| // Copyright 2010 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <stdlib.h> |
| #include <cstdarg> |
| #include "v8.h" |
| |
| #include "disasm.h" |
| #include "assembler.h" |
| #include "globals.h" // Need the bit_cast |
| #include "mips/constants-mips.h" |
| #include "mips/simulator-mips.h" |
| |
| namespace v8i = v8::internal; |
| |
| #if !defined(__mips) |
| |
| // Only build the simulator if not compiling for real MIPS hardware. |
| namespace assembler { |
| namespace mips { |
| |
| using ::v8::internal::Object; |
| using ::v8::internal::PrintF; |
| using ::v8::internal::OS; |
| using ::v8::internal::ReadLine; |
| using ::v8::internal::DeleteArray; |
| |
| // Utils functions |
| bool HaveSameSign(int32_t a, int32_t b) { |
| return ((a ^ b) > 0); |
| } |
| |
| |
| // This macro provides a platform independent use of sscanf. The reason for |
| // SScanF not being implemented in a platform independent was through |
| // ::v8::internal::OS in the same way as SNPrintF is that the Windows C Run-Time |
| // Library does not provide vsscanf. |
| #define SScanF sscanf // NOLINT |
| |
| // The Debugger class is used by the simulator while debugging simulated MIPS |
| // code. |
| class Debugger { |
| public: |
| explicit Debugger(Simulator* sim); |
| ~Debugger(); |
| |
| void Stop(Instruction* instr); |
| void Debug(); |
| |
| private: |
| // We set the breakpoint code to 0xfffff to easily recognize it. |
| static const Instr kBreakpointInstr = SPECIAL | BREAK | 0xfffff << 6; |
| static const Instr kNopInstr = 0x0; |
| |
| Simulator* sim_; |
| |
| int32_t GetRegisterValue(int regnum); |
| bool GetValue(const char* desc, int32_t* value); |
| |
| // Set or delete a breakpoint. Returns true if successful. |
| bool SetBreakpoint(Instruction* breakpc); |
| bool DeleteBreakpoint(Instruction* breakpc); |
| |
| // Undo and redo all breakpoints. This is needed to bracket disassembly and |
| // execution to skip past breakpoints when run from the debugger. |
| void UndoBreakpoints(); |
| void RedoBreakpoints(); |
| |
| // Print all registers with a nice formatting. |
| void PrintAllRegs(); |
| }; |
| |
| Debugger::Debugger(Simulator* sim) { |
| sim_ = sim; |
| } |
| |
| Debugger::~Debugger() { |
| } |
| |
| #ifdef GENERATED_CODE_COVERAGE |
| static FILE* coverage_log = NULL; |
| |
| |
| static void InitializeCoverage() { |
| char* file_name = getenv("V8_GENERATED_CODE_COVERAGE_LOG"); |
| if (file_name != NULL) { |
| coverage_log = fopen(file_name, "aw+"); |
| } |
| } |
| |
| |
| void Debugger::Stop(Instruction* instr) { |
| UNIMPLEMENTED_MIPS(); |
| char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
| if (strlen(str) > 0) { |
| if (coverage_log != NULL) { |
| fprintf(coverage_log, "%s\n", str); |
| fflush(coverage_log); |
| } |
| instr->SetInstructionBits(0x0); // Overwrite with nop. |
| } |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
| } |
| |
| #else // ndef GENERATED_CODE_COVERAGE |
| |
| #define UNSUPPORTED() printf("Unsupported instruction.\n"); |
| |
| static void InitializeCoverage() {} |
| |
| |
| void Debugger::Stop(Instruction* instr) { |
| const char* str = reinterpret_cast<char*>(instr->InstructionBits()); |
| PrintF("Simulator hit %s\n", str); |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
| Debug(); |
| } |
| #endif // def GENERATED_CODE_COVERAGE |
| |
| |
| int32_t Debugger::GetRegisterValue(int regnum) { |
| if (regnum == kNumSimuRegisters) { |
| return sim_->get_pc(); |
| } else { |
| return sim_->get_register(regnum); |
| } |
| } |
| |
| |
| bool Debugger::GetValue(const char* desc, int32_t* value) { |
| int regnum = Registers::Number(desc); |
| if (regnum != kInvalidRegister) { |
| *value = GetRegisterValue(regnum); |
| return true; |
| } else { |
| return SScanF(desc, "%i", value) == 1; |
| } |
| return false; |
| } |
| |
| |
| bool Debugger::SetBreakpoint(Instruction* breakpc) { |
| // Check if a breakpoint can be set. If not return without any side-effects. |
| if (sim_->break_pc_ != NULL) { |
| return false; |
| } |
| |
| // Set the breakpoint. |
| sim_->break_pc_ = breakpc; |
| sim_->break_instr_ = breakpc->InstructionBits(); |
| // Not setting the breakpoint instruction in the code itself. It will be set |
| // when the debugger shell continues. |
| return true; |
| } |
| |
| |
| bool Debugger::DeleteBreakpoint(Instruction* breakpc) { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| |
| sim_->break_pc_ = NULL; |
| sim_->break_instr_ = 0; |
| return true; |
| } |
| |
| |
| void Debugger::UndoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(sim_->break_instr_); |
| } |
| } |
| |
| |
| void Debugger::RedoBreakpoints() { |
| if (sim_->break_pc_ != NULL) { |
| sim_->break_pc_->SetInstructionBits(kBreakpointInstr); |
| } |
| } |
| |
| void Debugger::PrintAllRegs() { |
| #define REG_INFO(n) Registers::Name(n), GetRegisterValue(n), GetRegisterValue(n) |
| |
| PrintF("\n"); |
| // at, v0, a0 |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(1), REG_INFO(2), REG_INFO(4)); |
| // v1, a1 |
| PrintF("%26s\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| "", REG_INFO(3), REG_INFO(5)); |
| // a2 |
| PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(6)); |
| // a3 |
| PrintF("%26s\t%26s\t%3s: 0x%08x %10d\n", "", "", REG_INFO(7)); |
| PrintF("\n"); |
| // t0-t7, s0-s7 |
| for (int i = 0; i < 8; i++) { |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(8+i), REG_INFO(16+i)); |
| } |
| PrintF("\n"); |
| // t8, k0, LO |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(24), REG_INFO(26), REG_INFO(32)); |
| // t9, k1, HI |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(25), REG_INFO(27), REG_INFO(33)); |
| // sp, fp, gp |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(29), REG_INFO(30), REG_INFO(28)); |
