blob: ffb815771a7c5061a94e15b5925d2c3a9810d4e6 [file] [log] [blame]
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/base/platform/elapsed-timer.h"
#include "src/signature.h"
#include "src/flags.h"
#include "src/handles.h"
#include "src/zone-containers.h"
#include "src/wasm/ast-decoder.h"
#include "src/wasm/decoder.h"
#include "src/wasm/wasm-module.h"
#include "src/wasm/wasm-opcodes.h"
#include "src/compiler/wasm-compiler.h"
namespace v8 {
namespace internal {
namespace wasm {
#if DEBUG
#define TRACE(...) \
do { \
if (FLAG_trace_wasm_decoder) PrintF(__VA_ARGS__); \
} while (false)
#else
#define TRACE(...)
#endif
// The root of a decoded tree.
struct Tree {
LocalType type; // tree type.
uint32_t count; // number of children.
const byte* pc; // start of the syntax tree.
TFNode* node; // node in the TurboFan graph.
Tree* children[1]; // pointers to children.
WasmOpcode opcode() const { return static_cast<WasmOpcode>(*pc); }
};
// A production represents an incomplete decoded tree in the LR decoder.
struct Production {
Tree* tree; // the root of the syntax tree.
int index; // the current index into the children of the tree.
WasmOpcode opcode() const { return static_cast<WasmOpcode>(*pc()); }
const byte* pc() const { return tree->pc; }
bool done() const { return index >= static_cast<int>(tree->count); }
Tree* last() const { return index > 0 ? tree->children[index - 1] : nullptr; }
};
// An SsaEnv environment carries the current local variable renaming
// as well as the current effect and control dependency in the TF graph.
// It maintains a control state that tracks whether the environment
// is reachable, has reached a control end, or has been merged.
struct SsaEnv {
enum State { kControlEnd, kUnreachable, kReached, kMerged };
State state;
TFNode* control;
TFNode* effect;
TFNode** locals;
bool go() { return state >= kReached; }
void Kill(State new_state = kControlEnd) {
state = new_state;
locals = nullptr;
control = nullptr;
effect = nullptr;
}
};
// An entry in the stack of blocks during decoding.
struct Block {
SsaEnv* ssa_env; // SSA renaming environment.
int stack_depth; // production stack depth.
};
// An entry in the stack of ifs during decoding.
struct IfEnv {
SsaEnv* false_env;
SsaEnv* merge_env;
SsaEnv** case_envs;
};
// Macros that build nodes only if there is a graph and the current SSA
// environment is reachable from start. This avoids problems with malformed
// TF graphs when decoding inputs that have unreachable code.
#define BUILD(func, ...) (build() ? builder_->func(__VA_ARGS__) : nullptr)
#define BUILD0(func) (build() ? builder_->func() : nullptr)
// A shift-reduce-parser strategy for decoding Wasm code that uses an explicit
// shift-reduce strategy with multiple internal stacks.
class LR_WasmDecoder : public Decoder {
public:
LR_WasmDecoder(Zone* zone, TFBuilder* builder)
: Decoder(nullptr, nullptr),
zone_(zone),
builder_(builder),
trees_(zone),
stack_(zone),
blocks_(zone),
ifs_(zone) {}
TreeResult Decode(FunctionEnv* function_env, const byte* base, const byte* pc,
const byte* end) {
base::ElapsedTimer decode_timer;
if (FLAG_trace_wasm_decode_time) {
decode_timer.Start();
}
trees_.clear();
stack_.clear();
blocks_.clear();
ifs_.clear();
if (end < pc) {
error(pc, "function body end < start");
return result_;
}
base_ = base;
Reset(pc, end);
function_env_ = function_env;
InitSsaEnv();
DecodeFunctionBody();
Tree* tree = nullptr;
if (ok()) {
if (ssa_env_->go()) {
if (stack_.size() > 0) {
error(stack_.back().pc(), end, "fell off end of code");
}
AddImplicitReturnAtEnd();
}
if (trees_.size() == 0) {
if (function_env_->sig->return_count() > 0) {
error(start_, "no trees created");
}
} else {
tree = trees_[0];
}
}
if (ok()) {
if (FLAG_trace_wasm_decode_time) {
double ms = decode_timer.Elapsed().InMillisecondsF();
PrintF(" - decoding took %0.3f ms\n", ms);
}
TRACE("wasm-decode ok\n\n");
} else {
TRACE("wasm-error module+%-6d func+%d: %s\n\n", baserel(error_pc_),
startrel(error_pc_), error_msg_.get());
}
return toResult(tree);
}
private:
static const size_t kErrorMsgSize = 128;
Zone* zone_;
TFBuilder* builder_;
const byte* base_;
TreeResult result_;
SsaEnv* ssa_env_;
FunctionEnv* function_env_;
ZoneVector<Tree*> trees_;
ZoneVector<Production> stack_;
ZoneVector<Block> blocks_;
ZoneVector<IfEnv> ifs_;
inline bool build() { return builder_ && ssa_env_->go(); }
void InitSsaEnv() {
FunctionSig* sig = function_env_->sig;
int param_count = static_cast<int>(sig->parameter_count());
TFNode* start = nullptr;
SsaEnv* ssa_env = reinterpret_cast<SsaEnv*>(zone_->New(sizeof(SsaEnv)));
size_t size = sizeof(TFNode*) * EnvironmentCount();
ssa_env->state = SsaEnv::kReached;
ssa_env->locals =
size > 0 ? reinterpret_cast<TFNode**>(zone_->New(size)) : nullptr;
int pos = 0;
if (builder_) {
start = builder_->Start(param_count + 1);
// Initialize parameters.
for (int i = 0; i < param_count; i++) {
ssa_env->locals[pos++] = builder_->Param(i, sig->GetParam(i));
}
// Initialize int32 locals.
if (function_env_->local_int32_count > 0) {
TFNode* zero = builder_->Int32Constant(0);
for (uint32_t i = 0; i < function_env_->local_int32_count; i++) {
ssa_env->locals[pos++] = zero;
}
}
// Initialize int64 locals.
if (function_env_->local_int64_count > 0) {
TFNode* zero = builder_->Int64Constant(0);
for (uint32_t i = 0; i < function_env_->local_int64_count; i++) {
ssa_env->locals[pos++] = zero;
}
}
// Initialize float32 locals.
