blob: 657bee86570eaf5094dd86cd33ab18c66ff6551d [file] [log] [blame]
// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_MIPS)
// Note on Mips implementation:
//
// The result_register() for mips is the 'v0' register, which is defined
// by the ABI to contain function return values. However, the first
// parameter to a function is defined to be 'a0'. So there are many
// places where we have to move a previous result in v0 to a0 for the
// next call: mov(a0, v0). This is not needed on the other architectures.
#include "code-stubs.h"
#include "codegen.h"
#include "compiler.h"
#include "debug.h"
#include "full-codegen.h"
#include "isolate-inl.h"
#include "parser.h"
#include "scopes.h"
#include "stub-cache.h"
#include "mips/code-stubs-mips.h"
#include "mips/macro-assembler-mips.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm_)
// A patch site is a location in the code which it is possible to patch. This
// class has a number of methods to emit the code which is patchable and the
// method EmitPatchInfo to record a marker back to the patchable code. This
// marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy
// (raw 16 bit immediate value is used) is the delta from the pc to the first
// instruction of the patchable code.
// The marker instruction is effectively a NOP (dest is zero_reg) and will
// never be emitted by normal code.
class JumpPatchSite BASE_EMBEDDED {
public:
explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) {
#ifdef DEBUG
info_emitted_ = false;
#endif
}
~JumpPatchSite() {
ASSERT(patch_site_.is_bound() == info_emitted_);
}
// When initially emitting this ensure that a jump is always generated to skip
// the inlined smi code.
void EmitJumpIfNotSmi(Register reg, Label* target) {
ASSERT(!patch_site_.is_bound() && !info_emitted_);
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
__ bind(&patch_site_);
__ andi(at, reg, 0);
// Always taken before patched.
__ Branch(target, eq, at, Operand(zero_reg));
}
// When initially emitting this ensure that a jump is never generated to skip
// the inlined smi code.
void EmitJumpIfSmi(Register reg, Label* target) {
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
ASSERT(!patch_site_.is_bound() && !info_emitted_);
__ bind(&patch_site_);
__ andi(at, reg, 0);
// Never taken before patched.
__ Branch(target, ne, at, Operand(zero_reg));
}
void EmitPatchInfo() {
if (patch_site_.is_bound()) {
int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_);
Register reg = Register::from_code(delta_to_patch_site / kImm16Mask);
__ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask);
#ifdef DEBUG
info_emitted_ = true;
#endif
} else {
__ nop(); // Signals no inlined code.
}
}
private:
MacroAssembler* masm_;
Label patch_site_;
#ifdef DEBUG
bool info_emitted_;
#endif
};
// TODO(jkummerow): Obsolete as soon as x64 is updated. Remove.
int FullCodeGenerator::self_optimization_header_size() {
UNREACHABLE();
return 10 * Instruction::kInstrSize;
}
// Generate code for a JS function. On entry to the function the receiver
// and arguments have been pushed on the stack left to right. The actual
// argument count matches the formal parameter count expected by the
// function.
//
// The live registers are:
// o a1: the JS function object being called (i.e. ourselves)
// o cp: our context
// o fp: our caller's frame pointer
// o sp: stack pointer
// o ra: return address
//
// The function builds a JS frame. Please see JavaScriptFrameConstants in
// frames-mips.h for its layout.
void FullCodeGenerator::Generate() {
CompilationInfo* info = info_;
handler_table_ =
isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED);
profiling_counter_ = isolate()->factory()->NewJSGlobalPropertyCell(
Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget)));
SetFunctionPosition(function());
Comment cmnt(masm_, "[ function compiled by full code generator");
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop-at");
}
#endif
// Strict mode functions and builtins need to replace the receiver
// with undefined when called as functions (without an explicit
// receiver object). t1 is zero for method calls and non-zero for
// function calls.
if (!info->is_classic_mode() || info->is_native()) {
Label ok;
__ Branch(&ok, eq, t1, Operand(zero_reg));
int receiver_offset = info->scope()->num_parameters() * kPointerSize;
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ sw(a2, MemOperand(sp, receiver_offset));
__ bind(&ok);
}
// Open a frame scope to indicate that there is a frame on the stack. The
// MANUAL indicates that the scope shouldn't actually generate code to set up
// the frame (that is done below).
FrameScope frame_scope(masm_, StackFrame::MANUAL);
int locals_count = info->scope()->num_stack_slots();
__ Push(ra, fp, cp, a1);
if (locals_count > 0) {
// Load undefined value here, so the value is ready for the loop
// below.
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
}
// Adjust fp to point to caller's fp.
__ Addu(fp, sp, Operand(2 * kPointerSize));
{ Comment cmnt(masm_, "[ Allocate locals");
for (int i = 0; i < locals_count; i++) {
__ push(at);
}
}
bool function_in_register = true;
// Possibly allocate a local context.
int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
if (heap_slots > 0) {
Comment cmnt(masm_, "[ Allocate local context");
// Argument to NewContext is the function, which is in a1.
__ push(a1);
if (heap_slots <= FastNewContextStub::kMaximumSlots) {
FastNewContextStub stub(heap_slots);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kNewFunctionContext, 1);
}
function_in_register = false;
// Context is returned in both v0 and cp. It replaces the context
// passed to us. It's saved in the stack and kept live in cp.
__ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
// Copy any necessary parameters into the context.
int num_parameters = info->scope()->num_parameters();
for (int i = 0; i < num_parameters; i++) {
Variable* var = scope()->parameter(i);
if (var->IsContextSlot()) {
int parameter_offset = StandardFrameConstants::kCallerSPOffset +
(num_parameters - 1 - i) * kPointerSize;
// Load parameter from stack.
__ lw(a0, MemOperand(fp, parameter_offset));
// Store it in the context.
MemOperand target = ContextOperand(cp, var->index());
__ sw(a0, target);
// Update the write barrier.
__ RecordWriteContextSlot(
cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs);
}
}
}
Variable* arguments = scope()->arguments();
if (arguments != NULL) {
// Function uses arguments object.
Comment cmnt(masm_, "[ Allocate arguments object");
if (!function_in_register) {
// Load this again, if it's used by the local context below.
__ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
} else {
__ mov(a3, a1);
}
// Receiver is just before the parameters on the caller's stack.
int num_parameters = info->scope()->num_parameters();
int offset = num_parameters * kPointerSize;
__ Addu(a2, fp,
Operand(StandardFrameConstants::kCallerSPOffset + offset));
__ li(a1, Operand(Smi::FromInt(num_parameters)));
__ Push(a3, a2, a1);
// Arguments to ArgumentsAccessStub:
// function, receiver address, parameter count.
// The stub will rewrite receiever and parameter count if the previous
// stack frame was an arguments adapter frame.
ArgumentsAccessStub::Type type;
if (!is_classic_mode()) {
type = ArgumentsAccessStub::NEW_STRICT;
} else if (function()->has_duplicate_parameters()) {
type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW;
} else {
type = ArgumentsAccessStub::NEW_NON_STRICT_FAST;
}
ArgumentsAccessStub stub(type);
__ CallStub(&stub);
SetVar(arguments, v0, a1, a2);
}
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
// Visit the declarations and body unless there is an illegal
// redeclaration.
if (scope()->HasIllegalRedeclaration()) {
Comment cmnt(masm_, "[ Declarations");
scope()->VisitIllegalRedeclaration(this);
} else {
PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS);
{ Comment cmnt(masm_, "[ Declarations");
// For named function expressions, declare the function name as a
// constant.
if (scope()->is_function_scope() && scope()->function() != NULL) {
VariableProxy* proxy = scope()->function();
ASSERT(proxy->var()->mode() == CONST ||
proxy->var()->mode() == CONST_HARMONY);
ASSERT(proxy->var()->location() != Variable::UNALLOCATED);
EmitDeclaration(proxy, proxy->var()->mode(), NULL);
}
VisitDeclarations(scope()->declarations());
}
{ Comment cmnt(masm_, "[ Stack check");
PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS);
Label ok;
__ LoadRoot(t0, Heap::kStackLimitRootIndex);
__ Branch(&ok, hs, sp, Operand(t0));
StackCheckStub stub;
__ CallStub(&stub);
__ bind(&ok);
}
{ Comment cmnt(masm_, "[ Body");
ASSERT(loop_depth() == 0);
VisitStatements(function()->body());
ASSERT(loop_depth() == 0);
}
}
// Always emit a 'return undefined' in case control fell off the end of
// the body.
{ Comment cmnt(masm_, "[ return <undefined>;");
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
}
EmitReturnSequence();
}
void FullCodeGenerator::ClearAccumulator() {
ASSERT(Smi::FromInt(0) == 0);
__ mov(v0, zero_reg);
}
void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) {
__ li(a2, Operand(profiling_counter_));
__ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
__ Subu(a3, a3, Operand(Smi::FromInt(delta)));
__ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
}
void FullCodeGenerator::EmitProfilingCounterReset() {
int reset_value = FLAG_interrupt_budget;
if (info_->ShouldSelfOptimize() && !FLAG_retry_self_opt) {
// Self-optimization is a one-off thing: if it fails, don't try again.
reset_value = Smi::kMaxValue;
}
if (isolate()->IsDebuggerActive()) {
// Detect debug break requests as soon as possible.
reset_value = 10;
}
__ li(a2, Operand(profiling_counter_));
__ li(a3, Operand(Smi::FromInt(reset_value)));
__ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset));
}
static const int kMaxBackEdgeWeight = 127;
static const int kBackEdgeDistanceDivisor = 142;
void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt,
Label* back_edge_target) {
// The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need
// to make sure it is constant. Branch may emit a skip-or-jump sequence
// instead of the normal Branch. It seems that the "skip" part of that
// sequence is about as long as this Branch would be so it is safe to ignore
// that.
Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
Comment cmnt(masm_, "[ Stack check");
Label ok;
if (FLAG_count_based_interrupts) {
int weight = 1;
if (FLAG_weighted_back_edges) {
ASSERT(back_edge_target->is_bound());
int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target);
weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kBackEdgeDistanceDivisor));
}
EmitProfilingCounterDecrement(weight);
__ slt(at, a3, zero_reg);
__ beq(at, zero_reg, &ok);
// CallStub will emit a li t9 first, so it is safe to use the delay slot.
InterruptStub stub;
__ CallStub(&stub);
} else {
__ LoadRoot(t0, Heap::kStackLimitRootIndex);
__ sltu(at, sp, t0);
__ beq(at, zero_reg, &ok);
// CallStub will emit a li t9 first, so it is safe to use the delay slot.
StackCheckStub stub;
__ CallStub(&stub);
}
// Record a mapping of this PC offset to the OSR id. This is used to find
// the AST id from the unoptimized code in order to use it as a key into
// the deoptimization input data found in the optimized code.
RecordStackCheck(stmt->OsrEntryId());
if (FLAG_count_based_interrupts) {
EmitProfilingCounterReset();
}
__ bind(&ok);
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
// Record a mapping of the OSR id to this PC. This is used if the OSR
// entry becomes the target of a bailout. We don't expect it to be, but
// we want it to work if it is.
PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS);
}
void FullCodeGenerator::EmitReturnSequence() {
Comment cmnt(masm_, "[ Return sequence");
if (return_label_.is_bound()) {
__ Branch(&return_label_);
} else {
__ bind(&return_label_);
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in v0.
__ push(v0);
__ CallRuntime(Runtime::kTraceExit, 1);
}
if (FLAG_interrupt_at_exit || FLAG_self_optimization) {
// Pretend that the exit is a backwards jump to the entry.
int weight = 1;
if (info_->ShouldSelfOptimize()) {
weight = FLAG_interrupt_budget / FLAG_self_opt_count;
} else if (FLAG_weighted_back_edges) {
int distance = masm_->pc_offset();
weight = Min(kMaxBackEdgeWeight,
Max(1, distance / kBackEdgeDistanceDivisor));
}
EmitProfilingCounterDecrement(weight);
Label ok;
__ Branch(&ok, ge, a3, Operand(zero_reg));
__ push(v0);
if (info_->ShouldSelfOptimize() && FLAG_direct_self_opt) {
__ lw(a2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ push(a2);
__ CallRuntime(Runtime::kOptimizeFunctionOnNextCall, 1);
} else {
InterruptStub stub;
__ CallStub(&stub);
}
__ pop(v0);
EmitProfilingCounterReset();
__ bind(&ok);
}
#ifdef DEBUG
// Add a label for checking the size of the code used for returning.
Label check_exit_codesize;
masm_->bind(&check_exit_codesize);
#endif
// Make sure that the constant pool is not emitted inside of the return
// sequence.
{ Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
// Here we use masm_-> instead of the __ macro to avoid the code coverage
// tool from instrumenting as we rely on the code size here.
int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize;
CodeGenerator::RecordPositions(masm_, function()->end_position() - 1);
__ RecordJSReturn();
masm_->mov(sp, fp);
masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit()));
masm_->Addu(sp, sp, Operand(sp_delta));
masm_->Jump(ra);
}
#ifdef DEBUG
// Check that the size of the code used for returning is large enough
// for the debugger's requirements.
ASSERT(Assembler::kJSReturnSequenceInstructions <=
masm_->InstructionsGeneratedSince(&check_exit_codesize));
#endif
}
}
void FullCodeGenerator::EffectContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
}
void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
}
void FullCodeGenerator::StackValueContext::Plug(Variable* var) const {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
codegen()->GetVar(result_register(), var);
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Variable* var) const {
// For simplicity we always test the accumulator register.
codegen()->GetVar(result_register(), var);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
}
void FullCodeGenerator::StackValueContext::Plug(
Heap::RootListIndex index) const {
__ LoadRoot(result_register(), index);
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (index == Heap::kUndefinedValueRootIndex ||
index == Heap::kNullValueRootIndex ||
index == Heap::kFalseValueRootIndex) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else if (index == Heap::kTrueValueRootIndex) {
if (true_label_ != fall_through_) __ Branch(true_label_);
} else {
__ LoadRoot(result_register(), index);
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Handle<Object> lit) const {
__ li(result_register(), Operand(lit));
}
void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const {
// Immediates cannot be pushed directly.
