep = TryChange(current);
if (!new_rep.IsNone()) {
if (!current->representation().Equals(new_rep)) {
current->ChangeRepresentation(new_rep);
AddDependantsToWorklist(current);
}
}
}
Representation HInferRepresentation::TryChange(HValue* current) {
// Array of use counts for each representation.
int use_count[Representation::kNumRepresentations];
for (int i = 0; i < Representation::kNumRepresentations; i++) {
use_count[i] = 0;
}
for (int i = 0; i < current->uses()->length(); ++i) {
HValue* use = current->uses()->at(i);
int index = use->LookupOperandIndex(0, current);
Representation req_rep = use->RequiredInputRepresentation(index);
if (req_rep.IsNone()) continue;
if (use->IsPhi()) {
HPhi* phi = HPhi::cast(use);
phi->AddIndirectUsesTo(&use_count[0]);
}
use_count[req_rep.kind()]++;
}
int tagged_count = use_count[Representation::kTagged];
int double_count = use_count[Representation::kDouble];
int int32_count = use_count[Representation::kInteger32];
int non_tagged_count = double_count + int32_count;
// If a non-loop phi has tagged uses, don't convert it to untagged.
if (current->IsPhi() && !current->block()->IsLoopHeader()) {
if (tagged_count > 0) return Representation::None();
}
if (non_tagged_count >= tagged_count) {
// More untagged than tagged.
if (double_count > 0) {
// There is at least one usage that is a double => guess that the
// correct representation is double.
return Representation::Double();
} else if (int32_count > 0) {
return Representation::Integer32();
}
}
return Representation::None();
}
void HInferRepresentation::Analyze() {
HPhase phase("Infer representations", graph_);
// (1) Initialize bit vectors and count real uses. Each phi
// gets a bit-vector of length <number of phis>.
const ZoneList<HPhi*>* phi_list = graph_->phi_list();
int num_phis = phi_list->length();
ScopedVector<BitVector*> connected_phis(num_phis);
for (int i = 0; i < num_phis; i++) {
phi_list->at(i)->InitRealUses(i);
connected_phis[i] = new BitVector(num_phis);
connected_phis[i]->Add(i);
}
// (2) Do a fixed point iteration to find the set of connected phis.
// A phi is connected to another phi if its value is used either
// directly or indirectly through a transitive closure of the def-use
// relation.
bool change = true;
while (change) {
change = false;
for (int i = 0; i < num_phis; i++) {
HPhi* phi = phi_list->at(i);
for (int j = 0; j < phi->uses()->length(); j++) {
HValue* use = phi->uses()->at(j);
if (use->IsPhi()) {
int phi_use = HPhi::cast(use)->phi_id();
if (connected_phis[i]->UnionIsChanged(*connected_phis[phi_use])) {
change = true;
}
}
}
}
}
// (3) Sum up the non-phi use counts of all connected phis.
// Don't include the non-phi uses of the phi itself.
for (int i = 0; i < num_phis; i++) {
HPhi* phi = phi_list->at(i);
for (BitVector::Iterator it(connected_phis.at(i));
!it.Done();
it.Advance()) {
int index = it.Current();
if (index != i) {
HPhi* it_use = phi_list->at(it.Current());
phi->AddNonPhiUsesFrom(it_use);
}
}
}
for (int i = 0; i < graph_->blocks()->length(); ++i) {
HBasicBlock* block = graph_->blocks()->at(i);
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); ++j) {
AddToWorklist(phis->at(j));
}
HInstruction* current = block->first();
while (current != NULL) {
AddToWorklist(current);
current = current->next();
}
}
while (!worklist_.is_empty()) {
HValue* current = worklist_.RemoveLast();
in_worklist_.Remove(current->id());
InferBasedOnInputs(current);
InferBasedOnUses(current);
}
}
void HGraph::InitializeInferredTypes() {
HPhase phase("Inferring types", this);
InitializeInferredTypes(0, this->blocks_.length() - 1);
}
void HGraph::InitializeInferredTypes(int from_inclusive, int to_inclusive) {
for (int i = from_inclusive; i <= to_inclusive; ++i) {
HBasicBlock* block = blocks_[i];
const ZoneList<HPhi*>* phis = block->phis();
for (int j = 0; j < phis->length(); j++) {
phis->at(j)->UpdateInferredType();
}
HInstruction* current = block->first();
while (current != NULL) {
current->UpdateInferredType();
current = current->next();
}
if (block->IsLoopHeader()) {
HBasicBlock* last_back_edge =
block->loop_information()->GetLastBackEdge();
InitializeInferredTypes(i + 1, last_back_edge->block_id());
// Skip all blocks already processed by the recursive call.
i = last_back_edge->block_id();
// Update phis of the loop header now after the whole loop body is
// guaranteed to be processed.
ZoneList<HValue*> worklist(block->phis()->length());
for (int j = 0; j < block->phis()->length(); ++j) {
worklist.Add(block->phis()->at(j));
}
InferTypes(&worklist);
}
}
}
void HGraph::PropagateMinusZeroChecks(HValue* value, BitVector* visited) {
HValue* current = value;
while (current != NULL) {
if (visited->Contains(current->id())) return;
// For phis, we must propagate the check to all of its inputs.
if (current->IsPhi()) {
visited->Add(current->id());
HPhi* phi = HPhi::cast(current);
for (int i = 0; i < phi->OperandCount(); ++i) {
PropagateMinusZeroChecks(phi->OperandAt(i), visited);
}
break;
}
// For multiplication and division, we must propagate to the left and
// the right side.
if (current->IsMul()) {
HMul* mul = HMul::cast(current);
mul->EnsureAndPropagateNotMinusZero(visited);
PropagateMinusZeroChecks(mul->left(), visited);
PropagateMinusZeroChecks(mul->right(), visited);
} else if (current->IsDiv()) {
HDiv* div = HDiv::cast(current);
div->EnsureAndPropagateNotMinusZero(visited);
PropagateMinusZeroChecks(div->left(), visited);
PropagateMinusZeroChecks(div->right(), visited);
}
current = current->EnsureAndPropagateNotMinusZero(visited);
}
}
void HGraph::InsertRepresentationChangeForUse(HValue* value,
HValue* use,
Representation to,
bool is_truncating) {
// Propagate flags for negative zero checks upwards from conversions
// int32-to-tagged and int32-to-double.
Representation from = value->representation();
if (from.IsInteger32()) {
ASSERT(to.IsTagged() || to.IsDouble());
BitVector visited(GetMaximumValueID());
PropagateMinusZeroChecks(value, &visited);
}
// Insert the representation change right before its use. For phi-uses we
// insert at the end of the corresponding predecessor.
HBasicBlock* insert_block = use->block();
if (use->IsPhi()) {
int index = 0;
while (use->OperandAt(index) != value) ++index;
insert_block = insert_block->predecessors()->at(index);
}
HInstruction* next = (insert_block == use->block())
? HInstruction::cast(use)
: insert_block->end();
// For constants we try to make the representation change at compile
// time. When a representation change is not possible without loss of
// information we treat constants like normal instructions and insert the
// change instructions for them.
HInstruction* new_value = NULL;
if (value->IsConstant()) {
HConstant* constant = HConstant::cast(value);
// Try to create a new copy of the constant with the new representation.
new_value = is_truncating
? constant->CopyToTruncatedInt32()
: constant->CopyToRepresentation(to);
}
if (new_value == NULL) {
new_value = new HChange(value, value->representation(), to);
}
new_value->InsertBefore(next);
value->ReplaceFirstAtUse(use, new_value, to);
}
int CompareConversionUses(HValue* a,
HValue* b,
Representation a_rep,
Representation b_rep) {
if (a_rep.kind() > b_rep.kind()) {
// Make sure specializations are separated in the result array.
return 1;
}
// Put truncating conversions before non-truncating conversions.
bool a_truncate = a->CheckFlag(HValue::kTruncatingToInt32);
bool b_truncate = b->CheckFlag(HValue::kTruncatingToInt32);
if (a_truncate != b_truncate) {
return a_truncate ? -1 : 1;
}
// Sort by increasing block ID.
return a->block()->block_id() - b->block()->block_id();
}
void HGraph::InsertRepresentationChanges(HValue* current) {
Representation r = current->representation();
if (r.IsNone()) return;
if (current->uses()->length() == 0) return;
// Collect the representation changes in a sorted list. This allows
// us to avoid duplicate changes without searching the list.
ZoneList<HValue*> to_convert(2);
ZoneList<Representation> to_convert_reps(2);
for (int i = 0; i < current->uses()->length(); ++i) {
HValue* use = current->uses()->at(i);
// The occurrences index means the index within the operand array of "use"
// at which "current" is used. While iterating through the use array we
// also have to iterate over the different occurrence indices.
int occurrence_index = 0;
if (use->UsesMultipleTimes(current)) {
occurrence_index = current->uses()->CountOccurrences(use, 0, i - 1);
if (FLAG_trace_representation) {
PrintF("Instruction %d is used multiple times at %d; occurrence=%d\n",
current->id(),
use->id(),
occurrence_index);
}
}
int operand_index = use->LookupOperandIndex(occurrence_index, current);
Representation req = use->RequiredInputRepresentation(operand_index);
if (req.IsNone() || req.Equals(r)) continue;
int index = 0;
while (to_convert.length() > index &&
CompareConversionUses(to_convert[index],
use,
to_convert_reps[index],
req) < 0) {
++index;
}
if (FLAG_trace_representation) {
PrintF("Inserting a representation change to %s of %d for use at %d\n",
req.Mnemonic(),
current->id(),
use->id());
}
to_convert.InsertAt(index, use);
to_convert_reps.InsertAt(index, req);
}
for (int i = 0; i < to_convert.length(); ++i) {
HValue* use = to_convert[i];
Representation r_to = to_convert_reps[i];
bool is_truncating = use->CheckFlag(HValue::kTruncatingToInt32);
InsertRepresentationChangeForUse(current, use, r_to, is_truncating);
}
if (current->uses()->is_empty()) {
ASSERT(current->IsConstant());
current->Delete();
}
}
void HGraph::InsertRepresentationChanges() {
HPhase phase("Insert representation changes", this);
// Compute truncation flag for phis: Initially assume that all
// int32-phis allow truncation and iteratively remove the ones that
// are used in an operation that does not allow a truncating
// conversion.
// TODO(fschneider): Replace this with a worklist-based iteration.
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
if (phi->representation().IsInteger32()) {
phi->SetFlag(HValue::kTruncatingToInt32);
}
}
bool change = true;
while (change) {
change = false;
for (int i = 0; i < phi_list()->length(); i++) {
HPhi* phi = phi_list()->at(i);
if (!phi->CheckFlag(HValue::kTruncatingToInt32)) continue;
for (int j = 0; j < phi->uses()->length(); j++) {
HValue* use = phi->uses()->at(j);
if (!use->CheckFlag(HValue::kTruncatingToInt32)) {
phi->ClearFlag(HValue::kTruncatingToInt32);
change = true;
break;
}
}
}
}
for (int i = 0; i < blocks_.length(); ++i) {
// Process phi instructions first.
for (int j = 0; j < blocks_[i]->phis()->length(); j++) {
HPhi* phi = blocks_[i]->phis()->at(j);
InsertRepresentationChanges(phi);
}
// Process normal instructions.
HInstruction* current = blocks_[i]->first();
while (current != NULL) {
InsertRepresentationChanges(current);
current = current->next();
}
}
}
// Implementation of utility classes to represent an expression's context in
// the AST.
AstContext::AstContext(HGraphBuilder* owner, Expression::Context kind)
: owner_(owner), kind_(kind), outer_(owner->ast_context()) {
owner->set_ast_context(this); // Push.
#ifdef DEBUG
original_length_ = owner->environment()->length();
#endif
}
AstContext::~AstContext() {
owner_->set_ast_context(outer_); // Pop.
}
EffectContext::~EffectContext() {
ASSERT(owner()->HasStackOverflow() ||
!owner()->subgraph()->HasExit() ||
owner()->environment()->length() == original_length_);
}
ValueContext::~ValueContext() {
ASSERT(owner()->HasStackOverflow() ||
!owner()->subgraph()->HasExit() ||
owner()->environment()->length() == original_length_ + 1);
}
void EffectContext::ReturnValue(HValue* value) {
// The value is simply ignored.
}
void ValueContext::ReturnValue(HValue* value) {
// The value is tracked in the bailout environment, and communicated
// through the environment as the result of the expression.
owner()->Push(value);
}
void TestContext::ReturnValue(HValue* value) {
BuildBranch(value);
}
void EffectContext::ReturnInstruction(HInstruction* instr, int ast_id) {
owner()->AddInstruction(instr);
if (instr->HasSideEffects()) owner()->AddSimulate(ast_id);
}
void ValueContext::ReturnInstruction(HInstruction* instr, int ast_id) {
owner()->AddInstruction(instr);
owner()->Push(instr);
if (instr->HasSideEffects()) owner()->AddSimulate(ast_id);
}
void TestContext::ReturnInstruction(HInstruction* instr, int ast_id) {
HGraphBuilder* builder = owner();
builder->AddInstruction(instr);
// We expect a simulate after every expression with side effects, though
// this one isn't actually needed (and wouldn't work if it were targeted).
if (instr->HasSideEffects()) {
builder->Push(instr);
builder->AddSimulate(ast_id);
builder->Pop();
}
BuildBranch(instr);
}
void TestContext::BuildBranch(HValue* value) {
// We expect the graph to be in edge-split form: there is no edge that
// connects a branch node to a join node. We conservatively ensure that
// property by always adding an empty block on the outgoing edges of this
// branch.
HGraphBuilder* builder = owner();
HBasicBlock* empty_true = builder->graph()->CreateBasicBlock();
HBasicBlock* empty_false = builder->graph()->CreateBasicBlock();
HBranch* branch = new HBranch(empty_true, empty_false, value);
builder->CurrentBlock()->Finish(branch);
HValue* const no_return_value = NULL;
HBasicBlock* true_target = if_true();
if (true_target->IsInlineReturnTarget()) {
empty_true->AddLeaveInlined(no_return_value, true_target);
} else {
empty_true->Goto(true_target);
}
HBasicBlock* false_target = if_false();
if (false_target->IsInlineReturnTarget()) {
empty_false->AddLeaveInlined(no_return_value, false_target);
} else {
empty_false->Goto(false_target);
}
builder->subgraph()->set_exit_block(NULL);
}
// HGraphBuilder infrastructure for bailing out and checking bailouts.
#define BAILOUT(reason) \
do { \
Bailout(reason); \
return; \
} while (false)
#define CHECK_BAILOUT \
do { \
if (HasStackOverflow()) return; \
} while (false)
#define VISIT_FOR_EFFECT(expr) \
do { \
VisitForEffect(expr); \
if (HasStackOverflow()) return; \
} while (false)
#define VISIT_FOR_VALUE(expr) \
do { \
VisitForValue(expr); \
if (HasStackOverflow()) return; \
} while (false)
#define VISIT_FOR_CONTROL(expr, true_block, false_block) \
do { \
VisitForControl(expr, true_block, false_block); \
if (HasStackOverflow()) return; \
} while (false)
// 'thing' could be an expression, statement, or list of statements.
