blob: 621a9bbfa21ebd0df7f6b5602b8e9e6487c1e89e [file] [log] [blame]
// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "v8.h"
#if defined(V8_TARGET_ARCH_IA32)
#include "ic-inl.h"
#include "codegen.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
#define __ ACCESS_MASM(masm)
static void ProbeTable(Isolate* isolate,
MacroAssembler* masm,
Code::Flags flags,
StubCache::Table table,
Register name,
Register offset,
Register extra) {
ExternalReference key_offset(isolate->stub_cache()->key_reference(table));
ExternalReference value_offset(isolate->stub_cache()->value_reference(table));
Label miss;
if (extra.is_valid()) {
// Get the code entry from the cache.
__ mov(extra, Operand::StaticArray(offset, times_2, value_offset));
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_2, key_offset));
__ j(not_equal, &miss);
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(extra, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
// Jump to the first instruction in the code stub.
__ add(Operand(extra), Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(Operand(extra));
__ bind(&miss);
} else {
// Save the offset on the stack.
__ push(offset);
// Check that the key in the entry matches the name.
__ cmp(name, Operand::StaticArray(offset, times_2, key_offset));
__ j(not_equal, &miss);
// Get the code entry from the cache.
__ mov(offset, Operand::StaticArray(offset, times_2, value_offset));
// Check that the flags match what we're looking for.
__ mov(offset, FieldOperand(offset, Code::kFlagsOffset));
__ and_(offset, ~Code::kFlagsNotUsedInLookup);
__ cmp(offset, flags);
__ j(not_equal, &miss);
// Restore offset and re-load code entry from cache.
__ pop(offset);
__ mov(offset, Operand::StaticArray(offset, times_2, value_offset));
// Jump to the first instruction in the code stub.
__ add(Operand(offset), Immediate(Code::kHeaderSize - kHeapObjectTag));
__ jmp(Operand(offset));
// Pop at miss.
__ bind(&miss);
__ pop(offset);
}
}
// Helper function used to check that the dictionary doesn't contain
// the property. This function may return false negatives, so miss_label
// must always call a backup property check that is complete.
// This function is safe to call if the receiver has fast properties.
// Name must be a symbol and receiver must be a heap object.
static MaybeObject* GenerateDictionaryNegativeLookup(MacroAssembler* masm,
Label* miss_label,
Register receiver,
String* name,
Register r0,
Register r1) {
ASSERT(name->IsSymbol());
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->negative_lookups(), 1);
__ IncrementCounter(counters->negative_lookups_miss(), 1);
__ mov(r0, FieldOperand(receiver, HeapObject::kMapOffset));
const int kInterceptorOrAccessCheckNeededMask =
(1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);
// Bail out if the receiver has a named interceptor or requires access checks.
__ test_b(FieldOperand(r0, Map::kBitFieldOffset),
kInterceptorOrAccessCheckNeededMask);
__ j(not_zero, miss_label);
// Check that receiver is a JSObject.
__ CmpInstanceType(r0, FIRST_SPEC_OBJECT_TYPE);
__ j(below, miss_label);
// Load properties array.
Register properties = r0;
__ mov(properties, FieldOperand(receiver, JSObject::kPropertiesOffset));
// Check that the properties array is a dictionary.
__ cmp(FieldOperand(properties, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->hash_table_map()));
__ j(not_equal, miss_label);
Label done;
MaybeObject* result =
StringDictionaryLookupStub::GenerateNegativeLookup(masm,
miss_label,
&done,
properties,
name,
r1);
if (result->IsFailure()) return result;
__ bind(&done);
__ DecrementCounter(counters->negative_lookups_miss(), 1);
return result;
}
void StubCache::GenerateProbe(MacroAssembler* masm,
Code::Flags flags,
Register receiver,
Register name,
Register scratch,
Register extra,
Register extra2) {
Isolate* isolate = Isolate::Current();
Label miss;
USE(extra2); // The register extra2 is not used on the ia32 platform.
// Make sure that code is valid. The shifting code relies on the
// entry size being 8.
ASSERT(sizeof(Entry) == 8);
// Make sure the flags does not name a specific type.
ASSERT(Code::ExtractTypeFromFlags(flags) == 0);
// Make sure that there are no register conflicts.
ASSERT(!scratch.is(receiver));
ASSERT(!scratch.is(name));
ASSERT(!extra.is(receiver));
ASSERT(!extra.is(name));
ASSERT(!extra.is(scratch));
// Check scratch and extra registers are valid, and extra2 is unused.