| // pc |
| PrintF("%3s: 0x%08x %10d\t%3s: 0x%08x %10d\n", |
| REG_INFO(31), REG_INFO(34)); |
| #undef REG_INFO |
| } |
| |
| void Debugger::Debug() { |
| intptr_t last_pc = -1; |
| bool done = false; |
| |
| #define COMMAND_SIZE 63 |
| #define ARG_SIZE 255 |
| |
| #define STR(a) #a |
| #define XSTR(a) STR(a) |
| |
| char cmd[COMMAND_SIZE + 1]; |
| char arg1[ARG_SIZE + 1]; |
| char arg2[ARG_SIZE + 1]; |
| |
| // make sure to have a proper terminating character if reaching the limit |
| cmd[COMMAND_SIZE] = 0; |
| arg1[ARG_SIZE] = 0; |
| arg2[ARG_SIZE] = 0; |
| |
| // Undo all set breakpoints while running in the debugger shell. This will |
| // make them invisible to all commands. |
| UndoBreakpoints(); |
| |
| while (!done && (sim_->get_pc() != Simulator::end_sim_pc)) { |
| if (last_pc != sim_->get_pc()) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<byte_*>(sim_->get_pc())); |
| PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.start()); |
| last_pc = sim_->get_pc(); |
| } |
| char* line = ReadLine("sim> "); |
| if (line == NULL) { |
| break; |
| } else { |
| // Use sscanf to parse the individual parts of the command line. At the |
| // moment no command expects more than two parameters. |
| int args = SScanF(line, |
| "%" XSTR(COMMAND_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s " |
| "%" XSTR(ARG_SIZE) "s", |
| cmd, arg1, arg2); |
| if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { |
| if (!(reinterpret_cast<Instruction*>(sim_->get_pc())->IsTrap())) { |
| sim_->InstructionDecode( |
| reinterpret_cast<Instruction*>(sim_->get_pc())); |
| } else { |
| // Allow si to jump over generated breakpoints. |
| PrintF("/!\\ Jumping over generated breakpoint.\n"); |
| sim_->set_pc(sim_->get_pc() + Instruction::kInstructionSize); |
| } |
| } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { |
| // Execute the one instruction we broke at with breakpoints disabled. |
| sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc())); |
| // Leave the debugger shell. |
| done = true; |
| } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { |
| if (args == 2) { |
| int32_t value; |
| if (strcmp(arg1, "all") == 0) { |
| PrintAllRegs(); |
| } else { |
| if (GetValue(arg1, &value)) { |
| PrintF("%s: 0x%08x %d \n", arg1, value, value); |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } |
| } else { |
| PrintF("print <register>\n"); |
| } |
| } else if ((strcmp(cmd, "po") == 0) |
| || (strcmp(cmd, "printobject") == 0)) { |
| if (args == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| Object* obj = reinterpret_cast<Object*>(value); |
| PrintF("%s: \n", arg1); |
| #ifdef DEBUG |
| obj->PrintLn(); |
| #else |
| obj->ShortPrint(); |
| PrintF("\n"); |
| #endif |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("printobject <value>\n"); |
| } |
| } else if ((strcmp(cmd, "disasm") == 0) || (strcmp(cmd, "dpc") == 0)) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte_* cur = NULL; |
| byte_* end = NULL; |
| |
| if (args == 1) { |
| cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
| end = cur + (10 * Instruction::kInstructionSize); |
| } else if (args == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte_*>(value); |
| // no length parameter passed, assume 10 instructions |
| end = cur + (10 * Instruction::kInstructionSize); |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte_*>(value1); |
| end = cur + (value2 * Instruction::kInstructionSize); |
| } |
| } |
| |
| while (cur < end) { |
| dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08x %s\n", cur, buffer.start()); |
| cur += Instruction::kInstructionSize; |
| } |
| } else if (strcmp(cmd, "gdb") == 0) { |
| PrintF("relinquishing control to gdb\n"); |
| v8::internal::OS::DebugBreak(); |
| PrintF("regaining control from gdb\n"); |
| } else if (strcmp(cmd, "break") == 0) { |
| if (args == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) { |
| PrintF("setting breakpoint failed\n"); |
| } |
| } else { |
| PrintF("%s unrecognized\n", arg1); |
| } |
| } else { |
| PrintF("break <address>\n"); |
| } |
| } else if (strcmp(cmd, "del") == 0) { |
| if (!DeleteBreakpoint(NULL)) { |
| PrintF("deleting breakpoint failed\n"); |
| } |
| } else if (strcmp(cmd, "flags") == 0) { |
| PrintF("No flags on MIPS !\n"); |
| } else if (strcmp(cmd, "unstop") == 0) { |
| PrintF("Unstop command not implemented on MIPS."); |
| } else if ((strcmp(cmd, "stat") == 0) || (strcmp(cmd, "st") == 0)) { |
| // Print registers and disassemble |
| PrintAllRegs(); |
| PrintF("\n"); |
| |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| |
| byte_* cur = NULL; |
| byte_* end = NULL; |
| |
| if (args == 1) { |
| cur = reinterpret_cast<byte_*>(sim_->get_pc()); |
| end = cur + (10 * Instruction::kInstructionSize); |
| } else if (args == 2) { |
| int32_t value; |
| if (GetValue(arg1, &value)) { |
| cur = reinterpret_cast<byte_*>(value); |
| // no length parameter passed, assume 10 instructions |
| end = cur + (10 * Instruction::kInstructionSize); |
| } |
| } else { |
| int32_t value1; |
| int32_t value2; |
| if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { |
| cur = reinterpret_cast<byte_*>(value1); |
| end = cur + (value2 * Instruction::kInstructionSize); |
| } |
| } |
| |
| while (cur < end) { |
| dasm.InstructionDecode(buffer, cur); |
| PrintF(" 0x%08x %s\n", cur, buffer.start()); |
| cur += Instruction::kInstructionSize; |
| } |
| } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { |
| PrintF("cont\n"); |
| PrintF(" continue execution (alias 'c')\n"); |
| PrintF("stepi\n"); |
| PrintF(" step one instruction (alias 'si')\n"); |
| PrintF("print <register>\n"); |
| PrintF(" print register content (alias 'p')\n"); |
