blob: f1c2507712934cc53b985a4407ab19dda0dd58c0 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#include "codegen-inl.h"
#include "fast-codegen.h"
#include "data-flow.h"
#include "scopes.h"
namespace v8 {
namespace internal {
#define BAILOUT(reason) \
do { \
if (FLAG_trace_bailout) { \
PrintF("%s\n", reason); \
} \
has_supported_syntax_ = false; \
return; \
} while (false)
#define CHECK_BAILOUT \
do { \
if (!has_supported_syntax_) return; \
} while (false)
void FastCodeGenSyntaxChecker::Check(CompilationInfo* info) {
info_ = info;
// We do not specialize if we do not have a receiver or if it is not a
// JS object with fast mode properties.
if (!info->has_receiver()) BAILOUT("No receiver");
if (!info->receiver()->IsJSObject()) BAILOUT("Receiver is not an object");
Handle<JSObject> object = Handle<JSObject>::cast(info->receiver());
if (!object->HasFastProperties()) BAILOUT("Receiver is in dictionary mode");
// We do not support stack or heap slots (both of which require
// allocation).
Scope* scope = info->scope();
if (scope->num_stack_slots() > 0) {
BAILOUT("Function has stack-allocated locals");
}
if (scope->num_heap_slots() > 0) {
BAILOUT("Function has context-allocated locals");
}
VisitDeclarations(scope->declarations());
CHECK_BAILOUT;
// We do not support empty function bodies.
if (info->function()->body()->is_empty()) {
BAILOUT("Function has an empty body");
}
VisitStatements(info->function()->body());
}
void FastCodeGenSyntaxChecker::VisitDeclarations(
ZoneList<Declaration*>* decls) {
if (!decls->is_empty()) BAILOUT("Function has declarations");
}
void FastCodeGenSyntaxChecker::VisitStatements(ZoneList<Statement*>* stmts) {
if (stmts->length() != 1) {
BAILOUT("Function body is not a singleton statement.");
}
Visit(stmts->at(0));
}
void FastCodeGenSyntaxChecker::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void FastCodeGenSyntaxChecker::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FastCodeGenSyntaxChecker::VisitExpressionStatement(
ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FastCodeGenSyntaxChecker::VisitEmptyStatement(EmptyStatement* stmt) {
// Supported.
}
void FastCodeGenSyntaxChecker::VisitIfStatement(IfStatement* stmt) {
BAILOUT("IfStatement");
}
void FastCodeGenSyntaxChecker::VisitContinueStatement(ContinueStatement* stmt) {
BAILOUT("Continuestatement");
}
void FastCodeGenSyntaxChecker::VisitBreakStatement(BreakStatement* stmt) {
BAILOUT("BreakStatement");
}
void FastCodeGenSyntaxChecker::VisitReturnStatement(ReturnStatement* stmt) {
BAILOUT("ReturnStatement");
}
void FastCodeGenSyntaxChecker::VisitWithEnterStatement(
WithEnterStatement* stmt) {
BAILOUT("WithEnterStatement");
}
void FastCodeGenSyntaxChecker::VisitWithExitStatement(WithExitStatement* stmt) {
BAILOUT("WithExitStatement");
}
void FastCodeGenSyntaxChecker::VisitSwitchStatement(SwitchStatement* stmt) {
BAILOUT("SwitchStatement");
}
void FastCodeGenSyntaxChecker::VisitDoWhileStatement(DoWhileStatement* stmt) {
BAILOUT("DoWhileStatement");
}
void FastCodeGenSyntaxChecker::VisitWhileStatement(WhileStatement* stmt) {
BAILOUT("WhileStatement");
}
void FastCodeGenSyntaxChecker::VisitForStatement(ForStatement* stmt) {
BAILOUT("ForStatement");
}
void FastCodeGenSyntaxChecker::VisitForInStatement(ForInStatement* stmt) {
BAILOUT("ForInStatement");
}
void FastCodeGenSyntaxChecker::VisitTryCatchStatement(TryCatchStatement* stmt) {
BAILOUT("TryCatchStatement");
}
void FastCodeGenSyntaxChecker::VisitTryFinallyStatement(
TryFinallyStatement* stmt) {
BAILOUT("TryFinallyStatement");
}
void FastCodeGenSyntaxChecker::VisitDebuggerStatement(
DebuggerStatement* stmt) {
BAILOUT("DebuggerStatement");
}
void FastCodeGenSyntaxChecker::VisitFunctionLiteral(FunctionLiteral* expr) {
BAILOUT("FunctionLiteral");
}
void FastCodeGenSyntaxChecker::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
BAILOUT("FunctionBoilerplateLiteral");
}
void FastCodeGenSyntaxChecker::VisitConditional(Conditional* expr) {
BAILOUT("Conditional");
}
void FastCodeGenSyntaxChecker::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FastCodeGenSyntaxChecker::VisitVariableProxy(VariableProxy* expr) {
// Only global variable references are supported.
