blob: 66ef4f9a24e95d1b5744742214f4e3e7b83c51f7 [file] [log] [blame]
// Copyright 2006-2009 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_ARM_MACRO_ASSEMBLER_ARM_H_
#define V8_ARM_MACRO_ASSEMBLER_ARM_H_
#include "assembler.h"
namespace v8 {
namespace internal {
// ----------------------------------------------------------------------------
// Static helper functions
// Generate a MemOperand for loading a field from an object.
static inline MemOperand FieldMemOperand(Register object, int offset) {
return MemOperand(object, offset - kHeapObjectTag);
}
// Give alias names to registers
const Register cp = { 8 }; // JavaScript context pointer
const Register roots = { 10 }; // Roots array pointer.
enum InvokeJSFlags {
CALL_JS,
JUMP_JS
};
// MacroAssembler implements a collection of frequently used macros.
class MacroAssembler: public Assembler {
public:
MacroAssembler(void* buffer, int size);
// Jump, Call, and Ret pseudo instructions implementing inter-working.
void Jump(Register target, Condition cond = al);
void Jump(byte* target, RelocInfo::Mode rmode, Condition cond = al);
void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
void Call(Register target, Condition cond = al);
void Call(byte* target, RelocInfo::Mode rmode, Condition cond = al);
void Call(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al);
void Ret(Condition cond = al);
// Emit code to discard a non-negative number of pointer-sized elements
// from the stack, clobbering only the sp register.
void Drop(int count, Condition cond = al);
void Call(Label* target);
void Move(Register dst, Handle<Object> value);
// Jumps to the label at the index given by the Smi in "index".
void SmiJumpTable(Register index, Vector<Label*> targets);
// Load an object from the root table.
void LoadRoot(Register destination,
Heap::RootListIndex index,
Condition cond = al);
// Sets the remembered set bit for [address+offset], where address is the
// address of the heap object 'object'. The address must be in the first 8K
// of an allocated page. The 'scratch' register is used in the
// implementation and all 3 registers are clobbered by the operation, as
// well as the ip register.
void RecordWrite(Register object, Register offset, Register scratch);
// ---------------------------------------------------------------------------
// Stack limit support
void StackLimitCheck(Label* on_stack_limit_hit);
// ---------------------------------------------------------------------------
// Activation frames
void EnterInternalFrame() { EnterFrame(StackFrame::INTERNAL); }
void LeaveInternalFrame() { LeaveFrame(StackFrame::INTERNAL); }
void EnterConstructFrame() { EnterFrame(StackFrame::CONSTRUCT); }
void LeaveConstructFrame() { LeaveFrame(StackFrame::CONSTRUCT); }
// Enter specific kind of exit frame; either normal or debug mode.
// Expects the number of arguments in register r0 and
// the builtin function to call in register r1. Exits with argc in
// r4, argv in r6, and and the builtin function to call in r5.
void EnterExitFrame(ExitFrame::Mode mode);
// Leave the current exit frame. Expects the return value in r0.
void LeaveExitFrame(ExitFrame::Mode mode);
// Align the stack by optionally pushing a Smi zero.
void AlignStack(int offset);
void LoadContext(Register dst, int context_chain_length);
// ---------------------------------------------------------------------------
// JavaScript invokes
// Invoke the JavaScript function code by either calling or jumping.
void InvokeCode(Register code,
const ParameterCount& expected,
const ParameterCount& actual,
InvokeFlag flag);
void InvokeCode(Handle<Code> code,
const ParameterCount& expected,
const ParameterCount& actual,
RelocInfo::Mode rmode,
InvokeFlag flag);
// Invoke the JavaScript function in the given register. Changes the
// current context to the context in the function before invoking.
void InvokeFunction(Register function,
const ParameterCount& actual,
InvokeFlag flag);
#ifdef ENABLE_DEBUGGER_SUPPORT
// ---------------------------------------------------------------------------
// Debugger Support
void SaveRegistersToMemory(RegList regs);
void RestoreRegistersFromMemory(RegList regs);
void CopyRegistersFromMemoryToStack(Register base, RegList regs);
void CopyRegistersFromStackToMemory(Register base,
Register scratch,
RegList regs);
#endif
// ---------------------------------------------------------------------------
// Exception handling
// Push a new try handler and link into try handler chain.
// The return address must be passed in register lr.
// On exit, r0 contains TOS (code slot).
void PushTryHandler(CodeLocation try_location, HandlerType type);
// Unlink the stack handler on top of the stack from the try handler chain.
// Must preserve the result register.
void PopTryHandler();
// ---------------------------------------------------------------------------
// Inline caching support
// Generates code that verifies that the maps of objects in the
// prototype chain of object hasn't changed since the code was
// generated and branches to the miss label if any map has. If
// necessary the function also generates code for security check
// in case of global object holders. The scratch and holder
// registers are always clobbered, but the object register is only
// clobbered if it the same as the holder register. The function
// returns a register containing the holder - either object_reg or
// holder_reg.