if (function_env_->local_float32_count > 0) {
TFNode* zero = builder_->Float32Constant(0);
for (uint32_t i = 0; i < function_env_->local_float32_count; i++) {
ssa_env->locals[pos++] = zero;
}
}
// Initialize float64 locals.
if (function_env_->local_float64_count > 0) {
TFNode* zero = builder_->Float64Constant(0);
for (uint32_t i = 0; i < function_env_->local_float64_count; i++) {
ssa_env->locals[pos++] = zero;
}
}
DCHECK_EQ(function_env_->total_locals, pos);
DCHECK_EQ(EnvironmentCount(), pos);
builder_->set_module(function_env_->module);
}
ssa_env->control = start;
ssa_env->effect = start;
SetEnv("initial", ssa_env);
}
void Leaf(LocalType type, TFNode* node = nullptr) {
size_t size = sizeof(Tree);
Tree* tree = reinterpret_cast<Tree*>(zone_->New(size));
tree->type = type;
tree->count = 0;
tree->pc = pc_;
tree->node = node;
tree->children[0] = nullptr;
Reduce(tree);
}
void Shift(LocalType type, uint32_t count) {
size_t size =
sizeof(Tree) + (count == 0 ? 0 : ((count - 1) * sizeof(Tree*)));
Tree* tree = reinterpret_cast<Tree*>(zone_->New(size));
tree->type = type;
tree->count = count;
tree->pc = pc_;
tree->node = nullptr;
for (uint32_t i = 0; i < count; i++) tree->children[i] = nullptr;
if (count == 0) {
Production p = {tree, 0};
Reduce(&p);
Reduce(tree);
} else {
stack_.push_back({tree, 0});
}
}
void Reduce(Tree* tree) {
while (true) {
if (stack_.size() == 0) {
trees_.push_back(tree);
break;
}
Production* p = &stack_.back();
p->tree->children[p->index++] = tree;
Reduce(p);
if (p->done()) {
tree = p->tree;
stack_.pop_back();
} else {
break;
}
}
}
char* indentation() {
static const int kMaxIndent = 64;
static char bytes[kMaxIndent + 1];
for (int i = 0; i < kMaxIndent; i++) bytes[i] = ' ';
bytes[kMaxIndent] = 0;
if (stack_.size() < kMaxIndent / 2) {
bytes[stack_.size() * 2] = 0;
}
return bytes;
}
// Decodes the body of a function, producing reduced trees into {result}.
void DecodeFunctionBody() {
TRACE("wasm-decode %p...%p (%d bytes) %s\n",
reinterpret_cast<const void*>(start_),
reinterpret_cast<const void*>(limit_),
static_cast<int>(limit_ - start_), builder_ ? "graph building" : "");
if (pc_ >= limit_) return; // Nothing to do.
while (true) { // decoding loop.
int len = 1;
WasmOpcode opcode = static_cast<WasmOpcode>(*pc_);
TRACE("wasm-decode module+%-6d %s func+%d: 0x%02x %s\n", baserel(pc_),
indentation(), startrel(pc_), opcode,
WasmOpcodes::OpcodeName(opcode));
FunctionSig* sig = WasmOpcodes::Signature(opcode);
if (sig) {
// A simple expression with a fixed signature.
Shift(sig->GetReturn(), static_cast<uint32_t>(sig->parameter_count()));
pc_ += len;
if (pc_ >= limit_) {
// End of code reached or exceeded.
if (pc_ > limit_ && ok()) {
error("Beyond end of code");
}
return;
}
continue; // back to decoding loop.
}
switch (opcode) {
case kExprNop:
Leaf(kAstStmt);
break;
case kExprBlock: {
int length = Operand<uint8_t>(pc_);
if (length < 1) {
Leaf(kAstStmt);
} else {
Shift(kAstEnd, length);
// The break environment is the outer environment.
SsaEnv* break_env = ssa_env_;
PushBlock(break_env);
SetEnv("block:start", Steal(break_env));
}
len = 2;
break;
}
case kExprLoop: {
int length = Operand<uint8_t>(pc_);
if (length < 1) {
Leaf(kAstStmt);
} else {
Shift(kAstEnd, length);
// The break environment is the outer environment.
SsaEnv* break_env = ssa_env_;
PushBlock(break_env);
SsaEnv* cont_env = Steal(break_env);
// The continue environment is the inner environment.
PrepareForLoop(cont_env);
SetEnv("loop:start", Split(cont_env));
if (ssa_env_->go()) ssa_env_->state = SsaEnv::kReached;
PushBlock(cont_env);
blocks_.back().stack_depth = -1; // no production for inner block.
}
len = 2;
break;
}
case kExprIf:
Shift(kAstStmt, 2);
break;
case kExprIfElse:
Shift(kAstEnd, 3); // Result type is typeof(x) in {c ? x : y}.
break;
case kExprSelect:
Shift(kAstStmt, 3); // Result type is typeof(x) in {c ? x : y}.
break;
case kExprBr: {
uint32_t depth = Operand<uint8_t>(pc_);
Shift(kAstEnd, 1);
if (depth >= blocks_.size()) {
error("improperly nested branch");
}
len = 2;
break;
}
case kExprBrIf: {
uint32_t depth = Operand<uint8_t>(pc_);
Shift(kAstStmt, 2);
if (depth >= blocks_.size()) {
error("improperly nested conditional branch");
}
len = 2;
break;
}
case kExprTableSwitch: {
if (!checkAvailable(5)) {
error("expected #tableswitch <cases> <table>, fell off end");
break;
}
uint16_t case_count = *reinterpret_cast<const uint16_t*>(pc_ + 1);
uint16_t table_count = *reinterpret_cast<const uint16_t*>(pc_ + 3);
len = 5 + table_count * 2;
if (table_count == 0) {
error("tableswitch with 0 entries");
break;
}
if (!checkAvailable(len)) {
error("expected #tableswitch <cases> <table>, fell off end");
break;
}
Shift(kAstEnd, 1 + case_count);
// Verify table.