Variable* var = expr->var();
if (!var->is_global() || var->is_this()) BAILOUT("Non-global variable");
// Check if the global variable is existing and non-deletable.
if (info()->has_global_object()) {
LookupResult lookup;
info()->global_object()->Lookup(*expr->name(), &lookup);
if (!lookup.IsProperty()) {
BAILOUT("Non-existing global variable");
}
// We do not handle global variables with accessors or interceptors.
if (lookup.type() != NORMAL) {
BAILOUT("Global variable with accessors or interceptors.");
}
// We do not handle deletable global variables.
if (!lookup.IsDontDelete()) {
BAILOUT("Deletable global variable");
}
}
}
void FastCodeGenSyntaxChecker::VisitLiteral(Literal* expr) {
BAILOUT("Literal");
}
void FastCodeGenSyntaxChecker::VisitRegExpLiteral(RegExpLiteral* expr) {
BAILOUT("RegExpLiteral");
}
void FastCodeGenSyntaxChecker::VisitObjectLiteral(ObjectLiteral* expr) {
BAILOUT("ObjectLiteral");
}
void FastCodeGenSyntaxChecker::VisitArrayLiteral(ArrayLiteral* expr) {
BAILOUT("ArrayLiteral");
}
void FastCodeGenSyntaxChecker::VisitCatchExtensionObject(
CatchExtensionObject* expr) {
BAILOUT("CatchExtensionObject");
}
void FastCodeGenSyntaxChecker::VisitAssignment(Assignment* expr) {
// Simple assignments to (named) this properties are supported.
if (expr->op() != Token::ASSIGN) BAILOUT("Non-simple assignment");
Property* prop = expr->target()->AsProperty();
if (prop == NULL) BAILOUT("Non-property assignment");
VariableProxy* proxy = prop->obj()->AsVariableProxy();
if (proxy == NULL || !proxy->var()->is_this()) {
BAILOUT("Non-this-property assignment");
}
if (!prop->key()->IsPropertyName()) {
BAILOUT("Non-named-property assignment");
}
// We will only specialize for fields on the object itself.
// Expression::IsPropertyName implies that the name is a literal
// symbol but we do not assume that.
Literal* key = prop->key()->AsLiteral();
if (key != NULL && key->handle()->IsString()) {
Handle<Object> receiver = info()->receiver();
Handle<String> name = Handle<String>::cast(key->handle());
LookupResult lookup;
receiver->Lookup(*name, &lookup);
if (!lookup.IsProperty()) {
BAILOUT("Assigned property not found at compile time");
}
if (lookup.holder() != *receiver) BAILOUT("Non-own property assignment");
if (!lookup.type() == FIELD) BAILOUT("Non-field property assignment");
} else {
UNREACHABLE();
BAILOUT("Unexpected non-string-literal property key");
}
Visit(expr->value());
}
void FastCodeGenSyntaxChecker::VisitThrow(Throw* expr) {
BAILOUT("Throw");
}
void FastCodeGenSyntaxChecker::VisitProperty(Property* expr) {
// We support named this property references.
VariableProxy* proxy = expr->obj()->AsVariableProxy();
if (proxy == NULL || !proxy->var()->is_this()) {
BAILOUT("Non-this-property reference");
}
if (!expr->key()->IsPropertyName()) {
BAILOUT("Non-named-property reference");
}
// We will only specialize for fields on the object itself.
// Expression::IsPropertyName implies that the name is a literal
// symbol but we do not assume that.