ASSERT(!scratch.is(no_reg));
ASSERT(extra2.is(no_reg));
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, &miss);
// Get the map of the receiver and compute the hash.
__ mov(scratch, FieldOperand(name, String::kHashFieldOffset));
__ add(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, flags);
__ and_(scratch, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
// Probe the primary table.
ProbeTable(isolate, masm, flags, kPrimary, name, scratch, extra);
// Primary miss: Compute hash for secondary probe.
__ mov(scratch, FieldOperand(name, String::kHashFieldOffset));
__ add(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ xor_(scratch, flags);
__ and_(scratch, (kPrimaryTableSize - 1) << kHeapObjectTagSize);
__ sub(scratch, Operand(name));
__ add(Operand(scratch), Immediate(flags));
__ and_(scratch, (kSecondaryTableSize - 1) << kHeapObjectTagSize);
// Probe the secondary table.
ProbeTable(isolate, masm, flags, kSecondary, name, scratch, extra);
// Cache miss: Fall-through and let caller handle the miss by
// entering the runtime system.
__ bind(&miss);
}
void StubCompiler::GenerateLoadGlobalFunctionPrototype(MacroAssembler* masm,
int index,
Register prototype) {
__ LoadGlobalFunction(index, prototype);
__ LoadGlobalFunctionInitialMap(prototype, prototype);
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateDirectLoadGlobalFunctionPrototype(
MacroAssembler* masm, int index, Register prototype, Label* miss) {
// Check we're still in the same context.
__ cmp(Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX)),
masm->isolate()->global());
__ j(not_equal, miss);
// Get the global function with the given index.
JSFunction* function =
JSFunction::cast(masm->isolate()->global_context()->get(index));
// Load its initial map. The global functions all have initial maps.
__ Set(prototype, Immediate(Handle<Map>(function->initial_map())));
// Load the prototype from the initial map.
__ mov(prototype, FieldOperand(prototype, Map::kPrototypeOffset));
}
void StubCompiler::GenerateLoadArrayLength(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* miss_label) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss_label);
// Check that the object is a JS array.
__ CmpObjectType(receiver, JS_ARRAY_TYPE, scratch);
__ j(not_equal, miss_label);
// Load length directly from the JS array.
__ mov(eax, FieldOperand(receiver, JSArray::kLengthOffset));
__ ret(0);
}
// Generate code to check if an object is a string. If the object is
// a string, the map's instance type is left in the scratch register.
static void GenerateStringCheck(MacroAssembler* masm,
Register receiver,
Register scratch,
Label* smi,
Label* non_string_object) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver, smi);
// Check that the object is a string.
__ mov(scratch, FieldOperand(receiver, HeapObject::kMapOffset));
__ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset));
STATIC_ASSERT(kNotStringTag != 0);
__ test(scratch, Immediate(kNotStringTag));
__ j(not_zero, non_string_object);
}
void StubCompiler::GenerateLoadStringLength(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss,
bool support_wrappers) {
Label check_wrapper;
// Check if the object is a string leaving the instance type in the
// scratch register.
GenerateStringCheck(masm, receiver, scratch1, miss,
support_wrappers ? &check_wrapper : miss);
// Load length from the string and convert to a smi.
__ mov(eax, FieldOperand(receiver, String::kLengthOffset));
__ ret(0);
if (support_wrappers) {
// Check if the object is a JSValue wrapper.
__ bind(&check_wrapper);
__ cmp(scratch1, JS_VALUE_TYPE);
__ j(not_equal, miss);
// Check if the wrapped value is a string and load the length
// directly if it is.
__ mov(scratch2, FieldOperand(receiver, JSValue::kValueOffset));
GenerateStringCheck(masm, scratch2, scratch1, miss, miss);
__ mov(eax, FieldOperand(scratch2, String::kLengthOffset));
__ ret(0);
}
}
void StubCompiler::GenerateLoadFunctionPrototype(MacroAssembler* masm,
Register receiver,
Register scratch1,
Register scratch2,
Label* miss_label) {
__ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
__ mov(eax, Operand(scratch1));
__ ret(0);
}
// Load a fast property out of a holder object (src). In-object properties
// are loaded directly otherwise the property is loaded from the properties
// fixed array.