for (int i = 0; i < table_count; i++) {
uint16_t target =
*reinterpret_cast<const uint16_t*>(pc_ + 5 + i * 2);
if (target >= 0x8000) {
size_t depth = target - 0x8000;
if (depth > blocks_.size()) {
error(pc_ + 5 + i * 2, "improper branch in tableswitch");
}
} else {
if (target >= case_count) {
error(pc_ + 5 + i * 2, "invalid case target in tableswitch");
}
}
}
break;
}
case kExprReturn: {
int count = static_cast<int>(function_env_->sig->return_count());
if (count == 0) {
BUILD(Return, 0, builder_->Buffer(0));
ssa_env_->Kill();
Leaf(kAstEnd);
} else {
Shift(kAstEnd, count);
}
break;
}
case kExprUnreachable: {
BUILD0(Unreachable);
ssa_env_->Kill(SsaEnv::kControlEnd);
Leaf(kAstEnd, nullptr);
break;
}
case kExprI8Const: {
int32_t value = Operand<int8_t>(pc_);
Leaf(kAstI32, BUILD(Int32Constant, value));
len = 2;
break;
}
case kExprI32Const: {
int32_t value = Operand<int32_t>(pc_);
Leaf(kAstI32, BUILD(Int32Constant, value));
len = 5;
break;
}
case kExprI64Const: {
int64_t value = Operand<int64_t>(pc_);
Leaf(kAstI64, BUILD(Int64Constant, value));
len = 9;
break;
}
case kExprF32Const: {
float value = Operand<float>(pc_);
Leaf(kAstF32, BUILD(Float32Constant, value));
len = 5;
break;
}
case kExprF64Const: {
double value = Operand<double>(pc_);
Leaf(kAstF64, BUILD(Float64Constant, value));
len = 9;
break;
}
case kExprGetLocal: {
uint32_t index;
LocalType type = LocalOperand(pc_, &index, &len);
TFNode* val =
build() && type != kAstStmt ? ssa_env_->locals[index] : nullptr;
Leaf(type, val);
break;
}
case kExprSetLocal: {
uint32_t index;
LocalType type = LocalOperand(pc_, &index, &len);
Shift(type, 1);
break;
}
case kExprLoadGlobal: {
uint32_t index;
LocalType type = GlobalOperand(pc_, &index, &len);
Leaf(type, BUILD(LoadGlobal, index));
break;
}
case kExprStoreGlobal: {
uint32_t index;
LocalType type = GlobalOperand(pc_, &index, &len);
Shift(type, 1);
break;
}
case kExprI32LoadMem8S:
case kExprI32LoadMem8U:
case kExprI32LoadMem16S:
case kExprI32LoadMem16U:
case kExprI32LoadMem:
len = DecodeLoadMem(pc_, kAstI32);
break;
case kExprI64LoadMem8S:
case kExprI64LoadMem8U:
case kExprI64LoadMem16S:
case kExprI64LoadMem16U:
case kExprI64LoadMem32S:
case kExprI64LoadMem32U:
case kExprI64LoadMem:
len = DecodeLoadMem(pc_, kAstI64);
break;
case kExprF32LoadMem:
len = DecodeLoadMem(pc_, kAstF32);
break;
case kExprF64LoadMem:
len = DecodeLoadMem(pc_, kAstF64);
break;
case kExprI32StoreMem8:
case kExprI32StoreMem16:
case kExprI32StoreMem:
len = DecodeStoreMem(pc_, kAstI32);
break;
case kExprI64StoreMem8:
case kExprI64StoreMem16:
case kExprI64StoreMem32:
case kExprI64StoreMem:
len = DecodeStoreMem(pc_, kAstI64);
break;
case kExprF32StoreMem:
len = DecodeStoreMem(pc_, kAstF32);
break;
case kExprF64StoreMem:
len = DecodeStoreMem(pc_, kAstF64);
break;
case kExprMemorySize:
Leaf(kAstI32, BUILD(MemSize, 0));
break;
case kExprGrowMemory:
Shift(kAstI32, 1);
break;
case kExprCallFunction: {
uint32_t unused;
FunctionSig* sig = FunctionSigOperand(pc_, &unused, &len);
if (sig) {
LocalType type =
sig->return_count() == 0 ? kAstStmt : sig->GetReturn();
Shift(type, static_cast<int>(sig->parameter_count()));
} else {
Leaf(kAstI32); // error
}
break;
}
case kExprCallIndirect: {
uint32_t unused;
FunctionSig* sig = SigOperand(pc_, &unused, &len);
if (sig) {
LocalType type =
sig->return_count() == 0 ? kAstStmt : sig->GetReturn();
Shift(type, static_cast<int>(1 + sig->parameter_count()));
} else {
Leaf(kAstI32); // error
}
break;
}
default:
error("Invalid opcode");
return;
}
pc_ += len;
if (pc_ >= limit_) {
// End of code reached or exceeded.
if (pc_ > limit_ && ok()) {
error("Beyond end of code");
}
return;
}
}
}
void PushBlock(SsaEnv* ssa_env) {
blocks_.push_back({ssa_env, static_cast<int>(stack_.size() - 1)});
}
int DecodeLoadMem(const byte* pc, LocalType type) {
int length = 2;
uint32_t offset;
MemoryAccessOperand(pc, &length, &offset);
Shift(type, 1);
return length;
}
int DecodeStoreMem(const byte* pc, LocalType type) {
int length = 2;
uint32_t offset;
MemoryAccessOperand(pc, &length, &offset);
Shift(type, 2);
return length;
}
void AddImplicitReturnAtEnd() {
int retcount = static_cast<int>(function_env_->sig->return_count());
if (retcount == 0) {
BUILD0(ReturnVoid);
return;
}
if (static_cast<int>(trees_.size()) < retcount) {
error(limit_, nullptr,
"ImplicitReturn expects %d arguments, only %d remain", retcount,
static_cast<int>(trees_.size()));
return;
}
TRACE("wasm-decode implicit return of %d args\n", retcount);
TFNode** buffer = BUILD(Buffer, retcount);
for (int index = 0; index < retcount; index++) {
Tree* tree = trees_[trees_.size() - 1 - index];
if (buffer) buffer[index] = tree->node;
LocalType expected = function_env_->sig->GetReturn(index);
if (tree->type != expected) {
error(limit_, tree->pc,
"ImplicitReturn[%d] expected type %s, found %s of type %s", index,
WasmOpcodes::TypeName(expected),
WasmOpcodes::OpcodeName(tree->opcode()),
WasmOpcodes::TypeName(tree->type));
return;
}
}
BUILD(Return, retcount, buffer);
}
int baserel(const byte* ptr) {
return base_ ? static_cast<int>(ptr - base_) : 0;
}
int startrel(const byte* ptr) { return static_cast<int>(ptr - start_); }
void Reduce(Production* p) {
WasmOpcode opcode = p->opcode();
TRACE("-----reduce module+%-6d %s func+%d: 0x%02x %s\n", baserel(p->pc()),
indentation(), startrel(p->pc()), opcode,
WasmOpcodes::OpcodeName(opcode));
FunctionSig* sig = WasmOpcodes::Signature(opcode);
if (sig) {
// A simple expression with a fixed signature.