Register CheckMaps(JSObject* object, Register object_reg,
JSObject* holder, Register holder_reg,
Register scratch, Label* miss);
// Generate code for checking access rights - used for security checks
// on access to global objects across environments. The holder register
// is left untouched, whereas both scratch registers are clobbered.
void CheckAccessGlobalProxy(Register holder_reg,
Register scratch,
Label* miss);
// ---------------------------------------------------------------------------
// Allocation support
// Allocate an object in new space. The object_size is specified in words (not
// bytes). If the new space is exhausted control continues at the gc_required
// label. The allocated object is returned in result. If the flag
// tag_allocated_object is true the result is tagged as as a heap object.
void AllocateInNewSpace(int object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
void AllocateInNewSpace(Register object_size,
Register result,
Register scratch1,
Register scratch2,
Label* gc_required,
AllocationFlags flags);
// Undo allocation in new space. The object passed and objects allocated after
// it will no longer be allocated. The caller must make sure that no pointers
// are left to the object(s) no longer allocated as they would be invalid when
// allocation is undone.
void UndoAllocationInNewSpace(Register object, Register scratch);
void AllocateTwoByteString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateAsciiString(Register result,
Register length,
Register scratch1,
Register scratch2,
Register scratch3,
Label* gc_required);
void AllocateTwoByteConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
void AllocateAsciiConsString(Register result,
Register length,
Register scratch1,
Register scratch2,
Label* gc_required);
// ---------------------------------------------------------------------------
// Support functions.
// Try to get function prototype of a function and puts the value in
// the result register. Checks that the function really is a
// function and jumps to the miss label if the fast checks fail. The
// function register will be untouched; the other registers may be
// clobbered.
void TryGetFunctionPrototype(Register function,
Register result,
Register scratch,
Label* miss);
// Compare object type for heap object. heap_object contains a non-Smi
// whose object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register.
// It leaves the map in the map register (unless the type_reg and map register
// are the same register). It leaves the heap object in the heap_object
// register unless the heap_object register is the same register as one of the
// other registers.
void CompareObjectType(Register heap_object,
Register map,
Register type_reg,
InstanceType type);
// Compare instance type in a map. map contains a valid map object whose
// object type should be compared with the given type. This both
// sets the flags and leaves the object type in the type_reg register. It
// leaves the heap object in the heap_object register unless the heap_object
// register is the same register as type_reg.
void CompareInstanceType(Register map,
Register type_reg,
InstanceType type);
// Check if the map of an object is equal to a specified map and
// branch to label if not. Skip the smi check if not required
// (object is known to be a heap object)
void CheckMap(Register obj,
Register scratch,
Handle<Map> map,
Label* fail,
bool is_heap_object);
// Load and check the instance type of an object for being a string.
// Loads the type into the second argument register.
// Returns a condition that will be enabled if the object was a string.
Condition IsObjectStringType(Register obj,
Register type) {
ldr(type, FieldMemOperand(obj, HeapObject::kMapOffset));
ldrb(type, FieldMemOperand(type, Map::kInstanceTypeOffset));
tst(type, Operand(kIsNotStringMask));
ASSERT_EQ(0, kStringTag);
return eq;
}
inline void BranchOnSmi(Register value, Label* smi_label) {
tst(value, Operand(kSmiTagMask));
b(eq, smi_label);
}
inline void BranchOnNotSmi(Register value, Label* not_smi_label) {
tst(value, Operand(kSmiTagMask));
b(ne, not_smi_label);
}
// Generates code for reporting that an illegal operation has
// occurred.
void IllegalOperation(int num_arguments);
// Get the number of least significant bits from a register
void GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits);
// Uses VFP instructions to Convert a Smi to a double.
void IntegerToDoubleConversionWithVFP3(Register inReg,
Register outHighReg,
Register outLowReg);
// ---------------------------------------------------------------------------
// Runtime calls
// Call a code stub.
void CallStub(CodeStub* stub, Condition cond = al);
// Call a code stub.
void TailCallStub(CodeStub* stub, Condition cond = al);
// Return from a code stub after popping its arguments.
void StubReturn(int argc);
// Call a runtime routine.
// Eventually this should be used for all C calls.
void CallRuntime(Runtime::Function* f, int num_arguments);
// Convenience function: Same as above, but takes the fid instead.
void CallRuntime(Runtime::FunctionId fid, int num_arguments);
// Tail call of a runtime routine (jump).