#define ADD_TO_SUBGRAPH(graph, thing) \
do { \
AddToSubgraph(graph, thing); \
if (HasStackOverflow()) return; \
} while (false)
class HGraphBuilder::SubgraphScope BASE_EMBEDDED {
public:
SubgraphScope(HGraphBuilder* builder, HSubgraph* new_subgraph)
: builder_(builder) {
old_subgraph_ = builder_->current_subgraph_;
subgraph_ = new_subgraph;
builder_->current_subgraph_ = subgraph_;
}
~SubgraphScope() {
old_subgraph_->AddBreakContinueInfo(subgraph_);
builder_->current_subgraph_ = old_subgraph_;
}
HSubgraph* subgraph() const { return subgraph_; }
private:
HGraphBuilder* builder_;
HSubgraph* old_subgraph_;
HSubgraph* subgraph_;
};
void HGraphBuilder::Bailout(const char* reason) {
if (FLAG_trace_bailout) {
SmartPointer<char> debug_name = graph()->debug_name()->ToCString();
PrintF("Bailout in HGraphBuilder: @\"%s\": %s\n", *debug_name, reason);
}
SetStackOverflow();
}
void HGraphBuilder::VisitForEffect(Expression* expr) {
EffectContext for_effect(this);
Visit(expr);
}
void HGraphBuilder::VisitForValue(Expression* expr) {
ValueContext for_value(this);
Visit(expr);
}
void HGraphBuilder::VisitForControl(Expression* expr,
HBasicBlock* true_block,
HBasicBlock* false_block) {
TestContext for_test(this, true_block, false_block);
Visit(expr);
}
HValue* HGraphBuilder::VisitArgument(Expression* expr) {
VisitForValue(expr);
if (HasStackOverflow() || !subgraph()->HasExit()) return NULL;
return environment()->Top();
}
void HGraphBuilder::VisitArgumentList(ZoneList<Expression*>* arguments) {
for (int i = 0; i < arguments->length(); i++) {
VisitArgument(arguments->at(i));
if (HasStackOverflow() || !current_subgraph_->HasExit()) return;
}
}
HGraph* HGraphBuilder::CreateGraph(CompilationInfo* info) {
ASSERT(current_subgraph_ == NULL);
graph_ = new HGraph(info);
{
HPhase phase("Block building");
graph_->Initialize(CreateBasicBlock(graph_->start_environment()));
current_subgraph_ = graph_;
Scope* scope = info->scope();
SetupScope(scope);
VisitDeclarations(scope->declarations());
AddInstruction(new HStackCheck());
ZoneList<Statement*>* stmts = info->function()->body();
HSubgraph* body = CreateGotoSubgraph(environment());
AddToSubgraph(body, stmts);
if (HasStackOverflow()) return NULL;
current_subgraph_->Append(body, NULL);
body->entry_block()->SetJoinId(info->function()->id());
if (graph_->HasExit()) {
graph_->FinishExit(new HReturn(graph_->GetConstantUndefined()));
}
}
graph_->OrderBlocks();
graph_->AssignDominators();
graph_->EliminateRedundantPhis();
if (!graph_->CollectPhis()) {
Bailout("Phi-use of arguments object");
return NULL;
}
HInferRepresentation rep(graph_);
rep.Analyze();
if (FLAG_use_range) {
HRangeAnalysis rangeAnalysis(graph_);
rangeAnalysis.Analyze();
}
graph_->InitializeInferredTypes();
graph_->Canonicalize();
graph_->InsertRepresentationChanges();
// Eliminate redundant stack checks on backwards branches.
HStackCheckEliminator sce(graph_);
sce.Process();
// Perform common subexpression elimination and loop-invariant code motion.
if (FLAG_use_gvn) {
HPhase phase("Global value numbering", graph_);
HGlobalValueNumberer gvn(graph_);
gvn.Analyze();
}
return graph_;
}
void HGraphBuilder::AddToSubgraph(HSubgraph* graph, Statement* stmt) {
SubgraphScope scope(this, graph);
Visit(stmt);
}
void HGraphBuilder::AddToSubgraph(HSubgraph* graph, Expression* expr) {
SubgraphScope scope(this, graph);
VisitForValue(expr);
}
void HGraphBuilder::AddToSubgraph(HSubgraph* graph,
ZoneList<Statement*>* stmts) {
SubgraphScope scope(this, graph);
VisitStatements(stmts);
}
HInstruction* HGraphBuilder::AddInstruction(HInstruction* instr) {
ASSERT(current_subgraph_->HasExit());
current_subgraph_->exit_block()->AddInstruction(instr);
return instr;
}
void HGraphBuilder::AddSimulate(int id) {
ASSERT(current_subgraph_->HasExit());
current_subgraph_->exit_block()->AddSimulate(id);
}
void HGraphBuilder::AddPhi(HPhi* instr) {
ASSERT(current_subgraph_->HasExit());
current_subgraph_->exit_block()->AddPhi(instr);
}
void HGraphBuilder::PushAndAdd(HInstruction* instr) {
Push(instr);
AddInstruction(instr);
}
void HGraphBuilder::PushArgumentsForStubCall(int argument_count) {
const int kMaxStubArguments = 4;
ASSERT_GE(kMaxStubArguments, argument_count);
// Push the arguments on the stack.
HValue* arguments[kMaxStubArguments];
for (int i = argument_count - 1; i >= 0; i--) {
arguments[i] = Pop();
}
for (int i = 0; i < argument_count; i++) {
AddInstruction(new HPushArgument(arguments[i]));
}
}
void HGraphBuilder::ProcessCall(HCall* call) {
for (int i = call->argument_count() - 1; i >= 0; --i) {
HValue* value = Pop();
HPushArgument* push = new HPushArgument(value);
call->SetArgumentAt(i, push);
}
for (int i = 0; i < call->argument_count(); ++i) {
AddInstruction(call->PushArgumentAt(i));
}
}
void HGraphBuilder::SetupScope(Scope* scope) {
// We don't yet handle the function name for named function expressions.
if (scope->function() != NULL) BAILOUT("named function expression");
// We can't handle heap-allocated locals.
if (scope->num_heap_slots() > 0) BAILOUT("heap allocated locals");
HConstant* undefined_constant =
new HConstant(Factory::undefined_value(), Representation::Tagged());
AddInstruction(undefined_constant);
graph_->set_undefined_constant(undefined_constant);
// Set the initial values of parameters including "this". "This" has
// parameter index 0.
int count = scope->num_parameters() + 1;
for (int i = 0; i < count; ++i) {
HInstruction* parameter = AddInstruction(new HParameter(i));
environment()->Bind(i, parameter);
}
// Set the initial values of stack-allocated locals.
for (int i = count; i < environment()->length(); ++i) {
environment()->Bind(i, undefined_constant);
}
// Handle the arguments and arguments shadow variables specially (they do
// not have declarations).
if (scope->arguments() != NULL) {
HArgumentsObject* object = new HArgumentsObject;
AddInstruction(object);
graph()->SetArgumentsObject(object);
environment()->Bind(scope->arguments(), object);
environment()->Bind(scope->arguments_shadow(), object);
}
}
void HGraphBuilder::VisitStatements(ZoneList<Statement*>* statements) {
for (int i = 0; i < statements->length(); i++) {
Visit(statements->at(i));
if (HasStackOverflow() || !current_subgraph_->HasExit()) break;
}
}
HBasicBlock* HGraphBuilder::CreateBasicBlock(HEnvironment* env) {
HBasicBlock* b = graph()->CreateBasicBlock();
b->SetInitialEnvironment(env);
return b;
}
HSubgraph* HGraphBuilder::CreateInlinedSubgraph(HEnvironment* outer,
Handle<JSFunction> target,
FunctionLiteral* function) {
HConstant* undefined = graph()->GetConstantUndefined();
HEnvironment* inner =
outer->CopyForInlining(target, function, true, undefined);
HSubgraph* subgraph = new HSubgraph(graph());
subgraph->Initialize(CreateBasicBlock(inner));
return subgraph;
}
HSubgraph* HGraphBuilder::CreateGotoSubgraph(HEnvironment* env) {
HSubgraph* subgraph = new HSubgraph(graph());
HEnvironment* new_env = env->CopyWithoutHistory();
subgraph->Initialize(CreateBasicBlock(new_env));
return subgraph;
}
HSubgraph* HGraphBuilder::CreateEmptySubgraph() {
HSubgraph* subgraph = new HSubgraph(graph());
subgraph->Initialize(graph()->CreateBasicBlock());
return subgraph;
}
HSubgraph* HGraphBuilder::CreateBranchSubgraph(HEnvironment* env) {
HSubgraph* subgraph = new HSubgraph(graph());
HEnvironment* new_env = env->Copy();
subgraph->Initialize(CreateBasicBlock(new_env));
return subgraph;
}
HSubgraph* HGraphBuilder::CreateLoopHeaderSubgraph(HEnvironment* env) {
HSubgraph* subgraph = new HSubgraph(graph());
HBasicBlock* block = graph()->CreateBasicBlock();
HEnvironment* new_env = env->CopyAsLoopHeader(block);
block->SetInitialEnvironment(new_env);
subgraph->Initialize(block);
subgraph->entry_block()->AttachLoopInformation();
return subgraph;
}
void HGraphBuilder::VisitBlock(Block* stmt) {
if (stmt->labels() != NULL) {
HSubgraph* block_graph = CreateGotoSubgraph(environment());
ADD_TO_SUBGRAPH(block_graph, stmt->statements());
current_subgraph_->Append(block_graph, stmt);
} else {
VisitStatements(stmt->statements());
}
}
void HGraphBuilder::VisitExpressionStatement(ExpressionStatement* stmt) {
VisitForEffect(stmt->expression());
}
void HGraphBuilder::VisitEmptyStatement(EmptyStatement* stmt) {
}
void HGraphBuilder::VisitIfStatement(IfStatement* stmt) {
if (stmt->condition()->ToBooleanIsTrue()) {
AddSimulate(stmt->ThenId());
Visit(stmt->then_statement());
} else if (stmt->condition()->ToBooleanIsFalse()) {
AddSimulate(stmt->ElseId());
Visit(stmt->else_statement());
} else {
HSubgraph* then_graph = CreateEmptySubgraph();
HSubgraph* else_graph = CreateEmptySubgraph();
VISIT_FOR_CONTROL(stmt->condition(),
then_graph->entry_block(),
else_graph->entry_block());
then_graph->entry_block()->SetJoinId(stmt->ThenId());
ADD_TO_SUBGRAPH(then_graph, stmt->then_statement());
else_graph->entry_block()->SetJoinId(stmt->ElseId());
ADD_TO_SUBGRAPH(else_graph, stmt->else_statement());
current_subgraph_->AppendJoin(then_graph, else_graph, stmt);
}
}
void HGraphBuilder::VisitContinueStatement(ContinueStatement* stmt) {
current_subgraph_->FinishBreakContinue(stmt->target(), true);
}
void HGraphBuilder::VisitBreakStatement(BreakStatement* stmt) {
current_subgraph_->FinishBreakContinue(stmt->target(), false);
}
void HGraphBuilder::VisitReturnStatement(ReturnStatement* stmt) {
AstContext* context = call_context();
if (context == NULL) {
// Not an inlined return, so an actual one.
VISIT_FOR_VALUE(stmt->expression());
HValue* result = environment()->Pop();
subgraph()->FinishExit(new HReturn(result));
} else {
// Return from an inlined function, visit the subexpression in the
// expression context of the call.
if (context->IsTest()) {
TestContext* test = TestContext::cast(context);
VisitForControl(stmt->expression(),
test->if_true(),
test->if_false());
} else {
HValue* return_value = NULL;
if (context->IsEffect()) {
VISIT_FOR_EFFECT(stmt->expression());
return_value = graph()->GetConstantUndefined();
} else {
ASSERT(context->IsValue());
VISIT_FOR_VALUE(stmt->expression());
return_value = environment()->Pop();
}
subgraph()->exit_block()->AddLeaveInlined(return_value,
function_return_);
subgraph()->set_exit_block(NULL);
}
}
}
void HGraphBuilder::VisitWithEnterStatement(WithEnterStatement* stmt) {
BAILOUT("WithEnterStatement");
}
void HGraphBuilder::VisitWithExitStatement(WithExitStatement* stmt) {
BAILOUT("WithExitStatement");
}
HCompare* HGraphBuilder::BuildSwitchCompare(HSubgraph* subgraph,
HValue* switch_value,
CaseClause* clause) {
AddToSubgraph(subgraph, clause->label());
if (HasStackOverflow()) return NULL;
HValue* clause_value = subgraph->environment()->Pop();
HCompare* compare = new HCompare(switch_value,
clause_value,
Token::EQ_STRICT);
compare->SetInputRepresentation(Representation::Integer32());
subgraph->exit_block()->AddInstruction(compare);
return compare;
}
void HGraphBuilder::VisitSwitchStatement(SwitchStatement* stmt) {
VISIT_FOR_VALUE(stmt->tag());
// TODO(3168478): simulate added for tag should be enough.
AddSimulate(stmt->EntryId());
HValue* switch_value = Pop();
ZoneList<CaseClause*>* clauses = stmt->cases();
int num_clauses = clauses->length();
if (num_clauses == 0) return;
if (num_clauses > 128) BAILOUT("SwitchStatement: too many clauses");
int num_smi_clauses = num_clauses;
for (int i = 0; i < num_clauses; i++) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) continue;
clause->RecordTypeFeedback(oracle());
if (!clause->IsSmiCompare()) {
if (i == 0) BAILOUT("SwitchStatement: no smi compares");
// We will deoptimize if the first non-smi compare is reached.
num_smi_clauses = i;
break;
}
if (!clause->label()->IsSmiLiteral()) {
BAILOUT("SwitchStatement: non-literal switch label");
}
}
// The single exit block of the whole switch statement.
HBasicBlock* single_exit_block = graph_->CreateBasicBlock();
// Build a series of empty subgraphs for the comparisons.
// The default clause does not have a comparison subgraph.
ZoneList<HSubgraph*> compare_graphs(num_smi_clauses);
for (int i = 0; i < num_smi_clauses; i++) {
if (clauses->at(i)->is_default()) {
compare_graphs.Add(NULL);
} else {
compare_graphs.Add(CreateEmptySubgraph());
}
}
HSubgraph* prev_graph = current_subgraph_;
HCompare* prev_compare_inst = NULL;
for (int i = 0; i < num_smi_clauses; i++) {
CaseClause* clause = clauses->at(i);
if (clause->is_default()) continue;
// Finish the previous graph by connecting it to the current.
HSubgraph* subgraph = compare_graphs.at(i);
if (prev_compare_inst == NULL) {
ASSERT(prev_graph == current_subgraph_);
prev_graph->exit_block()->Finish(new HGoto(subgraph->entry_block()));
} else {
HBasicBlock* empty = graph()->CreateBasicBlock();
prev_graph->exit_block()->Finish(new HBranch(empty,
subgraph->entry_block(),
prev_compare_inst));
}
// Build instructions for current subgraph.
ASSERT(clause->IsSmiCompare());
prev_compare_inst = BuildSwitchCompare(subgraph, switch_value, clause);
if (HasStackOverflow()) return;
prev_graph = subgraph;
}
// Finish last comparison if there was at least one comparison.
// last_false_block is the (empty) false-block of the last comparison. If
// there are no comparisons at all (a single default clause), it is just
// the last block of the current subgraph.
HBasicBlock* last_false_block = current_subgraph_->exit_block();
if (prev_graph != current_subgraph_) {
last_false_block = graph()->CreateBasicBlock();
HBasicBlock* empty = graph()->CreateBasicBlock();
prev_graph->exit_block()->Finish(new HBranch(empty,
last_false_block,
prev_compare_inst));
}
// If we have a non-smi compare clause, we deoptimize after trying
// all the previous compares.
if (num_smi_clauses < num_clauses) {
last_false_block->Finish(new HDeoptimize);
}
// Build statement blocks, connect them to their comparison block and
// to the previous statement block, if there is a fall-through.
HSubgraph* previous_subgraph = NULL;
for (int i = 0; i < num_clauses; i++) {
CaseClause* clause = clauses->at(i);
// Subgraph for the statements of the clause is only created when
// it's reachable either from the corresponding compare or as a
// fall-through from previous statements.