TypeCheckLast(p, sig->GetParam(p->index - 1));
if (p->done() && build()) {
if (sig->parameter_count() == 2) {
p->tree->node = builder_->Binop(opcode, p->tree->children[0]->node,
p->tree->children[1]->node);
} else if (sig->parameter_count() == 1) {
p->tree->node = builder_->Unop(opcode, p->tree->children[0]->node);
} else {
UNREACHABLE();
}
}
return;
}
switch (opcode) {
case kExprBlock: {
if (p->done()) {
Block* last = &blocks_.back();
DCHECK_EQ(stack_.size() - 1, last->stack_depth);
// fallthrough with the last expression.
ReduceBreakToExprBlock(p, last);
SetEnv("block:end", last->ssa_env);
blocks_.pop_back();
}
break;
}
case kExprLoop: {
if (p->done()) {
// Pop the continue environment.
blocks_.pop_back();
// Get the break environment.
Block* last = &blocks_.back();
DCHECK_EQ(stack_.size() - 1, last->stack_depth);
// fallthrough with the last expression.
ReduceBreakToExprBlock(p, last);
SetEnv("loop:end", last->ssa_env);
blocks_.pop_back();
}
break;
}
case kExprIf: {
if (p->index == 1) {
// Condition done. Split environment for true branch.
TypeCheckLast(p, kAstI32);
SsaEnv* false_env = ssa_env_;
SsaEnv* true_env = Split(ssa_env_);
ifs_.push_back({nullptr, false_env, nullptr});
BUILD(Branch, p->last()->node, &true_env->control,
&false_env->control);
SetEnv("if:true", true_env);
} else if (p->index == 2) {
// True block done. Merge true and false environments.
IfEnv* env = &ifs_.back();
SsaEnv* merge = env->merge_env;
if (merge->go()) {
merge->state = SsaEnv::kReached;
Goto(ssa_env_, merge);
}
SetEnv("if:merge", merge);
ifs_.pop_back();
}
break;
}
case kExprIfElse: {
if (p->index == 1) {
// Condition done. Split environment for true and false branches.
TypeCheckLast(p, kAstI32);
SsaEnv* merge_env = ssa_env_;
TFNode* if_true = nullptr;
TFNode* if_false = nullptr;
BUILD(Branch, p->last()->node, &if_true, &if_false);
SsaEnv* false_env = Split(ssa_env_);
SsaEnv* true_env = Steal(ssa_env_);
false_env->control = if_false;
true_env->control = if_true;
ifs_.push_back({false_env, merge_env, nullptr});
SetEnv("if_else:true", true_env);
} else if (p->index == 2) {
// True expr done.
IfEnv* env = &ifs_.back();
MergeIntoProduction(p, env->merge_env, p->last());
// Switch to environment for false branch.
SsaEnv* false_env = ifs_.back().false_env;
SetEnv("if_else:false", false_env);
} else if (p->index == 3) {
// False expr done.
IfEnv* env = &ifs_.back();
MergeIntoProduction(p, env->merge_env, p->last());
SetEnv("if_else:merge", env->merge_env);
ifs_.pop_back();
}
break;
}
case kExprSelect: {
if (p->index == 1) {
// Condition done.
TypeCheckLast(p, kAstI32);
} else if (p->index == 2) {
// True expression done.
p->tree->type = p->last()->type;
if (p->tree->type == kAstStmt) {
error(p->pc(), p->tree->children[1]->pc,
"select operand should be expression");
}
} else {
// False expression done.
DCHECK(p->done());
TypeCheckLast(p, p->tree->type);
if (build()) {
TFNode* controls[2];
builder_->Branch(p->tree->children[0]->node, &controls[0],
&controls[1]);
TFNode* merge = builder_->Merge(2, controls);
TFNode* vals[2] = {p->tree->children[1]->node,
p->tree->children[2]->node};
TFNode* phi = builder_->Phi(p->tree->type, 2, vals, merge);
p->tree->node = phi;
ssa_env_->control = merge;
}
}
break;
}
case kExprBr: {
uint32_t depth = Operand<uint8_t>(p->pc());
if (depth >= blocks_.size()) {
error("improperly nested branch");
break;
}
Block* block = &blocks_[blocks_.size() - depth - 1];
ReduceBreakToExprBlock(p, block);
break;
}
case kExprBrIf: {
if (p->index == 1) {
TypeCheckLast(p, kAstI32);
} else if (p->done()) {
uint32_t depth = Operand<uint8_t>(p->pc());
if (depth >= blocks_.size()) {
error("improperly nested branch");
break;
}
Block* block = &blocks_[blocks_.size() - depth - 1];
SsaEnv* fenv = ssa_env_;
SsaEnv* tenv = Split(fenv);
BUILD(Branch, p->tree->children[0]->node, &tenv->control,
&fenv->control);
ssa_env_ = tenv;
ReduceBreakToExprBlock(p, block);
ssa_env_ = fenv;
}
break;
}
case kExprTableSwitch: {
uint16_t table_count = *reinterpret_cast<const uint16_t*>(p->pc() + 3);
if (table_count == 1) {
// Degenerate switch with only a default target.
if (p->index == 1) {
SsaEnv* break_env = ssa_env_;
PushBlock(break_env);
SetEnv("switch:default", Steal(break_env));
}
if (p->done()) {
Block* block = &blocks_.back();
// fall through to the end.
ReduceBreakToExprBlock(p, block);
SetEnv("switch:end", block->ssa_env);
blocks_.pop_back();
}
break;
}
if (p->index == 1) {
// Switch key finished.