void StubCompiler::GenerateFastPropertyLoad(MacroAssembler* masm,
Register dst, Register src,
JSObject* holder, int index) {
// Adjust for the number of properties stored in the holder.
index -= holder->map()->inobject_properties();
if (index < 0) {
// Get the property straight out of the holder.
int offset = holder->map()->instance_size() + (index * kPointerSize);
__ mov(dst, FieldOperand(src, offset));
} else {
// Calculate the offset into the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
__ mov(dst, FieldOperand(src, JSObject::kPropertiesOffset));
__ mov(dst, FieldOperand(dst, offset));
}
}
static void PushInterceptorArguments(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
__ push(name);
InterceptorInfo* interceptor = holder_obj->GetNamedInterceptor();
ASSERT(!masm->isolate()->heap()->InNewSpace(interceptor));
Register scratch = name;
__ mov(scratch, Immediate(Handle<Object>(interceptor)));
__ push(scratch);
__ push(receiver);
__ push(holder);
__ push(FieldOperand(scratch, InterceptorInfo::kDataOffset));
}
static void CompileCallLoadPropertyWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
Register name,
JSObject* holder_obj) {
PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorOnly),
masm->isolate()),
5);
}
// Number of pointers to be reserved on stack for fast API call.
static const int kFastApiCallArguments = 3;
// Reserves space for the extra arguments to API function in the
// caller's frame.
//
// These arguments are set by CheckPrototypes and GenerateFastApiCall.
static void ReserveSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : last argument in the internal frame of the caller
// -----------------------------------
__ pop(scratch);
for (int i = 0; i < kFastApiCallArguments; i++) {
__ push(Immediate(Smi::FromInt(0)));
}
__ push(scratch);
}
// Undoes the effects of ReserveSpaceForFastApiCall.
static void FreeSpaceForFastApiCall(MacroAssembler* masm, Register scratch) {
// ----------- S t a t e -------------
// -- esp[0] : return address.
// -- esp[4] : last fast api call extra argument.
// -- ...
// -- esp[kFastApiCallArguments * 4] : first fast api call extra argument.
// -- esp[kFastApiCallArguments * 4 + 4] : last argument in the internal
// frame.
// -----------------------------------
__ pop(scratch);
__ add(Operand(esp), Immediate(kPointerSize * kFastApiCallArguments));
__ push(scratch);
}
// Generates call to API function.
static MaybeObject* GenerateFastApiCall(MacroAssembler* masm,
const CallOptimization& optimization,
int argc) {
// ----------- S t a t e -------------
// -- esp[0] : return address
// -- esp[4] : object passing the type check
// (last fast api call extra argument,
// set by CheckPrototypes)
// -- esp[8] : api function
// (first fast api call extra argument)
// -- esp[12] : api call data
// -- esp[16] : last argument
// -- ...
// -- esp[(argc + 3) * 4] : first argument
// -- esp[(argc + 4) * 4] : receiver
// -----------------------------------
// Get the function and setup the context.
JSFunction* function = optimization.constant_function();
__ mov(edi, Immediate(Handle<JSFunction>(function)));
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Pass the additional arguments.
__ mov(Operand(esp, 2 * kPointerSize), edi);
Object* call_data = optimization.api_call_info()->data();
Handle<CallHandlerInfo> api_call_info_handle(optimization.api_call_info());
if (masm->isolate()->heap()->InNewSpace(call_data)) {
__ mov(ecx, api_call_info_handle);
__ mov(ebx, FieldOperand(ecx, CallHandlerInfo::kDataOffset));
__ mov(Operand(esp, 3 * kPointerSize), ebx);
} else {
__ mov(Operand(esp, 3 * kPointerSize),
Immediate(Handle<Object>(call_data)));
}
// Prepare arguments.
__ lea(eax, Operand(esp, 3 * kPointerSize));
Object* callback = optimization.api_call_info()->callback();
Address api_function_address = v8::ToCData<Address>(callback);
ApiFunction fun(api_function_address);
const int kApiArgc = 1; // API function gets reference to the v8::Arguments.
// Allocate the v8::Arguments structure in the arguments' space since
// it's not controlled by GC.
const int kApiStackSpace = 4;
__ PrepareCallApiFunction(kApiArgc + kApiStackSpace);
__ mov(ApiParameterOperand(1), eax); // v8::Arguments::implicit_args_.
__ add(Operand(eax), Immediate(argc * kPointerSize));
__ mov(ApiParameterOperand(2), eax); // v8::Arguments::values_.
__ Set(ApiParameterOperand(3), Immediate(argc)); // v8::Arguments::length_.
// v8::Arguments::is_construct_call_.