HSubgraph* subgraph = NULL;
if (i < num_smi_clauses) {
if (clause->is_default()) {
if (!last_false_block->IsFinished()) {
// Default clause: Connect it to the last false block.
subgraph = CreateEmptySubgraph();
last_false_block->Finish(new HGoto(subgraph->entry_block()));
}
} else {
ASSERT(clause->IsSmiCompare());
// Connect with the corresponding comparison.
subgraph = CreateEmptySubgraph();
HBasicBlock* empty =
compare_graphs.at(i)->exit_block()->end()->FirstSuccessor();
empty->Finish(new HGoto(subgraph->entry_block()));
}
}
// Check for fall-through from previous statement block.
if (previous_subgraph != NULL && previous_subgraph->HasExit()) {
if (subgraph == NULL) subgraph = CreateEmptySubgraph();
previous_subgraph->exit_block()->
Finish(new HGoto(subgraph->entry_block()));
}
if (subgraph != NULL) {
ADD_TO_SUBGRAPH(subgraph, clause->statements());
HBasicBlock* break_block = subgraph->BundleBreak(stmt);
if (break_block != NULL) {
break_block->Finish(new HGoto(single_exit_block));
}
}
previous_subgraph = subgraph;
}
// If the last statement block has a fall-through, connect it to the
// single exit block.
if (previous_subgraph != NULL && previous_subgraph->HasExit()) {
previous_subgraph->exit_block()->Finish(new HGoto(single_exit_block));
}
// If there is no default clause finish the last comparison's false target.
if (!last_false_block->IsFinished()) {
last_false_block->Finish(new HGoto(single_exit_block));
}
if (single_exit_block->HasPredecessor()) {
current_subgraph_->set_exit_block(single_exit_block);
} else {
current_subgraph_->set_exit_block(NULL);
}
}
bool HGraph::HasOsrEntryAt(IterationStatement* statement) {
return statement->OsrEntryId() == info()->osr_ast_id();
}
void HSubgraph::PreProcessOsrEntry(IterationStatement* statement) {
if (!graph()->HasOsrEntryAt(statement)) return;
HBasicBlock* non_osr_entry = graph()->CreateBasicBlock();
HBasicBlock* osr_entry = graph()->CreateBasicBlock();
HValue* true_value = graph()->GetConstantTrue();
HBranch* branch = new HBranch(non_osr_entry, osr_entry, true_value);
exit_block()->Finish(branch);
HBasicBlock* loop_predecessor = graph()->CreateBasicBlock();
non_osr_entry->Goto(loop_predecessor);
int osr_entry_id = statement->OsrEntryId();
// We want the correct environment at the OsrEntry instruction. Build
// it explicitly. The expression stack should be empty.
int count = osr_entry->last_environment()->length();
ASSERT(count == (osr_entry->last_environment()->parameter_count() +
osr_entry->last_environment()->local_count()));
for (int i = 0; i < count; ++i) {
HUnknownOSRValue* unknown = new HUnknownOSRValue;
osr_entry->AddInstruction(unknown);
osr_entry->last_environment()->Bind(i, unknown);
}
osr_entry->AddSimulate(osr_entry_id);
osr_entry->AddInstruction(new HOsrEntry(osr_entry_id));
osr_entry->Goto(loop_predecessor);
loop_predecessor->SetJoinId(statement->EntryId());
set_exit_block(loop_predecessor);
}
void HGraphBuilder::VisitDoWhileStatement(DoWhileStatement* stmt) {
ASSERT(subgraph()->HasExit());
subgraph()->PreProcessOsrEntry(stmt);
HSubgraph* body_graph = CreateLoopHeaderSubgraph(environment());
ADD_TO_SUBGRAPH(body_graph, stmt->body());
body_graph->ResolveContinue(stmt);
if (!body_graph->HasExit() || stmt->cond()->ToBooleanIsTrue()) {
current_subgraph_->AppendEndless(body_graph, stmt);
} else {
HSubgraph* go_back = CreateEmptySubgraph();
HSubgraph* exit = CreateEmptySubgraph();
{
SubgraphScope scope(this, body_graph);
VISIT_FOR_CONTROL(stmt->cond(),
go_back->entry_block(),
exit->entry_block());
go_back->entry_block()->SetJoinId(stmt->BackEdgeId());
exit->entry_block()->SetJoinId(stmt->ExitId());
}
current_subgraph_->AppendDoWhile(body_graph, stmt, go_back, exit);
}
}
bool HGraphBuilder::ShouldPeel(HSubgraph* cond, HSubgraph* body) {
return FLAG_use_peeling;
}
void HGraphBuilder::VisitWhileStatement(WhileStatement* stmt) {
ASSERT(subgraph()->HasExit());
subgraph()->PreProcessOsrEntry(stmt);
HSubgraph* cond_graph = NULL;
HSubgraph* body_graph = NULL;
HSubgraph* exit_graph = NULL;
// If the condition is constant true, do not generate a condition subgraph.
if (stmt->cond()->ToBooleanIsTrue()) {
body_graph = CreateLoopHeaderSubgraph(environment());
ADD_TO_SUBGRAPH(body_graph, stmt->body());
} else {
cond_graph = CreateLoopHeaderSubgraph(environment());
body_graph = CreateEmptySubgraph();
exit_graph = CreateEmptySubgraph();
{
SubgraphScope scope(this, cond_graph);
VISIT_FOR_CONTROL(stmt->cond(),
body_graph->entry_block(),
exit_graph->entry_block());
body_graph->entry_block()->SetJoinId(stmt->BodyId());
exit_graph->entry_block()->SetJoinId(stmt->ExitId());
}
ADD_TO_SUBGRAPH(body_graph, stmt->body());
}
body_graph->ResolveContinue(stmt);
if (cond_graph != NULL) {
AppendPeeledWhile(stmt, cond_graph, body_graph, exit_graph);
} else {
// TODO(fschneider): Implement peeling for endless loops as well.
current_subgraph_->AppendEndless(body_graph, stmt);
}
}
void HGraphBuilder::AppendPeeledWhile(IterationStatement* stmt,
HSubgraph* cond_graph,
HSubgraph* body_graph,
HSubgraph* exit_graph) {
HSubgraph* loop = NULL;
if (body_graph->HasExit() && stmt != peeled_statement_ &&
ShouldPeel(cond_graph, body_graph)) {
// Save the last peeled iteration statement to prevent infinite recursion.
IterationStatement* outer_peeled_statement = peeled_statement_;
peeled_statement_ = stmt;
loop = CreateGotoSubgraph(body_graph->environment());
ADD_TO_SUBGRAPH(loop, stmt);
peeled_statement_ = outer_peeled_statement;
}
current_subgraph_->AppendWhile(cond_graph, body_graph, stmt, loop,
exit_graph);
}
void HGraphBuilder::VisitForStatement(ForStatement* stmt) {
// Only visit the init statement in the peeled part of the loop.
if (stmt->init() != NULL && peeled_statement_ != stmt) {
Visit(stmt->init());
CHECK_BAILOUT;
}
ASSERT(subgraph()->HasExit());
subgraph()->PreProcessOsrEntry(stmt);
HSubgraph* cond_graph = NULL;
HSubgraph* body_graph = NULL;
HSubgraph* exit_graph = NULL;
if (stmt->cond() != NULL) {
cond_graph = CreateLoopHeaderSubgraph(environment());
body_graph = CreateEmptySubgraph();
exit_graph = CreateEmptySubgraph();
{
SubgraphScope scope(this, cond_graph);
VISIT_FOR_CONTROL(stmt->cond(),
body_graph->entry_block(),
exit_graph->entry_block());
body_graph->entry_block()->SetJoinId(stmt->BodyId());
exit_graph->entry_block()->SetJoinId(stmt->ExitId());
}
} else {
body_graph = CreateLoopHeaderSubgraph(environment());
}
ADD_TO_SUBGRAPH(body_graph, stmt->body());
HSubgraph* next_graph = NULL;
body_graph->ResolveContinue(stmt);
if (stmt->next() != NULL && body_graph->HasExit()) {
next_graph = CreateGotoSubgraph(body_graph->environment());
ADD_TO_SUBGRAPH(next_graph, stmt->next());
body_graph->Append(next_graph, NULL);
next_graph->entry_block()->SetJoinId(stmt->ContinueId());
}
if (cond_graph != NULL) {
AppendPeeledWhile(stmt, cond_graph, body_graph, exit_graph);
} else {
current_subgraph_->AppendEndless(body_graph, stmt);
}
}
void HGraphBuilder::VisitForInStatement(ForInStatement* stmt) {
BAILOUT("ForInStatement");
}
void HGraphBuilder::VisitTryCatchStatement(TryCatchStatement* stmt) {
BAILOUT("TryCatchStatement");
}
void HGraphBuilder::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
BAILOUT("TryFinallyStatement");
}
void HGraphBuilder::VisitDebuggerStatement(DebuggerStatement* stmt) {
BAILOUT("DebuggerStatement");
}
void HGraphBuilder::VisitFunctionLiteral(FunctionLiteral* expr) {
Handle<SharedFunctionInfo> shared_info =
Compiler::BuildFunctionInfo(expr, graph_->info()->script());
CHECK_BAILOUT;
HFunctionLiteral* instr =
new HFunctionLiteral(shared_info, expr->pretenure());
ast_context()->ReturnInstruction(instr, expr->id());
}
void HGraphBuilder::VisitSharedFunctionInfoLiteral(
SharedFunctionInfoLiteral* expr) {
BAILOUT("SharedFunctionInfoLiteral");
}
void HGraphBuilder::VisitConditional(Conditional* expr) {
HSubgraph* then_graph = CreateEmptySubgraph();
HSubgraph* else_graph = CreateEmptySubgraph();
VISIT_FOR_CONTROL(expr->condition(),
then_graph->entry_block(),
else_graph->entry_block());
then_graph->entry_block()->SetJoinId(expr->ThenId());
ADD_TO_SUBGRAPH(then_graph, expr->then_expression());
else_graph->entry_block()->SetJoinId(expr->ElseId());
ADD_TO_SUBGRAPH(else_graph, expr->else_expression());
current_subgraph_->AppendJoin(then_graph, else_graph, expr);
ast_context()->ReturnValue(Pop());
}
void HGraphBuilder::LookupGlobalPropertyCell(Variable* var,
LookupResult* lookup,
bool is_store) {
if (var->is_this()) {
BAILOUT("global this reference");
}
if (!graph()->info()->has_global_object()) {
BAILOUT("no global object to optimize VariableProxy");
}
Handle<GlobalObject> global(graph()->info()->global_object());
global->Lookup(*var->name(), lookup);
if (!lookup->IsProperty()) {
BAILOUT("global variable cell not yet introduced");
}
if (lookup->type() != NORMAL) {
BAILOUT("global variable has accessors");
}
if (is_store && lookup->IsReadOnly()) {
BAILOUT("read-only global variable");
}
}
void HGraphBuilder::VisitVariableProxy(VariableProxy* expr) {
Variable* variable = expr->AsVariable();
if (variable == NULL) {
BAILOUT("reference to rewritten variable");
} else if (variable->IsStackAllocated()) {
if (environment()->Lookup(variable)->CheckFlag(HValue::kIsArguments)) {
BAILOUT("unsupported context for arguments object");
}
ast_context()->ReturnValue(environment()->Lookup(variable));
} else if (variable->is_global()) {
LookupResult lookup;
LookupGlobalPropertyCell(variable, &lookup, false);
CHECK_BAILOUT;
Handle<GlobalObject> global(graph()->info()->global_object());
// TODO(3039103): Handle global property load through an IC call when access
// checks are enabled.
if (global->IsAccessCheckNeeded()) {
BAILOUT("global object requires access check");
}
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
bool check_hole = !lookup.IsDontDelete() || lookup.IsReadOnly();
HLoadGlobal* instr = new HLoadGlobal(cell, check_hole);
ast_context()->ReturnInstruction(instr, expr->id());
} else {
BAILOUT("reference to non-stack-allocated/non-global variable");
}
}
void HGraphBuilder::VisitLiteral(Literal* expr) {
HConstant* instr = new HConstant(expr->handle(), Representation::Tagged());
ast_context()->ReturnInstruction(instr, expr->id());
}
void HGraphBuilder::VisitRegExpLiteral(RegExpLiteral* expr) {
HRegExpLiteral* instr = new HRegExpLiteral(expr->pattern(),
expr->flags(),
expr->literal_index());
ast_context()->ReturnInstruction(instr, expr->id());
}
void HGraphBuilder::VisitObjectLiteral(ObjectLiteral* expr) {
HObjectLiteral* literal = (new HObjectLiteral(expr->constant_properties(),
expr->fast_elements(),
expr->literal_index(),
expr->depth()));
// The object is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
PushAndAdd(literal);
expr->CalculateEmitStore();
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
switch (property->kind()) {
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(value));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
if (property->emit_store()) {
VISIT_FOR_VALUE(value);
HValue* value = Pop();
Handle<String> name = Handle<String>::cast(key->handle());
AddInstruction(new HStoreNamedGeneric(literal, name, value));
AddSimulate(key->id());
} else {
VISIT_FOR_EFFECT(value);
}
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
case ObjectLiteral::Property::SETTER:
case ObjectLiteral::Property::GETTER:
BAILOUT("Object literal with complex property");
default: UNREACHABLE();
}
}
ast_context()->ReturnValue(Pop());
}
void HGraphBuilder::VisitArrayLiteral(ArrayLiteral* expr) {
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
HArrayLiteral* literal = new HArrayLiteral(expr->constant_elements(),
length,
expr->literal_index(),
expr->depth());
// The array is expected in the bailout environment during computation
// of the property values and is the value of the entire expression.
PushAndAdd(literal);
HLoadElements* elements = NULL;
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue;
VISIT_FOR_VALUE(subexpr);
HValue* value = Pop();
if (!Smi::IsValid(i)) BAILOUT("Non-smi key in array literal");
// Load the elements array before the first store.
if (elements == NULL) {
elements = new HLoadElements(literal);
AddInstruction(elements);
}
HValue* key = AddInstruction(new HConstant(Handle<Object>(Smi::FromInt(i)),
Representation::Integer32()));
AddInstruction(new HStoreKeyedFastElement(elements, key, value));
AddSimulate(expr->GetIdForElement(i));
}
ast_context()->ReturnValue(Pop());
}
void HGraphBuilder::VisitCatchExtensionObject(CatchExtensionObject* expr) {
BAILOUT("CatchExtensionObject");
}
HBasicBlock* HGraphBuilder::BuildTypeSwitch(ZoneMapList* maps,
ZoneList<HSubgraph*>* subgraphs,
HValue* receiver,
int join_id) {
ASSERT(subgraphs->length() == (maps->length() + 1));
// Build map compare subgraphs for all but the first map.
ZoneList<HSubgraph*> map_compare_subgraphs(maps->length() - 1);
for (int i = maps->length() - 1; i > 0; --i) {
HSubgraph* subgraph = CreateBranchSubgraph(environment());
SubgraphScope scope(this, subgraph);
HSubgraph* else_subgraph =
(i == (maps->length() - 1))
? subgraphs->last()
: map_compare_subgraphs.last();
current_subgraph_->exit_block()->Finish(
new HCompareMapAndBranch(receiver,
maps->at(i),
subgraphs->at(i)->entry_block(),
else_subgraph->entry_block()));
map_compare_subgraphs.Add(subgraph);
}
// Generate first map check to end the current block.
AddInstruction(new HCheckNonSmi(receiver));
HSubgraph* else_subgraph =
(maps->length() == 1) ? subgraphs->at(1) : map_compare_subgraphs.last();
current_subgraph_->exit_block()->Finish(
new HCompareMapAndBranch(receiver,
Handle<Map>(maps->first()),
subgraphs->first()->entry_block(),
else_subgraph->entry_block()));
// Join all the call subgraphs in a new basic block and make
// this basic block the current basic block.
HBasicBlock* join_block = graph_->CreateBasicBlock();
for (int i = 0; i < subgraphs->length(); ++i) {
HSubgraph* subgraph = subgraphs->at(i);
if (subgraph->HasExit()) {
// In an effect context the value of the type switch is not needed.
// There is no need to merge it at the join block only to discard it.
HBasicBlock* subgraph_exit = subgraph->exit_block();
if (ast_context()->IsEffect()) {
subgraph_exit->last_environment()->Drop(1);
}
subgraph_exit->Goto(join_block);
}
}
if (join_block->predecessors()->is_empty()) return NULL;
join_block->SetJoinId(join_id);
return join_block;
}
// Sets the lookup result and returns true if the store can be inlined.
static bool ComputeStoredField(Handle<Map> type,
Handle<String> name,
LookupResult* lookup) {
type->LookupInDescriptors(NULL, *name, lookup);
if (!lookup->IsPropertyOrTransition()) return false;
if (lookup->type() == FIELD) return true;
return (lookup->type() == MAP_TRANSITION) &&
(type->unused_property_fields() > 0);
}
static int ComputeStoredFieldIndex(Handle<Map> type,
Handle<String> name,
LookupResult* lookup) {
ASSERT(lookup->type() == FIELD || lookup->type() == MAP_TRANSITION);
if (lookup->type() == FIELD) {
return lookup->GetLocalFieldIndexFromMap(*type);
} else {
Map* transition = lookup->GetTransitionMapFromMap(*type);
return transition->PropertyIndexFor(*name) - type->inobject_properties();
}
}
HInstruction* HGraphBuilder::BuildStoreNamedField(HValue* object,
Handle<String> name,
HValue* value,
Handle<Map> type,
LookupResult* lookup,
bool smi_and_map_check) {
if (smi_and_map_check) {
AddInstruction(new HCheckNonSmi(object));
AddInstruction(new HCheckMap(object, type));
}
int index = ComputeStoredFieldIndex(type, name, lookup);
bool is_in_object = index < 0;
int offset = index * kPointerSize;
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
offset += type->instance_size();
} else {
offset += FixedArray::kHeaderSize;
}
HStoreNamedField* instr =
new HStoreNamedField(object, name, value, is_in_object, offset);
if (lookup->type() == MAP_TRANSITION) {
Handle<Map> transition(lookup->GetTransitionMapFromMap(*type));
instr->set_transition(transition);
// TODO(fschneider): Record the new map type of the object in the IR to
// enable elimination of redundant checks after the transition store.
instr->SetFlag(HValue::kChangesMaps);
}
return instr;
}
HInstruction* HGraphBuilder::BuildStoreNamedGeneric(HValue* object,
Handle<String> name,
HValue* value) {
return new HStoreNamedGeneric(object, name, value);
}
HInstruction* HGraphBuilder::BuildStoreNamed(HValue* object,
HValue* value,
Expression* expr) {
Property* prop = (expr->AsProperty() != NULL)
? expr->AsProperty()
: expr->AsAssignment()->target()->AsProperty();
Literal* key = prop->key()->AsLiteral();
Handle<String> name = Handle<String>::cast(key->handle());
ASSERT(!name.is_null());
LookupResult lookup;
ZoneMapList* types = expr->GetReceiverTypes();
bool is_monomorphic = expr->IsMonomorphic() &&
ComputeStoredField(types->first(), name, &lookup);
return is_monomorphic
? BuildStoreNamedField(object, name, value, types->first(), &lookup,
true) // Needs smi and map check.