| PrintF(" use register name 'all' to print all registers\n"); |
| PrintF("printobject <register>\n"); |
| PrintF(" print an object from a register (alias 'po')\n"); |
| PrintF("flags\n"); |
| PrintF(" print flags\n"); |
| PrintF("disasm [<instructions>]\n"); |
| PrintF("disasm [[<address>] <instructions>]\n"); |
| PrintF(" disassemble code, default is 10 instructions from pc\n"); |
| PrintF("gdb\n"); |
| PrintF(" enter gdb\n"); |
| PrintF("break <address>\n"); |
| PrintF(" set a break point on the address\n"); |
| PrintF("del\n"); |
| PrintF(" delete the breakpoint\n"); |
| PrintF("unstop\n"); |
| PrintF(" ignore the stop instruction at the current location"); |
| PrintF(" from now on\n"); |
| } else { |
| PrintF("Unknown command: %s\n", cmd); |
| } |
| } |
| DeleteArray(line); |
| } |
| |
| // Add all the breakpoints back to stop execution and enter the debugger |
| // shell when hit. |
| RedoBreakpoints(); |
| |
| #undef COMMAND_SIZE |
| #undef ARG_SIZE |
| |
| #undef STR |
| #undef XSTR |
| } |
| |
| |
| // Create one simulator per thread and keep it in thread local storage. |
| static v8::internal::Thread::LocalStorageKey simulator_key; |
| |
| |
| bool Simulator::initialized_ = false; |
| |
| |
| void Simulator::Initialize() { |
| if (initialized_) return; |
| simulator_key = v8::internal::Thread::CreateThreadLocalKey(); |
| initialized_ = true; |
| ::v8::internal::ExternalReference::set_redirector(&RedirectExternalReference); |
| } |
| |
| |
| Simulator::Simulator() { |
| Initialize(); |
| // Setup simulator support first. Some of this information is needed to |
| // setup the architecture state. |
| size_t stack_size = 1 * 1024*1024; // allocate 1MB for stack |
| stack_ = reinterpret_cast<char*>(malloc(stack_size)); |
| pc_modified_ = false; |
| icount_ = 0; |
| break_pc_ = NULL; |
| break_instr_ = 0; |
| |
| // Setup architecture state. |
| // All registers are initialized to zero to start with. |
| for (int i = 0; i < kNumSimuRegisters; i++) { |
| registers_[i] = 0; |
| } |
| |
| // The sp is initialized to point to the bottom (high address) of the |
| // allocated stack area. To be safe in potential stack underflows we leave |
| // some buffer below. |
| registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64; |
| // The ra and pc are initialized to a known bad value that will cause an |
| // access violation if the simulator ever tries to execute it. |
| registers_[pc] = bad_ra; |
| registers_[ra] = bad_ra; |
| InitializeCoverage(); |
| } |
| |
| |
| // When the generated code calls an external reference we need to catch that in |
| // the simulator. The external reference will be a function compiled for the |
| // host architecture. We need to call that function instead of trying to |
| // execute it with the simulator. We do that by redirecting the external |
| // reference to a swi (software-interrupt) instruction that is handled by |
| // the simulator. We write the original destination of the jump just at a known |
| // offset from the swi instruction so the simulator knows what to call. |
| class Redirection { |
| public: |
| Redirection(void* external_function, bool fp_return) |
| : external_function_(external_function), |
| swi_instruction_(rtCallRedirInstr), |
| fp_return_(fp_return), |
| next_(list_) { |
| list_ = this; |
| } |
| |
| void* address_of_swi_instruction() { |
| return reinterpret_cast<void*>(&swi_instruction_); |
| } |
| |
| void* external_function() { return external_function_; } |
| bool fp_return() { return fp_return_; } |
| |
| static Redirection* Get(void* external_function, bool fp_return) { |
| Redirection* current; |
| for (current = list_; current != NULL; current = current->next_) { |
| if (current->external_function_ == external_function) return current; |
| } |
| return new Redirection(external_function, fp_return); |
| } |
| |
| static Redirection* FromSwiInstruction(Instruction* swi_instruction) { |
| char* addr_of_swi = reinterpret_cast<char*>(swi_instruction); |
| char* addr_of_redirection = |
| addr_of_swi - OFFSET_OF(Redirection, swi_instruction_); |
| return reinterpret_cast<Redirection*>(addr_of_redirection); |
| } |
| |
| private: |
| void* external_function_; |
| uint32_t swi_instruction_; |
| bool fp_return_; |
| Redirection* next_; |
| static Redirection* list_; |
| }; |
| |
| |
| Redirection* Redirection::list_ = NULL; |
| |
| |
| void* Simulator::RedirectExternalReference(void* external_function, |
| bool fp_return) { |
| Redirection* redirection = Redirection::Get(external_function, fp_return); |
| return redirection->address_of_swi_instruction(); |
| } |
| |
| |
| // Get the active Simulator for the current thread. |
| Simulator* Simulator::current() { |
| Initialize(); |
| Simulator* sim = reinterpret_cast<Simulator*>( |
| v8::internal::Thread::GetThreadLocal(simulator_key)); |
| if (sim == NULL) { |
| // TODO(146): delete the simulator object when a thread goes away. |
| sim = new Simulator(); |
| v8::internal::Thread::SetThreadLocal(simulator_key, sim); |
| } |
| return sim; |
| } |
| |
| |
| // Sets the register in the architecture state. It will also deal with updating |
| // Simulator internal state for special registers such as PC. |
| void Simulator::set_register(int reg, int32_t value) { |
| ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
| if (reg == pc) { |
| pc_modified_ = true; |
| } |
| |
| // zero register always hold 0. |
| registers_[reg] = (reg == 0) ? 0 : value; |
| } |
| |
| void Simulator::set_fpu_register(int fpureg, int32_t value) { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| FPUregisters_[fpureg] = value; |
| } |
| |
| void Simulator::set_fpu_register_double(int fpureg, double value) { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| *v8i::bit_cast<double*, int32_t*>(&FPUregisters_[fpureg]) = value; |