__ li(result_register(), Operand(lit));
__ push(result_register());
}
void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals.
if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else if (lit->IsTrue() || lit->IsJSObject()) {
if (true_label_ != fall_through_) __ Branch(true_label_);
} else if (lit->IsString()) {
if (String::cast(*lit)->length() == 0) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else {
if (true_label_ != fall_through_) __ Branch(true_label_);
}
} else if (lit->IsSmi()) {
if (Smi::cast(*lit)->value() == 0) {
if (false_label_ != fall_through_) __ Branch(false_label_);
} else {
if (true_label_ != fall_through_) __ Branch(true_label_);
}
} else {
// For simplicity we always test the accumulator register.
__ li(result_register(), Operand(lit));
codegen()->DoTest(this);
}
}
void FullCodeGenerator::EffectContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
__ Drop(count);
}
void FullCodeGenerator::AccumulatorValueContext::DropAndPlug(
int count,
Register reg) const {
ASSERT(count > 0);
__ Drop(count);
__ Move(result_register(), reg);
}
void FullCodeGenerator::StackValueContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
if (count > 1) __ Drop(count - 1);
__ sw(reg, MemOperand(sp, 0));
}
void FullCodeGenerator::TestContext::DropAndPlug(int count,
Register reg) const {
ASSERT(count > 0);
// For simplicity we always test the accumulator register.
__ Drop(count);
__ Move(result_register(), reg);
codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL);
codegen()->DoTest(this);
}
void FullCodeGenerator::EffectContext::Plug(Label* materialize_true,
Label* materialize_false) const {
ASSERT(materialize_true == materialize_false);
__ bind(materialize_true);
}
void FullCodeGenerator::AccumulatorValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(result_register(), Heap::kTrueValueRootIndex);
__ Branch(&done);
__ bind(materialize_false);
__ LoadRoot(result_register(), Heap::kFalseValueRootIndex);
__ bind(&done);
}
void FullCodeGenerator::StackValueContext::Plug(
Label* materialize_true,
Label* materialize_false) const {
Label done;
__ bind(materialize_true);
__ LoadRoot(at, Heap::kTrueValueRootIndex);
__ push(at);
__ Branch(&done);
__ bind(materialize_false);
__ LoadRoot(at, Heap::kFalseValueRootIndex);
__ push(at);
__ bind(&done);
}
void FullCodeGenerator::TestContext::Plug(Label* materialize_true,
Label* materialize_false) const {
ASSERT(materialize_true == true_label_);
ASSERT(materialize_false == false_label_);
}
void FullCodeGenerator::EffectContext::Plug(bool flag) const {
}
void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(result_register(), value_root_index);
}
void FullCodeGenerator::StackValueContext::Plug(bool flag) const {
Heap::RootListIndex value_root_index =
flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex;
__ LoadRoot(at, value_root_index);
__ push(at);
}
void FullCodeGenerator::TestContext::Plug(bool flag) const {
codegen()->PrepareForBailoutBeforeSplit(condition(),
true,
true_label_,
false_label_);
if (flag) {
if (true_label_ != fall_through_) __ Branch(true_label_);
} else {
if (false_label_ != fall_through_) __ Branch(false_label_);
}
}
void FullCodeGenerator::DoTest(Expression* condition,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (CpuFeatures::IsSupported(FPU)) {
ToBooleanStub stub(result_register());
__ CallStub(&stub);
__ mov(at, zero_reg);
} else {
// Call the runtime to find the boolean value of the source and then
// translate it into control flow to the pair of labels.
__ push(result_register());
__ CallRuntime(Runtime::kToBool, 1);
__ LoadRoot(at, Heap::kFalseValueRootIndex);
}
Split(ne, v0, Operand(at), if_true, if_false, fall_through);
}
void FullCodeGenerator::Split(Condition cc,
Register lhs,
const Operand& rhs,
Label* if_true,
Label* if_false,
Label* fall_through) {
if (if_false == fall_through) {
__ Branch(if_true, cc, lhs, rhs);
} else if (if_true == fall_through) {
__ Branch(if_false, NegateCondition(cc), lhs, rhs);
} else {
__ Branch(if_true, cc, lhs, rhs);
__ Branch(if_false);
}
}
MemOperand FullCodeGenerator::StackOperand(Variable* var) {
ASSERT(var->IsStackAllocated());
// Offset is negative because higher indexes are at lower addresses.
int offset = -var->index() * kPointerSize;
// Adjust by a (parameter or local) base offset.
if (var->IsParameter()) {
offset += (info_->scope()->num_parameters() + 1) * kPointerSize;
} else {
offset += JavaScriptFrameConstants::kLocal0Offset;
}
return MemOperand(fp, offset);
}
MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) {
ASSERT(var->IsContextSlot() || var->IsStackAllocated());
if (var->IsContextSlot()) {
int context_chain_length = scope()->ContextChainLength(var->scope());
__ LoadContext(scratch, context_chain_length);
return ContextOperand(scratch, var->index());
} else {
return StackOperand(var);
}
}
void FullCodeGenerator::GetVar(Register dest, Variable* var) {
// Use destination as scratch.
MemOperand location = VarOperand(var, dest);
__ lw(dest, location);
}
void FullCodeGenerator::SetVar(Variable* var,
Register src,
Register scratch0,
Register scratch1) {
ASSERT(var->IsContextSlot() || var->IsStackAllocated());
ASSERT(!scratch0.is(src));
ASSERT(!scratch0.is(scratch1));
ASSERT(!scratch1.is(src));
MemOperand location = VarOperand(var, scratch0);
__ sw(src, location);
// Emit the write barrier code if the location is in the heap.
if (var->IsContextSlot()) {
__ RecordWriteContextSlot(scratch0,
location.offset(),
src,
scratch1,
kRAHasBeenSaved,
kDontSaveFPRegs);
}
}
void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr,
bool should_normalize,
Label* if_true,
Label* if_false) {
// Only prepare for bailouts before splits if we're in a test
// context. Otherwise, we let the Visit function deal with the
// preparation to avoid preparing with the same AST id twice.
if (!context()->IsTest() || !info_->IsOptimizable()) return;
Label skip;
if (should_normalize) __ Branch(&skip);
PrepareForBailout(expr, TOS_REG);
if (should_normalize) {
__ LoadRoot(t0, Heap::kTrueValueRootIndex);
Split(eq, a0, Operand(t0), if_true, if_false, NULL);
__ bind(&skip);
}
}
void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy,
VariableMode mode,
FunctionLiteral* function) {
// If it was not possible to allocate the variable at compile time, we
// need to "declare" it at runtime to make sure it actually exists in the
// local context.
Variable* variable = proxy->var();
bool binding_needs_init = (function == NULL) &&
(mode == CONST || mode == CONST_HARMONY || mode == LET);
switch (variable->location()) {
case Variable::UNALLOCATED:
++global_count_;
break;
case Variable::PARAMETER:
case Variable::LOCAL:
if (function != NULL) {
Comment cmnt(masm_, "[ Declaration");
VisitForAccumulatorValue(function);
__ sw(result_register(), StackOperand(variable));
} else if (binding_needs_init) {
Comment cmnt(masm_, "[ Declaration");
__ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
__ sw(t0, StackOperand(variable));
}
break;
case Variable::CONTEXT:
// The variable in the decl always resides in the current function
// context.
ASSERT_EQ(0, scope()->ContextChainLength(variable->scope()));
if (FLAG_debug_code) {
// Check that we're not inside a with or catch context.
__ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset));
__ LoadRoot(t0, Heap::kWithContextMapRootIndex);
__ Check(ne, "Declaration in with context.",
a1, Operand(t0));
__ LoadRoot(t0, Heap::kCatchContextMapRootIndex);
__ Check(ne, "Declaration in catch context.",
a1, Operand(t0));
}
if (function != NULL) {
Comment cmnt(masm_, "[ Declaration");
VisitForAccumulatorValue(function);
__ sw(result_register(), ContextOperand(cp, variable->index()));
int offset = Context::SlotOffset(variable->index());
// We know that we have written a function, which is not a smi.
__ RecordWriteContextSlot(cp,
offset,
result_register(),
a2,
kRAHasBeenSaved,
kDontSaveFPRegs,
EMIT_REMEMBERED_SET,
OMIT_SMI_CHECK);
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
} else if (binding_needs_init) {
Comment cmnt(masm_, "[ Declaration");
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ sw(at, ContextOperand(cp, variable->index()));
// No write barrier since the_hole_value is in old space.
PrepareForBailoutForId(proxy->id(), NO_REGISTERS);
}
break;
case Variable::LOOKUP: {
Comment cmnt(masm_, "[ Declaration");
__ li(a2, Operand(variable->name()));
// Declaration nodes are always introduced in one of four modes.
ASSERT(mode == VAR ||
mode == CONST ||
mode == CONST_HARMONY ||
mode == LET);
PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY)
? READ_ONLY : NONE;
__ li(a1, Operand(Smi::FromInt(attr)));
// Push initial value, if any.
// Note: For variables we must not push an initial value (such as
// 'undefined') because we may have a (legal) redeclaration and we
// must not destroy the current value.
if (function != NULL) {
__ Push(cp, a2, a1);
// Push initial value for function declaration.
VisitForStackValue(function);
} else if (binding_needs_init) {
__ LoadRoot(a0, Heap::kTheHoleValueRootIndex);
__ Push(cp, a2, a1, a0);
} else {
ASSERT(Smi::FromInt(0) == 0);
__ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value.
__ Push(cp, a2, a1, a0);
}
__ CallRuntime(Runtime::kDeclareContextSlot, 4);
break;
}
}
}
void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) {
// Call the runtime to declare the globals.
// The context is the first argument.
__ li(a1, Operand(pairs));
__ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags())));
__ Push(cp, a1, a0);
__ CallRuntime(Runtime::kDeclareGlobals, 3);
// Return value is ignored.
}
void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
Comment cmnt(masm_, "[ SwitchStatement");
Breakable nested_statement(this, stmt);
SetStatementPosition(stmt);
// Keep the switch value on the stack until a case matches.
VisitForStackValue(stmt->tag());
PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS);
ZoneList<CaseClause*>* clauses = stmt->cases();
CaseClause* default_clause = NULL; // Can occur anywhere in the list.
Label next_test; // Recycled for each test.
// Compile all the tests with branches to their bodies.
for (int i = 0; i < clauses->length(); i++) {
CaseClause* clause = clauses->at(i);
clause->body_target()->Unuse();
// The default is not a test, but remember it as final fall through.
if (clause->is_default()) {
default_clause = clause;
continue;
}
Comment cmnt(masm_, "[ Case comparison");
__ bind(&next_test);
next_test.Unuse();
// Compile the label expression.
VisitForAccumulatorValue(clause->label());
__ mov(a0, result_register()); // CompareStub requires args in a0, a1.
// Perform the comparison as if via '==='.
__ lw(a1, MemOperand(sp, 0)); // Switch value.
bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ or_(a2, a1, a0);
patch_site.EmitJumpIfNotSmi(a2, &slow_case);
__ Branch(&next_test, ne, a1, Operand(a0));
__ Drop(1); // Switch value is no longer needed.
__ Branch(clause->body_target());
__ bind(&slow_case);
}
// Record position before stub call for type feedback.
SetSourcePosition(clause->position());
Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT);
CallIC(ic, RelocInfo::CODE_TARGET, clause->CompareId());
patch_site.EmitPatchInfo();
__ Branch(&next_test, ne, v0, Operand(zero_reg));
__ Drop(1); // Switch value is no longer needed.
__ Branch(clause->body_target());
}
// Discard the test value and jump to the default if present, otherwise to
// the end of the statement.
__ bind(&next_test);
__ Drop(1); // Switch value is no longer needed.
if (default_clause == NULL) {
__ Branch(nested_statement.break_label());
} else {
__ Branch(default_clause->body_target());
}
// Compile all the case bodies.
for (int i = 0; i < clauses->length(); i++) {
Comment cmnt(masm_, "[ Case body");
CaseClause* clause = clauses->at(i);
__ bind(clause->body_target());
PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS);
VisitStatements(clause->statements());
}
__ bind(nested_statement.break_label());
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
}
void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
Comment cmnt(masm_, "[ ForInStatement");
SetStatementPosition(stmt);
Label loop, exit;
ForIn loop_statement(this, stmt);
increment_loop_depth();
// Get the object to enumerate over. Both SpiderMonkey and JSC
// ignore null and undefined in contrast to the specification; see
// ECMA-262 section 12.6.4.
VisitForAccumulatorValue(stmt->enumerable());
__ mov(a0, result_register()); // Result as param to InvokeBuiltin below.
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(&exit, eq, a0, Operand(at));
Register null_value = t1;
__ LoadRoot(null_value, Heap::kNullValueRootIndex);
__ Branch(&exit, eq, a0, Operand(null_value));
PrepareForBailoutForId(stmt->PrepareId(), TOS_REG);
__ mov(a0, v0);
// Convert the object to a JS object.
Label convert, done_convert;
__ JumpIfSmi(a0, &convert);
__ GetObjectType(a0, a1, a1);
__ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
__ bind(&convert);
__ push(a0);
__ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
__ mov(a0, v0);
__ bind(&done_convert);
__ push(a0);
// Check for proxies.
Label call_runtime;
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ GetObjectType(a0, a1, a1);
__ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE));
// Check cache validity in generated code. This is a fast case for
// the JSObject::IsSimpleEnum cache validity checks. If we cannot
// guarantee cache validity, call the runtime system to check cache
// validity or get the property names in a fixed array.
__ CheckEnumCache(null_value, &call_runtime);
// The enum cache is valid. Load the map of the object being
// iterated over and use the cache for the iteration.
Label use_cache;
__ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset));
__ Branch(&use_cache);
// Get the set of properties to enumerate.
__ bind(&call_runtime);
__ push(a0); // Duplicate the enumerable object on the stack.
__ CallRuntime(Runtime::kGetPropertyNamesFast, 1);
// If we got a map from the runtime call, we can do a fast
// modification check. Otherwise, we got a fixed array, and we have
// to do a slow check.
Label fixed_array;
__ mov(a2, v0);
__ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kMetaMapRootIndex);
__ Branch(&fixed_array, ne, a1, Operand(at));
// We got a map in register v0. Get the enumeration cache from it.
__ bind(&use_cache);
__ LoadInstanceDescriptors(v0, a1);
__ lw(a1, FieldMemOperand(a1, DescriptorArray::kEnumerationIndexOffset));
__ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset));
// Set up the four remaining stack slots.