Literal* key = expr->key()->AsLiteral();
if (key != NULL && key->handle()->IsString()) {
Handle<Object> receiver = info()->receiver();
Handle<String> name = Handle<String>::cast(key->handle());
LookupResult lookup;
receiver->Lookup(*name, &lookup);
if (!lookup.IsProperty()) {
BAILOUT("Referenced property not found at compile time");
}
if (lookup.holder() != *receiver) BAILOUT("Non-own property reference");
if (!lookup.type() == FIELD) BAILOUT("Non-field property reference");
} else {
UNREACHABLE();
BAILOUT("Unexpected non-string-literal property key");
}
}
void FastCodeGenSyntaxChecker::VisitCall(Call* expr) {
BAILOUT("Call");
}
void FastCodeGenSyntaxChecker::VisitCallNew(CallNew* expr) {
BAILOUT("CallNew");
}
void FastCodeGenSyntaxChecker::VisitCallRuntime(CallRuntime* expr) {
BAILOUT("CallRuntime");
}
void FastCodeGenSyntaxChecker::VisitUnaryOperation(UnaryOperation* expr) {
BAILOUT("UnaryOperation");
}
void FastCodeGenSyntaxChecker::VisitCountOperation(CountOperation* expr) {
BAILOUT("CountOperation");
}
void FastCodeGenSyntaxChecker::VisitBinaryOperation(BinaryOperation* expr) {
// We support bitwise OR.
switch (expr->op()) {
case Token::COMMA:
BAILOUT("BinaryOperation COMMA");
case Token::OR:
BAILOUT("BinaryOperation OR");
case Token::AND:
BAILOUT("BinaryOperation AND");
case Token::BIT_OR:
// We support expressions nested on the left because they only require
// a pair of registers to keep all intermediate values in registers
// (i.e., the expression stack has height no more than two).
if (!expr->right()->IsLeaf()) BAILOUT("expression nested on right");
// We do not allow subexpressions with side effects because we
// (currently) bail out to the beginning of the full function. The
// only expressions with side effects that we would otherwise handle
// are assignments.
if (expr->left()->AsAssignment() != NULL ||
expr->right()->AsAssignment() != NULL) {
BAILOUT("subexpression of binary operation has side effects");
}
Visit(expr->left());
CHECK_BAILOUT;
Visit(expr->right());
break;
case Token::BIT_XOR:
BAILOUT("BinaryOperation BIT_XOR");
case Token::BIT_AND:
BAILOUT("BinaryOperation BIT_AND");
case Token::SHL:
BAILOUT("BinaryOperation SHL");
case Token::SAR:
BAILOUT("BinaryOperation SAR");
case Token::SHR:
BAILOUT("BinaryOperation SHR");
case Token::ADD:
BAILOUT("BinaryOperation ADD");
case Token::SUB:
BAILOUT("BinaryOperation SUB");
case Token::MUL:
BAILOUT("BinaryOperation MUL");
case Token::DIV:
BAILOUT("BinaryOperation DIV");
case Token::MOD:
BAILOUT("BinaryOperation MOD");
default:
UNREACHABLE();
}
}
void FastCodeGenSyntaxChecker::VisitCompareOperation(CompareOperation* expr) {
BAILOUT("CompareOperation");
}
void FastCodeGenSyntaxChecker::VisitThisFunction(ThisFunction* expr) {
BAILOUT("ThisFunction");
}
#undef BAILOUT
#undef CHECK_BAILOUT
#define __ ACCESS_MASM(masm())
Handle<Code> FastCodeGenerator::MakeCode(CompilationInfo* info) {
// Label the AST before calling MakeCodePrologue, so AST node numbers are
// printed with the AST.
AstLabeler labeler;
labeler.Label(info);
LivenessAnalyzer analyzer;
analyzer.Analyze(info->function());
CodeGenerator::MakeCodePrologue(info);
const int kInitialBufferSize = 4 * KB;
MacroAssembler masm(NULL, kInitialBufferSize);
// Generate the fast-path code.
FastCodeGenerator fast_cgen(&masm);
fast_cgen.Generate(info);
if (fast_cgen.HasStackOverflow()) {
ASSERT(!Top::has_pending_exception());
return Handle<Code>::null();
}
// Generate the full code for the function in bailout mode, using the same
// macro assembler.