: BuildStoreNamedGeneric(object, name, value);
}
void HGraphBuilder::HandlePolymorphicStoreNamedField(Assignment* expr,
HValue* object,
HValue* value,
ZoneMapList* types,
Handle<String> name) {
int number_of_types = Min(types->length(), kMaxStorePolymorphism);
ZoneMapList maps(number_of_types);
ZoneList<HSubgraph*> subgraphs(number_of_types + 1);
bool needs_generic = (types->length() > kMaxStorePolymorphism);
// Build subgraphs for each of the specific maps.
//
// TODO(ager): We should recognize when the prototype chains for
// different maps are identical. In that case we can avoid
// repeatedly generating the same prototype map checks.
for (int i = 0; i < number_of_types; ++i) {
Handle<Map> map = types->at(i);
LookupResult lookup;
if (ComputeStoredField(map, name, &lookup)) {
maps.Add(map);
HSubgraph* subgraph = CreateBranchSubgraph(environment());
SubgraphScope scope(this, subgraph);
HInstruction* instr =
BuildStoreNamedField(object, name, value, map, &lookup, false);
Push(value);
instr->set_position(expr->position());
AddInstruction(instr);
subgraphs.Add(subgraph);
} else {
needs_generic = true;
}
}
// If none of the properties were named fields we generate a
// generic store.
if (maps.length() == 0) {
HInstruction* instr = new HStoreNamedGeneric(object, name, value);
Push(value);
instr->set_position(expr->position());
AddInstruction(instr);
if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId());
ast_context()->ReturnValue(Pop());
} else {
// Build subgraph for generic store through IC.
{
HSubgraph* subgraph = CreateBranchSubgraph(environment());
SubgraphScope scope(this, subgraph);
if (!needs_generic && FLAG_deoptimize_uncommon_cases) {
subgraph->FinishExit(new HDeoptimize());
} else {
HInstruction* instr = new HStoreNamedGeneric(object, name, value);
Push(value);
instr->set_position(expr->position());
AddInstruction(instr);
}
subgraphs.Add(subgraph);
}
HBasicBlock* new_exit_block =
BuildTypeSwitch(&maps, &subgraphs, object, expr->id());
subgraph()->set_exit_block(new_exit_block);
// In an effect context, we did not materialized the value in the
// predecessor environments so there's no need to handle it here.
if (subgraph()->HasExit() && !ast_context()->IsEffect()) {
ast_context()->ReturnValue(Pop());
}
}
}
void HGraphBuilder::HandlePropertyAssignment(Assignment* expr) {
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
expr->RecordTypeFeedback(oracle());
VISIT_FOR_VALUE(prop->obj());
HValue* value = NULL;
HInstruction* instr = NULL;
if (prop->key()->IsPropertyName()) {
// Named store.
VISIT_FOR_VALUE(expr->value());
value = Pop();
HValue* object = Pop();
Literal* key = prop->key()->AsLiteral();
Handle<String> name = Handle<String>::cast(key->handle());
ASSERT(!name.is_null());
ZoneMapList* types = expr->GetReceiverTypes();
LookupResult lookup;
if (expr->IsMonomorphic()) {
instr = BuildStoreNamed(object, value, expr);
} else if (types != NULL && types->length() > 1) {
HandlePolymorphicStoreNamedField(expr, object, value, types, name);
return;
} else {
instr = new HStoreNamedGeneric(object, name, value);
}
} else {
// Keyed store.
VISIT_FOR_VALUE(prop->key());
VISIT_FOR_VALUE(expr->value());
value = Pop();
HValue* key = Pop();
HValue* object = Pop();
bool is_fast_elements = expr->IsMonomorphic() &&
expr->GetMonomorphicReceiverType()->has_fast_elements();
instr = is_fast_elements
? BuildStoreKeyedFastElement(object, key, value, expr)
: BuildStoreKeyedGeneric(object, key, value);
}
Push(value);
instr->set_position(expr->position());
AddInstruction(instr);
if (instr->HasSideEffects()) AddSimulate(expr->AssignmentId());
ast_context()->ReturnValue(Pop());
}
// Because not every expression has a position and there is not common
// superclass of Assignment and CountOperation, we cannot just pass the
// owning expression instead of position and ast_id separately.
void HGraphBuilder::HandleGlobalVariableAssignment(Variable* var,
HValue* value,
int position,
int ast_id) {
LookupResult lookup;
LookupGlobalPropertyCell(var, &lookup, true);
CHECK_BAILOUT;
Handle<GlobalObject> global(graph()->info()->global_object());
Handle<JSGlobalPropertyCell> cell(global->GetPropertyCell(&lookup));
HInstruction* instr = new HStoreGlobal(value, cell);
instr->set_position(position);
AddInstruction(instr);
if (instr->HasSideEffects()) AddSimulate(ast_id);
}
void HGraphBuilder::HandleCompoundAssignment(Assignment* expr) {
Expression* target = expr->target();
VariableProxy* proxy = target->AsVariableProxy();
Variable* var = proxy->AsVariable();
Property* prop = target->AsProperty();
ASSERT(var == NULL || prop == NULL);
// We have a second position recorded in the FullCodeGenerator to have
// type feedback for the binary operation.
BinaryOperation* operation = expr->binary_operation();
operation->RecordTypeFeedback(oracle());
if (var != NULL) {
if (!var->is_global() && !var->IsStackAllocated()) {
BAILOUT("non-stack/non-global in compound assignment");
}
VISIT_FOR_VALUE(operation);
if (var->is_global()) {
HandleGlobalVariableAssignment(var,
Top(),
expr->position(),
expr->AssignmentId());
} else {
Bind(var, Top());
}
ast_context()->ReturnValue(Pop());
} else if (prop != NULL) {
prop->RecordTypeFeedback(oracle());
if (prop->key()->IsPropertyName()) {
// Named property.
VISIT_FOR_VALUE(prop->obj());
HValue* obj = Top();
HInstruction* load = NULL;
if (prop->IsMonomorphic()) {
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
Handle<Map> map = prop->GetReceiverTypes()->first();
load = BuildLoadNamed(obj, prop, map, name);
} else {
load = BuildLoadNamedGeneric(obj, prop);
}
PushAndAdd(load);
if (load->HasSideEffects()) AddSimulate(expr->CompoundLoadId());
VISIT_FOR_VALUE(expr->value());
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(operation, left, right);
PushAndAdd(instr);
if (instr->HasSideEffects()) AddSimulate(operation->id());
HInstruction* store = BuildStoreNamed(obj, instr, prop);
AddInstruction(store);
// Drop the simulated receiver and value. Return the value.
Drop(2);
Push(instr);
if (store->HasSideEffects()) AddSimulate(expr->AssignmentId());
ast_context()->ReturnValue(Pop());
} else {
// Keyed property.
VISIT_FOR_VALUE(prop->obj());
VISIT_FOR_VALUE(prop->key());
HValue* obj = environment()->ExpressionStackAt(1);
HValue* key = environment()->ExpressionStackAt(0);
bool is_fast_elements = prop->IsMonomorphic() &&
prop->GetMonomorphicReceiverType()->has_fast_elements();
HInstruction* load = is_fast_elements
? BuildLoadKeyedFastElement(obj, key, prop)
: BuildLoadKeyedGeneric(obj, key);
PushAndAdd(load);
if (load->HasSideEffects()) AddSimulate(expr->CompoundLoadId());
VISIT_FOR_VALUE(expr->value());
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(operation, left, right);
PushAndAdd(instr);
if (instr->HasSideEffects()) AddSimulate(operation->id());
HInstruction* store = is_fast_elements
? BuildStoreKeyedFastElement(obj, key, instr, prop)
: BuildStoreKeyedGeneric(obj, key, instr);
AddInstruction(store);
// Drop the simulated receiver, key, and value. Return the value.
Drop(3);
Push(instr);
if (store->HasSideEffects()) AddSimulate(expr->AssignmentId());
ast_context()->ReturnValue(Pop());
}
} else {
BAILOUT("invalid lhs in compound assignment");
}
}
void HGraphBuilder::VisitAssignment(Assignment* expr) {
VariableProxy* proxy = expr->target()->AsVariableProxy();
Variable* var = proxy->AsVariable();
Property* prop = expr->target()->AsProperty();
ASSERT(var == NULL || prop == NULL);
if (expr->is_compound()) {
HandleCompoundAssignment(expr);
return;
}
if (var != NULL) {
if (proxy->IsArguments()) BAILOUT("assignment to arguments");
// Handle the assignment.
if (var->is_global()) {
VISIT_FOR_VALUE(expr->value());
HandleGlobalVariableAssignment(var,
Top(),
expr->position(),
expr->AssignmentId());
} else {
// We allow reference to the arguments object only in assignemtns
// to local variables to make sure that the arguments object does
// not escape and is not modified.
VariableProxy* rhs = expr->value()->AsVariableProxy();
if (rhs != NULL &&
rhs->var()->IsStackAllocated() &&
environment()->Lookup(rhs->var())->CheckFlag(HValue::kIsArguments)) {
Push(environment()->Lookup(rhs->var()));
} else {
VISIT_FOR_VALUE(expr->value());
}
Bind(proxy->var(), Top());
}
// Return the value.
ast_context()->ReturnValue(Pop());
} else if (prop != NULL) {
HandlePropertyAssignment(expr);
} else {
BAILOUT("unsupported invalid lhs");
}
}
void HGraphBuilder::VisitThrow(Throw* expr) {
// We don't optimize functions with invalid left-hand sides in
// assignments, count operations, or for-in. Consequently throw can
// currently only occur in an effect context.
ASSERT(ast_context()->IsEffect());
VISIT_FOR_VALUE(expr->exception());
HValue* value = environment()->Pop();
HControlInstruction* instr = new HThrow(value);
instr->set_position(expr->position());
current_subgraph_->FinishExit(instr);
}
void HGraphBuilder::HandlePolymorphicLoadNamedField(Property* expr,
HValue* object,
ZoneMapList* types,
Handle<String> name) {
int number_of_types = Min(types->length(), kMaxLoadPolymorphism);
ZoneMapList maps(number_of_types);
ZoneList<HSubgraph*> subgraphs(number_of_types + 1);
bool needs_generic = (types->length() > kMaxLoadPolymorphism);
// Build subgraphs for each of the specific maps.
//
// TODO(ager): We should recognize when the prototype chains for
// different maps are identical. In that case we can avoid
// repeatedly generating the same prototype map checks.
for (int i = 0; i < number_of_types; ++i) {
Handle<Map> map = types->at(i);
LookupResult lookup;
map->LookupInDescriptors(NULL, *name, &lookup);
if (lookup.IsProperty() && lookup.type() == FIELD) {
maps.Add(map);
HSubgraph* subgraph = CreateBranchSubgraph(environment());
SubgraphScope scope(this, subgraph);
HLoadNamedField* instr =
BuildLoadNamedField(object, expr, map, &lookup, false);
instr->set_position(expr->position());
instr->ClearFlag(HValue::kUseGVN); // Don't do GVN on polymorphic loads.
PushAndAdd(instr);
subgraphs.Add(subgraph);
} else {
needs_generic = true;
}
}
// If none of the properties were named fields we generate a
// generic load.
if (maps.length() == 0) {
HInstruction* instr = BuildLoadNamedGeneric(object, expr);
instr->set_position(expr->position());
ast_context()->ReturnInstruction(instr, expr->id());
} else {
// Build subgraph for generic load through IC.
{
HSubgraph* subgraph = CreateBranchSubgraph(environment());
SubgraphScope scope(this, subgraph);
if (!needs_generic && FLAG_deoptimize_uncommon_cases) {
subgraph->FinishExit(new HDeoptimize());
} else {
HInstruction* instr = BuildLoadNamedGeneric(object, expr);
instr->set_position(expr->position());
PushAndAdd(instr);
}
subgraphs.Add(subgraph);
}
HBasicBlock* new_exit_block =
BuildTypeSwitch(&maps, &subgraphs, object, expr->id());
subgraph()->set_exit_block(new_exit_block);
// In an effect context, we did not materialized the value in the
// predecessor environments so there's no need to handle it here.
if (subgraph()->HasExit() && !ast_context()->IsEffect()) {
ast_context()->ReturnValue(Pop());
}
}
}
HLoadNamedField* HGraphBuilder::BuildLoadNamedField(HValue* object,
Property* expr,
Handle<Map> type,
LookupResult* lookup,
bool smi_and_map_check) {
if (smi_and_map_check) {
AddInstruction(new HCheckNonSmi(object));
AddInstruction(new HCheckMap(object, type));
}
int index = lookup->GetLocalFieldIndexFromMap(*type);
if (index < 0) {
// Negative property indices are in-object properties, indexed
// from the end of the fixed part of the object.
int offset = (index * kPointerSize) + type->instance_size();
return new HLoadNamedField(object, true, offset);
} else {
// Non-negative property indices are in the properties array.