__ push(v0); // Map.
__ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset));
__ li(a0, Operand(Smi::FromInt(0)));
// Push enumeration cache, enumeration cache length (as smi) and zero.
__ Push(a2, a1, a0);
__ jmp(&loop);
// We got a fixed array in register v0. Iterate through that.
Label non_proxy;
__ bind(&fixed_array);
Handle<JSGlobalPropertyCell> cell =
isolate()->factory()->NewJSGlobalPropertyCell(
Handle<Object>(
Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker)));
RecordTypeFeedbackCell(stmt->PrepareId(), cell);
__ LoadHeapObject(a1, cell);
__ li(a2, Operand(Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker)));
__ sw(a2, FieldMemOperand(a1, JSGlobalPropertyCell::kValueOffset));
__ li(a1, Operand(Smi::FromInt(1))); // Smi indicates slow check
__ lw(a2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object
STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
__ GetObjectType(a2, a3, a3);
__ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE));
__ li(a1, Operand(Smi::FromInt(0))); // Zero indicates proxy
__ bind(&non_proxy);
__ Push(a1, v0); // Smi and array
__ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset));
__ li(a0, Operand(Smi::FromInt(0)));
__ Push(a1, a0); // Fixed array length (as smi) and initial index.
// Generate code for doing the condition check.
PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS);
__ bind(&loop);
// Load the current count to a0, load the length to a1.
__ lw(a0, MemOperand(sp, 0 * kPointerSize));
__ lw(a1, MemOperand(sp, 1 * kPointerSize));
__ Branch(loop_statement.break_label(), hs, a0, Operand(a1));
// Get the current entry of the array into register a3.
__ lw(a2, MemOperand(sp, 2 * kPointerSize));
__ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize);
__ addu(t0, a2, t0); // Array base + scaled (smi) index.
__ lw(a3, MemOperand(t0)); // Current entry.
// Get the expected map from the stack or a smi in the
// permanent slow case into register a2.
__ lw(a2, MemOperand(sp, 3 * kPointerSize));
// Check if the expected map still matches that of the enumerable.
// If not, we may have to filter the key.
Label update_each;
__ lw(a1, MemOperand(sp, 4 * kPointerSize));
__ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset));
__ Branch(&update_each, eq, t0, Operand(a2));
// For proxies, no filtering is done.
// TODO(rossberg): What if only a prototype is a proxy? Not specified yet.
ASSERT_EQ(Smi::FromInt(0), 0);
__ Branch(&update_each, eq, a2, Operand(zero_reg));
// Convert the entry to a string or (smi) 0 if it isn't a property
// any more. If the property has been removed while iterating, we
// just skip it.
__ push(a1); // Enumerable.
__ push(a3); // Current entry.
__ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION);
__ mov(a3, result_register());
__ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg));
// Update the 'each' property or variable from the possibly filtered
// entry in register a3.
__ bind(&update_each);
__ mov(result_register(), a3);
// Perform the assignment as if via '='.
{ EffectContext context(this);
EmitAssignment(stmt->each());
}
// Generate code for the body of the loop.
Visit(stmt->body());
// Generate code for the going to the next element by incrementing
// the index (smi) stored on top of the stack.
__ bind(loop_statement.continue_label());
__ pop(a0);
__ Addu(a0, a0, Operand(Smi::FromInt(1)));
__ push(a0);
EmitStackCheck(stmt, &loop);
__ Branch(&loop);
// Remove the pointers stored on the stack.
__ bind(loop_statement.break_label());
__ Drop(5);
// Exit and decrement the loop depth.
PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS);
__ bind(&exit);
decrement_loop_depth();
}
void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info,
bool pretenure) {
// Use the fast case closure allocation code that allocates in new
// space for nested functions that don't need literals cloning. If
// we're running with the --always-opt or the --prepare-always-opt
// flag, we need to use the runtime function so that the new function
// we are creating here gets a chance to have its code optimized and
// doesn't just get a copy of the existing unoptimized code.
if (!FLAG_always_opt &&
!FLAG_prepare_always_opt &&
!pretenure &&
scope()->is_function_scope() &&
info->num_literals() == 0) {
FastNewClosureStub stub(info->language_mode());
__ li(a0, Operand(info));
__ push(a0);
__ CallStub(&stub);
} else {
__ li(a0, Operand(info));
__ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex
: Heap::kFalseValueRootIndex);
__ Push(cp, a0, a1);
__ CallRuntime(Runtime::kNewClosure, 3);
}
context()->Plug(v0);
}
void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
Comment cmnt(masm_, "[ VariableProxy");
EmitVariableLoad(expr);
}
void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var,
TypeofState typeof_state,
Label* slow) {
Register current = cp;
Register next = a1;
Register temp = a2;
Scope* s = scope();
while (s != NULL) {
if (s->num_heap_slots() > 0) {
if (s->calls_non_strict_eval()) {
// Check that extension is NULL.
__ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX));
__ Branch(slow, ne, temp, Operand(zero_reg));
}
// Load next context in chain.
__ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
current = next;
}
// If no outer scope calls eval, we do not need to check more
// context extensions.
if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break;
s = s->outer_scope();
}
if (s->is_eval_scope()) {
Label loop, fast;
if (!current.is(next)) {
__ Move(next, current);
}
__ bind(&loop);
// Terminate at global context.
__ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset));
__ LoadRoot(t0, Heap::kGlobalContextMapRootIndex);
__ Branch(&fast, eq, temp, Operand(t0));
// Check that extension is NULL.
__ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX));
__ Branch(slow, ne, temp, Operand(zero_reg));
// Load next context in chain.
__ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX));
__ Branch(&loop);
__ bind(&fast);
}
__ lw(a0, GlobalObjectOperand());
__ li(a2, Operand(var->name()));
RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF)
? RelocInfo::CODE_TARGET
: RelocInfo::CODE_TARGET_CONTEXT;
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallIC(ic, mode);
}
MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var,
Label* slow) {
ASSERT(var->IsContextSlot());
Register context = cp;
Register next = a3;
Register temp = t0;
for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) {
if (s->num_heap_slots() > 0) {
if (s->calls_non_strict_eval()) {
// Check that extension is NULL.
__ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
__ Branch(slow, ne, temp, Operand(zero_reg));
}
__ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX));
// Walk the rest of the chain without clobbering cp.
context = next;
}
}
// Check that last extension is NULL.
__ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX));
__ Branch(slow, ne, temp, Operand(zero_reg));
// This function is used only for loads, not stores, so it's safe to
// return an cp-based operand (the write barrier cannot be allowed to
// destroy the cp register).
return ContextOperand(context, var->index());
}
void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var,
TypeofState typeof_state,
Label* slow,
Label* done) {
// Generate fast-case code for variables that might be shadowed by
// eval-introduced variables. Eval is used a lot without
// introducing variables. In those cases, we do not want to
// perform a runtime call for all variables in the scope
// containing the eval.
if (var->mode() == DYNAMIC_GLOBAL) {
EmitLoadGlobalCheckExtensions(var, typeof_state, slow);
__ Branch(done);
} else if (var->mode() == DYNAMIC_LOCAL) {
Variable* local = var->local_if_not_shadowed();
__ lw(v0, ContextSlotOperandCheckExtensions(local, slow));
if (local->mode() == CONST ||
local->mode() == CONST_HARMONY ||
local->mode() == LET) {
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ subu(at, v0, at); // Sub as compare: at == 0 on eq.
if (local->mode() == CONST) {
__ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
__ Movz(v0, a0, at); // Conditional move: return Undefined if TheHole.
} else { // LET || CONST_HARMONY
__ Branch(done, ne, at, Operand(zero_reg));
__ li(a0, Operand(var->name()));
__ push(a0);
__ CallRuntime(Runtime::kThrowReferenceError, 1);
}
}
__ Branch(done);
}
}
void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) {
// Record position before possible IC call.
SetSourcePosition(proxy->position());
Variable* var = proxy->var();
// Three cases: global variables, lookup variables, and all other types of
// variables.
switch (var->location()) {
case Variable::UNALLOCATED: {
Comment cmnt(masm_, "Global variable");
// Use inline caching. Variable name is passed in a2 and the global
// object (receiver) in a0.
__ lw(a0, GlobalObjectOperand());
__ li(a2, Operand(var->name()));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
context()->Plug(v0);
break;
}
case Variable::PARAMETER:
case Variable::LOCAL:
case Variable::CONTEXT: {
Comment cmnt(masm_, var->IsContextSlot()
? "Context variable"
: "Stack variable");
if (var->binding_needs_init()) {
// var->scope() may be NULL when the proxy is located in eval code and
// refers to a potential outside binding. Currently those bindings are
// always looked up dynamically, i.e. in that case
// var->location() == LOOKUP.
// always holds.
ASSERT(var->scope() != NULL);
// Check if the binding really needs an initialization check. The check
// can be skipped in the following situation: we have a LET or CONST
// binding in harmony mode, both the Variable and the VariableProxy have
// the same declaration scope (i.e. they are both in global code, in the
// same function or in the same eval code) and the VariableProxy is in
// the source physically located after the initializer of the variable.
//
// We cannot skip any initialization checks for CONST in non-harmony
// mode because const variables may be declared but never initialized:
// if (false) { const x; }; var y = x;
//
// The condition on the declaration scopes is a conservative check for
// nested functions that access a binding and are called before the
// binding is initialized:
// function() { f(); let x = 1; function f() { x = 2; } }
//
bool skip_init_check;
if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) {
skip_init_check = false;
} else {
// Check that we always have valid source position.
ASSERT(var->initializer_position() != RelocInfo::kNoPosition);
ASSERT(proxy->position() != RelocInfo::kNoPosition);
skip_init_check = var->mode() != CONST &&
var->initializer_position() < proxy->position();
}
if (!skip_init_check) {
// Let and const need a read barrier.
GetVar(v0, var);
__ LoadRoot(at, Heap::kTheHoleValueRootIndex);
__ subu(at, v0, at); // Sub as compare: at == 0 on eq.
if (var->mode() == LET || var->mode() == CONST_HARMONY) {
// Throw a reference error when using an uninitialized let/const
// binding in harmony mode.
Label done;
__ Branch(&done, ne, at, Operand(zero_reg));
__ li(a0, Operand(var->name()));
__ push(a0);
__ CallRuntime(Runtime::kThrowReferenceError, 1);
__ bind(&done);
} else {
// Uninitalized const bindings outside of harmony mode are unholed.
ASSERT(var->mode() == CONST);
__ LoadRoot(a0, Heap::kUndefinedValueRootIndex);
__ Movz(v0, a0, at); // Conditional move: Undefined if TheHole.
}
context()->Plug(v0);
break;
}
}
context()->Plug(var);
break;
}
case Variable::LOOKUP: {
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
Comment cmnt(masm_, "Lookup variable");
__ li(a1, Operand(var->name()));
__ Push(cp, a1); // Context and name.
__ CallRuntime(Runtime::kLoadContextSlot, 2);
__ bind(&done);
context()->Plug(v0);
}
}
}
void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
Comment cmnt(masm_, "[ RegExpLiteral");
Label materialized;
// Registers will be used as follows:
// t1 = materialized value (RegExp literal)
// t0 = JS function, literals array
// a3 = literal index
// a2 = RegExp pattern
// a1 = RegExp flags
// a0 = RegExp literal clone
__ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset));
int literal_offset =
FixedArray::kHeaderSize + expr->literal_index() * kPointerSize;
__ lw(t1, FieldMemOperand(t0, literal_offset));
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(&materialized, ne, t1, Operand(at));
// Create regexp literal using runtime function.
// Result will be in v0.
__ li(a3, Operand(Smi::FromInt(expr->literal_index())));
__ li(a2, Operand(expr->pattern()));
__ li(a1, Operand(expr->flags()));
__ Push(t0, a3, a2, a1);
__ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4);
__ mov(t1, v0);
__ bind(&materialized);
int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
Label allocated, runtime_allocate;
__ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT);
__ jmp(&allocated);
__ bind(&runtime_allocate);
__ push(t1);
__ li(a0, Operand(Smi::FromInt(size)));
__ push(a0);
__ CallRuntime(Runtime::kAllocateInNewSpace, 1);
__ pop(t1);
__ bind(&allocated);
// After this, registers are used as follows:
// v0: Newly allocated regexp.
// t1: Materialized regexp.
// a2: temp.
__ CopyFields(v0, t1, a2.bit(), size / kPointerSize);
context()->Plug(v0);
}
void FullCodeGenerator::EmitAccessor(Expression* expression) {
if (expression == NULL) {
__ LoadRoot(a1, Heap::kNullValueRootIndex);
__ push(a1);
} else {
VisitForStackValue(expression);
}
}
void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
Comment cmnt(masm_, "[ ObjectLiteral");
Handle<FixedArray> constant_properties = expr->constant_properties();
__ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
__ li(a2, Operand(Smi::FromInt(expr->literal_index())));
__ li(a1, Operand(constant_properties));
int flags = expr->fast_elements()
? ObjectLiteral::kFastElements
: ObjectLiteral::kNoFlags;
flags |= expr->has_function()
? ObjectLiteral::kHasFunction
: ObjectLiteral::kNoFlags;
__ li(a0, Operand(Smi::FromInt(flags)));
__ Push(a3, a2, a1, a0);
int properties_count = constant_properties->length() / 2;
if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateObjectLiteral, 4);
} else if (flags != ObjectLiteral::kFastElements ||
properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) {
__ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4);
} else {
FastCloneShallowObjectStub stub(properties_count);
__ CallStub(&stub);
}
// If result_saved is true the result is on top of the stack. If
// result_saved is false the result is in v0.
bool result_saved = false;
// Mark all computed expressions that are bound to a key that
// is shadowed by a later occurrence of the same key. For the
// marked expressions, no store code is emitted.
expr->CalculateEmitStore();
AccessorTable accessor_table(isolate()->zone());
for (int i = 0; i < expr->properties()->length(); i++) {
ObjectLiteral::Property* property = expr->properties()->at(i);
if (property->IsCompileTimeValue()) continue;
Literal* key = property->key();
Expression* value = property->value();
if (!result_saved) {
__ push(v0); // Save result on stack.
result_saved = true;
}
switch (property->kind()) {
case ObjectLiteral::Property::CONSTANT:
UNREACHABLE();
case ObjectLiteral::Property::MATERIALIZED_LITERAL:
ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value()));
// Fall through.
case ObjectLiteral::Property::COMPUTED:
if (key->handle()->IsSymbol()) {
if (property->emit_store()) {
VisitForAccumulatorValue(value);
__ mov(a0, result_register());
__ li(a2, Operand(key->handle()));
__ lw(a1, MemOperand(sp));
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->StoreIC_Initialize()
: isolate()->builtins()->StoreIC_Initialize_Strict();
CallIC(ic, RelocInfo::CODE_TARGET, key->id());
PrepareForBailoutForId(key->id(), NO_REGISTERS);
} else {
VisitForEffect(value);
}
break;
}
// Fall through.
case ObjectLiteral::Property::PROTOTYPE:
// Duplicate receiver on stack.