__ Set(ApiParameterOperand(4), Immediate(0));
// v8::InvocationCallback's argument.
__ lea(eax, ApiParameterOperand(1));
__ mov(ApiParameterOperand(0), eax);
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
return masm->TryCallApiFunctionAndReturn(&fun,
argc + kFastApiCallArguments + 1);
}
class CallInterceptorCompiler BASE_EMBEDDED {
public:
CallInterceptorCompiler(StubCompiler* stub_compiler,
const ParameterCount& arguments,
Register name,
Code::ExtraICState extra_ic_state)
: stub_compiler_(stub_compiler),
arguments_(arguments),
name_(name),
extra_ic_state_(extra_ic_state) {}
MaybeObject* Compile(MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
LookupResult* lookup,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Label* miss) {
ASSERT(holder->HasNamedInterceptor());
ASSERT(!holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
CallOptimization optimization(lookup);
if (optimization.is_constant_call()) {
return CompileCacheable(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
holder,
lookup,
name,
optimization,
miss);
} else {
CompileRegular(masm,
object,
receiver,
scratch1,
scratch2,
scratch3,
name,
holder,
miss);
return masm->isolate()->heap()->undefined_value(); // Success.
}
}
private:
MaybeObject* CompileCacheable(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
JSObject* interceptor_holder,
LookupResult* lookup,
String* name,
const CallOptimization& optimization,
Label* miss_label) {
ASSERT(optimization.is_constant_call());
ASSERT(!lookup->holder()->IsGlobalObject());
int depth1 = kInvalidProtoDepth;
int depth2 = kInvalidProtoDepth;
bool can_do_fast_api_call = false;
if (optimization.is_simple_api_call() &&
!lookup->holder()->IsGlobalObject()) {
depth1 =
optimization.GetPrototypeDepthOfExpectedType(object,
interceptor_holder);
if (depth1 == kInvalidProtoDepth) {
depth2 =
optimization.GetPrototypeDepthOfExpectedType(interceptor_holder,
lookup->holder());
}
can_do_fast_api_call = (depth1 != kInvalidProtoDepth) ||
(depth2 != kInvalidProtoDepth);
}
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->call_const_interceptor(), 1);
if (can_do_fast_api_call) {
__ IncrementCounter(counters->call_const_interceptor_fast_api(), 1);
ReserveSpaceForFastApiCall(masm, scratch1);
}
// Check that the maps from receiver to interceptor's holder
// haven't changed and thus we can invoke interceptor.
Label miss_cleanup;
Label* miss = can_do_fast_api_call ? &miss_cleanup : miss_label;
Register holder =
stub_compiler_->CheckPrototypes(object, receiver,
interceptor_holder, scratch1,
scratch2, scratch3, name, depth1, miss);
// Invoke an interceptor and if it provides a value,
// branch to |regular_invoke|.
Label regular_invoke;
LoadWithInterceptor(masm, receiver, holder, interceptor_holder,
&regular_invoke);
// Interceptor returned nothing for this property. Try to use cached
// constant function.
// Check that the maps from interceptor's holder to constant function's
// holder haven't changed and thus we can use cached constant function.
if (interceptor_holder != lookup->holder()) {
stub_compiler_->CheckPrototypes(interceptor_holder, receiver,
lookup->holder(), scratch1,
scratch2, scratch3, name, depth2, miss);
} else {
// CheckPrototypes has a side effect of fetching a 'holder'
// for API (object which is instanceof for the signature). It's
// safe to omit it here, as if present, it should be fetched
// by the previous CheckPrototypes.
ASSERT(depth2 == kInvalidProtoDepth);
}
// Invoke function.
if (can_do_fast_api_call) {
MaybeObject* result =
GenerateFastApiCall(masm, optimization, arguments_.immediate());
if (result->IsFailure()) return result;
} else {
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(optimization.constant_function(), arguments_,
JUMP_FUNCTION, NullCallWrapper(), call_kind);
}
// Deferred code for fast API call case---clean preallocated space.
if (can_do_fast_api_call) {
__ bind(&miss_cleanup);
FreeSpaceForFastApiCall(masm, scratch1);
__ jmp(miss_label);
}
// Invoke a regular function.