int offset = (index * kPointerSize) + FixedArray::kHeaderSize;
return new HLoadNamedField(object, false, offset);
}
}
HInstruction* HGraphBuilder::BuildLoadNamedGeneric(HValue* obj,
Property* expr) {
ASSERT(expr->key()->IsPropertyName());
Handle<Object> name = expr->key()->AsLiteral()->handle();
return new HLoadNamedGeneric(obj, name);
}
HInstruction* HGraphBuilder::BuildLoadNamed(HValue* obj,
Property* expr,
Handle<Map> map,
Handle<String> name) {
LookupResult lookup;
map->LookupInDescriptors(NULL, *name, &lookup);
if (lookup.IsProperty() && lookup.type() == FIELD) {
return BuildLoadNamedField(obj,
expr,
map,
&lookup,
true);
} else if (lookup.IsProperty() && lookup.type() == CONSTANT_FUNCTION) {
AddInstruction(new HCheckNonSmi(obj));
AddInstruction(new HCheckMap(obj, map));
Handle<JSFunction> function(lookup.GetConstantFunctionFromMap(*map));
return new HConstant(function, Representation::Tagged());
} else {
return BuildLoadNamedGeneric(obj, expr);
}
}
HInstruction* HGraphBuilder::BuildLoadKeyedGeneric(HValue* object,
HValue* key) {
return new HLoadKeyedGeneric(object, key);
}
HInstruction* HGraphBuilder::BuildLoadKeyedFastElement(HValue* object,
HValue* key,
Property* expr) {
ASSERT(!expr->key()->IsPropertyName() && expr->IsMonomorphic());
AddInstruction(new HCheckNonSmi(object));
Handle<Map> map = expr->GetMonomorphicReceiverType();
ASSERT(map->has_fast_elements());
AddInstruction(new HCheckMap(object, map));
bool is_array = (map->instance_type() == JS_ARRAY_TYPE);
HLoadElements* elements = new HLoadElements(object);
HInstruction* length = NULL;
if (is_array) {
length = AddInstruction(new HJSArrayLength(object));
AddInstruction(new HBoundsCheck(key, length));
AddInstruction(elements);
} else {
AddInstruction(elements);
length = AddInstruction(new HFixedArrayLength(elements));
AddInstruction(new HBoundsCheck(key, length));
}
return new HLoadKeyedFastElement(elements, key);
}
HInstruction* HGraphBuilder::BuildStoreKeyedGeneric(HValue* object,
HValue* key,
HValue* value) {
return new HStoreKeyedGeneric(object, key, value);
}
HInstruction* HGraphBuilder::BuildStoreKeyedFastElement(HValue* object,
HValue* key,
HValue* val,
Expression* expr) {
ASSERT(expr->IsMonomorphic());
AddInstruction(new HCheckNonSmi(object));
Handle<Map> map = expr->GetMonomorphicReceiverType();
ASSERT(map->has_fast_elements());
AddInstruction(new HCheckMap(object, map));
HInstruction* elements = AddInstruction(new HLoadElements(object));
AddInstruction(new HCheckMap(elements, Factory::fixed_array_map()));
bool is_array = (map->instance_type() == JS_ARRAY_TYPE);
HInstruction* length = NULL;
if (is_array) {
length = AddInstruction(new HJSArrayLength(object));
} else {
length = AddInstruction(new HFixedArrayLength(elements));
}
AddInstruction(new HBoundsCheck(key, length));
return new HStoreKeyedFastElement(elements, key, val);
}
bool HGraphBuilder::TryArgumentsAccess(Property* expr) {
VariableProxy* proxy = expr->obj()->AsVariableProxy();
if (proxy == NULL) return false;
if (!proxy->var()->IsStackAllocated()) return false;
if (!environment()->Lookup(proxy->var())->CheckFlag(HValue::kIsArguments)) {
return false;
}
HInstruction* result = NULL;
if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
if (!name->IsEqualTo(CStrVector("length"))) return false;
HInstruction* elements = AddInstruction(new HArgumentsElements);
result = new HArgumentsLength(elements);
} else {
VisitForValue(expr->key());
if (HasStackOverflow()) return false;
HValue* key = Pop();
HInstruction* elements = AddInstruction(new HArgumentsElements);
HInstruction* length = AddInstruction(new HArgumentsLength(elements));
AddInstruction(new HBoundsCheck(key, length));
result = new HAccessArgumentsAt(elements, length, key);
}
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
void HGraphBuilder::VisitProperty(Property* expr) {
expr->RecordTypeFeedback(oracle());
if (TryArgumentsAccess(expr)) return;
CHECK_BAILOUT;
VISIT_FOR_VALUE(expr->obj());
HInstruction* instr = NULL;
if (expr->IsArrayLength()) {
HValue* array = Pop();
AddInstruction(new HCheckNonSmi(array));
AddInstruction(new HCheckInstanceType(array, JS_ARRAY_TYPE, JS_ARRAY_TYPE));
instr = new HJSArrayLength(array);
} else if (expr->IsFunctionPrototype()) {
HValue* function = Pop();
AddInstruction(new HCheckNonSmi(function));
instr = new HLoadFunctionPrototype(function);
} else if (expr->key()->IsPropertyName()) {
Handle<String> name = expr->key()->AsLiteral()->AsPropertyName();
ZoneMapList* types = expr->GetReceiverTypes();
HValue* obj = Pop();
if (expr->IsMonomorphic()) {
instr = BuildLoadNamed(obj, expr, types->first(), name);
} else if (types != NULL && types->length() > 1) {
HandlePolymorphicLoadNamedField(expr, obj, types, name);
return;
} else {
instr = BuildLoadNamedGeneric(obj, expr);
}
} else {
VISIT_FOR_VALUE(expr->key());
HValue* key = Pop();
HValue* obj = Pop();
bool is_fast_elements = expr->IsMonomorphic() &&
expr->GetMonomorphicReceiverType()->has_fast_elements();
instr = is_fast_elements
? BuildLoadKeyedFastElement(obj, key, expr)
: BuildLoadKeyedGeneric(obj, key);
}
instr->set_position(expr->position());
ast_context()->ReturnInstruction(instr, expr->id());
}
void HGraphBuilder::AddCheckConstantFunction(Call* expr,
HValue* receiver,
Handle<Map> receiver_map,
bool smi_and_map_check) {
// Constant functions have the nice property that the map will change if they
// are overwritten. Therefore it is enough to check the map of the holder and
// its prototypes.
if (smi_and_map_check) {
AddInstruction(new HCheckNonSmi(receiver));
AddInstruction(new HCheckMap(receiver, receiver_map));
}
if (!expr->holder().is_null()) {
AddInstruction(new HCheckPrototypeMaps(receiver,
expr->holder(),
receiver_map));
}
}
void HGraphBuilder::HandlePolymorphicCallNamed(Call* expr,
HValue* receiver,
ZoneMapList* types,
Handle<String> name) {
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
int number_of_types = Min(types->length(), kMaxCallPolymorphism);
ZoneMapList maps(number_of_types);
ZoneList<HSubgraph*> subgraphs(number_of_types + 1);
bool needs_generic = (types->length() > kMaxCallPolymorphism);
// Build subgraphs for each of the specific maps.
//
// TODO(ager): We should recognize when the prototype chains for different
// maps are identical. In that case we can avoid repeatedly generating the
// same prototype map checks.
for (int i = 0; i < number_of_types; ++i) {
Handle<Map> map = types->at(i);
if (expr->ComputeTarget(map, name)) {
maps.Add(map);
HSubgraph* subgraph = CreateBranchSubgraph(environment());
SubgraphScope scope(this, subgraph);
AddCheckConstantFunction(expr, receiver, map, false);
if (FLAG_trace_inlining && FLAG_polymorphic_inlining) {
PrintF("Trying to inline the polymorphic call to %s\n",
*name->ToCString());
}
if (!FLAG_polymorphic_inlining || !TryInline(expr)) {
// Check for bailout, as trying to inline might fail due to bailout
// during hydrogen processing.
CHECK_BAILOUT;
HCall* call = new HCallConstantFunction(expr->target(), argument_count);
call->set_position(expr->position());
ProcessCall(call);
PushAndAdd(call);
}
subgraphs.Add(subgraph);
} else {
needs_generic = true;
}
}
// If we couldn't compute the target for any of the maps just perform an
// IC call.
if (maps.length() == 0) {
HCall* call = new HCallNamed(name, argument_count);
call->set_position(expr->position());
ProcessCall(call);
ast_context()->ReturnInstruction(call, expr->id());
} else {
// Build subgraph for generic call through IC.
{
HSubgraph* subgraph = CreateBranchSubgraph(environment());
SubgraphScope scope(this, subgraph);
if (!needs_generic && FLAG_deoptimize_uncommon_cases) {
subgraph->FinishExit(new HDeoptimize());
} else {
HCall* call = new HCallNamed(name, argument_count);
call->set_position(expr->position());
ProcessCall(call);
PushAndAdd(call);
}
subgraphs.Add(subgraph);
}
HBasicBlock* new_exit_block =
BuildTypeSwitch(&maps, &subgraphs, receiver, expr->id());
subgraph()->set_exit_block(new_exit_block);
// In an effect context, we did not materialized the value in the
// predecessor environments so there's no need to handle it here.
if (new_exit_block != NULL && !ast_context()->IsEffect()) {
ast_context()->ReturnValue(Pop());
}
}
}
void HGraphBuilder::TraceInline(Handle<JSFunction> target, bool result) {
SmartPointer<char> callee = target->shared()->DebugName()->ToCString();
SmartPointer<char> caller =
graph()->info()->function()->debug_name()->ToCString();
if (result) {
PrintF("Inlined %s called from %s.\n", *callee, *caller);
} else {
PrintF("Do not inline %s called from %s.\n", *callee, *caller);
}
}
bool HGraphBuilder::TryInline(Call* expr) {
if (!FLAG_use_inlining) return false;
// Precondition: call is monomorphic and we have found a target with the
// appropriate arity.
Handle<JSFunction> target = expr->target();
// Do a quick check on source code length to avoid parsing large
// inlining candidates.
if (FLAG_limit_inlining && target->shared()->SourceSize() > kMaxSourceSize) {
if (FLAG_trace_inlining) TraceInline(target, false);
return false;
}
// Target must be inlineable.
if (!target->IsInlineable()) return false;
// No context change required.
CompilationInfo* outer_info = graph()->info();
if (target->context() != outer_info->closure()->context() ||
outer_info->scope()->contains_with() ||
outer_info->scope()->num_heap_slots() > 0) {
return false;
}
// Don't inline deeper than two calls.
HEnvironment* env = environment();
if (env->outer() != NULL && env->outer()->outer() != NULL) return false;
// Don't inline recursive functions.
if (target->shared() == outer_info->closure()->shared()) return false;
// We don't want to add more than a certain number of nodes from inlining.
if (FLAG_limit_inlining && inlined_count_ > kMaxInlinedNodes) {
if (FLAG_trace_inlining) TraceInline(target, false);
return false;
}
int count_before = AstNode::Count();
// Parse and allocate variables.
Handle<SharedFunctionInfo> shared(target->shared());
CompilationInfo inner_info(shared);
if (!ParserApi::Parse(&inner_info) ||
!Scope::Analyze(&inner_info)) {
return false;
}
FunctionLiteral* function = inner_info.function();
// Count the number of AST nodes added by inlining this call.
int nodes_added = AstNode::Count() - count_before;
if (FLAG_limit_inlining && nodes_added > kMaxInlinedSize) {
if (FLAG_trace_inlining) TraceInline(target, false);
return false;
}
// Check if we can handle all declarations in the inlined functions.
VisitDeclarations(inner_info.scope()->declarations());
if (HasStackOverflow()) {
ClearStackOverflow();
return false;
}
// Don't inline functions that uses the arguments object or that
// have a mismatching number of parameters.
int arity = expr->arguments()->length();
if (function->scope()->arguments() != NULL ||
arity != target->shared()->formal_parameter_count()) {
return false;
}
// All statements in the body must be inlineable.
for (int i = 0, count = function->body()->length(); i < count; ++i) {
if (!function->body()->at(i)->IsInlineable()) return false;
}
// Generate the deoptimization data for the unoptimized version of
// the target function if we don't already have it.
if (!shared->has_deoptimization_support()) {
// Note that we compile here using the same AST that we will use for
// generating the optimized inline code.
inner_info.EnableDeoptimizationSupport();
if (!FullCodeGenerator::MakeCode(&inner_info)) return false;
shared->EnableDeoptimizationSupport(*inner_info.code());
Compiler::RecordFunctionCompilation(
Logger::FUNCTION_TAG,
Handle<String>(shared->DebugName()),
shared->start_position(),
&inner_info);
}
// Save the pending call context and type feedback oracle. Set up new ones
// for the inlined function.
ASSERT(shared->has_deoptimization_support());
AstContext* saved_call_context = call_context();
HBasicBlock* saved_function_return = function_return();
TypeFeedbackOracle* saved_oracle = oracle();
// On-stack replacement cannot target inlined functions. Since we don't
// use a separate CompilationInfo structure for the inlined function, we
// save and restore the AST ID in the original compilation info.
int saved_osr_ast_id = graph()->info()->osr_ast_id();
TestContext* test_context = NULL;
if (ast_context()->IsTest()) {
// Inlined body is treated as if it occurs in an 'inlined' call context
// with true and false blocks that will forward to the real ones.
HBasicBlock* if_true = graph()->CreateBasicBlock();
HBasicBlock* if_false = graph()->CreateBasicBlock();
if_true->MarkAsInlineReturnTarget();
if_false->MarkAsInlineReturnTarget();
// AstContext constructor pushes on the context stack.
test_context = new TestContext(this, if_true, if_false);
function_return_ = NULL;
} else {
// Inlined body is treated as if it occurs in the original call context.
function_return_ = graph()->CreateBasicBlock();
function_return_->MarkAsInlineReturnTarget();
}
call_context_ = ast_context();
TypeFeedbackOracle new_oracle(Handle<Code>(shared->code()));
oracle_ = &new_oracle;
graph()->info()->SetOsrAstId(AstNode::kNoNumber);
HSubgraph* body = CreateInlinedSubgraph(env, target, function);
body->exit_block()->AddInstruction(new HEnterInlined(target, function));
AddToSubgraph(body, function->body());
if (HasStackOverflow()) {
// Bail out if the inline function did, as we cannot residualize a call
// instead.
delete test_context;
call_context_ = saved_call_context;
function_return_ = saved_function_return;
oracle_ = saved_oracle;
graph()->info()->SetOsrAstId(saved_osr_ast_id);
return false;
}
// Update inlined nodes count.
inlined_count_ += nodes_added;
if (FLAG_trace_inlining) TraceInline(target, true);
if (body->HasExit()) {
// Add a return of undefined if control can fall off the body. In a
// test context, undefined is false.
HValue* return_value = graph()->GetConstantUndefined();
if (test_context == NULL) {
ASSERT(function_return_ != NULL);
body->exit_block()->AddLeaveInlined(return_value, function_return_);
} else {
// The graph builder assumes control can reach both branches of a
// test, so we materialize the undefined value and test it rather than
// simply jumping to the false target.
//
// TODO(3168478): refactor to avoid this.
HBasicBlock* empty_true = graph()->CreateBasicBlock();
HBasicBlock* empty_false = graph()->CreateBasicBlock();
HBranch* branch =
new HBranch(empty_true, empty_false, return_value);
body->exit_block()->Finish(branch);
HValue* const no_return_value = NULL;
empty_true->AddLeaveInlined(no_return_value, test_context->if_true());
empty_false->AddLeaveInlined(no_return_value, test_context->if_false());
}
body->set_exit_block(NULL);
}
// Record the environment at the inlined function call.
AddSimulate(expr->ReturnId());
// Jump to the function entry (without re-recording the environment).
subgraph()->exit_block()->Finish(new HGoto(body->entry_block()));
// Fix up the function exits.
if (test_context != NULL) {
HBasicBlock* if_true = test_context->if_true();
HBasicBlock* if_false = test_context->if_false();
if_true->SetJoinId(expr->id());
if_false->SetJoinId(expr->id());
ASSERT(ast_context() == test_context);
delete test_context; // Destructor pops from expression context stack.
// Forward to the real test context.
HValue* const no_return_value = NULL;
HBasicBlock* true_target = TestContext::cast(ast_context())->if_true();
if (true_target->IsInlineReturnTarget()) {
if_true->AddLeaveInlined(no_return_value, true_target);
} else {
if_true->Goto(true_target);
}
HBasicBlock* false_target = TestContext::cast(ast_context())->if_false();
if (false_target->IsInlineReturnTarget()) {
if_false->AddLeaveInlined(no_return_value, false_target);
} else {
if_false->Goto(false_target);
}
// TODO(kmillikin): Come up with a better way to handle this. It is too
// subtle. NULL here indicates that the enclosing context has no control
// flow to handle.
subgraph()->set_exit_block(NULL);
} else {
function_return_->SetJoinId(expr->id());
subgraph()->set_exit_block(function_return_);
}
call_context_ = saved_call_context;
function_return_ = saved_function_return;
oracle_ = saved_oracle;
graph()->info()->SetOsrAstId(saved_osr_ast_id);
return true;
}
void HBasicBlock::AddLeaveInlined(HValue* return_value, HBasicBlock* target) {
ASSERT(target->IsInlineReturnTarget());
AddInstruction(new HLeaveInlined);
HEnvironment* outer = last_environment()->outer();
if (return_value != NULL) outer->Push(return_value);
UpdateEnvironment(outer);
Goto(target);
}
bool HGraphBuilder::TryMathFunctionInline(Call* expr) {
// Try to inline calls like Math.* as operations in the calling function.
if (!expr->target()->shared()->IsBuiltinMathFunction()) return false;
BuiltinFunctionId id = expr->target()->shared()->builtin_function_id();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
switch (id) {
case kMathRound:
case kMathFloor:
case kMathAbs:
case kMathSqrt:
case kMathLog:
case kMathSin:
case kMathCos:
if (argument_count == 2) {
HValue* argument = Pop();
Drop(1); // Receiver.
HUnaryMathOperation* op = new HUnaryMathOperation(argument, id);
op->set_position(expr->position());
ast_context()->ReturnInstruction(op, expr->id());
return true;
}
break;
case kMathPow:
if (argument_count == 3) {
HValue* right = Pop();
HValue* left = Pop();
Pop(); // Pop receiver.
HInstruction* result = NULL;
// Use sqrt() if exponent is 0.5 or -0.5.
if (right->IsConstant() && HConstant::cast(right)->HasDoubleValue()) {
double exponent = HConstant::cast(right)->DoubleValue();
if (exponent == 0.5) {
result = new HUnaryMathOperation(left, kMathPowHalf);
ast_context()->ReturnInstruction(result, expr->id());
return true;
} else if (exponent == -0.5) {
HConstant* double_one =
new HConstant(Handle<Object>(Smi::FromInt(1)),
Representation::Double());
AddInstruction(double_one);
HUnaryMathOperation* square_root =
new HUnaryMathOperation(left, kMathPowHalf);
AddInstruction(square_root);
// MathPowHalf doesn't have side effects so there's no need for
// an environment simulation here.