__ lw(a0, MemOperand(sp));
__ push(a0);
VisitForStackValue(key);
VisitForStackValue(value);
if (property->emit_store()) {
__ li(a0, Operand(Smi::FromInt(NONE))); // PropertyAttributes.
__ push(a0);
__ CallRuntime(Runtime::kSetProperty, 4);
} else {
__ Drop(3);
}
break;
case ObjectLiteral::Property::GETTER:
accessor_table.lookup(key)->second->getter = value;
break;
case ObjectLiteral::Property::SETTER:
accessor_table.lookup(key)->second->setter = value;
break;
}
}
// Emit code to define accessors, using only a single call to the runtime for
// each pair of corresponding getters and setters.
for (AccessorTable::Iterator it = accessor_table.begin();
it != accessor_table.end();
++it) {
__ lw(a0, MemOperand(sp)); // Duplicate receiver.
__ push(a0);
VisitForStackValue(it->first);
EmitAccessor(it->second->getter);
EmitAccessor(it->second->setter);
__ li(a0, Operand(Smi::FromInt(NONE)));
__ push(a0);
__ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5);
}
if (expr->has_function()) {
ASSERT(result_saved);
__ lw(a0, MemOperand(sp));
__ push(a0);
__ CallRuntime(Runtime::kToFastProperties, 1);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(v0);
}
}
void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
Comment cmnt(masm_, "[ ArrayLiteral");
ZoneList<Expression*>* subexprs = expr->values();
int length = subexprs->length();
Handle<FixedArray> constant_elements = expr->constant_elements();
ASSERT_EQ(2, constant_elements->length());
ElementsKind constant_elements_kind =
static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value());
bool has_fast_elements = constant_elements_kind == FAST_ELEMENTS;
Handle<FixedArrayBase> constant_elements_values(
FixedArrayBase::cast(constant_elements->get(1)));
__ mov(a0, result_register());
__ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset));
__ li(a2, Operand(Smi::FromInt(expr->literal_index())));
__ li(a1, Operand(constant_elements));
__ Push(a3, a2, a1);
if (has_fast_elements && constant_elements_values->map() ==
isolate()->heap()->fixed_cow_array_map()) {
FastCloneShallowArrayStub stub(
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length);
__ CallStub(&stub);
__ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(),
1, a1, a2);
} else if (expr->depth() > 1) {
__ CallRuntime(Runtime::kCreateArrayLiteral, 3);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
__ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3);
} else {
ASSERT(constant_elements_kind == FAST_ELEMENTS ||
constant_elements_kind == FAST_SMI_ONLY_ELEMENTS ||
FLAG_smi_only_arrays);
FastCloneShallowArrayStub::Mode mode = has_fast_elements
? FastCloneShallowArrayStub::CLONE_ELEMENTS
: FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
__ CallStub(&stub);
}
bool result_saved = false; // Is the result saved to the stack?
// Emit code to evaluate all the non-constant subexpressions and to store
// them into the newly cloned array.
for (int i = 0; i < length; i++) {
Expression* subexpr = subexprs->at(i);
// If the subexpression is a literal or a simple materialized literal it
// is already set in the cloned array.
if (subexpr->AsLiteral() != NULL ||
CompileTimeValue::IsCompileTimeValue(subexpr)) {
continue;
}
if (!result_saved) {
__ push(v0);
result_saved = true;
}
VisitForAccumulatorValue(subexpr);
if (constant_elements_kind == FAST_ELEMENTS) {
int offset = FixedArray::kHeaderSize + (i * kPointerSize);
__ lw(t2, MemOperand(sp)); // Copy of array literal.
__ lw(a1, FieldMemOperand(t2, JSObject::kElementsOffset));
__ sw(result_register(), FieldMemOperand(a1, offset));
// Update the write barrier for the array store.
__ RecordWriteField(a1, offset, result_register(), a2,
kRAHasBeenSaved, kDontSaveFPRegs,
EMIT_REMEMBERED_SET, INLINE_SMI_CHECK);
} else {
__ lw(a1, MemOperand(sp)); // Copy of array literal.
__ lw(a2, FieldMemOperand(a1, JSObject::kMapOffset));
__ li(a3, Operand(Smi::FromInt(i)));
__ li(t0, Operand(Smi::FromInt(expr->literal_index())));
__ mov(a0, result_register());
StoreArrayLiteralElementStub stub;
__ CallStub(&stub);
}
PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS);
}
if (result_saved) {
context()->PlugTOS();
} else {
context()->Plug(v0);
}
}
void FullCodeGenerator::VisitAssignment(Assignment* expr) {
Comment cmnt(masm_, "[ Assignment");
// Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
// on the left-hand side.
if (!expr->target()->IsValidLeftHandSide()) {
VisitForEffect(expr->target());
return;
}
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* property = expr->target()->AsProperty();
if (property != NULL) {
assign_type = (property->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
// Evaluate LHS expression.
switch (assign_type) {
case VARIABLE:
// Nothing to do here.
break;
case NAMED_PROPERTY:
if (expr->is_compound()) {
// We need the receiver both on the stack and in the accumulator.
VisitForAccumulatorValue(property->obj());
__ push(result_register());
} else {
VisitForStackValue(property->obj());
}
break;
case KEYED_PROPERTY:
// We need the key and receiver on both the stack and in v0 and a1.
if (expr->is_compound()) {
VisitForStackValue(property->obj());
VisitForAccumulatorValue(property->key());
__ lw(a1, MemOperand(sp, 0));
__ push(v0);
} else {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
}
break;
}
// For compound assignments we need another deoptimization point after the
// variable/property load.
if (expr->is_compound()) {
{ AccumulatorValueContext context(this);
switch (assign_type) {
case VARIABLE:
EmitVariableLoad(expr->target()->AsVariableProxy());
PrepareForBailout(expr->target(), TOS_REG);
break;
case NAMED_PROPERTY:
EmitNamedPropertyLoad(property);
PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyLoad(property);
PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG);
break;
}
}
Token::Value op = expr->binary_op();
__ push(v0); // Left operand goes on the stack.
VisitForAccumulatorValue(expr->value());
OverwriteMode mode = expr->value()->ResultOverwriteAllowed()
? OVERWRITE_RIGHT
: NO_OVERWRITE;
SetSourcePosition(expr->position() + 1);
AccumulatorValueContext context(this);
if (ShouldInlineSmiCase(op)) {
EmitInlineSmiBinaryOp(expr->binary_operation(),
op,
mode,
expr->target(),
expr->value());
} else {
EmitBinaryOp(expr->binary_operation(), op, mode);
}
// Deoptimization point in case the binary operation may have side effects.
PrepareForBailout(expr->binary_operation(), TOS_REG);
} else {
VisitForAccumulatorValue(expr->value());
}
// Record source position before possible IC call.
SetSourcePosition(expr->position());
// Store the value.
switch (assign_type) {
case VARIABLE:
EmitVariableAssignment(expr->target()->AsVariableProxy()->var(),
expr->op());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
break;
case NAMED_PROPERTY:
EmitNamedPropertyAssignment(expr);
break;
case KEYED_PROPERTY:
EmitKeyedPropertyAssignment(expr);
break;
}
}
void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
Literal* key = prop->key()->AsLiteral();
__ mov(a0, result_register());
__ li(a2, Operand(key->handle()));
// Call load IC. It has arguments receiver and property name a0 and a2.
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
}
void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) {
SetSourcePosition(prop->position());
__ mov(a0, result_register());
// Call keyed load IC. It has arguments key and receiver in a0 and a1.
Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize();
CallIC(ic, RelocInfo::CODE_TARGET, prop->id());
}
void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode,
Expression* left_expr,
Expression* right_expr) {
Label done, smi_case, stub_call;
Register scratch1 = a2;
Register scratch2 = a3;
// Get the arguments.
Register left = a1;
Register right = a0;
__ pop(left);
__ mov(a0, result_register());
// Perform combined smi check on both operands.
__ Or(scratch1, left, Operand(right));
STATIC_ASSERT(kSmiTag == 0);
JumpPatchSite patch_site(masm_);
patch_site.EmitJumpIfSmi(scratch1, &smi_case);
__ bind(&stub_call);
BinaryOpStub stub(op, mode);
CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
patch_site.EmitPatchInfo();
__ jmp(&done);
__ bind(&smi_case);
// Smi case. This code works the same way as the smi-smi case in the type
// recording binary operation stub, see
// BinaryOpStub::GenerateSmiSmiOperation for comments.
switch (op) {
case Token::SAR:
__ Branch(&stub_call);
__ GetLeastBitsFromSmi(scratch1, right, 5);
__ srav(right, left, scratch1);
__ And(v0, right, Operand(~kSmiTagMask));
break;
case Token::SHL: {
__ Branch(&stub_call);
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ sllv(scratch1, scratch1, scratch2);
__ Addu(scratch2, scratch1, Operand(0x40000000));
__ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
__ SmiTag(v0, scratch1);
break;
}
case Token::SHR: {
__ Branch(&stub_call);
__ SmiUntag(scratch1, left);
__ GetLeastBitsFromSmi(scratch2, right, 5);
__ srlv(scratch1, scratch1, scratch2);
__ And(scratch2, scratch1, 0xc0000000);
__ Branch(&stub_call, ne, scratch2, Operand(zero_reg));
__ SmiTag(v0, scratch1);
break;
}
case Token::ADD:
__ AdduAndCheckForOverflow(v0, left, right, scratch1);
__ BranchOnOverflow(&stub_call, scratch1);
break;
case Token::SUB:
__ SubuAndCheckForOverflow(v0, left, right, scratch1);
__ BranchOnOverflow(&stub_call, scratch1);
break;
case Token::MUL: {
__ SmiUntag(scratch1, right);
__ Mult(left, scratch1);
__ mflo(scratch1);
__ mfhi(scratch2);
__ sra(scratch1, scratch1, 31);
__ Branch(&stub_call, ne, scratch1, Operand(scratch2));
__ mflo(v0);
__ Branch(&done, ne, v0, Operand(zero_reg));
__ Addu(scratch2, right, left);
__ Branch(&stub_call, lt, scratch2, Operand(zero_reg));
ASSERT(Smi::FromInt(0) == 0);
__ mov(v0, zero_reg);
break;
}
case Token::BIT_OR:
__ Or(v0, left, Operand(right));
break;
case Token::BIT_AND:
__ And(v0, left, Operand(right));
break;
case Token::BIT_XOR:
__ Xor(v0, left, Operand(right));
break;
default:
UNREACHABLE();
}
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr,
Token::Value op,
OverwriteMode mode) {
__ mov(a0, result_register());
__ pop(a1);
BinaryOpStub stub(op, mode);
JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code.
CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
patch_site.EmitPatchInfo();
context()->Plug(v0);
}
void FullCodeGenerator::EmitAssignment(Expression* expr) {
// Invalid left-hand sides are rewritten to have a 'throw
// ReferenceError' on the left-hand side.
if (!expr->IsValidLeftHandSide()) {
VisitForEffect(expr);
return;
}
// Left-hand side can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->AsProperty();
if (prop != NULL) {
assign_type = (prop->key()->IsPropertyName())
? NAMED_PROPERTY
: KEYED_PROPERTY;
}
switch (assign_type) {
case VARIABLE: {
Variable* var = expr->AsVariableProxy()->var();
EffectContext context(this);
EmitVariableAssignment(var, Token::ASSIGN);
break;
}
case NAMED_PROPERTY: {
__ push(result_register()); // Preserve value.
VisitForAccumulatorValue(prop->obj());
__ mov(a1, result_register());
__ pop(a0); // Restore value.
__ li(a2, Operand(prop->key()->AsLiteral()->handle()));
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->StoreIC_Initialize()
: isolate()->builtins()->StoreIC_Initialize_Strict();
CallIC(ic);
break;
}
case KEYED_PROPERTY: {
__ push(result_register()); // Preserve value.
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ mov(a1, result_register());
__ pop(a2);
__ pop(a0); // Restore value.
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic);
break;
}
}
context()->Plug(v0);
}
void FullCodeGenerator::EmitVariableAssignment(Variable* var,
Token::Value op) {
if (var->IsUnallocated()) {
// Global var, const, or let.
__ mov(a0, result_register());
__ li(a2, Operand(var->name()));
__ lw(a1, GlobalObjectOperand());
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->StoreIC_Initialize()
: isolate()->builtins()->StoreIC_Initialize_Strict();
CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT);
} else if (op == Token::INIT_CONST) {
// Const initializers need a write barrier.
ASSERT(!var->IsParameter()); // No const parameters.
if (var->IsStackLocal()) {
Label skip;
__ lw(a1, StackOperand(var));
__ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
__ Branch(&skip, ne, a1, Operand(t0));
__ sw(result_register(), StackOperand(var));
__ bind(&skip);
} else {
ASSERT(var->IsContextSlot() || var->IsLookupSlot());
// Like var declarations, const declarations are hoisted to function
// scope. However, unlike var initializers, const initializers are
// able to drill a hole to that function context, even from inside a
// 'with' context. We thus bypass the normal static scope lookup for
// var->IsContextSlot().
__ push(v0);
__ li(a0, Operand(var->name()));
__ Push(cp, a0); // Context and name.
__ CallRuntime(Runtime::kInitializeConstContextSlot, 3);
}
} else if (var->mode() == LET && op != Token::INIT_LET) {
// Non-initializing assignment to let variable needs a write barrier.
if (var->IsLookupSlot()) {
__ push(v0); // Value.
__ li(a1, Operand(var->name()));
__ li(a0, Operand(Smi::FromInt(language_mode())));
__ Push(cp, a1, a0); // Context, name, strict mode.
__ CallRuntime(Runtime::kStoreContextSlot, 4);
} else {
ASSERT(var->IsStackAllocated() || var->IsContextSlot());
Label assign;
MemOperand location = VarOperand(var, a1);
__ lw(a3, location);
__ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
__ Branch(&assign, ne, a3, Operand(t0));
__ li(a3, Operand(var->name()));
__ push(a3);
__ CallRuntime(Runtime::kThrowReferenceError, 1);
// Perform the assignment.