TypeCheckLast(p, kAstI32);
TFNode* sw = BUILD(Switch, table_count, p->last()->node);
// Allocate environments for each case.
uint16_t case_count = *reinterpret_cast<const uint16_t*>(p->pc() + 1);
SsaEnv** case_envs = zone_->NewArray<SsaEnv*>(case_count);
for (int i = 0; i < case_count; i++) {
case_envs[i] = UnreachableEnv();
}
ifs_.push_back({nullptr, nullptr, case_envs});
SsaEnv* break_env = ssa_env_;
PushBlock(break_env);
SsaEnv* copy = Steal(break_env);
ssa_env_ = copy;
// Build the environments for each case based on the table.
const uint16_t* table =
reinterpret_cast<const uint16_t*>(p->pc() + 5);
for (int i = 0; i < table_count; i++) {
uint16_t target = table[i];
SsaEnv* env = Split(copy);
env->control = (i == table_count - 1) ? BUILD(IfDefault, sw)
: BUILD(IfValue, i, sw);
if (target >= 0x8000) {
// Targets an outer block.
int depth = target - 0x8000;
SsaEnv* tenv = blocks_[blocks_.size() - depth - 1].ssa_env;
Goto(env, tenv);
} else {
// Targets a case.
Goto(env, case_envs[target]);
}
}
// Switch to the environment for the first case.
SetEnv("switch:case", case_envs[0]);
} else {
// Switch case finished.
if (p->done()) {
// Last case. Fall through to the end.
Block* block = &blocks_.back();
ReduceBreakToExprBlock(p, block);
SsaEnv* next = block->ssa_env;
blocks_.pop_back();
ifs_.pop_back();
SetEnv("switch:end", next);
} else {
// Interior case. Maybe fall through to the next case.
SsaEnv* next = ifs_.back().case_envs[p->index - 1];
if (ssa_env_->go()) Goto(ssa_env_, next);
SetEnv("switch:case", next);
}
}
break;
}
case kExprReturn: {
TypeCheckLast(p, function_env_->sig->GetReturn(p->index - 1));
if (p->done()) {
if (build()) {
int count = p->tree->count;
TFNode** buffer = builder_->Buffer(count);
for (int i = 0; i < count; i++) {
buffer[i] = p->tree->children[i]->node;
}
BUILD(Return, count, buffer);
}
ssa_env_->Kill(SsaEnv::kControlEnd);
}
break;
}
case kExprSetLocal: {
int unused = 0;
uint32_t index;
LocalType type = LocalOperand(p->pc(), &index, &unused);
Tree* val = p->last();
if (type == val->type) {
if (build()) ssa_env_->locals[index] = val->node;
p->tree->node = val->node;
} else {
error(p->pc(), val->pc, "Typecheck failed in SetLocal");
}
break;
}
case kExprStoreGlobal: {
int unused = 0;
uint32_t index;
LocalType type = GlobalOperand(p->pc(), &index, &unused);
Tree* val = p->last();
if (type == val->type) {
BUILD(StoreGlobal, index, val->node);
p->tree->node = val->node;
} else {
error(p->pc(), val->pc, "Typecheck failed in StoreGlobal");
}
break;
}
case kExprI32LoadMem8S:
return ReduceLoadMem(p, kAstI32, MachineType::Int8());
case kExprI32LoadMem8U:
return ReduceLoadMem(p, kAstI32, MachineType::Uint8());
case kExprI32LoadMem16S:
return ReduceLoadMem(p, kAstI32, MachineType::Int16());
case kExprI32LoadMem16U:
return ReduceLoadMem(p, kAstI32, MachineType::Uint16());
case kExprI32LoadMem:
return ReduceLoadMem(p, kAstI32, MachineType::Int32());
case kExprI64LoadMem8S:
return ReduceLoadMem(p, kAstI64, MachineType::Int8());
case kExprI64LoadMem8U:
return ReduceLoadMem(p, kAstI64, MachineType::Uint8());
case kExprI64LoadMem16S:
return ReduceLoadMem(p, kAstI64, MachineType::Int16());
case kExprI64LoadMem16U:
return ReduceLoadMem(p, kAstI64, MachineType::Uint16());
case kExprI64LoadMem32S:
return ReduceLoadMem(p, kAstI64, MachineType::Int32());
case kExprI64LoadMem32U:
return ReduceLoadMem(p, kAstI64, MachineType::Uint32());
case kExprI64LoadMem:
return ReduceLoadMem(p, kAstI64, MachineType::Int64());
case kExprF32LoadMem:
return ReduceLoadMem(p, kAstF32, MachineType::Float32());
case kExprF64LoadMem:
return ReduceLoadMem(p, kAstF64, MachineType::Float64());
case kExprI32StoreMem8:
return ReduceStoreMem(p, kAstI32, MachineType::Int8());
case kExprI32StoreMem16:
return ReduceStoreMem(p, kAstI32, MachineType::Int16());
case kExprI32StoreMem:
return ReduceStoreMem(p, kAstI32, MachineType::Int32());
case kExprI64StoreMem8:
return ReduceStoreMem(p, kAstI64, MachineType::Int8());
case kExprI64StoreMem16:
return ReduceStoreMem(p, kAstI64, MachineType::Int16());
case kExprI64StoreMem32:
return ReduceStoreMem(p, kAstI64, MachineType::Int32());
case kExprI64StoreMem:
return ReduceStoreMem(p, kAstI64, MachineType::Int64());
case kExprF32StoreMem:
return ReduceStoreMem(p, kAstF32, MachineType::Float32());
case kExprF64StoreMem:
return ReduceStoreMem(p, kAstF64, MachineType::Float64());
case kExprGrowMemory:
TypeCheckLast(p, kAstI32);
// TODO(titzer): build node for GrowMemory
p->tree->node = BUILD(Int32Constant, 0);
return;
case kExprCallFunction: {
int len;
uint32_t index;
FunctionSig* sig = FunctionSigOperand(p->pc(), &index, &len);
if (!sig) break;
if (p->index > 0) {
TypeCheckLast(p, sig->GetParam(p->index - 1));
}
if (p->done() && build()) {
uint32_t count = p->tree->count + 1;
TFNode** buffer = builder_->Buffer(count);
FunctionSig* sig = FunctionSigOperand(p->pc(), &index, &len);
USE(sig);
buffer[0] = nullptr; // reserved for code object.