ASSERT(!square_root->HasSideEffects());
result = new HDiv(double_one, square_root);
ast_context()->ReturnInstruction(result, expr->id());
return true;
} else if (exponent == 2.0) {
result = new HMul(left, left);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
} else if (right->IsConstant() &&
HConstant::cast(right)->HasInteger32Value() &&
HConstant::cast(right)->Integer32Value() == 2) {
result = new HMul(left, left);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
result = new HPower(left, right);
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
break;
default:
// Not yet supported for inlining.
break;
}
return false;
}
bool HGraphBuilder::TryCallApply(Call* expr) {
Expression* callee = expr->expression();
Property* prop = callee->AsProperty();
ASSERT(prop != NULL);
if (graph()->info()->scope()->arguments() == NULL) return false;
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
if (!name->IsEqualTo(CStrVector("apply"))) return false;
ZoneList<Expression*>* args = expr->arguments();
if (args->length() != 2) return false;
VariableProxy* arg_two = args->at(1)->AsVariableProxy();
if (arg_two == NULL || !arg_two->var()->IsStackAllocated()) return false;
HValue* arg_two_value = environment()->Lookup(arg_two->var());
if (!arg_two_value->CheckFlag(HValue::kIsArguments)) return false;
if (!expr->IsMonomorphic()) return false;
// Found pattern f.apply(receiver, arguments).
VisitForValue(prop->obj());
if (HasStackOverflow()) return false;
HValue* function = Pop();
VisitForValue(args->at(0));
if (HasStackOverflow()) return false;
HValue* receiver = Pop();
HInstruction* elements = AddInstruction(new HArgumentsElements);
HInstruction* length = AddInstruction(new HArgumentsLength(elements));
AddCheckConstantFunction(expr,
function,
expr->GetReceiverTypes()->first(),
true);
HInstruction* result =
new HApplyArguments(function, receiver, length, elements);
result->set_position(expr->position());
ast_context()->ReturnInstruction(result, expr->id());
return true;
}
void HGraphBuilder::VisitCall(Call* expr) {
Expression* callee = expr->expression();
int argument_count = expr->arguments()->length() + 1; // Plus receiver.
HCall* call = NULL;
Property* prop = callee->AsProperty();
if (prop != NULL) {
if (!prop->key()->IsPropertyName()) {
// Keyed function call.
VisitArgument(prop->obj());
CHECK_BAILOUT;
VISIT_FOR_VALUE(prop->key());
// Push receiver and key like the non-optimized code generator expects it.
HValue* key = Pop();
HValue* receiver = Pop();
Push(key);
Push(receiver);
VisitArgumentList(expr->arguments());
CHECK_BAILOUT;
call = new HCallKeyed(key, argument_count);
call->set_position(expr->position());
ProcessCall(call);
Drop(1); // Key.
ast_context()->ReturnInstruction(call, expr->id());
return;
}
// Named function call.
expr->RecordTypeFeedback(oracle());
if (TryCallApply(expr)) return;
CHECK_BAILOUT;
HValue* receiver = VisitArgument(prop->obj());
CHECK_BAILOUT;
VisitArgumentList(expr->arguments());
CHECK_BAILOUT;
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
expr->RecordTypeFeedback(oracle());
ZoneMapList* types = expr->GetReceiverTypes();
if (expr->IsMonomorphic()) {
AddCheckConstantFunction(expr, receiver, types->first(), true);
if (TryMathFunctionInline(expr)) {
return;
} else if (TryInline(expr)) {
if (subgraph()->HasExit()) {
HValue* return_value = Pop();
// If we inlined a function in a test context then we need to emit
// a simulate here to shadow the ones at the end of the
// predecessor blocks. Those environments contain the return
// value on top and do not correspond to any actual state of the
// unoptimized code.
if (ast_context()->IsEffect()) AddSimulate(expr->id());
ast_context()->ReturnValue(return_value);
}
return;
} else {
// Check for bailout, as the TryInline call in the if condition above
// might return false due to bailout during hydrogen processing.
CHECK_BAILOUT;
call = new HCallConstantFunction(expr->target(), argument_count);
}
} else if (types != NULL && types->length() > 1) {
HandlePolymorphicCallNamed(expr, receiver, types, name);
return;
} else {
call = new HCallNamed(name, argument_count);
}
} else {
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
bool global_call = (var != NULL) && var->is_global() && !var->is_this();
if (!global_call) {
++argument_count;
VisitArgument(expr->expression());
CHECK_BAILOUT;
}
if (global_call) {
// If there is a global property cell for the name at compile time and
// access check is not enabled we assume that the function will not change
// and generate optimized code for calling the function.
CompilationInfo* info = graph()->info();
bool known_global_function = info->has_global_object() &&
!info->global_object()->IsAccessCheckNeeded() &&
expr->ComputeGlobalTarget(Handle<GlobalObject>(info->global_object()),
var->name());
if (known_global_function) {
// Push the global object instead of the global receiver because
// code generated by the full code generator expects it.
PushAndAdd(new HGlobalObject);
VisitArgumentList(expr->arguments());
CHECK_BAILOUT;
VISIT_FOR_VALUE(expr->expression());
HValue* function = Pop();
AddInstruction(new HCheckFunction(function, expr->target()));
// Replace the global object with the global receiver.
HGlobalReceiver* global_receiver = new HGlobalReceiver;
// Index of the receiver from the top of the expression stack.
const int receiver_index = argument_count - 1;
AddInstruction(global_receiver);
ASSERT(environment()->ExpressionStackAt(receiver_index)->
IsGlobalObject());
environment()->SetExpressionStackAt(receiver_index, global_receiver);
if (TryInline(expr)) {
if (subgraph()->HasExit()) {
HValue* return_value = Pop();
// If we inlined a function in a test context then we need to
// emit a simulate here to shadow the ones at the end of the
// predecessor blocks. Those environments contain the return
// value on top and do not correspond to any actual state of the
// unoptimized code.
if (ast_context()->IsEffect()) AddSimulate(expr->id());
ast_context()->ReturnValue(return_value);
}
return;
}
// Check for bailout, as trying to inline might fail due to bailout
// during hydrogen processing.
CHECK_BAILOUT;
call = new HCallKnownGlobal(expr->target(), argument_count);
} else {
PushAndAdd(new HGlobalObject);
VisitArgumentList(expr->arguments());
CHECK_BAILOUT;
call = new HCallGlobal(var->name(), argument_count);
}
} else {
PushAndAdd(new HGlobalReceiver);
VisitArgumentList(expr->arguments());
CHECK_BAILOUT;
call = new HCallFunction(argument_count);
}
}
call->set_position(expr->position());
ProcessCall(call);
ast_context()->ReturnInstruction(call, expr->id());
}
void HGraphBuilder::VisitCallNew(CallNew* expr) {
// The constructor function is also used as the receiver argument to the
// JS construct call builtin.
VisitArgument(expr->expression());
CHECK_BAILOUT;
VisitArgumentList(expr->arguments());
CHECK_BAILOUT;
int argument_count = expr->arguments()->length() + 1; // Plus constructor.
HCall* call = new HCallNew(argument_count);
call->set_position(expr->position());
ProcessCall(call);
ast_context()->ReturnInstruction(call, expr->id());
}
// Support for generating inlined runtime functions.
// Lookup table for generators for runtime calls that are generated inline.
// Elements of the table are member pointers to functions of HGraphBuilder.
#define INLINE_FUNCTION_GENERATOR_ADDRESS(Name, argc, ressize) \
&HGraphBuilder::Generate##Name,
const HGraphBuilder::InlineFunctionGenerator
HGraphBuilder::kInlineFunctionGenerators[] = {
INLINE_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
INLINE_RUNTIME_FUNCTION_LIST(INLINE_FUNCTION_GENERATOR_ADDRESS)
};
#undef INLINE_FUNCTION_GENERATOR_ADDRESS
void HGraphBuilder::VisitCallRuntime(CallRuntime* expr) {
Handle<String> name = expr->name();
if (name->IsEqualTo(CStrVector("_Log"))) {
ast_context()->ReturnValue(graph()->GetConstantUndefined());
return;
}
Runtime::Function* function = expr->function();
if (expr->is_jsruntime()) {
BAILOUT("call to a JavaScript runtime function");
}
ASSERT(function != NULL);
VisitArgumentList(expr->arguments());
CHECK_BAILOUT;
int argument_count = expr->arguments()->length();
if (function->intrinsic_type == Runtime::INLINE) {
ASSERT(name->length() > 0);
ASSERT(name->Get(0) == '_');
// Call to an inline function.
int lookup_index = static_cast<int>(function->function_id) -
static_cast<int>(Runtime::kFirstInlineFunction);
ASSERT(lookup_index >= 0);
ASSERT(static_cast<size_t>(lookup_index) <
ARRAY_SIZE(kInlineFunctionGenerators));
InlineFunctionGenerator generator = kInlineFunctionGenerators[lookup_index];
// Call the inline code generator using the pointer-to-member.
(this->*generator)(argument_count, expr->id());
} else {
ASSERT(function->intrinsic_type == Runtime::RUNTIME);
HCall* call = new HCallRuntime(name, expr->function(), argument_count);
call->set_position(RelocInfo::kNoPosition);
ProcessCall(call);
ast_context()->ReturnInstruction(call, expr->id());
}
}
void HGraphBuilder::VisitUnaryOperation(UnaryOperation* expr) {
Token::Value op = expr->op();
if (op == Token::VOID) {
VISIT_FOR_EFFECT(expr->expression());
ast_context()->ReturnValue(graph()->GetConstantUndefined());
} else if (op == Token::DELETE) {
Property* prop = expr->expression()->AsProperty();
Variable* var = expr->expression()->AsVariableProxy()->AsVariable();
if (prop == NULL && var == NULL) {
// Result of deleting non-property, non-variable reference is true.
// Evaluate the subexpression for side effects.
VISIT_FOR_EFFECT(expr->expression());
ast_context()->ReturnValue(graph()->GetConstantTrue());
} else if (var != NULL &&
!var->is_global() &&
var->AsSlot() != NULL &&
var->AsSlot()->type() != Slot::LOOKUP) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
ast_context()->ReturnValue(graph()->GetConstantFalse());
} else if (prop != NULL) {
VISIT_FOR_VALUE(prop->obj());
VISIT_FOR_VALUE(prop->key());
HValue* key = Pop();
HValue* obj = Pop();
ast_context()->ReturnInstruction(new HDeleteProperty(obj, key),
expr->id());
} else if (var->is_global()) {
BAILOUT("delete with global variable");
} else {
BAILOUT("delete with non-global variable");
}
} else if (op == Token::NOT) {
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
VisitForControl(expr->expression(),
context->if_false(),
context->if_true());
} else {
HSubgraph* true_graph = CreateEmptySubgraph();
HSubgraph* false_graph = CreateEmptySubgraph();
VISIT_FOR_CONTROL(expr->expression(),
false_graph->entry_block(),
true_graph->entry_block());
true_graph->entry_block()->SetJoinId(expr->expression()->id());
true_graph->environment()->Push(graph_->GetConstantTrue());
false_graph->entry_block()->SetJoinId(expr->expression()->id());
false_graph->environment()->Push(graph_->GetConstantFalse());
current_subgraph_->AppendJoin(true_graph, false_graph, expr);
ast_context()->ReturnValue(Pop());
}
} else if (op == Token::BIT_NOT || op == Token::SUB) {
VISIT_FOR_VALUE(expr->expression());
HValue* value = Pop();
HInstruction* instr = NULL;
switch (op) {
case Token::BIT_NOT:
instr = new HBitNot(value);
break;
case Token::SUB:
instr = new HMul(graph_->GetConstantMinus1(), value);
break;
default:
UNREACHABLE();
break;
}
ast_context()->ReturnInstruction(instr, expr->id());
} else if (op == Token::TYPEOF) {
VISIT_FOR_VALUE(expr->expression());
HValue* value = Pop();
ast_context()->ReturnInstruction(new HTypeof(value), expr->id());
} else {
BAILOUT("Value: unsupported unary operation");
}
}
void HGraphBuilder::VisitIncrementOperation(IncrementOperation* expr) {
// IncrementOperation is never visited by the visitor. It only
// occurs as a subexpression of CountOperation.
UNREACHABLE();
}
HInstruction* HGraphBuilder::BuildIncrement(HValue* value, bool increment) {
HConstant* delta = increment
? graph_->GetConstant1()
: graph_->GetConstantMinus1();
HInstruction* instr = new HAdd(value, delta);
AssumeRepresentation(instr, Representation::Integer32());
return instr;
}
void HGraphBuilder::VisitCountOperation(CountOperation* expr) {
IncrementOperation* increment = expr->increment();
Expression* target = increment->expression();
VariableProxy* proxy = target->AsVariableProxy();
Variable* var = proxy->AsVariable();
Property* prop = target->AsProperty();
ASSERT(var == NULL || prop == NULL);
bool inc = expr->op() == Token::INC;
if (var != NULL) {
if (!var->is_global() && !var->IsStackAllocated()) {
BAILOUT("non-stack/non-global variable in count operation");
}
VISIT_FOR_VALUE(target);
// Match the full code generator stack by simulating an extra stack
// element for postfix operations in a non-effect context.
bool has_extra = expr->is_postfix() && !ast_context()->IsEffect();
HValue* before = has_extra ? Top() : Pop();
HInstruction* after = BuildIncrement(before, inc);
AddInstruction(after);
Push(after);
if (var->is_global()) {
HandleGlobalVariableAssignment(var,
after,
expr->position(),
expr->AssignmentId());
} else {
ASSERT(var->IsStackAllocated());
Bind(var, after);
}
Drop(has_extra ? 2 : 1);
ast_context()->ReturnValue(expr->is_postfix() ? before : after);
} else if (prop != NULL) {
prop->RecordTypeFeedback(oracle());
if (prop->key()->IsPropertyName()) {
// Named property.
// Match the full code generator stack by simulating an extra stack
// element for postfix operations in a non-effect context.
bool has_extra = expr->is_postfix() && !ast_context()->IsEffect();
if (has_extra) Push(graph_->GetConstantUndefined());
VISIT_FOR_VALUE(prop->obj());
HValue* obj = Top();
HInstruction* load = NULL;
if (prop->IsMonomorphic()) {
Handle<String> name = prop->key()->AsLiteral()->AsPropertyName();
Handle<Map> map = prop->GetReceiverTypes()->first();
load = BuildLoadNamed(obj, prop, map, name);
} else {
load = BuildLoadNamedGeneric(obj, prop);
}
PushAndAdd(load);
if (load->HasSideEffects()) AddSimulate(increment->id());
HValue* before = Pop();
// There is no deoptimization to after the increment, so we don't need
// to simulate the expression stack after this instruction.
HInstruction* after = BuildIncrement(before, inc);
AddInstruction(after);
HInstruction* store = BuildStoreNamed(obj, after, prop);
AddInstruction(store);
// Overwrite the receiver in the bailout environment with the result
// of the operation, and the placeholder with the original value if
// necessary.
environment()->SetExpressionStackAt(0, after);
if (has_extra) environment()->SetExpressionStackAt(1, before);
if (store->HasSideEffects()) AddSimulate(expr->AssignmentId());
Drop(has_extra ? 2 : 1);
ast_context()->ReturnValue(expr->is_postfix() ? before : after);
} else {
// Keyed property.
// Match the full code generator stack by simulate an extra stack element
// for postfix operations in a non-effect context.
bool has_extra = expr->is_postfix() && !ast_context()->IsEffect();
if (has_extra) Push(graph_->GetConstantUndefined());
VISIT_FOR_VALUE(prop->obj());
VISIT_FOR_VALUE(prop->key());
HValue* obj = environment()->ExpressionStackAt(1);
HValue* key = environment()->ExpressionStackAt(0);
bool is_fast_elements = prop->IsMonomorphic() &&
prop->GetMonomorphicReceiverType()->has_fast_elements();
HInstruction* load = is_fast_elements
? BuildLoadKeyedFastElement(obj, key, prop)
: BuildLoadKeyedGeneric(obj, key);
PushAndAdd(load);
if (load->HasSideEffects()) AddSimulate(increment->id());
HValue* before = Pop();
// There is no deoptimization to after the increment, so we don't need
// to simulate the expression stack after this instruction.