| } |
| |
| |
| // Get the register from the architecture state. This function does handle |
| // the special case of accessing the PC register. |
| int32_t Simulator::get_register(int reg) const { |
| ASSERT((reg >= 0) && (reg < kNumSimuRegisters)); |
| if (reg == 0) |
| return 0; |
| else |
| return registers_[reg] + ((reg == pc) ? Instruction::kPCReadOffset : 0); |
| } |
| |
| int32_t Simulator::get_fpu_register(int fpureg) const { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters)); |
| return FPUregisters_[fpureg]; |
| } |
| |
| double Simulator::get_fpu_register_double(int fpureg) const { |
| ASSERT((fpureg >= 0) && (fpureg < kNumFPURegisters) && ((fpureg % 2) == 0)); |
| return *v8i::bit_cast<double*, int32_t*>( |
| const_cast<int32_t*>(&FPUregisters_[fpureg])); |
| } |
| |
| // Raw access to the PC register. |
| void Simulator::set_pc(int32_t value) { |
| pc_modified_ = true; |
| registers_[pc] = value; |
| } |
| |
| // Raw access to the PC register without the special adjustment when reading. |
| int32_t Simulator::get_pc() const { |
| return registers_[pc]; |
| } |
| |
| |
| // The MIPS cannot do unaligned reads and writes. On some MIPS platforms an |
| // interrupt is caused. On others it does a funky rotation thing. For now we |
| // simply disallow unaligned reads, but at some point we may want to move to |
| // emulating the rotate behaviour. Note that simulator runs have the runtime |
| // system running directly on the host system and only generated code is |
| // executed in the simulator. Since the host is typically IA32 we will not |
| // get the correct MIPS-like behaviour on unaligned accesses. |
| |
| int Simulator::ReadW(int32_t addr, Instruction* instr) { |
| if ((addr & v8i::kPointerAlignmentMask) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteW(int32_t addr, int value, Instruction* instr) { |
| if ((addr & v8i::kPointerAlignmentMask) == 0) { |
| intptr_t* ptr = reinterpret_cast<intptr_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| } |
| |
| |
| double Simulator::ReadD(int32_t addr, Instruction* instr) { |
| if ((addr & kDoubleAlignmentMask) == 0) { |
| double* ptr = reinterpret_cast<double*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned read at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteD(int32_t addr, double value, Instruction* instr) { |
| if ((addr & kDoubleAlignmentMask) == 0) { |
| double* ptr = reinterpret_cast<double*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned write at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| } |
| |
| |
| uint16_t Simulator::ReadHU(int32_t addr, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned unsigned halfword read at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| return 0; |
| } |
| |
| |
| int16_t Simulator::ReadH(int32_t addr, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| return *ptr; |
| } |
| PrintF("Unaligned signed halfword read at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| return 0; |
| } |
| |
| |
| void Simulator::WriteH(int32_t addr, uint16_t value, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| uint16_t* ptr = reinterpret_cast<uint16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned unsigned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| } |
| |
| |
| void Simulator::WriteH(int32_t addr, int16_t value, Instruction* instr) { |
| if ((addr & 1) == 0) { |
| int16_t* ptr = reinterpret_cast<int16_t*>(addr); |
| *ptr = value; |
| return; |
| } |
| PrintF("Unaligned halfword write at 0x%08x, pc=%p\n", addr, instr); |
| OS::Abort(); |
| } |
| |
| |
| uint32_t Simulator::ReadBU(int32_t addr) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| return *ptr & 0xff; |
| } |
| |
| |
| int32_t Simulator::ReadB(int32_t addr) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| return ((*ptr << 24) >> 24) & 0xff; |
| } |
| |
| |
| void Simulator::WriteB(int32_t addr, uint8_t value) { |
| uint8_t* ptr = reinterpret_cast<uint8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| void Simulator::WriteB(int32_t addr, int8_t value) { |
| int8_t* ptr = reinterpret_cast<int8_t*>(addr); |
| *ptr = value; |
| } |
| |
| |
| // Returns the limit of the stack area to enable checking for stack overflows. |
| uintptr_t Simulator::StackLimit() const { |
| // Leave a safety margin of 256 bytes to prevent overrunning the stack when |
| // pushing values. |
| return reinterpret_cast<uintptr_t>(stack_) + 256; |
| } |
| |
| |
| // Unsupported instructions use Format to print an error and stop execution. |
| void Simulator::Format(Instruction* instr, const char* format) { |
| PrintF("Simulator found unsupported instruction:\n 0x%08x: %s\n", |
| instr, format); |
| UNIMPLEMENTED_MIPS(); |
| } |
| |
| |
| // Calls into the V8 runtime are based on this very simple interface. |
| // Note: To be able to return two values from some calls the code in runtime.cc |
| // uses the ObjectPair which is essentially two 32-bit values stuffed into a |
| // 64-bit value. With the code below we assume that all runtime calls return |
| // 64 bits of result. If they don't, the r1 result register contains a bogus |
| // value, which is fine because it is caller-saved. |
| typedef int64_t (*SimulatorRuntimeCall)(int32_t arg0, |
| int32_t arg1, |
| int32_t arg2, |
| int32_t arg3); |
| typedef double (*SimulatorRuntimeFPCall)(double fparg0, |
| double fparg1); |
| |
| |
| // Software interrupt instructions are used by the simulator to call into the |
| // C-based V8 runtime. |
| void Simulator::SoftwareInterrupt(Instruction* instr) { |
| // We first check if we met a call_rt_redirected. |