for (uint32_t i = 1; i < count; i++) {
buffer[i] = p->tree->children[i - 1]->node;
}
p->tree->node = builder_->CallDirect(index, buffer);
}
break;
}
case kExprCallIndirect: {
int len;
uint32_t index;
FunctionSig* sig = SigOperand(p->pc(), &index, &len);
if (p->index == 1) {
TypeCheckLast(p, kAstI32);
} else {
TypeCheckLast(p, sig->GetParam(p->index - 2));
}
if (p->done() && build()) {
uint32_t count = p->tree->count;
TFNode** buffer = builder_->Buffer(count);
for (uint32_t i = 0; i < count; i++) {
buffer[i] = p->tree->children[i]->node;
}
p->tree->node = builder_->CallIndirect(index, buffer);
}
break;
}
default:
break;
}
}
void ReduceBreakToExprBlock(Production* p, Block* block) {
if (block->stack_depth < 0) {
// This is the inner loop block, which does not have a value.
Goto(ssa_env_, block->ssa_env);
} else {
// Merge the value into the production for the block.
Production* bp = &stack_[block->stack_depth];
MergeIntoProduction(bp, block->ssa_env, p->last());
}
}
void MergeIntoProduction(Production* p, SsaEnv* target, Tree* expr) {
if (!ssa_env_->go()) return;
bool first = target->state == SsaEnv::kUnreachable;
Goto(ssa_env_, target);
if (expr->type == kAstEnd) return;
if (first) {
// first merge to this environment; set the type and the node.
p->tree->type = expr->type;
p->tree->node = expr->node;
} else {
// merge with the existing value for this block.
LocalType type = p->tree->type;
if (expr->type != type) {
type = kAstStmt;
p->tree->type = kAstStmt;
p->tree->node = nullptr;
} else if (type != kAstStmt) {
p->tree->node = CreateOrMergeIntoPhi(type, target->control,
p->tree->node, expr->node);
}
}
}
void ReduceLoadMem(Production* p, LocalType type, MachineType mem_type) {
DCHECK_EQ(1, p->index);
TypeCheckLast(p, kAstI32); // index
if (build()) {
int length = 0;
uint32_t offset = 0;
MemoryAccessOperand(p->pc(), &length, &offset);
p->tree->node =
builder_->LoadMem(type, mem_type, p->last()->node, offset);
}
}
void ReduceStoreMem(Production* p, LocalType type, MachineType mem_type) {
if (p->index == 1) {
TypeCheckLast(p, kAstI32); // index
} else {
DCHECK_EQ(2, p->index);
TypeCheckLast(p, type);
if (build()) {
int length = 0;
uint32_t offset = 0;
MemoryAccessOperand(p->pc(), &length, &offset);
TFNode* val = p->tree->children[1]->node;
builder_->StoreMem(mem_type, p->tree->children[0]->node, offset, val);
p->tree->node = val;
}
}
}
void TypeCheckLast(Production* p, LocalType expected) {
LocalType result = p->last()->type;
if (result == expected) return;
if (result == kAstEnd) return;
if (expected != kAstStmt) {
error(p->pc(), p->last()->pc,
"%s[%d] expected type %s, found %s of type %s",
WasmOpcodes::OpcodeName(p->opcode()), p->index - 1,
WasmOpcodes::TypeName(expected),
WasmOpcodes::OpcodeName(p->last()->opcode()),
WasmOpcodes::TypeName(p->last()->type));
}
}
void SetEnv(const char* reason, SsaEnv* env) {
TRACE(" env = %p, block depth = %d, reason = %s", static_cast<void*>(env),
static_cast<int>(blocks_.size()), reason);
if (env->control != nullptr && FLAG_trace_wasm_decoder) {
TRACE(", control = ");
compiler::WasmGraphBuilder::PrintDebugName(env->control);
}
TRACE("\n");
ssa_env_ = env;
if (builder_) {
builder_->set_control_ptr(&env->control);
builder_->set_effect_ptr(&env->effect);
}
}
void Goto(SsaEnv* from, SsaEnv* to) {
DCHECK_NOT_NULL(to);
if (!from->go()) return;
switch (to->state) {
case SsaEnv::kUnreachable: { // Overwrite destination.
to->state = SsaEnv::kReached;
to->locals = from->locals;
to->control = from->control;
to->effect = from->effect;
break;
}
case SsaEnv::kReached: { // Create a new merge.
to->state = SsaEnv::kMerged;
if (!builder_) break;
// Merge control.
TFNode* controls[] = {to->control, from->control};
TFNode* merge = builder_->Merge(2, controls);
to->control = merge;
// Merge effects.
if (from->effect != to->effect) {
TFNode* effects[] = {to->effect, from->effect, merge};
to->effect = builder_->EffectPhi(2, effects, merge);
}
// Merge SSA values.
for (int i = EnvironmentCount() - 1; i >= 0; i--) {
TFNode* a = to->locals[i];
TFNode* b = from->locals[i];
if (a != b) {
TFNode* vals[] = {a, b};
to->locals[i] =
builder_->Phi(function_env_->GetLocalType(i), 2, vals, merge);
}
}
break;
}
case SsaEnv::kMerged: {
if (!builder_) break;
TFNode* merge = to->control;
// Extend the existing merge.
builder_->AppendToMerge(merge, from->control);
// Merge effects.
if (builder_->IsPhiWithMerge(to->effect, merge)) {
builder_->AppendToPhi(merge, to->effect, from->effect);
} else if (to->effect != from->effect) {
uint32_t count = builder_->InputCount(merge);
TFNode** effects = builder_->Buffer(count);
for (uint32_t j = 0; j < count - 1; j++) {
effects[j] = to->effect;
}
effects[count - 1] = from->effect;
to->effect = builder_->EffectPhi(count, effects, merge);
}
// Merge locals.