HInstruction* after = BuildIncrement(before, inc);
AddInstruction(after);
HInstruction* store = is_fast_elements
? BuildStoreKeyedFastElement(obj, key, after, prop)
: new HStoreKeyedGeneric(obj, key, after);
AddInstruction(store);
// Drop the key from the bailout environment. Overwrite the receiver
// with the result of the operation, and the placeholder with the
// original value if necessary.
Drop(1);
environment()->SetExpressionStackAt(0, after);
if (has_extra) environment()->SetExpressionStackAt(1, before);
if (store->HasSideEffects()) AddSimulate(expr->AssignmentId());
Drop(has_extra ? 2 : 1);
ast_context()->ReturnValue(expr->is_postfix() ? before : after);
}
} else {
BAILOUT("invalid lhs in count operation");
}
}
HInstruction* HGraphBuilder::BuildBinaryOperation(BinaryOperation* expr,
HValue* left,
HValue* right) {
HInstruction* instr = NULL;
switch (expr->op()) {
case Token::ADD:
instr = new HAdd(left, right);
break;
case Token::SUB:
instr = new HSub(left, right);
break;
case Token::MUL:
instr = new HMul(left, right);
break;
case Token::MOD:
instr = new HMod(left, right);
break;
case Token::DIV:
instr = new HDiv(left, right);
break;
case Token::BIT_XOR:
instr = new HBitXor(left, right);
break;
case Token::BIT_AND:
instr = new HBitAnd(left, right);
break;
case Token::BIT_OR:
instr = new HBitOr(left, right);
break;
case Token::SAR:
instr = new HSar(left, right);
break;
case Token::SHR:
instr = new HShr(left, right);
break;
case Token::SHL:
instr = new HShl(left, right);
break;
default:
UNREACHABLE();
}
TypeInfo info = oracle()->BinaryType(expr, TypeFeedbackOracle::RESULT);
// If we hit an uninitialized binary op stub we will get type info
// for a smi operation. If one of the operands is a constant string
// do not generate code assuming it is a smi operation.
if (info.IsSmi() &&
((left->IsConstant() && HConstant::cast(left)->HasStringValue()) ||
(right->IsConstant() && HConstant::cast(right)->HasStringValue()))) {
return instr;
}
if (FLAG_trace_representation) {
PrintF("Info: %s/%s\n", info.ToString(), ToRepresentation(info).Mnemonic());
}
AssumeRepresentation(instr, ToRepresentation(info));
return instr;
}
// Check for the form (%_ClassOf(foo) === 'BarClass').
static bool IsClassOfTest(CompareOperation* expr) {
if (expr->op() != Token::EQ_STRICT) return false;
CallRuntime* call = expr->left()->AsCallRuntime();
if (call == NULL) return false;
Literal* literal = expr->right()->AsLiteral();
if (literal == NULL) return false;
if (!literal->handle()->IsString()) return false;
if (!call->name()->IsEqualTo(CStrVector("_ClassOf"))) return false;
ASSERT(call->arguments()->length() == 1);
return true;
}
void HGraphBuilder::VisitBinaryOperation(BinaryOperation* expr) {
if (expr->op() == Token::COMMA) {
VISIT_FOR_EFFECT(expr->left());
// Visit the right subexpression in the same AST context as the entire
// expression.
Visit(expr->right());
} else if (expr->op() == Token::AND || expr->op() == Token::OR) {
bool is_logical_and = (expr->op() == Token::AND);
if (ast_context()->IsTest()) {
TestContext* context = TestContext::cast(ast_context());
// Translate left subexpression.
HBasicBlock* eval_right = graph()->CreateBasicBlock();
if (is_logical_and) {
VISIT_FOR_CONTROL(expr->left(), eval_right, context->if_false());
} else {
VISIT_FOR_CONTROL(expr->left(), context->if_true(), eval_right);
}
eval_right->SetJoinId(expr->RightId());
// Translate right subexpression by visiting it in the same AST
// context as the entire expression.
subgraph()->set_exit_block(eval_right);
Visit(expr->right());
} else {
VISIT_FOR_VALUE(expr->left());
ASSERT(current_subgraph_->HasExit());
HValue* left = Top();
HEnvironment* environment_copy = environment()->Copy();
environment_copy->Pop();
HSubgraph* right_subgraph;
right_subgraph = CreateBranchSubgraph(environment_copy);
ADD_TO_SUBGRAPH(right_subgraph, expr->right());
current_subgraph_->AppendOptional(right_subgraph, is_logical_and, left);
current_subgraph_->exit_block()->SetJoinId(expr->id());
ast_context()->ReturnValue(Pop());
}
} else {
VISIT_FOR_VALUE(expr->left());
VISIT_FOR_VALUE(expr->right());
HValue* right = Pop();
HValue* left = Pop();
HInstruction* instr = BuildBinaryOperation(expr, left, right);
instr->set_position(expr->position());
ast_context()->ReturnInstruction(instr, expr->id());
}
}
void HGraphBuilder::AssumeRepresentation(HValue* value, Representation r) {
if (value->CheckFlag(HValue::kFlexibleRepresentation)) {
if (FLAG_trace_representation) {
PrintF("Assume representation for %s to be %s (%d)\n",
value->Mnemonic(),
r.Mnemonic(),
graph_->GetMaximumValueID());
}
value->ChangeRepresentation(r);
// The representation of the value is dictated by type feedback.
value->ClearFlag(HValue::kFlexibleRepresentation);
} else if (FLAG_trace_representation) {
PrintF("No representation assumed\n");
}
}
Representation HGraphBuilder::ToRepresentation(TypeInfo info) {
if (info.IsSmi()) return Representation::Integer32();
if (info.IsInteger32()) return Representation::Integer32();
if (info.IsDouble()) return Representation::Double();
if (info.IsNumber()) return Representation::Double();
return Representation::Tagged();
}
void HGraphBuilder::VisitCompareOperation(CompareOperation* expr) {
if (IsClassOfTest(expr)) {
CallRuntime* call = expr->left()->AsCallRuntime();
VISIT_FOR_VALUE(call->arguments()->at(0));
HValue* value = Pop();
Literal* literal = expr->right()->AsLiteral();
Handle<String> rhs = Handle<String>::cast(literal->handle());
HInstruction* instr = new HClassOfTest(value, rhs);
instr->set_position(expr->position());
ast_context()->ReturnInstruction(instr, expr->id());
return;
}
// Check for the pattern: typeof <expression> == <string literal>.
UnaryOperation* left_unary = expr->left()->AsUnaryOperation();
Literal* right_literal = expr->right()->AsLiteral();
if ((expr->op() == Token::EQ || expr->op() == Token::EQ_STRICT) &&
left_unary != NULL && left_unary->op() == Token::TYPEOF &&
right_literal != NULL && right_literal->handle()->IsString()) {
VISIT_FOR_VALUE(left_unary->expression());
HValue* left = Pop();
HInstruction* instr = new HTypeofIs(left,
Handle<String>::cast(right_literal->handle()));
instr->set_position(expr->position());
ast_context()->ReturnInstruction(instr, expr->id());
return;
}
VISIT_FOR_VALUE(expr->left());
VISIT_FOR_VALUE(expr->right());
HValue* right = Pop();
HValue* left = Pop();
Token::Value op = expr->op();
TypeInfo info = oracle()->CompareType(expr, TypeFeedbackOracle::RESULT);
HInstruction* instr = NULL;
if (op == Token::INSTANCEOF) {
// Check to see if the rhs of the instanceof is a global function not
// residing in new space. If it is we assume that the function will stay the
// same.
Handle<JSFunction> target = Handle<JSFunction>::null();
Variable* var = expr->right()->AsVariableProxy()->AsVariable();
bool global_function = (var != NULL) && var->is_global() && !var->is_this();
CompilationInfo* info = graph()->info();
if (global_function &&
info->has_global_object() &&
!info->global_object()->IsAccessCheckNeeded()) {
Handle<String> name = var->name();
Handle<GlobalObject> global(info->global_object());
LookupResult lookup;
global->Lookup(*name, &lookup);
if (lookup.IsProperty() &&
lookup.type() == NORMAL &&
lookup.GetValue()->IsJSFunction()) {
Handle<JSFunction> candidate(JSFunction::cast(lookup.GetValue()));
// If the function is in new space we assume it's more likely to
// change and thus prefer the general IC code.
if (!Heap::InNewSpace(*candidate)) {
target = candidate;
}
}
}
// If the target is not null we have found a known global function that is
// assumed to stay the same for this instanceof.
if (target.is_null()) {
instr = new HInstanceOf(left, right);
} else {
AddInstruction(new HCheckFunction(right, target));
instr = new HInstanceOfKnownGlobal(left, target);
}
} else if (op == Token::IN) {
BAILOUT("Unsupported comparison: in");
} else if (info.IsNonPrimitive()) {
switch (op) {
case Token::EQ:
case Token::EQ_STRICT: {
AddInstruction(new HCheckNonSmi(left));
AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(left));
AddInstruction(new HCheckNonSmi(right));
AddInstruction(HCheckInstanceType::NewIsJSObjectOrJSFunction(right));
instr = new HCompareJSObjectEq(left, right);
break;
}
default:
BAILOUT("Unsupported non-primitive compare");
break;
}
} else {
HCompare* compare = new HCompare(left, right, op);
Representation r = ToRepresentation(info);
compare->SetInputRepresentation(r);
instr = compare;
}
instr->set_position(expr->position());
ast_context()->ReturnInstruction(instr, expr->id());
}
void HGraphBuilder::VisitCompareToNull(CompareToNull* expr) {
VISIT_FOR_VALUE(expr->expression());
HValue* value = Pop();
HIsNull* compare = new HIsNull(value, expr->is_strict());
ast_context()->ReturnInstruction(compare, expr->id());
}
void HGraphBuilder::VisitThisFunction(ThisFunction* expr) {
BAILOUT("ThisFunction");
}
void HGraphBuilder::VisitDeclaration(Declaration* decl) {
// We allow only declarations that do not require code generation.
// The following all require code generation: global variables and
// functions, variables with slot type LOOKUP, declarations with
// mode CONST, and functions.
Variable* var = decl->proxy()->var();
Slot* slot = var->AsSlot();
if (var->is_global() ||
(slot != NULL && slot->type() == Slot::LOOKUP) ||
decl->mode() == Variable::CONST ||
decl->fun() != NULL) {
BAILOUT("unsupported declaration");
}
}
// Generators for inline runtime functions.
// Support for types.
void HGraphBuilder::GenerateIsSmi(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HIsSmi* result = new HIsSmi(value);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateIsSpecObject(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HHasInstanceType* result =
new HHasInstanceType(value, FIRST_JS_OBJECT_TYPE, LAST_TYPE);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateIsFunction(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HHasInstanceType* result = new HHasInstanceType(value, JS_FUNCTION_TYPE);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateHasCachedArrayIndex(int argument_count,
int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HHasCachedArrayIndex* result = new HHasCachedArrayIndex(value);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateIsArray(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HHasInstanceType* result = new HHasInstanceType(value, JS_ARRAY_TYPE);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateIsRegExp(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HHasInstanceType* result = new HHasInstanceType(value, JS_REGEXP_TYPE);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateIsObject(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HIsObject* test = new HIsObject(value);
ast_context()->ReturnInstruction(test, ast_id);
}
void HGraphBuilder::GenerateIsNonNegativeSmi(int argument_count,
int ast_id) {
BAILOUT("inlined runtime function: IsNonNegativeSmi");
}
void HGraphBuilder::GenerateIsUndetectableObject(int argument_count,
int ast_id) {
BAILOUT("inlined runtime function: IsUndetectableObject");
}
void HGraphBuilder::GenerateIsStringWrapperSafeForDefaultValueOf(
int argument_count,
int ast_id) {
BAILOUT("inlined runtime function: IsStringWrapperSafeForDefaultValueOf");
}
// Support for construct call checks.
void HGraphBuilder::GenerateIsConstructCall(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: IsConstructCall");
}
// Support for arguments.length and arguments[?].
void HGraphBuilder::GenerateArgumentsLength(int argument_count, int ast_id) {
ASSERT(argument_count == 0);
HInstruction* elements = AddInstruction(new HArgumentsElements);
HArgumentsLength* result = new HArgumentsLength(elements);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateArguments(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* index = Pop();
HInstruction* elements = AddInstruction(new HArgumentsElements);
HInstruction* length = AddInstruction(new HArgumentsLength(elements));
HAccessArgumentsAt* result = new HAccessArgumentsAt(elements, length, index);
ast_context()->ReturnInstruction(result, ast_id);
}
// Support for accessing the class and value fields of an object.
void HGraphBuilder::GenerateClassOf(int argument_count, int ast_id) {
// The special form detected by IsClassOfTest is detected before we get here
// and does not cause a bailout.
BAILOUT("inlined runtime function: ClassOf");
}
void HGraphBuilder::GenerateValueOf(int argument_count, int ast_id) {
ASSERT(argument_count == 1);
HValue* value = Pop();
HValueOf* result = new HValueOf(value);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateSetValueOf(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: SetValueOf");
}
// Fast support for charCodeAt(n).
void HGraphBuilder::GenerateStringCharCodeAt(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: StringCharCodeAt");
}
// Fast support for string.charAt(n) and string[n].
void HGraphBuilder::GenerateStringCharFromCode(int argument_count,
int ast_id) {
BAILOUT("inlined runtime function: StringCharFromCode");
}
// Fast support for string.charAt(n) and string[n].
void HGraphBuilder::GenerateStringCharAt(int argument_count, int ast_id) {
ASSERT_EQ(2, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result = new HCallStub(CodeStub::StringCharAt, argument_count);
ast_context()->ReturnInstruction(result, ast_id);
}
// Fast support for object equality testing.
void HGraphBuilder::GenerateObjectEquals(int argument_count, int ast_id) {
ASSERT(argument_count == 2);
HValue* right = Pop();
HValue* left = Pop();
HCompareJSObjectEq* result = new HCompareJSObjectEq(left, right);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateLog(int argument_count, int ast_id) {
UNREACHABLE(); // We caught this in VisitCallRuntime.
}
// Fast support for Math.random().
void HGraphBuilder::GenerateRandomHeapNumber(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: RandomHeapNumber");
}
// Fast support for StringAdd.
void HGraphBuilder::GenerateStringAdd(int argument_count, int ast_id) {
ASSERT_EQ(2, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result = new HCallStub(CodeStub::StringAdd, argument_count);
ast_context()->ReturnInstruction(result, ast_id);
}
// Fast support for SubString.
void HGraphBuilder::GenerateSubString(int argument_count, int ast_id) {
ASSERT_EQ(3, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result = new HCallStub(CodeStub::SubString, argument_count);
ast_context()->ReturnInstruction(result, ast_id);
}
// Fast support for StringCompare.
void HGraphBuilder::GenerateStringCompare(int argument_count, int ast_id) {
ASSERT_EQ(2, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result = new HCallStub(CodeStub::StringCompare, argument_count);
ast_context()->ReturnInstruction(result, ast_id);
}
// Support for direct calls from JavaScript to native RegExp code.
void HGraphBuilder::GenerateRegExpExec(int argument_count, int ast_id) {
ASSERT_EQ(4, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result = new HCallStub(CodeStub::RegExpExec, argument_count);
ast_context()->ReturnInstruction(result, ast_id);
}
// Construct a RegExp exec result with two in-object properties.
void HGraphBuilder::GenerateRegExpConstructResult(int argument_count,
int ast_id) {
ASSERT_EQ(3, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result =
new HCallStub(CodeStub::RegExpConstructResult, argument_count);
ast_context()->ReturnInstruction(result, ast_id);
}
// Support for fast native caches.
void HGraphBuilder::GenerateGetFromCache(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: GetFromCache");
}
// Fast support for number to string.
void HGraphBuilder::GenerateNumberToString(int argument_count, int ast_id) {
ASSERT_EQ(1, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result = new HCallStub(CodeStub::NumberToString, argument_count);
ast_context()->ReturnInstruction(result, ast_id);
}
// Fast swapping of elements. Takes three expressions, the object and two
// indices. This should only be used if the indices are known to be
// non-negative and within bounds of the elements array at the call site.
void HGraphBuilder::GenerateSwapElements(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: SwapElements");
}
// Fast call for custom callbacks.
void HGraphBuilder::GenerateCallFunction(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: CallFunction");
}
// Fast call to math functions.