__ bind(&assign);
__ sw(result_register(), location);
if (var->IsContextSlot()) {
// RecordWrite may destroy all its register arguments.
__ mov(a3, result_register());
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(
a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
}
}
} else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) {
// Assignment to var or initializing assignment to let/const
// in harmony mode.
if (var->IsStackAllocated() || var->IsContextSlot()) {
MemOperand location = VarOperand(var, a1);
if (FLAG_debug_code && op == Token::INIT_LET) {
// Check for an uninitialized let binding.
__ lw(a2, location);
__ LoadRoot(t0, Heap::kTheHoleValueRootIndex);
__ Check(eq, "Let binding re-initialization.", a2, Operand(t0));
}
// Perform the assignment.
__ sw(v0, location);
if (var->IsContextSlot()) {
__ mov(a3, v0);
int offset = Context::SlotOffset(var->index());
__ RecordWriteContextSlot(
a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs);
}
} else {
ASSERT(var->IsLookupSlot());
__ push(v0); // Value.
__ li(a1, Operand(var->name()));
__ li(a0, Operand(Smi::FromInt(language_mode())));
__ Push(cp, a1, a0); // Context, name, strict mode.
__ CallRuntime(Runtime::kStoreContextSlot, 4);
}
}
// Non-initializing assignments to consts are ignored.
}
void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a named store IC.
Property* prop = expr->target()->AsProperty();
ASSERT(prop != NULL);
ASSERT(prop->key()->AsLiteral() != NULL);
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
__ lw(t0, MemOperand(sp, kPointerSize)); // Receiver is now under value.
__ push(t0);
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
__ mov(a0, result_register()); // Load the value.
__ li(a2, Operand(prop->key()->AsLiteral()->handle()));
// Load receiver to a1. Leave a copy in the stack if needed for turning the
// receiver into fast case.
if (expr->ends_initialization_block()) {
__ lw(a1, MemOperand(sp));
} else {
__ pop(a1);
}
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->StoreIC_Initialize()
: isolate()->builtins()->StoreIC_Initialize_Strict();
CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(v0); // Result of assignment, saved even if not needed.
// Receiver is under the result value.
__ lw(t0, MemOperand(sp, kPointerSize));
__ push(t0);
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(v0);
__ Drop(1);
}
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
}
void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) {
// Assignment to a property, using a keyed store IC.
// If the assignment starts a block of assignments to the same object,
// change to slow case to avoid the quadratic behavior of repeatedly
// adding fast properties.
if (expr->starts_initialization_block()) {
__ push(result_register());
// Receiver is now under the key and value.
__ lw(t0, MemOperand(sp, 2 * kPointerSize));
__ push(t0);
__ CallRuntime(Runtime::kToSlowProperties, 1);
__ pop(result_register());
}
// Record source code position before IC call.
SetSourcePosition(expr->position());
// Call keyed store IC.
// The arguments are:
// - a0 is the value,
// - a1 is the key,
// - a2 is the receiver.
__ mov(a0, result_register());
__ pop(a1); // Key.
// Load receiver to a2. Leave a copy in the stack if needed for turning the
// receiver into fast case.
if (expr->ends_initialization_block()) {
__ lw(a2, MemOperand(sp));
} else {
__ pop(a2);
}
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
// If the assignment ends an initialization block, revert to fast case.
if (expr->ends_initialization_block()) {
__ push(v0); // Result of assignment, saved even if not needed.
// Receiver is under the result value.
__ lw(t0, MemOperand(sp, kPointerSize));
__ push(t0);
__ CallRuntime(Runtime::kToFastProperties, 1);
__ pop(v0);
__ Drop(1);
}
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
}
void FullCodeGenerator::VisitProperty(Property* expr) {
Comment cmnt(masm_, "[ Property");
Expression* key = expr->key();
if (key->IsPropertyName()) {
VisitForAccumulatorValue(expr->obj());
EmitNamedPropertyLoad(expr);
context()->Plug(v0);
} else {
VisitForStackValue(expr->obj());
VisitForAccumulatorValue(expr->key());
__ pop(a1);
EmitKeyedPropertyLoad(expr);
context()->Plug(v0);
}
}
void FullCodeGenerator::CallIC(Handle<Code> code,
RelocInfo::Mode rmode,
unsigned ast_id) {
ic_total_count_++;
__ Call(code, rmode, ast_id);
}
void FullCodeGenerator::EmitCallWithIC(Call* expr,
Handle<Object> name,
RelocInfo::Mode mode) {
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
__ li(a2, Operand(name));
}
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
Handle<Code> ic =
isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
CallIC(ic, mode, expr->id());
RecordJSReturnSite(expr);
// Restore context register.
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->Plug(v0);
}
void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr,
Expression* key) {
// Load the key.
VisitForAccumulatorValue(key);
// Swap the name of the function and the receiver on the stack to follow
// the calling convention for call ICs.
__ pop(a1);
__ push(v0);
__ push(a1);
// Code common for calls using the IC.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
// Call the IC initialization code.
Handle<Code> ic =
isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count);
__ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Key.
CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
RecordJSReturnSite(expr);
// Restore context register.
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, v0); // Drop the key still on the stack.
}
void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) {
// Code common for calls using the call stub.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{ PreservePositionScope scope(masm()->positions_recorder());
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(arg_count, flags);
__ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, v0);
}
void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) {
// Push copy of the first argument or undefined if it doesn't exist.
if (arg_count > 0) {
__ lw(a1, MemOperand(sp, arg_count * kPointerSize));
} else {
__ LoadRoot(a1, Heap::kUndefinedValueRootIndex);
}
__ push(a1);
// Push the receiver of the enclosing function.
int receiver_offset = 2 + info_->scope()->num_parameters();
__ lw(a1, MemOperand(fp, receiver_offset * kPointerSize));
__ push(a1);
// Push the language mode.
__ li(a1, Operand(Smi::FromInt(language_mode())));
__ push(a1);
// Push the start position of the scope the calls resides in.
__ li(a1, Operand(Smi::FromInt(scope()->start_position())));
__ push(a1);
// Do the runtime call.
__ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5);
}
void FullCodeGenerator::VisitCall(Call* expr) {
#ifdef DEBUG
// We want to verify that RecordJSReturnSite gets called on all paths
// through this function. Avoid early returns.
expr->return_is_recorded_ = false;
#endif
Comment cmnt(masm_, "[ Call");
Expression* callee = expr->expression();
VariableProxy* proxy = callee->AsVariableProxy();
Property* property = callee->AsProperty();
if (proxy != NULL && proxy->var()->is_possibly_eval()) {
// In a call to eval, we first call %ResolvePossiblyDirectEval to
// resolve the function we need to call and the receiver of the
// call. Then we call the resolved function using the given
// arguments.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
{ PreservePositionScope pos_scope(masm()->positions_recorder());
VisitForStackValue(callee);
__ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
__ push(a2); // Reserved receiver slot.
// Push the arguments.
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Push a copy of the function (found below the arguments) and
// resolve eval.
__ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ push(a1);
EmitResolvePossiblyDirectEval(arg_count);
// The runtime call returns a pair of values in v0 (function) and
// v1 (receiver). Touch up the stack with the right values.
__ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ sw(v1, MemOperand(sp, arg_count * kPointerSize));
}
// Record source position for debugger.
SetSourcePosition(expr->position());
CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT);
__ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize));
__ CallStub(&stub);
RecordJSReturnSite(expr);
// Restore context register.
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
context()->DropAndPlug(1, v0);
} else if (proxy != NULL && proxy->var()->IsUnallocated()) {
// Push global object as receiver for the call IC.
__ lw(a0, GlobalObjectOperand());
__ push(a0);
EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT);
} else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
// Call to a lookup slot (dynamically introduced variable).
Label slow, done;
{ PreservePositionScope scope(masm()->positions_recorder());
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done);
}
__ bind(&slow);
// Call the runtime to find the function to call (returned in v0)
// and the object holding it (returned in v1).
__ push(context_register());
__ li(a2, Operand(proxy->name()));
__ push(a2);
__ CallRuntime(Runtime::kLoadContextSlot, 2);
__ Push(v0, v1); // Function, receiver.
// If fast case code has been generated, emit code to push the
// function and receiver and have the slow path jump around this
// code.
if (done.is_linked()) {
Label call;
__ Branch(&call);
__ bind(&done);
// Push function.
__ push(v0);
// The receiver is implicitly the global receiver. Indicate this
// by passing the hole to the call function stub.
__ LoadRoot(a1, Heap::kTheHoleValueRootIndex);
__ push(a1);
__ bind(&call);
}
// The receiver is either the global receiver or an object found
// by LoadContextSlot. That object could be the hole if the
// receiver is implicitly the global object.
EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT);
} else if (property != NULL) {
{ PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(property->obj());
}
if (property->key()->IsPropertyName()) {
EmitCallWithIC(expr,
property->key()->AsLiteral()->handle(),
RelocInfo::CODE_TARGET);
} else {
EmitKeyedCallWithIC(expr, property->key());
}
} else {
// Call to an arbitrary expression not handled specially above.
{ PreservePositionScope scope(masm()->positions_recorder());
VisitForStackValue(callee);
}
// Load global receiver object.
__ lw(a1, GlobalObjectOperand());
__ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset));
__ push(a1);
// Emit function call.
EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS);
}
#ifdef DEBUG
// RecordJSReturnSite should have been called.
ASSERT(expr->return_is_recorded_);
#endif
}
void FullCodeGenerator::VisitCallNew(CallNew* expr) {
Comment cmnt(masm_, "[ CallNew");
// According to ECMA-262, section 11.2.2, page 44, the function
// expression in new calls must be evaluated before the
// arguments.
// Push constructor on the stack. If it's not a function it's used as
// receiver for CALL_NON_FUNCTION, otherwise the value on the stack is
// ignored.
VisitForStackValue(expr->expression());
// Push the arguments ("left-to-right") on the stack.
ZoneList<Expression*>* args = expr->arguments();
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
// Call the construct call builtin that handles allocation and
// constructor invocation.
SetSourcePosition(expr->position());
// Load function and argument count into a1 and a0.
__ li(a0, Operand(arg_count));
__ lw(a1, MemOperand(sp, arg_count * kPointerSize));
// Record call targets in unoptimized code, but not in the snapshot.
CallFunctionFlags flags;
if (!Serializer::enabled()) {
flags = RECORD_CALL_TARGET;
Handle<Object> uninitialized =
TypeFeedbackCells::UninitializedSentinel(isolate());
Handle<JSGlobalPropertyCell> cell =
isolate()->factory()->NewJSGlobalPropertyCell(uninitialized);
RecordTypeFeedbackCell(expr->id(), cell);
__ li(a2, Operand(cell));
} else {
flags = NO_CALL_FUNCTION_FLAGS;
}
CallConstructStub stub(flags);
__ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL);
PrepareForBailoutForId(expr->ReturnId(), TOS_REG);
context()->Plug(v0);
}
void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ And(t0, v0, Operand(kSmiTagMask));
Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ And(at, v0, Operand(kSmiTagMask | 0x80000000));
Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ LoadRoot(at, Heap::kNullValueRootIndex);
__ Branch(if_true, eq, v0, Operand(at));
__ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset));
// Undetectable objects behave like undefined when tested with typeof.
__ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset));
__ And(at, a1, Operand(1 << Map::kIsUndetectable));
__ Branch(if_false, ne, at, Operand(zero_reg));
__ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset));
__ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE),
if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE),
if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
__ And(at, a1, Operand(1 << Map::kIsUndetectable));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf(
CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
if (FLAG_debug_code) __ AbortIfSmi(v0);
__ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset));
__ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset));
__ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf);
__ Branch(if_true, ne, t0, Operand(zero_reg));
// Check for fast case object. Generate false result for slow case object.
__ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset));
__ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
__ LoadRoot(t0, Heap::kHashTableMapRootIndex);
__ Branch(if_false, eq, a2, Operand(t0));
// Look for valueOf symbol in the descriptor array, and indicate false if
// found. The type is not checked, so if it is a transition it is a false
// negative.
__ LoadInstanceDescriptors(a1, t0);
__ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset));
// t0: descriptor array
// a3: length of descriptor array
// Calculate the end of the descriptor array.
STATIC_ASSERT(kSmiTag == 0);
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kPointerSize == 4);
__ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize);
__ Addu(a2, a2, t1);
// Calculate location of the first key name.
__ Addu(t0,
t0,
Operand(FixedArray::kHeaderSize - kHeapObjectTag +
DescriptorArray::kFirstIndex * kPointerSize));
// Loop through all the keys in the descriptor array. If one of these is the
// symbol valueOf the result is false.
Label entry, loop;
// The use of t2 to store the valueOf symbol asumes that it is not otherwise
// used in the loop below.
__ LoadRoot(t2, Heap::kvalue_of_symbolRootIndex);
__ jmp(&entry);
__ bind(&loop);
__ lw(a3, MemOperand(t0, 0));
__ Branch(if_false, eq, a3, Operand(t2));
__ Addu(t0, t0, Operand(kPointerSize));
__ bind(&entry);
__ Branch(&loop, ne, t0, Operand(a2));
// If a valueOf property is not found on the object check that it's
// prototype is the un-modified String prototype. If not result is false.
__ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset));
__ JumpIfSmi(a2, if_false);
__ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset));
__ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX));
__ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset));
__ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX));
__ Branch(if_false, ne, a2, Operand(a3));
// Set the bit in the map to indicate that it has been checked safe for
// default valueOf and set true result.
__ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset));
__ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf));
__ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset));
__ jmp(if_true);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a2);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
__ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE));
__ Branch(if_false);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsArray(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a1, Operand(JS_ARRAY_TYPE),
if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ JumpIfSmi(v0, if_false);
__ GetObjectType(v0, a1, a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) {
ASSERT(expr->arguments()->length() == 0);
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
// Get the frame pointer for the calling frame.
__ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
// Skip the arguments adaptor frame if it exists.
Label check_frame_marker;
__ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset));
__ Branch(&check_frame_marker, ne,
a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
__ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset));
// Check the marker in the calling frame.