for (int i = EnvironmentCount() - 1; i >= 0; i--) {
TFNode* tnode = to->locals[i];
TFNode* fnode = from->locals[i];
if (builder_->IsPhiWithMerge(tnode, merge)) {
builder_->AppendToPhi(merge, tnode, fnode);
} else if (tnode != fnode) {
uint32_t count = builder_->InputCount(merge);
TFNode** vals = builder_->Buffer(count);
for (uint32_t j = 0; j < count - 1; j++) {
vals[j] = tnode;
}
vals[count - 1] = fnode;
to->locals[i] = builder_->Phi(function_env_->GetLocalType(i), count,
vals, merge);
}
}
break;
}
default:
UNREACHABLE();
}
return from->Kill();
}
TFNode* CreateOrMergeIntoPhi(LocalType type, TFNode* merge, TFNode* tnode,
TFNode* fnode) {
if (builder_->IsPhiWithMerge(tnode, merge)) {
builder_->AppendToPhi(merge, tnode, fnode);
} else if (tnode != fnode) {
uint32_t count = builder_->InputCount(merge);
TFNode** vals = builder_->Buffer(count);
for (uint32_t j = 0; j < count - 1; j++) vals[j] = tnode;
vals[count - 1] = fnode;
return builder_->Phi(type, count, vals, merge);
}
return tnode;
}
void BuildInfiniteLoop() {
if (ssa_env_->go()) {
PrepareForLoop(ssa_env_);
SsaEnv* cont_env = ssa_env_;
ssa_env_ = Split(ssa_env_);
ssa_env_->state = SsaEnv::kReached;
Goto(ssa_env_, cont_env);
}
}
void PrepareForLoop(SsaEnv* env) {
if (env->go()) {
env->state = SsaEnv::kMerged;
if (builder_) {
env->control = builder_->Loop(env->control);
env->effect = builder_->EffectPhi(1, &env->effect, env->control);
builder_->Terminate(env->effect, env->control);
for (int i = EnvironmentCount() - 1; i >= 0; i--) {
env->locals[i] = builder_->Phi(function_env_->GetLocalType(i), 1,
&env->locals[i], env->control);
}
}
}
}
// Create a complete copy of the {from}.
SsaEnv* Split(SsaEnv* from) {
DCHECK_NOT_NULL(from);
SsaEnv* result = reinterpret_cast<SsaEnv*>(zone_->New(sizeof(SsaEnv)));
size_t size = sizeof(TFNode*) * EnvironmentCount();
result->control = from->control;
result->effect = from->effect;
result->state = from->state == SsaEnv::kUnreachable ? SsaEnv::kUnreachable
: SsaEnv::kReached;
if (from->go()) {
result->state = SsaEnv::kReached;
result->locals =
size > 0 ? reinterpret_cast<TFNode**>(zone_->New(size)) : nullptr;
memcpy(result->locals, from->locals, size);
} else {
result->state = SsaEnv::kUnreachable;
result->locals = nullptr;
}
return result;
}
// Create a copy of {from} that steals its state and leaves {from}
// unreachable.
SsaEnv* Steal(SsaEnv* from) {
DCHECK_NOT_NULL(from);
if (!from->go()) return UnreachableEnv();
SsaEnv* result = reinterpret_cast<SsaEnv*>(zone_->New(sizeof(SsaEnv)));
result->state = SsaEnv::kReached;
result->locals = from->locals;
result->control = from->control;
result->effect = from->effect;
from->Kill(SsaEnv::kUnreachable);
return result;
}
// Create an unreachable environment.
SsaEnv* UnreachableEnv() {
SsaEnv* result = reinterpret_cast<SsaEnv*>(zone_->New(sizeof(SsaEnv)));
result->state = SsaEnv::kUnreachable;
result->control = nullptr;
result->effect = nullptr;
result->locals = nullptr;
return result;
}
// Load an operand at [pc + 1].
template <typename V>
V Operand(const byte* pc) {
if ((limit_ - pc) < static_cast<int>(1 + sizeof(V))) {
const char* msg = "Expected operand following opcode";
switch (sizeof(V)) {
case 1:
msg = "Expected 1-byte operand following opcode";
break;
case 2:
msg = "Expected 2-byte operand following opcode";
break;
case 4:
msg = "Expected 4-byte operand following opcode";
break;
default:
break;
}
error(pc, msg);
return -1;
}
return *reinterpret_cast<const V*>(pc + 1);
}
int EnvironmentCount() {
if (builder_) return static_cast<int>(function_env_->GetLocalCount());
return 0; // if we aren't building a graph, don't bother with SSA renaming.
}
LocalType LocalOperand(const byte* pc, uint32_t* index, int* length) {
*index = UnsignedLEB128Operand(pc, length);
if (function_env_->IsValidLocal(*index)) {
return function_env_->GetLocalType(*index);
}
error(pc, "invalid local variable index");
return kAstStmt;
}
LocalType GlobalOperand(const byte* pc, uint32_t* index, int* length) {
*index = UnsignedLEB128Operand(pc, length);
if (function_env_->module->IsValidGlobal(*index)) {
return WasmOpcodes::LocalTypeFor(
function_env_->module->GetGlobalType(*index));
}
error(pc, "invalid global variable index");
return kAstStmt;
}
FunctionSig* FunctionSigOperand(const byte* pc, uint32_t* index,
int* length) {
*index = UnsignedLEB128Operand(pc, length);
if (function_env_->module->IsValidFunction(*index)) {
return function_env_->module->GetFunctionSignature(*index);
}
error(pc, "invalid function index");
return nullptr;
}
FunctionSig* SigOperand(const byte* pc, uint32_t* index, int* length) {
*index = UnsignedLEB128Operand(pc, length);
if (function_env_->module->IsValidSignature(*index)) {
return function_env_->module->GetSignature(*index);
}
error(pc, "invalid signature index");
return nullptr;
}
uint32_t UnsignedLEB128Operand(const byte* pc, int* length) {
uint32_t result = 0;
ReadUnsignedLEB128ErrorCode error_code =
ReadUnsignedLEB128Operand(pc + 1, limit_, length, &result);
if (error_code == kInvalidLEB128) error(pc, "invalid LEB128 varint");
if (error_code == kMissingLEB128) error(pc, "expected LEB128 varint");
(*length)++;
return result;
}
void MemoryAccessOperand(const byte* pc, int* length, uint32_t* offset) {
byte bitfield = Operand<uint8_t>(pc);
if (MemoryAccess::OffsetField::decode(bitfield)) {
*offset = UnsignedLEB128Operand(pc + 1, length);
(*length)++; // to account for the memory access byte
} else {
*offset = 0;
*length = 2;
}
}
virtual void onFirstError() {
limit_ = start_; // Terminate decoding loop.
builder_ = nullptr; // Don't build any more nodes.