| if (instr->InstructionBits() == rtCallRedirInstr) { |
| Redirection* redirection = Redirection::FromSwiInstruction(instr); |
| int32_t arg0 = get_register(a0); |
| int32_t arg1 = get_register(a1); |
| int32_t arg2 = get_register(a2); |
| int32_t arg3 = get_register(a3); |
| // fp args are (not always) in f12 and f14. |
| // See MIPS conventions for more details. |
| double fparg0 = get_fpu_register_double(f12); |
| double fparg1 = get_fpu_register_double(f14); |
| // This is dodgy but it works because the C entry stubs are never moved. |
| // See comment in codegen-arm.cc and bug 1242173. |
| int32_t saved_ra = get_register(ra); |
| if (redirection->fp_return()) { |
| intptr_t external = |
| reinterpret_cast<intptr_t>(redirection->external_function()); |
| SimulatorRuntimeFPCall target = |
| reinterpret_cast<SimulatorRuntimeFPCall>(external); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Call to host function at %p with args %f, %f\n", |
| FUNCTION_ADDR(target), fparg0, fparg1); |
| } |
| double result = target(fparg0, fparg1); |
| set_fpu_register_double(f0, result); |
| } else { |
| intptr_t external = |
| reinterpret_cast<int32_t>(redirection->external_function()); |
| SimulatorRuntimeCall target = |
| reinterpret_cast<SimulatorRuntimeCall>(external); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF( |
| "Call to host function at %p with args %08x, %08x, %08x, %08x\n", |
| FUNCTION_ADDR(target), |
| arg0, |
| arg1, |
| arg2, |
| arg3); |
| } |
| int64_t result = target(arg0, arg1, arg2, arg3); |
| int32_t lo_res = static_cast<int32_t>(result); |
| int32_t hi_res = static_cast<int32_t>(result >> 32); |
| if (::v8::internal::FLAG_trace_sim) { |
| PrintF("Returned %08x\n", lo_res); |
| } |
| set_register(v0, lo_res); |
| set_register(v1, hi_res); |
| } |
| set_register(ra, saved_ra); |
| set_pc(get_register(ra)); |
| } else { |
| Debugger dbg(this); |
| dbg.Debug(); |
| } |
| } |
| |
| void Simulator::SignalExceptions() { |
| for (int i = 1; i < kNumExceptions; i++) { |
| if (exceptions[i] != 0) { |
| V8_Fatal(__FILE__, __LINE__, "Error: Exception %i raised.", i); |
| } |
| } |
| } |
| |
| // Handle execution based on instruction types. |
| void Simulator::DecodeTypeRegister(Instruction* instr) { |
| // Instruction fields |
| Opcode op = instr->OpcodeFieldRaw(); |
| int32_t rs_reg = instr->RsField(); |
| int32_t rs = get_register(rs_reg); |
| uint32_t rs_u = static_cast<uint32_t>(rs); |
| int32_t rt_reg = instr->RtField(); |
| int32_t rt = get_register(rt_reg); |
| uint32_t rt_u = static_cast<uint32_t>(rt); |
| int32_t rd_reg = instr->RdField(); |
| uint32_t sa = instr->SaField(); |
| |
| int32_t fs_reg= instr->FsField(); |
| |
| // ALU output |
| // It should not be used as is. Instructions using it should always initialize |
| // it first. |
| int32_t alu_out = 0x12345678; |
| // Output or temporary for floating point. |
| double fp_out = 0.0; |
| |
| // For break and trap instructions. |
| bool do_interrupt = false; |
| |
| // For jr and jalr |
| // Get current pc. |
| int32_t current_pc = get_pc(); |
| // Next pc |
| int32_t next_pc = 0; |
| |
| // ---------- Configuration |
| switch (op) { |
| case COP1: // Coprocessor instructions |
| switch (instr->RsFieldRaw()) { |
| case BC1: // branch on coprocessor condition |
| UNREACHABLE(); |
| break; |
| case MFC1: |
| alu_out = get_fpu_register(fs_reg); |
| break; |
| case MFHC1: |
| fp_out = get_fpu_register_double(fs_reg); |
| alu_out = *v8i::bit_cast<int32_t*, double*>(&fp_out); |
| break; |
| case MTC1: |
| case MTHC1: |
| // Do the store in the execution step. |
| break; |
| case S: |
| case D: |
| case W: |
| case L: |
| case PS: |
| // Do everything in the execution step. |
| break; |
| default: |
| UNIMPLEMENTED_MIPS(); |
| }; |
| break; |
| case SPECIAL: |
| switch (instr->FunctionFieldRaw()) { |
| case JR: |
| case JALR: |
| next_pc = get_register(instr->RsField()); |
| break; |
| case SLL: |
| alu_out = rt << sa; |
| break; |
| case SRL: |
| alu_out = rt_u >> sa; |
| break; |
| case SRA: |
| alu_out = rt >> sa; |
| break; |
| case SLLV: |
| alu_out = rt << rs; |
| break; |
| case SRLV: |
| alu_out = rt_u >> rs; |
| break; |
| case SRAV: |
| alu_out = rt >> rs; |
| break; |
| case MFHI: |
| alu_out = get_register(HI); |
| break; |
| case MFLO: |
| alu_out = get_register(LO); |
| break; |
| case MULT: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| case MULTU: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| case DIV: |
| case DIVU: |
| exceptions[kDivideByZero] = rt == 0; |
| break; |
| case ADD: |
| if (HaveSameSign(rs, rt)) { |
| if (rs > 0) { |
| exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - rt); |
| } else if (rs < 0) { |
| exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue - rt); |
| } |
| } |
| alu_out = rs + rt; |
| break; |
| case ADDU: |
| alu_out = rs + rt; |
| break; |
| case SUB: |
| if (!HaveSameSign(rs, rt)) { |
| if (rs > 0) { |
| exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue + rt); |
| } else if (rs < 0) { |
| exceptions[kIntegerUnderflow] = rs < (Registers::kMinValue + rt); |
| } |
| } |
| alu_out = rs - rt; |
| break; |
| case SUBU: |
| alu_out = rs - rt; |
| break; |
| case AND: |
| alu_out = rs & rt; |
| break; |
| case OR: |
| alu_out = rs | rt; |
| break; |
| case XOR: |
| alu_out = rs ^ rt; |
| break; |
| case NOR: |
| alu_out = ~(rs | rt); |
| break; |
| case SLT: |
| alu_out = rs < rt ? 1 : 0; |
| break; |
| case SLTU: |
| alu_out = rs_u < rt_u ? 1 : 0; |
| break; |
| // Break and trap instructions |
| case BREAK: |
| do_interrupt = true; |
| break; |
| case TGE: |
| do_interrupt = rs >= rt; |
| break; |
| case TGEU: |
| do_interrupt = rs_u >= rt_u; |
| break; |
| case TLT: |
| do_interrupt = rs < rt; |