CodeGenerator cgen(&masm);
CodeGeneratorScope scope(&cgen);
info->set_mode(CompilationInfo::SECONDARY);
cgen.Generate(info);
if (cgen.HasStackOverflow()) {
ASSERT(!Top::has_pending_exception());
return Handle<Code>::null();
}
Code::Flags flags = Code::ComputeFlags(Code::FUNCTION, NOT_IN_LOOP);
return CodeGenerator::MakeCodeEpilogue(&masm, flags, info);
}
Register FastCodeGenerator::accumulator0() { return eax; }
Register FastCodeGenerator::accumulator1() { return edx; }
Register FastCodeGenerator::scratch0() { return ecx; }
Register FastCodeGenerator::scratch1() { return edi; }
Register FastCodeGenerator::receiver_reg() { return ebx; }
Register FastCodeGenerator::context_reg() { return esi; }
void FastCodeGenerator::EmitLoadReceiver() {
// Offset 2 is due to return address and saved frame pointer.
int index = 2 + function()->scope()->num_parameters();
__ mov(receiver_reg(), Operand(ebp, index * kPointerSize));
}
void FastCodeGenerator::EmitGlobalVariableLoad(Handle<Object> cell) {
ASSERT(!destination().is(no_reg));
ASSERT(cell->IsJSGlobalPropertyCell());
__ mov(destination(), Immediate(cell));
__ mov(destination(),
FieldOperand(destination(), JSGlobalPropertyCell::kValueOffset));
if (FLAG_debug_code) {
__ cmp(destination(), Factory::the_hole_value());
__ Check(not_equal, "DontDelete cells can't contain the hole");
}
// The loaded value is not known to be a smi.
clear_as_smi(destination());
}
void FastCodeGenerator::EmitThisPropertyStore(Handle<String> name) {
LookupResult lookup;
info()->receiver()->Lookup(*name, &lookup);
ASSERT(lookup.holder() == *info()->receiver());
ASSERT(lookup.type() == FIELD);
Handle<Map> map(Handle<HeapObject>::cast(info()->receiver())->map());
int index = lookup.GetFieldIndex() - map->inobject_properties();
int offset = index * kPointerSize;
// We will emit the write barrier unless the stored value is statically
// known to be a smi.
bool needs_write_barrier = !is_smi(accumulator0());
// Perform the store. Negative offsets are inobject properties.
if (offset < 0) {
offset += map->instance_size();
__ mov(FieldOperand(receiver_reg(), offset), accumulator0());
if (needs_write_barrier) {
// Preserve receiver from write barrier.
__ mov(scratch0(), receiver_reg());
}
} else {
offset += FixedArray::kHeaderSize;
__ mov(scratch0(),
FieldOperand(receiver_reg(), JSObject::kPropertiesOffset));
__ mov(FieldOperand(scratch0(), offset), accumulator0());
}
if (needs_write_barrier) {
if (destination().is(no_reg)) {
// After RecordWrite accumulator0 is only accidently a smi, but it is
// already marked as not known to be one.
__ RecordWrite(scratch0(), offset, accumulator0(), scratch1());
} else {
// Copy the value to the other accumulator to preserve a copy from the
// write barrier. One of the accumulators is available as a scratch
// register. Neither is a smi.
__ mov(accumulator1(), accumulator0());
clear_as_smi(accumulator1());
Register value_scratch = other_accumulator(destination());
__ RecordWrite(scratch0(), offset, value_scratch, scratch1());
}
} else if (destination().is(accumulator1())) {
__ mov(accumulator1(), accumulator0());
// Is a smi because we do not need the write barrier.
set_as_smi(accumulator1());
}
}
void FastCodeGenerator::EmitThisPropertyLoad(Handle<String> name) {
ASSERT(!destination().is(no_reg));
LookupResult lookup;
info()->receiver()->Lookup(*name, &lookup);
ASSERT(lookup.holder() == *info()->receiver());
ASSERT(lookup.type() == FIELD);
Handle<Map> map(Handle<HeapObject>::cast(info()->receiver())->map());
int index = lookup.GetFieldIndex() - map->inobject_properties();
int offset = index * kPointerSize;
// Perform the load. Negative offsets are inobject properties.
if (offset < 0) {
offset += map->instance_size();
__ mov(destination(), FieldOperand(receiver_reg(), offset));
} else {
offset += FixedArray::kHeaderSize;
__ mov(scratch0(),
FieldOperand(receiver_reg(), JSObject::kPropertiesOffset));
__ mov(destination(), FieldOperand(scratch0(), offset));
}
// The loaded value is not known to be a smi.
clear_as_smi(destination());
}
void FastCodeGenerator::EmitBitOr() {
if (is_smi(accumulator0()) && is_smi(accumulator1())) {
// If both operands are known to be a smi then there is no need to check
// the operands or result. There is no need to perform the operation in
// an effect context.
if (!destination().is(no_reg)) {
// Leave the result in the destination register. Bitwise or is
// commutative.