#if DEBUG
PrintStackForDebugging();
#endif
}
#if DEBUG
void PrintStackForDebugging() { PrintProduction(0); }
void PrintProduction(size_t depth) {
if (depth >= stack_.size()) return;
Production* p = &stack_[depth];
for (size_t d = 0; d < depth; d++) PrintF(" ");
PrintF("@%d %s [%d]\n", static_cast<int>(p->tree->pc - start_),
WasmOpcodes::OpcodeName(p->opcode()), p->tree->count);
for (int i = 0; i < p->index; i++) {
Tree* child = p->tree->children[i];
for (size_t d = 0; d <= depth; d++) PrintF(" ");
PrintF("@%d %s [%d]", static_cast<int>(child->pc - start_),
WasmOpcodes::OpcodeName(child->opcode()), child->count);
if (child->node) {
PrintF(" => TF");
compiler::WasmGraphBuilder::PrintDebugName(child->node);
}
PrintF("\n");
}
PrintProduction(depth + 1);
}
#endif
};
TreeResult VerifyWasmCode(FunctionEnv* env, const byte* base, const byte* start,
const byte* end) {
Zone zone;
LR_WasmDecoder decoder(&zone, nullptr);
TreeResult result = decoder.Decode(env, base, start, end);
return result;
}
TreeResult BuildTFGraph(TFBuilder* builder, FunctionEnv* env, const byte* base,
const byte* start, const byte* end) {
Zone zone;
LR_WasmDecoder decoder(&zone, builder);
TreeResult result = decoder.Decode(env, base, start, end);
return result;
}
std::ostream& operator<<(std::ostream& os, const Tree& tree) {
if (tree.pc == nullptr) {
os << "null";
return os;
}
PrintF("%s", WasmOpcodes::OpcodeName(tree.opcode()));
if (tree.count > 0) os << "(";
for (uint32_t i = 0; i < tree.count; i++) {
if (i > 0) os << ", ";
os << *tree.children[i];
}
if (tree.count > 0) os << ")";
return os;
}
ReadUnsignedLEB128ErrorCode ReadUnsignedLEB128Operand(const byte* pc,
const byte* limit,
int* length,
uint32_t* result) {
*result = 0;
const byte* ptr = pc;
const byte* end = pc + 5; // maximum 5 bytes.
if (end > limit) end = limit;
int shift = 0;
byte b = 0;
while (ptr < end) {
b = *ptr++;
*result = *result | ((b & 0x7F) << shift);
if ((b & 0x80) == 0) break;
shift += 7;
}
DCHECK_LE(ptr - pc, 5);
*length = static_cast<int>(ptr - pc);
if (ptr == end && (b & 0x80)) {
return kInvalidLEB128;
} else if (*length == 0) {
return kMissingLEB128;
} else {
return kNoError;
}
}
int OpcodeLength(const byte* pc) {
switch (static_cast<WasmOpcode>(*pc)) {
#define DECLARE_OPCODE_CASE(name, opcode, sig) case kExpr##name:
FOREACH_LOAD_MEM_OPCODE(DECLARE_OPCODE_CASE)
FOREACH_STORE_MEM_OPCODE(DECLARE_OPCODE_CASE)
#undef DECLARE_OPCODE_CASE
case kExprI8Const:
case kExprBlock:
case kExprLoop:
case kExprBr:
case kExprBrIf:
return 2;
case kExprI32Const:
case kExprF32Const:
return 5;
case kExprI64Const:
case kExprF64Const:
return 9;
case kExprStoreGlobal:
case kExprSetLocal:
case kExprLoadGlobal:
case kExprCallFunction:
case kExprCallIndirect:
case kExprGetLocal: {
int length;
uint32_t result = 0;
ReadUnsignedLEB128Operand(pc + 1, pc + 6, &length, &result);
return 1 + length;
}
case kExprTableSwitch: {
uint16_t table_count = *reinterpret_cast<const uint16_t*>(pc + 3);
return 5 + table_count * 2;
}
default:
return 1;
}
}
int OpcodeArity(FunctionEnv* env, const byte* pc) {
#define DECLARE_ARITY(name, ...) \
static const LocalType kTypes_##name[] = {__VA_ARGS__}; \
static const int kArity_##name = \
static_cast<int>(arraysize(kTypes_##name) - 1);
FOREACH_SIGNATURE(DECLARE_ARITY);
#undef DECLARE_ARITY
switch (static_cast<WasmOpcode>(*pc)) {
case kExprI8Const:
case kExprI32Const:
case kExprI64Const:
case kExprF64Const:
case kExprF32Const:
case kExprGetLocal:
case kExprLoadGlobal:
case kExprNop:
case kExprUnreachable:
return 0;
case kExprBr:
case kExprStoreGlobal:
case kExprSetLocal:
return 1;
case kExprIf:
case kExprBrIf:
return 2;
case kExprIfElse:
case kExprSelect:
return 3;
case kExprBlock:
case kExprLoop:
return *(pc + 1);
case kExprCallFunction: {
int index = *(pc + 1);
return static_cast<int>(
env->module->GetFunctionSignature(index)->parameter_count());
}
case kExprCallIndirect: {
int index = *(pc + 1);
return 1 + static_cast<int>(
env->module->GetSignature(index)->parameter_count());
}
case kExprReturn:
return static_cast<int>(env->sig->return_count());
case kExprTableSwitch: {
uint16_t case_count = *reinterpret_cast<const uint16_t*>(pc + 1);
return 1 + case_count;
}
#define DECLARE_OPCODE_CASE(name, opcode, sig) \
case kExpr##name: \
return kArity_##sig;
FOREACH_LOAD_MEM_OPCODE(DECLARE_OPCODE_CASE)
FOREACH_STORE_MEM_OPCODE(DECLARE_OPCODE_CASE)
FOREACH_MISC_MEM_OPCODE(DECLARE_OPCODE_CASE)
FOREACH_SIMPLE_OPCODE(DECLARE_OPCODE_CASE)
#undef DECLARE_OPCODE_CASE
}
UNREACHABLE();
return 0;
}
} // namespace wasm
} // namespace internal
} // namespace v8