__ bind(&check_frame_marker);
__ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)),
if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
// Load the two objects into registers and perform the comparison.
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ pop(a1);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, v0, Operand(a1), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitArguments(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
// ArgumentsAccessStub expects the key in a1 and the formal
// parameter count in a0.
VisitForAccumulatorValue(args->at(0));
__ mov(a1, v0);
__ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT);
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) {
ASSERT(expr->arguments()->length() == 0);
Label exit;
// Get the number of formal parameters.
__ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters())));
// Check if the calling frame is an arguments adaptor frame.
__ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
__ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset));
__ Branch(&exit, ne, a3,
Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
// Arguments adaptor case: Read the arguments length from the
// adaptor frame.
__ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset));
__ bind(&exit);
context()->Plug(v0);
}
void FullCodeGenerator::EmitClassOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
Label done, null, function, non_function_constructor;
VisitForAccumulatorValue(args->at(0));
// If the object is a smi, we return null.
__ JumpIfSmi(v0, &null);
// Check that the object is a JS object but take special care of JS
// functions to make sure they have 'Function' as their class.
// Assume that there are only two callable types, and one of them is at
// either end of the type range for JS object types. Saves extra comparisons.
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ GetObjectType(v0, v0, a1); // Map is now in v0.
__ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
FIRST_SPEC_OBJECT_TYPE + 1);
__ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
LAST_SPEC_OBJECT_TYPE - 1);
__ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE));
// Assume that there is no larger type.
STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1);
// Check if the constructor in the map is a JS function.
__ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset));
__ GetObjectType(v0, a1, a1);
__ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE));
// v0 now contains the constructor function. Grab the
// instance class name from there.
__ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset));
__ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset));
__ Branch(&done);
// Functions have class 'Function'.
__ bind(&function);
__ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex);
__ jmp(&done);
// Objects with a non-function constructor have class 'Object'.
__ bind(&non_function_constructor);
__ LoadRoot(v0, Heap::kObject_symbolRootIndex);
__ jmp(&done);
// Non-JS objects have class null.
__ bind(&null);
__ LoadRoot(v0, Heap::kNullValueRootIndex);
// All done.
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitLog(CallRuntime* expr) {
// Conditionally generate a log call.
// Args:
// 0 (literal string): The type of logging (corresponds to the flags).
// This is used to determine whether or not to generate the log call.
// 1 (string): Format string. Access the string at argument index 2
// with '%2s' (see Logger::LogRuntime for all the formats).
// 2 (array): Arguments to the format string.
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(args->length(), 3);
if (CodeGenerator::ShouldGenerateLog(args->at(0))) {
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallRuntime(Runtime::kLog, 2);
}
// Finally, we're expected to leave a value on the top of the stack.
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
context()->Plug(v0);
}
void FullCodeGenerator::EmitRandomHeapNumber(CallRuntime* expr) {
ASSERT(expr->arguments()->length() == 0);
Label slow_allocate_heapnumber;
Label heapnumber_allocated;
// Save the new heap number in callee-saved register s0, since
// we call out to external C code below.
__ LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber);
__ jmp(&heapnumber_allocated);
__ bind(&slow_allocate_heapnumber);
// Allocate a heap number.
__ CallRuntime(Runtime::kNumberAlloc, 0);
__ mov(s0, v0); // Save result in s0, so it is saved thru CFunc call.
__ bind(&heapnumber_allocated);
// Convert 32 random bits in v0 to 0.(32 random bits) in a double
// by computing:
// ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)).
if (CpuFeatures::IsSupported(FPU)) {
__ PrepareCallCFunction(1, a0);
__ lw(a0, ContextOperand(cp, Context::GLOBAL_INDEX));
__ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
__ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1);
CpuFeatures::Scope scope(FPU);
// 0x41300000 is the top half of 1.0 x 2^20 as a double.
__ li(a1, Operand(0x41300000));
// Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU.
__ Move(f12, v0, a1);
// Move 0x4130000000000000 to FPU.
__ Move(f14, zero_reg, a1);
// Subtract and store the result in the heap number.
__ sub_d(f0, f12, f14);
__ sdc1(f0, MemOperand(s0, HeapNumber::kValueOffset - kHeapObjectTag));
__ mov(v0, s0);
} else {
__ PrepareCallCFunction(2, a0);
__ mov(a0, s0);
__ lw(a1, ContextOperand(cp, Context::GLOBAL_INDEX));
__ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalContextOffset));
__ CallCFunction(
ExternalReference::fill_heap_number_with_random_function(isolate()), 2);
}
context()->Plug(v0);
}
void FullCodeGenerator::EmitSubString(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
SubStringStub stub;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) {
// Load the arguments on the stack and call the stub.
RegExpExecStub stub;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 4);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
VisitForStackValue(args->at(3));
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label done;
// If the object is a smi return the object.
__ JumpIfSmi(v0, &done);
// If the object is not a value type, return the object.
__ GetObjectType(v0, a1, a1);
__ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE));
__ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset));
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitDateField(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
ASSERT_NE(NULL, args->at(1)->AsLiteral());
Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->handle()));
VisitForAccumulatorValue(args->at(0)); // Load the object.
Label runtime, done;
Register object = v0;
Register result = v0;
Register scratch0 = t5;
Register scratch1 = a1;
#ifdef DEBUG
__ AbortIfSmi(object);
__ GetObjectType(object, scratch1, scratch1);
__ Assert(eq, "Trying to get date field from non-date.",
scratch1, Operand(JS_DATE_TYPE));
#endif
if (index->value() == 0) {
__ lw(result, FieldMemOperand(object, JSDate::kValueOffset));
} else {
if (index->value() < JSDate::kFirstUncachedField) {
ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
__ li(scratch1, Operand(stamp));
__ lw(scratch1, MemOperand(scratch1));
__ lw(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset));
__ Branch(&runtime, ne, scratch1, Operand(scratch0));
__ lw(result, FieldMemOperand(object, JSDate::kValueOffset +
kPointerSize * index->value()));
__ jmp(&done);
}
__ bind(&runtime);
__ PrepareCallCFunction(2, scratch1);
__ li(a1, Operand(index));
__ Move(a0, object);
__ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
__ bind(&done);
}
context()->Plug(v0);
}
void FullCodeGenerator::EmitMathPow(CallRuntime* expr) {
// Load the arguments on the stack and call the runtime function.
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
if (CpuFeatures::IsSupported(FPU)) {
MathPowStub stub(MathPowStub::ON_STACK);
__ CallStub(&stub);
} else {
__ CallRuntime(Runtime::kMath_pow, 2);
}
context()->Plug(v0);
}
void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0)); // Load the object.
VisitForAccumulatorValue(args->at(1)); // Load the value.
__ pop(a1); // v0 = value. a1 = object.
Label done;
// If the object is a smi, return the value.
__ JumpIfSmi(a1, &done);
// If the object is not a value type, return the value.
__ GetObjectType(a1, a2, a2);
__ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE));
// Store the value.
__ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset));
// Update the write barrier. Save the value as it will be
// overwritten by the write barrier code and is needed afterward.
__ mov(a2, v0);
__ RecordWriteField(
a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs);
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(args->length(), 1);
// Load the argument on the stack and call the stub.
VisitForStackValue(args->at(0));
NumberToStringStub stub;
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
Label done;
StringCharFromCodeGenerator generator(v0, a1);
generator.GenerateFast(masm_);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(a1);
}
void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
__ mov(a0, result_register());
Register object = a1;
Register index = a0;
Register result = v0;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharCodeAtGenerator generator(object,
index,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// NaN.
__ LoadRoot(result, Heap::kNanValueRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Load the undefined value into the result register, which will
// trigger conversion.
__ LoadRoot(result, Heap::kUndefinedValueRootIndex);
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1));
__ mov(a0, result_register());
Register object = a1;
Register index = a0;
Register scratch = a3;
Register result = v0;
__ pop(object);
Label need_conversion;
Label index_out_of_range;
Label done;
StringCharAtGenerator generator(object,
index,
scratch,
result,
&need_conversion,
&need_conversion,
&index_out_of_range,
STRING_INDEX_IS_NUMBER);
generator.GenerateFast(masm_);
__ jmp(&done);
__ bind(&index_out_of_range);
// When the index is out of range, the spec requires us to return
// the empty string.
__ LoadRoot(result, Heap::kEmptyStringRootIndex);
__ jmp(&done);
__ bind(&need_conversion);
// Move smi zero into the result register, which will trigger
// conversion.
__ li(result, Operand(Smi::FromInt(0)));
__ jmp(&done);
NopRuntimeCallHelper call_helper;
generator.GenerateSlow(masm_, call_helper);
__ bind(&done);
context()->Plug(result);
}
void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
StringAddStub stub(NO_STRING_ADD_FLAGS);
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
StringCompareStub stub;
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitMathSin(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::SIN,
TranscendentalCacheStub::TAGGED);
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitMathCos(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::COS,
TranscendentalCacheStub::TAGGED);
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitMathTan(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::TAN,
TranscendentalCacheStub::TAGGED);
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitMathLog(CallRuntime* expr) {
// Load the argument on the stack and call the stub.
TranscendentalCacheStub stub(TranscendentalCache::LOG,
TranscendentalCacheStub::TAGGED);
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ mov(a0, result_register()); // Stub requires parameter in a0 and on tos.
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) {
// Load the argument on the stack and call the runtime function.
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForStackValue(args->at(0));
__ CallRuntime(Runtime::kMath_sqrt, 1);
context()->Plug(v0);
}
void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() >= 2);
int arg_count = args->length() - 2; // 2 ~ receiver and function.
for (int i = 0; i < arg_count + 1; i++) {
VisitForStackValue(args->at(i));
}
VisitForAccumulatorValue(args->last()); // Function.
// Check for proxy.
Label proxy, done;
__ GetObjectType(v0, a1, a1);
__ Branch(&proxy, eq, a1, Operand(JS_FUNCTION_PROXY_TYPE));
// InvokeFunction requires the function in a1. Move it in there.
__ mov(a1, result_register());
ParameterCount count(arg_count);
__ InvokeFunction(a1, count, CALL_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
__ jmp(&done);
__ bind(&proxy);
__ push(v0);
__ CallRuntime(Runtime::kCall, args->length());
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) {
RegExpConstructResultStub stub;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
__ CallStub(&stub);
context()->Plug(v0);
}
void FullCodeGenerator::EmitSwapElements(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 3);
VisitForStackValue(args->at(0));
VisitForStackValue(args->at(1));
VisitForStackValue(args->at(2));
Label done;
Label slow_case;
Register object = a0;
Register index1 = a1;
Register index2 = a2;
Register elements = a3;
Register scratch1 = t0;
Register scratch2 = t1;
__ lw(object, MemOperand(sp, 2 * kPointerSize));
// Fetch the map and check if array is in fast case.
// Check that object doesn't require security checks and
// has no indexed interceptor.
__ GetObjectType(object, scratch1, scratch2);
__ Branch(&slow_case, ne, scratch2, Operand(JS_ARRAY_TYPE));
// Map is now in scratch1.
__ lbu(scratch2, FieldMemOperand(scratch1, Map::kBitFieldOffset));
__ And(scratch2, scratch2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask));
__ Branch(&slow_case, ne, scratch2, Operand(zero_reg));
// Check the object's elements are in fast case and writable.
__ lw(elements, FieldMemOperand(object, JSObject::kElementsOffset));
__ lw(scratch1, FieldMemOperand(elements, HeapObject::kMapOffset));
__ LoadRoot(scratch2, Heap::kFixedArrayMapRootIndex);
__ Branch(&slow_case, ne, scratch1, Operand(scratch2));
// Check that both indices are smis.
__ lw(index1, MemOperand(sp, 1 * kPointerSize));
__ lw(index2, MemOperand(sp, 0));
__ JumpIfNotBothSmi(index1, index2, &slow_case);
// Check that both indices are valid.
Label not_hi;
__ lw(scratch1, FieldMemOperand(object, JSArray::kLengthOffset));
__ Branch(&slow_case, ls, scratch1, Operand(index1));
__ Branch(&not_hi, NegateCondition(hi), scratch1, Operand(index1));
__ Branch(&slow_case, ls, scratch1, Operand(index2));
__ bind(&not_hi);
// Bring the address of the elements into index1 and index2.
__ Addu(scratch1, elements,
Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ sll(index1, index1, kPointerSizeLog2 - kSmiTagSize);
__ Addu(index1, scratch1, index1);
__ sll(index2, index2, kPointerSizeLog2 - kSmiTagSize);
__ Addu(index2, scratch1, index2);
// Swap elements.
__ lw(scratch1, MemOperand(index1, 0));
__ lw(scratch2, MemOperand(index2, 0));
__ sw(scratch1, MemOperand(index2, 0));
__ sw(scratch2, MemOperand(index1, 0));
Label no_remembered_set;
__ CheckPageFlag(elements,
scratch1,
1 << MemoryChunk::SCAN_ON_SCAVENGE,
ne,
&no_remembered_set);
// Possible optimization: do a check that both values are Smis
// (or them and test against Smi mask).
// We are swapping two objects in an array and the incremental marker never
// pauses in the middle of scanning a single object. Therefore the
// incremental marker is not disturbed, so we don't need to call the
// RecordWrite stub that notifies the incremental marker.
__ RememberedSetHelper(elements,
index1,
scratch2,
kDontSaveFPRegs,
MacroAssembler::kFallThroughAtEnd);
__ RememberedSetHelper(elements,
index2,
scratch2,
kDontSaveFPRegs,
MacroAssembler::kFallThroughAtEnd);
__ bind(&no_remembered_set);
// We are done. Drop elements from the stack, and return undefined.
__ Drop(3);
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
__ jmp(&done);
__ bind(&slow_case);
__ CallRuntime(Runtime::kSwapElements, 3);
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
ASSERT_NE(NULL, args->at(0)->AsLiteral());
int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value();
Handle<FixedArray> jsfunction_result_caches(
isolate()->global_context()->jsfunction_result_caches());
if (jsfunction_result_caches->length() <= cache_id) {
__ Abort("Attempt to use undefined cache.");
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
context()->Plug(v0);
return;
}
VisitForAccumulatorValue(args->at(1));
Register key = v0;
Register cache = a1;
__ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX));
__ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset));
__ lw(cache,
ContextOperand(
cache, Context::JSFUNCTION_RESULT_CACHES_INDEX));
__ lw(cache,
FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id)));
Label done, not_found;
STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1);
__ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset));
// a2 now holds finger offset as a smi.
__ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
// a3 now points to the start of fixed array elements.
__ sll(at, a2, kPointerSizeLog2 - kSmiTagSize);
__ addu(a3, a3, at);
// a3 now points to key of indexed element of cache.
__ lw(a2, MemOperand(a3));
__ Branch(&not_found, ne, key, Operand(a2));
__ lw(v0, MemOperand(a3, kPointerSize));
__ Branch(&done);
__ bind(&not_found);
// Call runtime to perform the lookup.
__ Push(cache, key);
__ CallRuntime(Runtime::kGetFromCache, 2);
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT_EQ(2, args->length());
Register right = v0;
Register left = a1;
Register tmp = a2;
Register tmp2 = a3;
VisitForStackValue(args->at(0));
VisitForAccumulatorValue(args->at(1)); // Result (right) in v0.
__ pop(left);
Label done, fail, ok;
__ Branch(&ok, eq, left, Operand(right));
// Fail if either is a non-HeapObject.
__ And(tmp, left, Operand(right));
__ JumpIfSmi(tmp, &fail);
__ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset));
__ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset));
__ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE));
__ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset));
__ Branch(&fail, ne, tmp, Operand(tmp2));
__ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset));
__ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset));
__ Branch(&ok, eq, tmp, Operand(tmp2));
__ bind(&fail);
__ LoadRoot(v0, Heap::kFalseValueRootIndex);
__ jmp(&done);
__ bind(&ok);
__ LoadRoot(v0, Heap::kTrueValueRootIndex);
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
VisitForAccumulatorValue(args->at(0));
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
__ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset));
__ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask));
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through);
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) {
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 1);
VisitForAccumulatorValue(args->at(0));
if (FLAG_debug_code) {
__ AbortIfNotString(v0);
}
__ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset));
__ IndexFromHash(v0, v0);
context()->Plug(v0);
}
void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) {
Label bailout, done, one_char_separator, long_separator,
non_trivial_array, not_size_one_array, loop,
empty_separator_loop, one_char_separator_loop,
one_char_separator_loop_entry, long_separator_loop;
ZoneList<Expression*>* args = expr->arguments();
ASSERT(args->length() == 2);
VisitForStackValue(args->at(1));
VisitForAccumulatorValue(args->at(0));
// All aliases of the same register have disjoint lifetimes.
Register array = v0;
Register elements = no_reg; // Will be v0.
Register result = no_reg; // Will be v0.
Register separator = a1;
Register array_length = a2;
Register result_pos = no_reg; // Will be a2.
Register string_length = a3;
Register string = t0;
Register element = t1;
Register elements_end = t2;
Register scratch1 = t3;
Register scratch2 = t5;
Register scratch3 = t4;
Register scratch4 = v1;
// Separator operand is on the stack.
__ pop(separator);
// Check that the array is a JSArray.
__ JumpIfSmi(array, &bailout);
__ GetObjectType(array, scratch1, scratch2);
__ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE));
// Check that the array has fast elements.
__ CheckFastElements(scratch1, scratch2, &bailout);
// If the array has length zero, return the empty string.
__ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset));
__ SmiUntag(array_length);
__ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg));
__ LoadRoot(v0, Heap::kEmptyStringRootIndex);
__ Branch(&done);
__ bind(&non_trivial_array);
// Get the FixedArray containing array's elements.
elements = array;
__ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset));
array = no_reg; // End of array's live range.
// Check that all array elements are sequential ASCII strings, and
// accumulate the sum of their lengths, as a smi-encoded value.
__ mov(string_length, zero_reg);
__ Addu(element,
elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
__ sll(elements_end, array_length, kPointerSizeLog2);
__ Addu(elements_end, element, elements_end);
// Loop condition: while (element < elements_end).
// Live values in registers:
// elements: Fixed array of strings.
// array_length: Length of the fixed array of strings (not smi)
// separator: Separator string
// string_length: Accumulated sum of string lengths (smi).
// element: Current array element.
// elements_end: Array end.
if (FLAG_debug_code) {
__ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin",
array_length, Operand(zero_reg));
}
__ bind(&loop);
__ lw(string, MemOperand(element));
__ Addu(element, element, kPointerSize);
__ JumpIfSmi(string, &bailout);
__ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset));
__ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
__ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset));
__ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3);
__ BranchOnOverflow(&bailout, scratch3);
__ Branch(&loop, lt, element, Operand(elements_end));
// If array_length is 1, return elements[0], a string.
__ Branch(&not_size_one_array, ne, array_length, Operand(1));
__ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize));
__ Branch(&done);
__ bind(&not_size_one_array);
// Live values in registers:
// separator: Separator string
// array_length: Length of the array.
// string_length: Sum of string lengths (smi).
// elements: FixedArray of strings.
// Check that the separator is a flat ASCII string.
__ JumpIfSmi(separator, &bailout);
__ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset));
__ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
__ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout);
// Add (separator length times array_length) - separator length to the
// string_length to get the length of the result string. array_length is not
// smi but the other values are, so the result is a smi.
__ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
__ Subu(string_length, string_length, Operand(scratch1));
__ Mult(array_length, scratch1);
// Check for smi overflow. No overflow if higher 33 bits of 64-bit result are
// zero.
__ mfhi(scratch2);
__ Branch(&bailout, ne, scratch2, Operand(zero_reg));
__ mflo(scratch2);
__ And(scratch3, scratch2, Operand(0x80000000));
__ Branch(&bailout, ne, scratch3, Operand(zero_reg));
__ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3);
__ BranchOnOverflow(&bailout, scratch3);
__ SmiUntag(string_length);
// Get first element in the array to free up the elements register to be used
// for the result.
__ Addu(element,
elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
result = elements; // End of live range for elements.
elements = no_reg;
// Live values in registers:
// element: First array element
// separator: Separator string
// string_length: Length of result string (not smi)
// array_length: Length of the array.
__ AllocateAsciiString(result,
string_length,
scratch1,
scratch2,
elements_end,
&bailout);
// Prepare for looping. Set up elements_end to end of the array. Set
// result_pos to the position of the result where to write the first
// character.
__ sll(elements_end, array_length, kPointerSizeLog2);
__ Addu(elements_end, element, elements_end);
result_pos = array_length; // End of live range for array_length.
array_length = no_reg;
__ Addu(result_pos,
result,
Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
// Check the length of the separator.
__ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset));
__ li(at, Operand(Smi::FromInt(1)));
__ Branch(&one_char_separator, eq, scratch1, Operand(at));
__ Branch(&long_separator, gt, scratch1, Operand(at));
// Empty separator case.
__ bind(&empty_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// Copy next array element to the result.
__ lw(string, MemOperand(element));
__ Addu(element, element, kPointerSize);
__ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(string, result_pos, string_length, scratch1);
// End while (element < elements_end).
__ Branch(&empty_separator_loop, lt, element, Operand(elements_end));
ASSERT(result.is(v0));
__ Branch(&done);
// One-character separator case.
__ bind(&one_char_separator);
// Replace separator with its ASCII character value.
__ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize));
// Jump into the loop after the code that copies the separator, so the first
// element is not preceded by a separator.
__ jmp(&one_char_separator_loop_entry);
__ bind(&one_char_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Single separator ASCII char (in lower byte).
// Copy the separator character to the result.
__ sb(separator, MemOperand(result_pos));
__ Addu(result_pos, result_pos, 1);
// Copy next array element to the result.
__ bind(&one_char_separator_loop_entry);
__ lw(string, MemOperand(element));
__ Addu(element, element, kPointerSize);
__ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(string, result_pos, string_length, scratch1);
// End while (element < elements_end).
__ Branch(&one_char_separator_loop, lt, element, Operand(elements_end));
ASSERT(result.is(v0));
__ Branch(&done);
// Long separator case (separator is more than one character). Entry is at the
// label long_separator below.
__ bind(&long_separator_loop);
// Live values in registers:
// result_pos: the position to which we are currently copying characters.
// element: Current array element.
// elements_end: Array end.
// separator: Separator string.
// Copy the separator to the result.
__ lw(string_length, FieldMemOperand(separator, String::kLengthOffset));
__ SmiUntag(string_length);
__ Addu(string,
separator,
Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag));
__ CopyBytes(string, result_pos, string_length, scratch1);
__ bind(&long_separator);
__ lw(string, MemOperand(element));
__ Addu(element, element, kPointerSize);
__ lw(string_length, FieldMemOperand(string, String::kLengthOffset));
__ SmiUntag(string_length);
__ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag);
__ CopyBytes(string, result_pos, string_length, scratch1);
// End while (element < elements_end).
__ Branch(&long_separator_loop, lt, element, Operand(elements_end));
ASSERT(result.is(v0));
__ Branch(&done);
__ bind(&bailout);
__ LoadRoot(v0, Heap::kUndefinedValueRootIndex);
__ bind(&done);
context()->Plug(v0);
}
void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
Handle<String> name = expr->name();
if (name->length() > 0 && name->Get(0) == '_') {
Comment cmnt(masm_, "[ InlineRuntimeCall");
EmitInlineRuntimeCall(expr);
return;
}
Comment cmnt(masm_, "[ CallRuntime");
ZoneList<Expression*>* args = expr->arguments();
if (expr->is_jsruntime()) {
// Prepare for calling JS runtime function.
__ lw(a0, GlobalObjectOperand());
__ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset));
__ push(a0);
}
// Push the arguments ("left-to-right").
int arg_count = args->length();
for (int i = 0; i < arg_count; i++) {
VisitForStackValue(args->at(i));
}
if (expr->is_jsruntime()) {
// Call the JS runtime function.
__ li(a2, Operand(expr->name()));
RelocInfo::Mode mode = RelocInfo::CODE_TARGET;
Handle<Code> ic =
isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode);
CallIC(ic, mode, expr->id());
// Restore context register.
__ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
} else {
// Call the C runtime function.
__ CallRuntime(expr->function(), arg_count);
}
context()->Plug(v0);
}
void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
switch (expr->op()) {
case Token::DELETE: {
Comment cmnt(masm_, "[ UnaryOperation (DELETE)");
Property* property = expr->expression()->AsProperty();
VariableProxy* proxy = expr->expression()->AsVariableProxy();
if (property != NULL) {
VisitForStackValue(property->obj());
VisitForStackValue(property->key());
StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE)
? kNonStrictMode : kStrictMode;
__ li(a1, Operand(Smi::FromInt(strict_mode_flag)));
__ push(a1);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(v0);
} else if (proxy != NULL) {
Variable* var = proxy->var();
// Delete of an unqualified identifier is disallowed in strict mode
// but "delete this" is allowed.
ASSERT(language_mode() == CLASSIC_MODE || var->is_this());
if (var->IsUnallocated()) {
__ lw(a2, GlobalObjectOperand());
__ li(a1, Operand(var->name()));
__ li(a0, Operand(Smi::FromInt(kNonStrictMode)));
__ Push(a2, a1, a0);
__ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION);
context()->Plug(v0);
} else if (var->IsStackAllocated() || var->IsContextSlot()) {
// Result of deleting non-global, non-dynamic variables is false.
// The subexpression does not have side effects.
context()->Plug(var->is_this());
} else {
// Non-global variable. Call the runtime to try to delete from the
// context where the variable was introduced.
__ push(context_register());
__ li(a2, Operand(var->name()));
__ push(a2);
__ CallRuntime(Runtime::kDeleteContextSlot, 2);
context()->Plug(v0);
}
} else {
// Result of deleting non-property, non-variable reference is true.
// The subexpression may have side effects.
VisitForEffect(expr->expression());
context()->Plug(true);
}
break;
}
case Token::VOID: {
Comment cmnt(masm_, "[ UnaryOperation (VOID)");
VisitForEffect(expr->expression());
context()->Plug(Heap::kUndefinedValueRootIndex);
break;
}
case Token::NOT: {
Comment cmnt(masm_, "[ UnaryOperation (NOT)");
if (context()->IsEffect()) {
// Unary NOT has no side effects so it's only necessary to visit the
// subexpression. Match the optimizing compiler by not branching.
VisitForEffect(expr->expression());
} else if (context()->IsTest()) {
const TestContext* test = TestContext::cast(context());
// The labels are swapped for the recursive call.
VisitForControl(expr->expression(),
test->false_label(),
test->true_label(),
test->fall_through());
context()->Plug(test->true_label(), test->false_label());
} else {
// We handle value contexts explicitly rather than simply visiting
// for control and plugging the control flow into the context,
// because we need to prepare a pair of extra administrative AST ids
// for the optimizing compiler.
ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue());
Label materialize_true, materialize_false, done;
VisitForControl(expr->expression(),
&materialize_false,
&materialize_true,
&materialize_true);
__ bind(&materialize_true);
PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS);
__ LoadRoot(v0, Heap::kTrueValueRootIndex);
if (context()->IsStackValue()) __ push(v0);
__ jmp(&done);
__ bind(&materialize_false);
PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS);
__ LoadRoot(v0, Heap::kFalseValueRootIndex);
if (context()->IsStackValue()) __ push(v0);
__ bind(&done);
}
break;
}
case Token::TYPEOF: {
Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)");
{ StackValueContext context(this);
VisitForTypeofValue(expr->expression());
}
__ CallRuntime(Runtime::kTypeof, 1);
context()->Plug(v0);
break;
}
case Token::ADD: {
Comment cmt(masm_, "[ UnaryOperation (ADD)");
VisitForAccumulatorValue(expr->expression());
Label no_conversion;
__ JumpIfSmi(result_register(), &no_conversion);
__ mov(a0, result_register());
ToNumberStub convert_stub;
__ CallStub(&convert_stub);
__ bind(&no_conversion);
context()->Plug(result_register());
break;
}
case Token::SUB:
EmitUnaryOperation(expr, "[ UnaryOperation (SUB)");
break;
case Token::BIT_NOT:
EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)");
break;
default:
UNREACHABLE();
}
}
void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr,
const char* comment) {
// TODO(svenpanne): Allowing format strings in Comment would be nice here...
Comment cmt(masm_, comment);
bool can_overwrite = expr->expression()->ResultOverwriteAllowed();
UnaryOverwriteMode overwrite =
can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE;
UnaryOpStub stub(expr->op(), overwrite);
// GenericUnaryOpStub expects the argument to be in a0.