void HGraphBuilder::GenerateMathPow(int argument_count, int ast_id) {
ASSERT_EQ(2, argument_count);
HValue* right = Pop();
HValue* left = Pop();
HPower* result = new HPower(left, right);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateMathSin(int argument_count, int ast_id) {
ASSERT_EQ(1, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result =
new HCallStub(CodeStub::TranscendentalCache, argument_count);
result->set_transcendental_type(TranscendentalCache::SIN);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateMathCos(int argument_count, int ast_id) {
ASSERT_EQ(1, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result =
new HCallStub(CodeStub::TranscendentalCache, argument_count);
result->set_transcendental_type(TranscendentalCache::COS);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateMathLog(int argument_count, int ast_id) {
ASSERT_EQ(1, argument_count);
PushArgumentsForStubCall(argument_count);
HCallStub* result =
new HCallStub(CodeStub::TranscendentalCache, argument_count);
result->set_transcendental_type(TranscendentalCache::LOG);
ast_context()->ReturnInstruction(result, ast_id);
}
void HGraphBuilder::GenerateMathSqrt(int argument_count, int ast_id) {
BAILOUT("inlined runtime function: MathSqrt");
}
// Check whether two RegExps are equivalent
void HGraphBuilder::GenerateIsRegExpEquivalent(int argument_count,
int ast_id) {
BAILOUT("inlined runtime function: IsRegExpEquivalent");
}
void HGraphBuilder::GenerateGetCachedArrayIndex(int argument_count,
int ast_id) {
BAILOUT("inlined runtime function: GetCachedArrayIndex");
}
void HGraphBuilder::GenerateFastAsciiArrayJoin(int argument_count,
int ast_id) {
BAILOUT("inlined runtime function: FastAsciiArrayJoin");
}
#undef BAILOUT
#undef CHECK_BAILOUT
#undef VISIT_FOR_EFFECT
#undef VISIT_FOR_VALUE
#undef ADD_TO_SUBGRAPH
HEnvironment::HEnvironment(HEnvironment* outer,
Scope* scope,
Handle<JSFunction> closure)
: closure_(closure),
values_(0),
assigned_variables_(4),
parameter_count_(0),
local_count_(0),
outer_(outer),
pop_count_(0),
push_count_(0),
ast_id_(AstNode::kNoNumber) {
Initialize(scope->num_parameters() + 1, scope->num_stack_slots(), 0);
}
HEnvironment::HEnvironment(const HEnvironment* other)
: values_(0),
assigned_variables_(0),
parameter_count_(0),
local_count_(0),
outer_(NULL),
pop_count_(0),
push_count_(0),
ast_id_(other->ast_id()) {
Initialize(other);
}
void HEnvironment::Initialize(int parameter_count,
int local_count,
int stack_height) {
parameter_count_ = parameter_count;
local_count_ = local_count;
// Avoid reallocating the temporaries' backing store on the first Push.
int total = parameter_count + local_count + stack_height;
values_.Initialize(total + 4);
for (int i = 0; i < total; ++i) values_.Add(NULL);
}
void HEnvironment::Initialize(const HEnvironment* other) {
closure_ = other->closure();
values_.AddAll(other->values_);
assigned_variables_.AddAll(other->assigned_variables_);
parameter_count_ = other->parameter_count_;
local_count_ = other->local_count_;
if (other->outer_ != NULL) outer_ = other->outer_->Copy(); // Deep copy.
pop_count_ = other->pop_count_;
push_count_ = other->push_count_;
ast_id_ = other->ast_id_;
}
void HEnvironment::AddIncomingEdge(HBasicBlock* block, HEnvironment* other) {
ASSERT(!block->IsLoopHeader());
ASSERT(values_.length() == other->values_.length());
int length = values_.length();
for (int i = 0; i < length; ++i) {
HValue* value = values_[i];
if (value != NULL && value->IsPhi() && value->block() == block) {
// There is already a phi for the i'th value.
HPhi* phi = HPhi::cast(value);
// Assert index is correct and that we haven't missed an incoming edge.
ASSERT(phi->merged_index() == i);
ASSERT(phi->OperandCount() == block->predecessors()->length());
phi->AddInput(other->values_[i]);
} else if (values_[i] != other->values_[i]) {
// There is a fresh value on the incoming edge, a phi is needed.
ASSERT(values_[i] != NULL && other->values_[i] != NULL);
HPhi* phi = new HPhi(i);
HValue* old_value = values_[i];
for (int j = 0; j < block->predecessors()->length(); j++) {
phi->AddInput(old_value);
}
phi->AddInput(other->values_[i]);
this->values_[i] = phi;
block->AddPhi(phi);
}
}
}
void HEnvironment::Bind(int index, HValue* value) {
ASSERT(value != NULL);
if (!assigned_variables_.Contains(index)) {
assigned_variables_.Add(index);
}
values_[index] = value;
}
bool HEnvironment::HasExpressionAt(int index) const {
return index >= parameter_count_ + local_count_;
}
bool HEnvironment::ExpressionStackIsEmpty() const {
int first_expression = parameter_count() + local_count();
ASSERT(length() >= first_expression);
return length() == first_expression;
}
void HEnvironment::SetExpressionStackAt(int index_from_top, HValue* value) {
int count = index_from_top + 1;
int index = values_.length() - count;
ASSERT(HasExpressionAt(index));
// The push count must include at least the element in question or else
// the new value will not be included in this environment's history.
if (push_count_ < count) {
// This is the same effect as popping then re-pushing 'count' elements.
pop_count_ += (count - push_count_);
push_count_ = count;
}
values_[index] = value;
}
void HEnvironment::Drop(int count) {
for (int i = 0; i < count; ++i) {
Pop();
}
}
HEnvironment* HEnvironment::Copy() const {
return new HEnvironment(this);
}
HEnvironment* HEnvironment::CopyWithoutHistory() const {
HEnvironment* result = Copy();
result->ClearHistory();
return result;
}
HEnvironment* HEnvironment::CopyAsLoopHeader(HBasicBlock* loop_header) const {
HEnvironment* new_env = Copy();
for (int i = 0; i < values_.length(); ++i) {
HPhi* phi = new HPhi(i);
phi->AddInput(values_[i]);
new_env->values_[i] = phi;
loop_header->AddPhi(phi);
}
new_env->ClearHistory();
return new_env;
}
HEnvironment* HEnvironment::CopyForInlining(Handle<JSFunction> target,
FunctionLiteral* function,
bool is_speculative,
HConstant* undefined) const {
// Outer environment is a copy of this one without the arguments.
int arity = function->scope()->num_parameters();
HEnvironment* outer = Copy();
outer->Drop(arity + 1); // Including receiver.
outer->ClearHistory();
HEnvironment* inner = new HEnvironment(outer, function->scope(), target);
// Get the argument values from the original environment.
if (is_speculative) {
for (int i = 0; i <= arity; ++i) { // Include receiver.
HValue* push = ExpressionStackAt(arity - i);
inner->SetValueAt(i, push);
}
} else {
for (int i = 0; i <= arity; ++i) { // Include receiver.
inner->SetValueAt(i, ExpressionStackAt(arity - i));
}
}
// Initialize the stack-allocated locals to undefined.
int local_base = arity + 1;
int local_count = function->scope()->num_stack_slots();
for (int i = 0; i < local_count; ++i) {
inner->SetValueAt(local_base + i, undefined);
}
inner->set_ast_id(function->id());
return inner;
}
void HEnvironment::PrintTo(StringStream* stream) {
for (int i = 0; i < length(); i++) {
if (i == 0) stream->Add("parameters\n");
if (i == parameter_count()) stream->Add("locals\n");
if (i == parameter_count() + local_count()) stream->Add("expressions");
HValue* val = values_.at(i);
stream->Add("%d: ", i);
if (val != NULL) {
val->PrintNameTo(stream);
} else {
stream->Add("NULL");
}
stream->Add("\n");
}
}
void HEnvironment::PrintToStd() {
HeapStringAllocator string_allocator;
StringStream trace(&string_allocator);
PrintTo(&trace);
PrintF("%s", *trace.ToCString());
}
void HTracer::TraceCompilation(FunctionLiteral* function) {
Tag tag(this, "compilation");
Handle<String> name = function->debug_name();
PrintStringProperty("name", *name->ToCString());
PrintStringProperty("method", *name->ToCString());
PrintLongProperty("date", static_cast<int64_t>(OS::TimeCurrentMillis()));
}
void HTracer::TraceLithium(const char* name, LChunk* chunk) {
Trace(name, chunk->graph(), chunk);
}
void HTracer::TraceHydrogen(const char* name, HGraph* graph) {
Trace(name, graph, NULL);
}
void HTracer::Trace(const char* name, HGraph* graph, LChunk* chunk) {
Tag tag(this, "cfg");
PrintStringProperty("name", name);
const ZoneList<HBasicBlock*>* blocks = graph->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* current = blocks->at(i);
Tag block_tag(this, "block");
PrintBlockProperty("name", current->block_id());
PrintIntProperty("from_bci", -1);
PrintIntProperty("to_bci", -1);
if (!current->predecessors()->is_empty()) {
PrintIndent();
trace_.Add("predecessors");
for (int j = 0; j < current->predecessors()->length(); ++j) {
trace_.Add(" \"B%d\"", current->predecessors()->at(j)->block_id());
}
trace_.Add("\n");
} else {
PrintEmptyProperty("predecessors");
}
if (current->end() == NULL || current->end()->FirstSuccessor() == NULL) {
PrintEmptyProperty("successors");
} else if (current->end()->SecondSuccessor() == NULL) {
PrintBlockProperty("successors",
current->end()->FirstSuccessor()->block_id());
} else {
PrintBlockProperty("successors",
current->end()->FirstSuccessor()->block_id(),
current->end()->SecondSuccessor()->block_id());
}
PrintEmptyProperty("xhandlers");
PrintEmptyProperty("flags");
if (current->dominator() != NULL) {
PrintBlockProperty("dominator", current->dominator()->block_id());
}
if (chunk != NULL) {
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
PrintIntProperty(
"first_lir_id",
LifetimePosition::FromInstructionIndex(first_index).Value());
PrintIntProperty(
"last_lir_id",
LifetimePosition::FromInstructionIndex(last_index).Value());
}
{
Tag states_tag(this, "states");
Tag locals_tag(this, "locals");
int total = current->phis()->length();
trace_.Add("size %d\n", total);
trace_.Add("method \"None\"");
for (int j = 0; j < total; ++j) {
HPhi* phi = current->phis()->at(j);
trace_.Add("%d ", phi->merged_index());
phi->PrintNameTo(&trace_);
trace_.Add(" ");
phi->PrintTo(&trace_);
trace_.Add("\n");
}
}
{
Tag HIR_tag(this, "HIR");
HInstruction* instruction = current->first();
while (instruction != NULL) {
int bci = 0;
int uses = instruction->uses()->length();
trace_.Add("%d %d ", bci, uses);
instruction->PrintNameTo(&trace_);
trace_.Add(" ");
instruction->PrintTo(&trace_);
trace_.Add(" <|@\n");
instruction = instruction->next();
}
}
if (chunk != NULL) {
Tag LIR_tag(this, "LIR");
int first_index = current->first_instruction_index();
int last_index = current->last_instruction_index();
if (first_index != -1 && last_index != -1) {
const ZoneList<LInstruction*>* instructions = chunk->instructions();
for (int i = first_index; i <= last_index; ++i) {
LInstruction* linstr = instructions->at(i);
if (linstr != NULL) {
trace_.Add("%d ",
LifetimePosition::FromInstructionIndex(i).Value());
linstr->PrintTo(&trace_);
trace_.Add(" <|@\n");
}
}
}
}
}
}
void HTracer::TraceLiveRanges(const char* name, LAllocator* allocator) {
Tag tag(this, "intervals");
PrintStringProperty("name", name);
const ZoneList<LiveRange*>* fixed_d = allocator->fixed_double_live_ranges();
for (int i = 0; i < fixed_d->length(); ++i) {
TraceLiveRange(fixed_d->at(i), "fixed");
}
const ZoneList<LiveRange*>* fixed = allocator->fixed_live_ranges();
for (int i = 0; i < fixed->length(); ++i) {
TraceLiveRange(fixed->at(i), "fixed");
}
const ZoneList<LiveRange*>* live_ranges = allocator->live_ranges();
for (int i = 0; i < live_ranges->length(); ++i) {
TraceLiveRange(live_ranges->at(i), "object");
}
}
void HTracer::TraceLiveRange(LiveRange* range, const char* type) {
if (range != NULL && !range->IsEmpty()) {
trace_.Add("%d %s", range->id(), type);
if (range->HasRegisterAssigned()) {
LOperand* op = range->CreateAssignedOperand();
int assigned_reg = op->index();
if (op->IsDoubleRegister()) {
trace_.Add(" \"%s\"",
DoubleRegister::AllocationIndexToString(assigned_reg));
} else {
ASSERT(op->IsRegister());
trace_.Add(" \"%s\"", Register::AllocationIndexToString(assigned_reg));
}
} else if (range->IsSpilled()) {
LOperand* op = range->TopLevel()->GetSpillOperand();
if (op->IsDoubleStackSlot()) {
trace_.Add(" \"double_stack:%d\"", op->index());
} else {
ASSERT(op->IsStackSlot());
trace_.Add(" \"stack:%d\"", op->index());
}
}
int parent_index = -1;
if (range->IsChild()) {
parent_index = range->parent()->id();
} else {
parent_index = range->id();
}
LOperand* op = range->FirstHint();
int hint_index = -1;
if (op != NULL && op->IsUnallocated()) hint_index = op->VirtualRegister();
trace_.Add(" %d %d", parent_index, hint_index);
UseInterval* cur_interval = range->first_interval();
while (cur_interval != NULL) {
trace_.Add(" [%d, %d[",
cur_interval->start().Value(),
cur_interval->end().Value());
cur_interval = cur_interval->next();
}
UsePosition* current_pos = range->first_pos();
while (current_pos != NULL) {
if (current_pos->RegisterIsBeneficial()) {
trace_.Add(" %d M", current_pos->pos().Value());
}
current_pos = current_pos->next();
}
trace_.Add(" \"\"\n");
}
}
void HTracer::FlushToFile() {
AppendChars(filename_, *trace_.ToCString(), trace_.length(), false);
trace_.Reset();
}
void HStatistics::Print() {
PrintF("Timing results:\n");
int64_t sum = 0;
for (int i = 0; i < timing_.length(); ++i) {
sum += timing_[i];
}
for (int i = 0; i < names_.length(); ++i) {
PrintF("%30s", names_[i]);
double ms = static_cast<double>(timing_[i]) / 1000;
double percent = static_cast<double>(timing_[i]) * 100 / sum;
PrintF(" - %0.3f ms / %0.3f %% \n", ms, percent);
}
PrintF("%30s - %0.3f ms \n", "Sum", static_cast<double>(sum) / 1000);
PrintF("---------------------------------------------------------------\n");
PrintF("%30s - %0.3f ms (%0.1f times slower than full code gen)\n",
"Total",
static_cast<double>(total_) / 1000,
static_cast<double>(total_) / full_code_gen_);
}
void HStatistics::SaveTiming(const char* name, int64_t ticks) {
if (name == HPhase::kFullCodeGen) {
full_code_gen_ += ticks;
} else if (name == HPhase::kTotal) {
total_ += ticks;
} else {
for (int i = 0; i < names_.length(); ++i) {
if (names_[i] == name) {
timing_[i] += ticks;
return;
}
}
names_.Add(name);
timing_.Add(ticks);
}
}
const char* const HPhase::kFullCodeGen = "Full code generator";
const char* const HPhase::kTotal = "Total";
void HPhase::Begin(const char* name,
HGraph* graph,
LChunk* chunk,
LAllocator* allocator) {
name_ = name;
graph_ = graph;
chunk_ = chunk;
allocator_ = allocator;
if (allocator != NULL && chunk_ == NULL) {
chunk_ = allocator->chunk();
}
if (FLAG_time_hydrogen) start_ = OS::Ticks();
}
void HPhase::End() const {
if (FLAG_time_hydrogen) {
int64_t end = OS::Ticks();
HStatistics::Instance()->SaveTiming(name_, end - start_);
}
if (FLAG_trace_hydrogen) {
if (graph_ != NULL) HTracer::Instance()->TraceHydrogen(name_, graph_);
if (chunk_ != NULL) HTracer::Instance()->TraceLithium(name_, chunk_);
if (allocator_ != NULL) {
HTracer::Instance()->TraceLiveRanges(name_, allocator_);
}
}
#ifdef DEBUG
if (graph_ != NULL) graph_->Verify();
if (chunk_ != NULL) chunk_->Verify();
if (allocator_ != NULL) allocator_->Verify();
#endif
}
} } // namespace v8::internal