blob: 2861b1f76e05759aed52aae0c0ea53a54cc2232d [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
//
// Tests of the circular queue.
#include "v8.h"
#include "circular-queue-inl.h"
#include "cctest.h"
using i::SamplingCircularQueue;
TEST(SamplingCircularQueue) {
typedef SamplingCircularQueue::Cell Record;
const int kRecordsPerChunk = 4;
SamplingCircularQueue scq(sizeof(Record),
kRecordsPerChunk * sizeof(Record),
3);
// Check that we are using non-reserved values.
CHECK_NE(SamplingCircularQueue::kClear, 1);
CHECK_NE(SamplingCircularQueue::kEnd, 1);
// Fill up the first chunk.
CHECK_EQ(NULL, scq.StartDequeue());
for (Record i = 1; i < 1 + kRecordsPerChunk; ++i) {
Record* rec = reinterpret_cast<Record*>(scq.Enqueue());
CHECK_NE(NULL, rec);
*rec = i;
CHECK_EQ(NULL, scq.StartDequeue());
}
// Fill up the second chunk. Consumption must still be unavailable.
CHECK_EQ(NULL, scq.StartDequeue());
for (Record i = 10; i < 10 + kRecordsPerChunk; ++i) {
Record* rec = reinterpret_cast<Record*>(scq.Enqueue());
CHECK_NE(NULL, rec);
*rec = i;
CHECK_EQ(NULL, scq.StartDequeue());
}
Record* rec = reinterpret_cast<Record*>(scq.Enqueue());
CHECK_NE(NULL, rec);
*rec = 20;
// Now as we started filling up the third chunk, consumption
// must become possible.
CHECK_NE(NULL, scq.StartDequeue());
// Consume the first chunk.
for (Record i = 1; i < 1 + kRecordsPerChunk; ++i) {
Record* rec = reinterpret_cast<Record*>(scq.StartDequeue());
CHECK_NE(NULL, rec);
CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec));
CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
scq.FinishDequeue();
CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
}
// Now consumption must not be possible, as consumer now polls
// the first chunk for emptinness.
CHECK_EQ(NULL, scq.StartDequeue());
scq.FlushResidualRecords();
// From now, consumer no more polls ahead of the current chunk,
// so it's possible to consume the second chunk.
CHECK_NE(NULL, scq.StartDequeue());
// Consume the second chunk
for (Record i = 10; i < 10 + kRecordsPerChunk; ++i) {
Record* rec = reinterpret_cast<Record*>(scq.StartDequeue());
CHECK_NE(NULL, rec);
CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec));
CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
scq.FinishDequeue();
CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
}
// Consumption must still be possible as the first cell of the
// last chunk is not clean.
CHECK_NE(NULL, scq.StartDequeue());
}
namespace {
class ProducerThread: public i::Thread {
public:
typedef SamplingCircularQueue::Cell Record;
ProducerThread(SamplingCircularQueue* scq,
int records_per_chunk,
Record value,
i::Semaphore* finished)
: Thread("producer"),
scq_(scq),
records_per_chunk_(records_per_chunk),
value_(value),
finished_(finished) { }
virtual void Run() {
for (Record i = value_; i < value_ + records_per_chunk_; ++i) {
Record* rec = reinterpret_cast<Record*>(scq_->Enqueue());
CHECK_NE(NULL, rec);
*rec = i;
}
finished_->Signal();
}
private:
SamplingCircularQueue* scq_;
const int records_per_chunk_;
Record value_;
i::Semaphore* finished_;
};
} // namespace
TEST(SamplingCircularQueueMultithreading) {
// Emulate multiple VM threads working 'one thread at a time.'
// This test enqueues data from different threads. This corresponds
// to the case of profiling under Linux, where signal handler that
// does sampling is called in the context of different VM threads.
typedef ProducerThread::Record Record;
const int kRecordsPerChunk = 4;
SamplingCircularQueue scq(sizeof(Record),
kRecordsPerChunk * sizeof(Record),
3);
i::Semaphore* semaphore = i::OS::CreateSemaphore(0);
// Don't poll ahead, making possible to check data in the buffer
// immediately after enqueuing.
scq.FlushResidualRecords();
// Check that we are using non-reserved values.
CHECK_NE(SamplingCircularQueue::kClear, 1);
CHECK_NE(SamplingCircularQueue::kEnd, 1);
ProducerThread producer1(&scq, kRecordsPerChunk, 1, semaphore);
ProducerThread producer2(&scq, kRecordsPerChunk, 10, semaphore);
ProducerThread producer3(&scq, kRecordsPerChunk, 20, semaphore);
CHECK_EQ(NULL, scq.StartDequeue());
producer1.Start();
semaphore->Wait();
for (Record i = 1; i < 1 + kRecordsPerChunk; ++i) {
Record* rec = reinterpret_cast<Record*>(scq.StartDequeue());
CHECK_NE(NULL, rec);
CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec));
CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
scq.FinishDequeue();
CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
}
CHECK_EQ(NULL, scq.StartDequeue());
producer2.Start();
semaphore->Wait();
for (Record i = 10; i < 10 + kRecordsPerChunk; ++i) {
Record* rec = reinterpret_cast<Record*>(scq.StartDequeue());
CHECK_NE(NULL, rec);
CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec));
CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
scq.FinishDequeue();
CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
}
CHECK_EQ(NULL, scq.StartDequeue());
producer3.Start();
semaphore->Wait();
for (Record i = 20; i < 20 + kRecordsPerChunk; ++i) {
Record* rec = reinterpret_cast<Record*>(scq.StartDequeue());
CHECK_NE(NULL, rec);
CHECK_EQ(static_cast<int64_t>(i), static_cast<int64_t>(*rec));
CHECK_EQ(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
scq.FinishDequeue();
CHECK_NE(rec, reinterpret_cast<Record*>(scq.StartDequeue()));
}
CHECK_EQ(NULL, scq.StartDequeue());
delete semaphore;
}