__ or_(destination(), Operand(other_accumulator(destination())));
}
} else {
// Left is in accumulator1, right in accumulator0.
Label* bailout = NULL;
if (destination().is(accumulator0())) {
__ mov(scratch0(), accumulator0());
__ or_(destination(), Operand(accumulator1())); // Or is commutative.
__ test(destination(), Immediate(kSmiTagMask));
bailout = info()->AddBailout(accumulator1(), scratch0()); // Left, right.
} else if (destination().is(accumulator1())) {
__ mov(scratch0(), accumulator1());
__ or_(destination(), Operand(accumulator0()));
__ test(destination(), Immediate(kSmiTagMask));
bailout = info()->AddBailout(scratch0(), accumulator0());
} else {
ASSERT(destination().is(no_reg));
__ mov(scratch0(), accumulator1());
__ or_(scratch0(), Operand(accumulator0()));
__ test(scratch0(), Immediate(kSmiTagMask));
bailout = info()->AddBailout(accumulator1(), accumulator0());
}
__ j(not_zero, bailout, not_taken);
}
// If we didn't bailout, the result (in fact, both inputs too) is known to
// be a smi.
set_as_smi(accumulator0());
set_as_smi(accumulator1());
}
void FastCodeGenerator::Generate(CompilationInfo* compilation_info) {
ASSERT(info_ == NULL);
info_ = compilation_info;
// Save the caller's frame pointer and set up our own.
Comment prologue_cmnt(masm(), ";; Prologue");
__ push(ebp);
__ mov(ebp, esp);
__ push(esi); // Context.
__ push(edi); // Closure.
// Note that we keep a live register reference to esi (context) at this
// point.
Label* bailout_to_beginning = info()->AddBailout();
// Receiver (this) is allocated to a fixed register.
if (info()->has_this_properties()) {
Comment cmnt(masm(), ";; MapCheck(this)");
if (FLAG_print_ir) {
PrintF("#: MapCheck(this)\n");
}
ASSERT(info()->has_receiver() && info()->receiver()->IsHeapObject());
Handle<HeapObject> object = Handle<HeapObject>::cast(info()->receiver());
Handle<Map> map(object->map());
EmitLoadReceiver();
__ CheckMap(receiver_reg(), map, bailout_to_beginning, false);
}
// If there is a global variable access check if the global object is the
// same as at lazy-compilation time.
if (info()->has_globals()) {
Comment cmnt(masm(), ";; MapCheck(GLOBAL)");
if (FLAG_print_ir) {
PrintF("#: MapCheck(GLOBAL)\n");
}
ASSERT(info()->has_global_object());
Handle<Map> map(info()->global_object()->map());
__ mov(scratch0(), CodeGenerator::GlobalObject());
__ CheckMap(scratch0(), map, bailout_to_beginning, true);
}
VisitStatements(function()->body());
Comment return_cmnt(masm(), ";; Return(<undefined>)");
if (FLAG_print_ir) {
PrintF("#: Return(<undefined>)\n");
}
__ mov(eax, Factory::undefined_value());
__ mov(esp, ebp);
__ pop(ebp);
__ ret((scope()->num_parameters() + 1) * kPointerSize);
}
void FastCodeGenerator::VisitDeclaration(Declaration* decl) {
UNREACHABLE();
}
void FastCodeGenerator::VisitBlock(Block* stmt) {
VisitStatements(stmt->statements());
}
void FastCodeGenerator::VisitExpressionStatement(ExpressionStatement* stmt) {
Visit(stmt->expression());
}
void FastCodeGenerator::VisitEmptyStatement(EmptyStatement* stmt) {
// Nothing to do.
}
void FastCodeGenerator::VisitIfStatement(IfStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitContinueStatement(ContinueStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitBreakStatement(BreakStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitReturnStatement(ReturnStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitWithEnterStatement(WithEnterStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitWithExitStatement(WithExitStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitDoWhileStatement(DoWhileStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitWhileStatement(WhileStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitForStatement(ForStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitForInStatement(ForInStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitTryCatchStatement(TryCatchStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitDebuggerStatement(DebuggerStatement* stmt) {
UNREACHABLE();
}
void FastCodeGenerator::VisitFunctionLiteral(FunctionLiteral* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitFunctionBoilerplateLiteral(
FunctionBoilerplateLiteral* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitConditional(Conditional* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitSlot(Slot* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitVariableProxy(VariableProxy* expr) {
ASSERT(expr->var()->is_global() && !expr->var()->is_this());
// Check if we can compile a global variable load directly from the cell.