| break; |
| case TLTU: |
| do_interrupt = rs_u < rt_u; |
| break; |
| case TEQ: |
| do_interrupt = rs == rt; |
| break; |
| case TNE: |
| do_interrupt = rs != rt; |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| case SPECIAL2: |
| switch (instr->FunctionFieldRaw()) { |
| case MUL: |
| alu_out = rs_u * rt_u; // Only the lower 32 bits are kept. |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| |
| // ---------- Raise exceptions triggered. |
| SignalExceptions(); |
| |
| // ---------- Execution |
| switch (op) { |
| case COP1: |
| switch (instr->RsFieldRaw()) { |
| case BC1: // branch on coprocessor condition |
| UNREACHABLE(); |
| break; |
| case MFC1: |
| case MFHC1: |
| set_register(rt_reg, alu_out); |
| break; |
| case MTC1: |
| // We don't need to set the higher bits to 0, because MIPS ISA says |
| // they are in an unpredictable state after executing MTC1. |
| FPUregisters_[fs_reg] = registers_[rt_reg]; |
| FPUregisters_[fs_reg+1] = Unpredictable; |
| break; |
| case MTHC1: |
| // Here we need to keep the lower bits unchanged. |
| FPUregisters_[fs_reg+1] = registers_[rt_reg]; |
| break; |
| case S: |
| switch (instr->FunctionFieldRaw()) { |
| case CVT_D_S: |
| case CVT_W_S: |
| case CVT_L_S: |
| case CVT_PS_S: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| case D: |
| switch (instr->FunctionFieldRaw()) { |
| case CVT_S_D: |
| case CVT_W_D: |
| case CVT_L_D: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| case W: |
| switch (instr->FunctionFieldRaw()) { |
| case CVT_S_W: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| case CVT_D_W: // Convert word to double. |
| set_fpu_register(rd_reg, static_cast<double>(rs)); |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| case L: |
| switch (instr->FunctionFieldRaw()) { |
| case CVT_S_L: |
| case CVT_D_L: |
| UNIMPLEMENTED_MIPS(); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| case PS: |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| case SPECIAL: |
| switch (instr->FunctionFieldRaw()) { |
| case JR: { |
| Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
| current_pc+Instruction::kInstructionSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| set_pc(next_pc); |
| pc_modified_ = true; |
| break; |
| } |
| case JALR: { |
| Instruction* branch_delay_instr = reinterpret_cast<Instruction*>( |
| current_pc+Instruction::kInstructionSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| set_register(31, current_pc + 2* Instruction::kInstructionSize); |
| set_pc(next_pc); |
| pc_modified_ = true; |
| break; |
| } |
| // Instructions using HI and LO registers. |
| case MULT: |
| case MULTU: |
| break; |
| case DIV: |
| // Divide by zero was checked in the configuration step. |
| set_register(LO, rs / rt); |
| set_register(HI, rs % rt); |
| break; |
| case DIVU: |
| set_register(LO, rs_u / rt_u); |
| set_register(HI, rs_u % rt_u); |
| break; |
| // Break and trap instructions |
| case BREAK: |
| case TGE: |
| case TGEU: |
| case TLT: |
| case TLTU: |
| case TEQ: |
| case TNE: |
| if (do_interrupt) { |
| SoftwareInterrupt(instr); |
| } |
| break; |
| default: // For other special opcodes we do the default operation. |
| set_register(rd_reg, alu_out); |
| }; |
| break; |
| case SPECIAL2: |
| switch (instr->FunctionFieldRaw()) { |
| case MUL: |
| set_register(rd_reg, alu_out); |
| // HI and LO are UNPREDICTABLE after the operation. |
| set_register(LO, Unpredictable); |
| set_register(HI, Unpredictable); |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| break; |
| // Unimplemented opcodes raised an error in the configuration step before, |
| // so we can use the default here to set the destination register in common |
| // cases. |
| default: |
| set_register(rd_reg, alu_out); |
| }; |
| } |
| |
| // Type 2: instructions using a 16 bytes immediate. (eg: addi, beq) |
| void Simulator::DecodeTypeImmediate(Instruction* instr) { |
| // Instruction fields |
| Opcode op = instr->OpcodeFieldRaw(); |
| int32_t rs = get_register(instr->RsField()); |
| uint32_t rs_u = static_cast<uint32_t>(rs); |
| int32_t rt_reg = instr->RtField(); // destination register |
| int32_t rt = get_register(rt_reg); |
| int16_t imm16 = instr->Imm16Field(); |
| |
| int32_t ft_reg = instr->FtField(); // destination register |
| int32_t ft = get_register(ft_reg); |
| |
| // zero extended immediate |
| uint32_t oe_imm16 = 0xffff & imm16; |
| // sign extended immediate |
| int32_t se_imm16 = imm16; |
| |
| // Get current pc. |
| int32_t current_pc = get_pc(); |
| // Next pc. |
| int32_t next_pc = bad_ra; |
| |
| // Used for conditional branch instructions |
| bool do_branch = false; |
| bool execute_branch_delay_instruction = false; |
| |
| // Used for arithmetic instructions |
| int32_t alu_out = 0; |
| // Floating point |
| double fp_out = 0.0; |
| |
| // Used for memory instructions |
| int32_t addr = 0x0; |
| |
| // ---------- Configuration (and execution for REGIMM) |
| switch (op) { |
| // ------------- COP1. Coprocessor instructions |
| case COP1: |
| switch (instr->RsFieldRaw()) { |
| case BC1: // branch on coprocessor condition |
| UNIMPLEMENTED_MIPS(); |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| break; |
| // ------------- REGIMM class |
| case REGIMM: |
| switch (instr->RtFieldRaw()) { |
| case BLTZ: |
| do_branch = (rs < 0); |
| break; |
| case BLTZAL: |
| do_branch = rs < 0; |
| break; |
| case BGEZ: |
| do_branch = rs >= 0; |
| break; |
| case BGEZAL: |
| do_branch = rs >= 0; |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| switch (instr->RtFieldRaw()) { |
| case BLTZ: |
| case BLTZAL: |
| case BGEZ: |
| case BGEZAL: |
| // Branch instructions common part. |
| execute_branch_delay_instruction = true; |
| // Set next_pc |
| if (do_branch) { |