VisitForAccumulatorValue(expr->expression());
SetSourcePosition(expr->position());
__ mov(a0, result_register());
CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id());
context()->Plug(v0);
}
void FullCodeGenerator::VisitCountOperation(CountOperation* expr) {
Comment cmnt(masm_, "[ CountOperation");
SetSourcePosition(expr->position());
// Invalid left-hand sides are rewritten to have a 'throw ReferenceError'
// as the left-hand side.
if (!expr->expression()->IsValidLeftHandSide()) {
VisitForEffect(expr->expression());
return;
}
// Expression can only be a property, a global or a (parameter or local)
// slot.
enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY };
LhsKind assign_type = VARIABLE;
Property* prop = expr->expression()->AsProperty();
// In case of a property we use the uninitialized expression context
// of the key to detect a named property.
if (prop != NULL) {
assign_type =
(prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY;
}
// Evaluate expression and get value.
if (assign_type == VARIABLE) {
ASSERT(expr->expression()->AsVariableProxy()->var() != NULL);
AccumulatorValueContext context(this);
EmitVariableLoad(expr->expression()->AsVariableProxy());
} else {
// Reserve space for result of postfix operation.
if (expr->is_postfix() && !context()->IsEffect()) {
__ li(at, Operand(Smi::FromInt(0)));
__ push(at);
}
if (assign_type == NAMED_PROPERTY) {
// Put the object both on the stack and in the accumulator.
VisitForAccumulatorValue(prop->obj());
__ push(v0);
EmitNamedPropertyLoad(prop);
} else {
VisitForStackValue(prop->obj());
VisitForAccumulatorValue(prop->key());
__ lw(a1, MemOperand(sp, 0));
__ push(v0);
EmitKeyedPropertyLoad(prop);
}
}
// We need a second deoptimization point after loading the value
// in case evaluating the property load my have a side effect.
if (assign_type == VARIABLE) {
PrepareForBailout(expr->expression(), TOS_REG);
} else {
PrepareForBailoutForId(expr->CountId(), TOS_REG);
}
// Call ToNumber only if operand is not a smi.
Label no_conversion;
__ JumpIfSmi(v0, &no_conversion);
__ mov(a0, v0);
ToNumberStub convert_stub;
__ CallStub(&convert_stub);
__ bind(&no_conversion);
// Save result for postfix expressions.
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
// Save the result on the stack. If we have a named or keyed property
// we store the result under the receiver that is currently on top
// of the stack.
switch (assign_type) {
case VARIABLE:
__ push(v0);
break;
case NAMED_PROPERTY:
__ sw(v0, MemOperand(sp, kPointerSize));
break;
case KEYED_PROPERTY:
__ sw(v0, MemOperand(sp, 2 * kPointerSize));
break;
}
}
}
__ mov(a0, result_register());
// Inline smi case if we are in a loop.
Label stub_call, done;
JumpPatchSite patch_site(masm_);
int count_value = expr->op() == Token::INC ? 1 : -1;
__ li(a1, Operand(Smi::FromInt(count_value)));
if (ShouldInlineSmiCase(expr->op())) {
__ AdduAndCheckForOverflow(v0, a0, a1, t0);
__ BranchOnOverflow(&stub_call, t0); // Do stub on overflow.
// We could eliminate this smi check if we split the code at
// the first smi check before calling ToNumber.
patch_site.EmitJumpIfSmi(v0, &done);
__ bind(&stub_call);
}
// Record position before stub call.
SetSourcePosition(expr->position());
BinaryOpStub stub(Token::ADD, NO_OVERWRITE);
CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId());
patch_site.EmitPatchInfo();
__ bind(&done);
// Store the value returned in v0.
switch (assign_type) {
case VARIABLE:
if (expr->is_postfix()) {
{ EffectContext context(this);
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context.Plug(v0);
}
// For all contexts except EffectConstant we have the result on
// top of the stack.
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(),
Token::ASSIGN);
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
context()->Plug(v0);
}
break;
case NAMED_PROPERTY: {
__ mov(a0, result_register()); // Value.
__ li(a2, Operand(prop->key()->AsLiteral()->handle())); // Name.
__ pop(a1); // Receiver.
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->StoreIC_Initialize()
: isolate()->builtins()->StoreIC_Initialize_Strict();
CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(v0);
}
break;
}
case KEYED_PROPERTY: {
__ mov(a0, result_register()); // Value.
__ pop(a1); // Key.
__ pop(a2); // Receiver.
Handle<Code> ic = is_classic_mode()
? isolate()->builtins()->KeyedStoreIC_Initialize()
: isolate()->builtins()->KeyedStoreIC_Initialize_Strict();
CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
PrepareForBailoutForId(expr->AssignmentId(), TOS_REG);
if (expr->is_postfix()) {
if (!context()->IsEffect()) {
context()->PlugTOS();
}
} else {
context()->Plug(v0);
}
break;
}
}
}
void FullCodeGenerator::VisitForTypeofValue(Expression* expr) {
ASSERT(!context()->IsEffect());
ASSERT(!context()->IsTest());
VariableProxy* proxy = expr->AsVariableProxy();
if (proxy != NULL && proxy->var()->IsUnallocated()) {
Comment cmnt(masm_, "Global variable");
__ lw(a0, GlobalObjectOperand());
__ li(a2, Operand(proxy->name()));
Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize();
// Use a regular load, not a contextual load, to avoid a reference
// error.
CallIC(ic);
PrepareForBailout(expr, TOS_REG);
context()->Plug(v0);
} else if (proxy != NULL && proxy->var()->IsLookupSlot()) {
Label done, slow;
// Generate code for loading from variables potentially shadowed
// by eval-introduced variables.
EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done);
__ bind(&slow);
__ li(a0, Operand(proxy->name()));
__ Push(cp, a0);
__ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2);
PrepareForBailout(expr, TOS_REG);
__ bind(&done);
context()->Plug(v0);
} else {
// This expression cannot throw a reference error at the top level.
VisitInDuplicateContext(expr);
}
}
void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr,
Expression* sub_expr,
Handle<String> check) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
{ AccumulatorValueContext context(this);
VisitForTypeofValue(sub_expr);
}
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
if (check->Equals(isolate()->heap()->number_symbol())) {
__ JumpIfSmi(v0, if_true);
__ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
__ LoadRoot(at, Heap::kHeapNumberMapRootIndex);
Split(eq, v0, Operand(at), if_true, if_false, fall_through);
} else if (check->Equals(isolate()->heap()->string_symbol())) {
__ JumpIfSmi(v0, if_false);
// Check for undetectable objects => false.
__ GetObjectType(v0, v0, a1);
__ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE));
__ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
__ And(a1, a1, Operand(1 << Map::kIsUndetectable));
Split(eq, a1, Operand(zero_reg),
if_true, if_false, fall_through);
} else if (check->Equals(isolate()->heap()->boolean_symbol())) {
__ LoadRoot(at, Heap::kTrueValueRootIndex);
__ Branch(if_true, eq, v0, Operand(at));
__ LoadRoot(at, Heap::kFalseValueRootIndex);
Split(eq, v0, Operand(at), if_true, if_false, fall_through);
} else if (FLAG_harmony_typeof &&
check->Equals(isolate()->heap()->null_symbol())) {
__ LoadRoot(at, Heap::kNullValueRootIndex);
Split(eq, v0, Operand(at), if_true, if_false, fall_through);
} else if (check->Equals(isolate()->heap()->undefined_symbol())) {
__ LoadRoot(at, Heap::kUndefinedValueRootIndex);
__ Branch(if_true, eq, v0, Operand(at));
__ JumpIfSmi(v0, if_false);
// Check for undetectable objects => true.
__ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
__ And(a1, a1, Operand(1 << Map::kIsUndetectable));
Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
} else if (check->Equals(isolate()->heap()->function_symbol())) {
__ JumpIfSmi(v0, if_false);
STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
__ GetObjectType(v0, v0, a1);
__ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE));
Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE),
if_true, if_false, fall_through);
} else if (check->Equals(isolate()->heap()->object_symbol())) {
__ JumpIfSmi(v0, if_false);
if (!FLAG_harmony_typeof) {
__ LoadRoot(at, Heap::kNullValueRootIndex);
__ Branch(if_true, eq, v0, Operand(at));
}
// Check for JS objects => true.
__ GetObjectType(v0, v0, a1);
__ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
__ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset));
__ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE));
// Check for undetectable objects => false.
__ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset));
__ And(a1, a1, Operand(1 << Map::kIsUndetectable));
Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through);
} else {
if (if_false != fall_through) __ jmp(if_false);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
Comment cmnt(masm_, "[ CompareOperation");
SetSourcePosition(expr->position());
// First we try a fast inlined version of the compare when one of
// the operands is a literal.
if (TryLiteralCompare(expr)) return;
// Always perform the comparison for its control flow. Pack the result
// into the expression's context after the comparison is performed.
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
Token::Value op = expr->op();
VisitForStackValue(expr->left());
switch (op) {
case Token::IN:
VisitForStackValue(expr->right());
__ InvokeBuiltin(Builtins::IN, CALL_FUNCTION);
PrepareForBailoutBeforeSplit(expr, false, NULL, NULL);
__ LoadRoot(t0, Heap::kTrueValueRootIndex);
Split(eq, v0, Operand(t0), if_true, if_false, fall_through);
break;
case Token::INSTANCEOF: {
VisitForStackValue(expr->right());
InstanceofStub stub(InstanceofStub::kNoFlags);
__ CallStub(&stub);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
// The stub returns 0 for true.
Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through);
break;
}
default: {
VisitForAccumulatorValue(expr->right());
Condition cc = eq;
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
cc = eq;
break;
case Token::LT:
cc = lt;
break;
case Token::GT:
cc = gt;
break;
case Token::LTE:
cc = le;
break;
case Token::GTE:
cc = ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
__ mov(a0, result_register());
__ pop(a1);
bool inline_smi_code = ShouldInlineSmiCase(op);
JumpPatchSite patch_site(masm_);
if (inline_smi_code) {
Label slow_case;
__ Or(a2, a0, Operand(a1));
patch_site.EmitJumpIfNotSmi(a2, &slow_case);
Split(cc, a1, Operand(a0), if_true, if_false, NULL);
__ bind(&slow_case);
}
// Record position and call the compare IC.
SetSourcePosition(expr->position());
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallIC(ic, RelocInfo::CODE_TARGET, expr->id());
patch_site.EmitPatchInfo();
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through);
}
}
// Convert the result of the comparison into one expected for this
// expression's context.
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr,
Expression* sub_expr,
NilValue nil) {
Label materialize_true, materialize_false;
Label* if_true = NULL;
Label* if_false = NULL;
Label* fall_through = NULL;
context()->PrepareTest(&materialize_true, &materialize_false,
&if_true, &if_false, &fall_through);
VisitForAccumulatorValue(sub_expr);
PrepareForBailoutBeforeSplit(expr, true, if_true, if_false);
Heap::RootListIndex nil_value = nil == kNullValue ?
Heap::kNullValueRootIndex :
Heap::kUndefinedValueRootIndex;
__ mov(a0, result_register());
__ LoadRoot(a1, nil_value);
if (expr->op() == Token::EQ_STRICT) {
Split(eq, a0, Operand(a1), if_true, if_false, fall_through);
} else {
Heap::RootListIndex other_nil_value = nil == kNullValue ?
Heap::kUndefinedValueRootIndex :
Heap::kNullValueRootIndex;
__ Branch(if_true, eq, a0, Operand(a1));
__ LoadRoot(a1, other_nil_value);
__ Branch(if_true, eq, a0, Operand(a1));
__ JumpIfSmi(a0, if_false);
// It can be an undetectable object.
__ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset));
__ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset));
__ And(a1, a1, Operand(1 << Map::kIsUndetectable));
Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through);
}
context()->Plug(if_true, if_false);
}
void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) {
__ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
context()->Plug(v0);
}
Register FullCodeGenerator::result_register() {
return v0;
}
Register FullCodeGenerator::context_register() {
return cp;
}
void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) {
ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset);
__ sw(value, MemOperand(fp, frame_offset));
}
void FullCodeGenerator::LoadContextField(Register dst, int context_index) {
__ lw(dst, ContextOperand(cp, context_index));
}
void FullCodeGenerator::PushFunctionArgumentForContextAllocation() {
Scope* declaration_scope = scope()->DeclarationScope();
if (declaration_scope->is_global_scope()) {
// Contexts nested in the global context have a canonical empty function
// as their closure, not the anonymous closure containing the global
// code. Pass a smi sentinel and let the runtime look up the empty
// function.
__ li(at, Operand(Smi::FromInt(0)));
} else if (declaration_scope->is_eval_scope()) {
// Contexts created by a call to eval have the same closure as the
// context calling eval, not the anonymous closure containing the eval
// code. Fetch it from the context.
__ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX));
} else {
ASSERT(declaration_scope->is_function_scope());
__ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
}
__ push(at);
}
// ----------------------------------------------------------------------------
// Non-local control flow support.
void FullCodeGenerator::EnterFinallyBlock() {
ASSERT(!result_register().is(a1));
// Store result register while executing finally block.
__ push(result_register());
// Cook return address in link register to stack (smi encoded Code* delta).
__ Subu(a1, ra, Operand(masm_->CodeObject()));
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
STATIC_ASSERT(0 == kSmiTag);
__ Addu(a1, a1, Operand(a1)); // Convert to smi.
__ push(a1);
}
void FullCodeGenerator::ExitFinallyBlock() {
ASSERT(!result_register().is(a1));
// Restore result register from stack.
__ pop(a1);
// Uncook return address and return.
__ pop(result_register());
ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize);
__ sra(a1, a1, 1); // Un-smi-tag value.
__ Addu(at, a1, Operand(masm_->CodeObject()));
__ Jump(at);
}
#undef __
#define __ ACCESS_MASM(masm())
FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit(
int* stack_depth,
int* context_length) {
// The macros used here must preserve the result register.
// Because the handler block contains the context of the finally
// code, we can restore it directly from there for the finally code
// rather than iteratively unwinding contexts via their previous
// links.
__ Drop(*stack_depth); // Down to the handler block.
if (*context_length > 0) {
// Restore the context to its dedicated register and the stack.
__ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset));
__ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
__ PopTryHandler();
__ Call(finally_entry_);
*stack_depth = 0;
*context_length = 0;
return previous_;
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_MIPS