ASSERT(info()->has_global_object());
LookupResult lookup;
info()->global_object()->Lookup(*expr->name(), &lookup);
// We only support normal (non-accessor/interceptor) DontDelete properties
// for now.
ASSERT(lookup.IsProperty());
ASSERT_EQ(NORMAL, lookup.type());
ASSERT(lookup.IsDontDelete());
Handle<Object> cell(info()->global_object()->GetPropertyCell(&lookup));
// Global variable lookups do not have side effects, so we do not need to
// emit code if we are in an effect context.
if (!destination().is(no_reg)) {
Comment cmnt(masm(), ";; Global");
if (FLAG_print_ir) {
SmartPointer<char> name = expr->name()->ToCString();
PrintF("%d: t%d = Global(%s) // last_use = %d\n", expr->num(),
expr->num(), *name, expr->var_def()->last_use()->num());
}
EmitGlobalVariableLoad(cell);
}
}
void FastCodeGenerator::VisitLiteral(Literal* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitAssignment(Assignment* expr) {
// Known to be a simple this property assignment. Effectively a unary
// operation.
{ Register my_destination = destination();
set_destination(accumulator0());
Visit(expr->value());
set_destination(my_destination);
}
Property* prop = expr->target()->AsProperty();
ASSERT_NOT_NULL(prop);
ASSERT_NOT_NULL(prop->obj()->AsVariableProxy());
ASSERT(prop->obj()->AsVariableProxy()->var()->is_this());
ASSERT(prop->key()->IsPropertyName());
Handle<String> name =
Handle<String>::cast(prop->key()->AsLiteral()->handle());
Comment cmnt(masm(), ";; Store to this");
if (FLAG_print_ir) {
SmartPointer<char> name_string = name->ToCString();
PrintF("%d: ", expr->num());
if (!destination().is(no_reg)) PrintF("t%d = ", expr->num());
PrintF("Store(this, \"%s\", t%d) // last_use(this) = %d\n", *name_string,
expr->value()->num(),
expr->var_def()->last_use()->num());
}
EmitThisPropertyStore(name);
}
void FastCodeGenerator::VisitThrow(Throw* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitProperty(Property* expr) {
ASSERT_NOT_NULL(expr->obj()->AsVariableProxy());
ASSERT(expr->obj()->AsVariableProxy()->var()->is_this());
ASSERT(expr->key()->IsPropertyName());
if (!destination().is(no_reg)) {
Handle<String> name =
Handle<String>::cast(expr->key()->AsLiteral()->handle());
Comment cmnt(masm(), ";; Load from this");
if (FLAG_print_ir) {
SmartPointer<char> name_string = name->ToCString();
PrintF("%d: t%d = Load(this, \"%s\") // last_use(this) = %d\n",
expr->num(), expr->num(), *name_string,
expr->var_def()->last_use()->num());
}
EmitThisPropertyLoad(name);
}
}
void FastCodeGenerator::VisitCall(Call* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitCallNew(CallNew* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitCallRuntime(CallRuntime* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitCountOperation(CountOperation* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitBinaryOperation(BinaryOperation* expr) {
// We support limited binary operations: bitwise OR only allowed to be
// nested on the left.
ASSERT(expr->op() == Token::BIT_OR);
ASSERT(expr->right()->IsLeaf());
{ Register my_destination = destination();
set_destination(accumulator1());
Visit(expr->left());
set_destination(accumulator0());
Visit(expr->right());
set_destination(my_destination);
}
Comment cmnt(masm(), ";; BIT_OR");
if (FLAG_print_ir) {
PrintF("%d: ", expr->num());
if (!destination().is(no_reg)) PrintF("t%d = ", expr->num());
PrintF("BIT_OR(t%d, t%d)\n", expr->left()->num(), expr->right()->num());
}
EmitBitOr();
}
void FastCodeGenerator::VisitCompareOperation(CompareOperation* expr) {
UNREACHABLE();
}
void FastCodeGenerator::VisitThisFunction(ThisFunction* expr) {
UNREACHABLE();
}
#undef __
} } // namespace v8::internal