| next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
| if (instr->IsLinkingInstruction()) { |
| set_register(31, current_pc + kBranchReturnOffset); |
| } |
| } else { |
| next_pc = current_pc + kBranchReturnOffset; |
| } |
| default: |
| break; |
| }; |
| break; // case REGIMM |
| // ------------- Branch instructions |
| // When comparing to zero, the encoding of rt field is always 0, so we don't |
| // need to replace rt with zero. |
| case BEQ: |
| do_branch = (rs == rt); |
| break; |
| case BNE: |
| do_branch = rs != rt; |
| break; |
| case BLEZ: |
| do_branch = rs <= 0; |
| break; |
| case BGTZ: |
| do_branch = rs > 0; |
| break; |
| // ------------- Arithmetic instructions |
| case ADDI: |
| if (HaveSameSign(rs, se_imm16)) { |
| if (rs > 0) { |
| exceptions[kIntegerOverflow] = rs > (Registers::kMaxValue - se_imm16); |
| } else if (rs < 0) { |
| exceptions[kIntegerUnderflow] = |
| rs < (Registers::kMinValue - se_imm16); |
| } |
| } |
| alu_out = rs + se_imm16; |
| break; |
| case ADDIU: |
| alu_out = rs + se_imm16; |
| break; |
| case SLTI: |
| alu_out = (rs < se_imm16) ? 1 : 0; |
| break; |
| case SLTIU: |
| alu_out = (rs_u < static_cast<uint32_t>(se_imm16)) ? 1 : 0; |
| break; |
| case ANDI: |
| alu_out = rs & oe_imm16; |
| break; |
| case ORI: |
| alu_out = rs | oe_imm16; |
| break; |
| case XORI: |
| alu_out = rs ^ oe_imm16; |
| break; |
| case LUI: |
| alu_out = (oe_imm16 << 16); |
| break; |
| // ------------- Memory instructions |
| case LB: |
| addr = rs + se_imm16; |
| alu_out = ReadB(addr); |
| break; |
| case LW: |
| addr = rs + se_imm16; |
| alu_out = ReadW(addr, instr); |
| break; |
| case LBU: |
| addr = rs + se_imm16; |
| alu_out = ReadBU(addr); |
| break; |
| case SB: |
| addr = rs + se_imm16; |
| break; |
| case SW: |
| addr = rs + se_imm16; |
| break; |
| case LWC1: |
| addr = rs + se_imm16; |
| alu_out = ReadW(addr, instr); |
| break; |
| case LDC1: |
| addr = rs + se_imm16; |
| fp_out = ReadD(addr, instr); |
| break; |
| case SWC1: |
| case SDC1: |
| addr = rs + se_imm16; |
| break; |
| default: |
| UNREACHABLE(); |
| }; |
| |
| // ---------- Raise exceptions triggered. |
| SignalExceptions(); |
| |
| // ---------- Execution |
| switch (op) { |
| // ------------- Branch instructions |
| case BEQ: |
| case BNE: |
| case BLEZ: |
| case BGTZ: |
| // Branch instructions common part. |
| execute_branch_delay_instruction = true; |
| // Set next_pc |
| if (do_branch) { |
| next_pc = current_pc + (imm16 << 2) + Instruction::kInstructionSize; |
| if (instr->IsLinkingInstruction()) { |
| set_register(31, current_pc + 2* Instruction::kInstructionSize); |
| } |
| } else { |
| next_pc = current_pc + 2 * Instruction::kInstructionSize; |
| } |
| break; |
| // ------------- Arithmetic instructions |
| case ADDI: |
| case ADDIU: |
| case SLTI: |
| case SLTIU: |
| case ANDI: |
| case ORI: |
| case XORI: |
| case LUI: |
| set_register(rt_reg, alu_out); |
| break; |
| // ------------- Memory instructions |
| case LB: |
| case LW: |
| case LBU: |
| set_register(rt_reg, alu_out); |
| break; |
| case SB: |
| WriteB(addr, static_cast<int8_t>(rt)); |
| break; |
| case SW: |
| WriteW(addr, rt, instr); |
| break; |
| case LWC1: |
| set_fpu_register(ft_reg, alu_out); |
| break; |
| case LDC1: |
| set_fpu_register_double(ft_reg, fp_out); |
| break; |
| case SWC1: |
| addr = rs + se_imm16; |
| WriteW(addr, get_fpu_register(ft_reg), instr); |
| break; |
| case SDC1: |
| addr = rs + se_imm16; |
| WriteD(addr, ft, instr); |
| break; |
| default: |
| break; |
| }; |
| |
| |
| if (execute_branch_delay_instruction) { |
| // Execute branch delay slot |
| // We don't check for end_sim_pc. First it should not be met as the current |
| // pc is valid. Secondly a jump should always execute its branch delay slot. |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| } |
| |
| // If needed update pc after the branch delay execution. |
| if (next_pc != bad_ra) { |
| set_pc(next_pc); |
| } |
| } |
| |
| // Type 3: instructions using a 26 bytes immediate. (eg: j, jal) |
| void Simulator::DecodeTypeJump(Instruction* instr) { |
| // Get current pc. |
| int32_t current_pc = get_pc(); |
| // Get unchanged bits of pc. |
| int32_t pc_high_bits = current_pc & 0xf0000000; |
| // Next pc |
| int32_t next_pc = pc_high_bits | (instr->Imm26Field() << 2); |
| |
| // Execute branch delay slot |
| // We don't check for end_sim_pc. First it should not be met as the current pc |
| // is valid. Secondly a jump should always execute its branch delay slot. |
| Instruction* branch_delay_instr = |
| reinterpret_cast<Instruction*>(current_pc+Instruction::kInstructionSize); |
| BranchDelayInstructionDecode(branch_delay_instr); |
| |
| // Update pc and ra if necessary. |
| // Do this after the branch delay execution. |
| if (instr->IsLinkingInstruction()) { |
| set_register(31, current_pc + 2* Instruction::kInstructionSize); |
| } |
| set_pc(next_pc); |
| pc_modified_ = true; |
| } |
| |
| // Executes the current instruction. |
| void Simulator::InstructionDecode(Instruction* instr) { |
| pc_modified_ = false; |
| if (::v8::internal::FLAG_trace_sim) { |
| disasm::NameConverter converter; |
| disasm::Disassembler dasm(converter); |
| // use a reasonably large buffer |
| v8::internal::EmbeddedVector<char, 256> buffer; |
| dasm.InstructionDecode(buffer, |
| reinterpret_cast<byte_*>(instr)); |
| PrintF(" 0x%08x %s\n", instr, buffer.start()); |
| } |
| |
| switch (instr->InstructionType()) { |
| case Instruction::kRegisterType: |
| DecodeTypeRegister(instr); |
| break; |
| case Instruction::kImmediateType: |
| DecodeTypeImmediate(instr); |
| break; |
| case Instruction::kJumpType: |
| DecodeTypeJump(instr); |
| break; |
| default: |
| UNSUPPORTED(); |
| } |