// Like JumpToRuntime, but also takes care of passing the number
// of parameters.
void TailCallRuntime(const ExternalReference& ext,
int num_arguments,
int result_size);
// Jump to a runtime routine.
void JumpToRuntime(const ExternalReference& builtin);
// Invoke specified builtin JavaScript function. Adds an entry to
// the unresolved list if the name does not resolve.
void InvokeBuiltin(Builtins::JavaScript id, InvokeJSFlags flags);
// Store the code object for the given builtin in the target register and
// setup the function in r1.
void GetBuiltinEntry(Register target, Builtins::JavaScript id);
struct Unresolved {
int pc;
uint32_t flags; // see Bootstrapper::FixupFlags decoders/encoders.
const char* name;
};
List<Unresolved>* unresolved() { return &unresolved_; }
Handle<Object> CodeObject() { return code_object_; }
// ---------------------------------------------------------------------------
// StatsCounter support
void SetCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void IncrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
void DecrementCounter(StatsCounter* counter, int value,
Register scratch1, Register scratch2);
// ---------------------------------------------------------------------------
// Debugging
// Calls Abort(msg) if the condition cc is not satisfied.
// Use --debug_code to enable.
void Assert(Condition cc, const char* msg);
// Like Assert(), but always enabled.
void Check(Condition cc, const char* msg);
// Print a message to stdout and abort execution.
void Abort(const char* msg);
// Verify restrictions about code generated in stubs.
void set_generating_stub(bool value) { generating_stub_ = value; }
bool generating_stub() { return generating_stub_; }
void set_allow_stub_calls(bool value) { allow_stub_calls_ = value; }
bool allow_stub_calls() { return allow_stub_calls_; }
// ---------------------------------------------------------------------------
// Smi utilities
// Jump if either of the registers contain a non-smi.
void JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi);
// Jump if either of the registers contain a smi.
void JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi);
// ---------------------------------------------------------------------------
// String utilities
// Checks if both objects are sequential ASCII strings and jumps to label
// if either is not. Assumes that neither object is a smi.
void JumpIfNonSmisNotBothSequentialAsciiStrings(Register object1,
Register object2,
Register scratch1,
Register scratch2,
Label *failure);
// Checks if both objects are sequential ASCII strings and jumps to label
// if either is not.
void JumpIfNotBothSequentialAsciiStrings(Register first,
Register second,
Register scratch1,
Register scratch2,
Label* not_flat_ascii_strings);
private:
void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
void Call(intptr_t target, RelocInfo::Mode rmode, Condition cond = al);
// Helper functions for generating invokes.
void InvokePrologue(const ParameterCount& expected,
const ParameterCount& actual,
Handle<Code> code_constant,
Register code_reg,
Label* done,
InvokeFlag flag);
// Prepares for a call or jump to a builtin by doing two things:
// 1. Emits code that fetches the builtin's function object from the context
// at runtime, and puts it in the register rdi.
// 2. Fetches the builtin's code object, and returns it in a handle, at
// compile time, so that later code can emit instructions to jump or call
// the builtin directly. If the code object has not yet been created, it
// returns the builtin code object for IllegalFunction, and sets the
// output parameter "resolved" to false. Code that uses the return value
// should then add the address and the builtin name to the list of fixups
// called unresolved_, which is fixed up by the bootstrapper.
Handle<Code> ResolveBuiltin(Builtins::JavaScript id, bool* resolved);
// Activation support.
void EnterFrame(StackFrame::Type type);
void LeaveFrame(StackFrame::Type type);
List<Unresolved> unresolved_;
bool generating_stub_;
bool allow_stub_calls_;
// This handle will be patched with the code object on installation.
Handle<Object> code_object_;
};
#ifdef ENABLE_DEBUGGER_SUPPORT
// The code patcher is used to patch (typically) small parts of code e.g. for
// debugging and other types of instrumentation. When using the code patcher
// the exact number of bytes specified must be emitted. It is not legal to emit
// relocation information. If any of these constraints are violated it causes
// an assertion to fail.
class CodePatcher {
public:
CodePatcher(byte* address, int instructions);
virtual ~CodePatcher();
// Macro assembler to emit code.
MacroAssembler* masm() { return &masm_; }
// Emit an instruction directly.
void Emit(Instr x);
// Emit an address directly.
void Emit(Address addr);
private:
byte* address_; // The address of the code being patched.
int instructions_; // Number of instructions of the expected patch size.
int size_; // Number of bytes of the expected patch size.
MacroAssembler masm_; // Macro assembler used to generate the code.
};
#endif // ENABLE_DEBUGGER_SUPPORT
// -----------------------------------------------------------------------------
// Static helper functions.
#ifdef GENERATED_CODE_COVERAGE
#define CODE_COVERAGE_STRINGIFY(x) #x
#define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x)
#define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__)
#define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm->
#else
#define ACCESS_MASM(masm) masm->
#endif
} } // namespace v8::internal
#endif // V8_ARM_MACRO_ASSEMBLER_ARM_H_