| if (!pc_modified_) { |
| set_register(pc, reinterpret_cast<int32_t>(instr) + |
| Instruction::kInstructionSize); |
| } |
| } |
| |
| |
| |
| void Simulator::Execute() { |
| // Get the PC to simulate. Cannot use the accessor here as we need the |
| // raw PC value and not the one used as input to arithmetic instructions. |
| int program_counter = get_pc(); |
| if (::v8::internal::FLAG_stop_sim_at == 0) { |
| // Fast version of the dispatch loop without checking whether the simulator |
| // should be stopping at a particular executed instruction. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_++; |
| InstructionDecode(instr); |
| program_counter = get_pc(); |
| } |
| } else { |
| // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when |
| // we reach the particular instuction count. |
| while (program_counter != end_sim_pc) { |
| Instruction* instr = reinterpret_cast<Instruction*>(program_counter); |
| icount_++; |
| if (icount_ == ::v8::internal::FLAG_stop_sim_at) { |
| Debugger dbg(this); |
| dbg.Debug(); |
| } else { |
| InstructionDecode(instr); |
| } |
| program_counter = get_pc(); |
| } |
| } |
| } |
| |
| |
| int32_t Simulator::Call(byte_* entry, int argument_count, ...) { |
| va_list parameters; |
| va_start(parameters, argument_count); |
| // Setup arguments |
| |
| // First four arguments passed in registers. |
| ASSERT(argument_count >= 4); |
| set_register(a0, va_arg(parameters, int32_t)); |
| set_register(a1, va_arg(parameters, int32_t)); |
| set_register(a2, va_arg(parameters, int32_t)); |
| set_register(a3, va_arg(parameters, int32_t)); |
| |
| // Remaining arguments passed on stack. |
| int original_stack = get_register(sp); |
| // Compute position of stack on entry to generated code. |
| int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t) |
| - kArgsSlotsSize); |
| if (OS::ActivationFrameAlignment() != 0) { |
| entry_stack &= -OS::ActivationFrameAlignment(); |
| } |
| // Store remaining arguments on stack, from low to high memory. |
| intptr_t* stack_argument = reinterpret_cast<intptr_t*>(entry_stack); |
| for (int i = 4; i < argument_count; i++) { |
| stack_argument[i - 4 + kArgsSlotsNum] = va_arg(parameters, int32_t); |
| } |
| va_end(parameters); |
| set_register(sp, entry_stack); |
| |
| // Prepare to execute the code at entry |
| set_register(pc, reinterpret_cast<int32_t>(entry)); |
| // Put down marker for end of simulation. The simulator will stop simulation |
| // when the PC reaches this value. By saving the "end simulation" value into |
| // the LR the simulation stops when returning to this call point. |
| set_register(ra, end_sim_pc); |
| |
| // Remember the values of callee-saved registers. |
| // The code below assumes that r9 is not used as sb (static base) in |
| // simulator code and therefore is regarded as a callee-saved register. |
| int32_t s0_val = get_register(s0); |
| int32_t s1_val = get_register(s1); |
| int32_t s2_val = get_register(s2); |
| int32_t s3_val = get_register(s3); |
| int32_t s4_val = get_register(s4); |
| int32_t s5_val = get_register(s5); |
| int32_t s6_val = get_register(s6); |
| int32_t s7_val = get_register(s7); |
| int32_t gp_val = get_register(gp); |
| int32_t sp_val = get_register(sp); |
| int32_t fp_val = get_register(fp); |
| |
| // Setup the callee-saved registers with a known value. To be able to check |
| // that they are preserved properly across JS execution. |
| int32_t callee_saved_value = icount_; |
| set_register(s0, callee_saved_value); |
| set_register(s1, callee_saved_value); |
| set_register(s2, callee_saved_value); |
| set_register(s3, callee_saved_value); |
| set_register(s4, callee_saved_value); |
| set_register(s5, callee_saved_value); |
| set_register(s6, callee_saved_value); |
| set_register(s7, callee_saved_value); |
| set_register(gp, callee_saved_value); |
| set_register(fp, callee_saved_value); |
| |
| // Start the simulation |
| Execute(); |
| |
| // Check that the callee-saved registers have been preserved. |
| CHECK_EQ(callee_saved_value, get_register(s0)); |
| CHECK_EQ(callee_saved_value, get_register(s1)); |
| CHECK_EQ(callee_saved_value, get_register(s2)); |
| CHECK_EQ(callee_saved_value, get_register(s3)); |
| CHECK_EQ(callee_saved_value, get_register(s4)); |
| CHECK_EQ(callee_saved_value, get_register(s5)); |
| CHECK_EQ(callee_saved_value, get_register(s6)); |
| CHECK_EQ(callee_saved_value, get_register(s7)); |
| CHECK_EQ(callee_saved_value, get_register(gp)); |
| CHECK_EQ(callee_saved_value, get_register(fp)); |
| |
| // Restore callee-saved registers with the original value. |
| set_register(s0, s0_val); |
| set_register(s1, s1_val); |
| set_register(s2, s2_val); |
| set_register(s3, s3_val); |
| set_register(s4, s4_val); |
| set_register(s5, s5_val); |
| set_register(s6, s6_val); |
| set_register(s7, s7_val); |
| set_register(gp, gp_val); |
| set_register(sp, sp_val); |
| set_register(fp, fp_val); |
| |
| // Pop stack passed arguments. |
| CHECK_EQ(entry_stack, get_register(sp)); |
| set_register(sp, original_stack); |
| |
| int32_t result = get_register(v0); |
| return result; |
| } |
| |
| |
| uintptr_t Simulator::PushAddress(uintptr_t address) { |
| int new_sp = get_register(sp) - sizeof(uintptr_t); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp); |
| *stack_slot = address; |
| set_register(sp, new_sp); |
| return new_sp; |
| } |
| |
| |
| uintptr_t Simulator::PopAddress() { |
| int current_sp = get_register(sp); |
| uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp); |
| uintptr_t address = *stack_slot; |
| set_register(sp, current_sp + sizeof(uintptr_t)); |
| return address; |
| } |
| |
| |
| #undef UNSUPPORTED |
| |
| } } // namespace assembler::mips |
| |
| #endif // !defined(__mips) |
| |