__ bind(&regular_invoke);
if (can_do_fast_api_call) {
FreeSpaceForFastApiCall(masm, scratch1);
}
return masm->isolate()->heap()->undefined_value(); // Success.
}
void CompileRegular(MacroAssembler* masm,
JSObject* object,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
JSObject* interceptor_holder,
Label* miss_label) {
Register holder =
stub_compiler_->CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3, name,
miss_label);
__ EnterInternalFrame();
// Save the name_ register across the call.
__ push(name_);
PushInterceptorArguments(masm,
receiver,
holder,
name_,
interceptor_holder);
__ CallExternalReference(
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForCall),
masm->isolate()),
5);
// Restore the name_ register.
__ pop(name_);
__ LeaveInternalFrame();
}
void LoadWithInterceptor(MacroAssembler* masm,
Register receiver,
Register holder,
JSObject* holder_obj,
Label* interceptor_succeeded) {
__ EnterInternalFrame();
__ push(holder); // Save the holder.
__ push(name_); // Save the name.
CompileCallLoadPropertyWithInterceptor(masm,
receiver,
holder,
name_,
holder_obj);
__ pop(name_); // Restore the name.
__ pop(receiver); // Restore the holder.
__ LeaveInternalFrame();
__ cmp(eax, masm->isolate()->factory()->no_interceptor_result_sentinel());
__ j(not_equal, interceptor_succeeded);
}
StubCompiler* stub_compiler_;
const ParameterCount& arguments_;
Register name_;
Code::ExtraICState extra_ic_state_;
};
void StubCompiler::GenerateLoadMiss(MacroAssembler* masm, Code::Kind kind) {
ASSERT(kind == Code::LOAD_IC || kind == Code::KEYED_LOAD_IC);
Code* code = NULL;
if (kind == Code::LOAD_IC) {
code = masm->isolate()->builtins()->builtin(Builtins::kLoadIC_Miss);
} else {
code = masm->isolate()->builtins()->builtin(Builtins::kKeyedLoadIC_Miss);
}
Handle<Code> ic(code);
__ jmp(ic, RelocInfo::CODE_TARGET);
}
void StubCompiler::GenerateKeyedLoadMissForceGeneric(MacroAssembler* masm) {
Code* code = masm->isolate()->builtins()->builtin(
Builtins::kKeyedLoadIC_MissForceGeneric);
Handle<Code> ic(code);
__ jmp(ic, RelocInfo::CODE_TARGET);
}
// Both name_reg and receiver_reg are preserved on jumps to miss_label,
// but may be destroyed if store is successful.
void StubCompiler::GenerateStoreField(MacroAssembler* masm,
JSObject* object,
int index,
Map* transition,
Register receiver_reg,
Register name_reg,
Register scratch,
Label* miss_label) {
// Check that the object isn't a smi.
__ JumpIfSmi(receiver_reg, miss_label);
// Check that the map of the object hasn't changed.
__ cmp(FieldOperand(receiver_reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
__ j(not_equal, miss_label);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(receiver_reg, scratch, miss_label);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
// Perform map transition for the receiver if necessary.
if ((transition != NULL) && (object->map()->unused_property_fields() == 0)) {
// The properties must be extended before we can store the value.
// We jump to a runtime call that extends the properties array.
__ pop(scratch); // Return address.
__ push(receiver_reg);
__ push(Immediate(Handle<Map>(transition)));
__ push(eax);
__ push(scratch);
__ TailCallExternalReference(
ExternalReference(IC_Utility(IC::kSharedStoreIC_ExtendStorage),
masm->isolate()),
3,
1);
return;
}
if (transition != NULL) {
// Update the map of the object; no write barrier updating is
// needed because the map is never in new space.
__ mov(FieldOperand(receiver_reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(transition)));
}
// Adjust for the number of properties stored in the object. Even in the
// face of a transition we can use the old map here because the size of the
// object and the number of in-object properties is not going to change.
index -= object->map()->inobject_properties();
if (index < 0) {
// Set the property straight into the object.
int offset = object->map()->instance_size() + (index * kPointerSize);
__ mov(FieldOperand(receiver_reg, offset), eax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, Operand(eax));
__ RecordWrite(receiver_reg, offset, name_reg, scratch);
} else {
// Write to the properties array.
int offset = index * kPointerSize + FixedArray::kHeaderSize;
// Get the properties array (optimistically).
__ mov(scratch, FieldOperand(receiver_reg, JSObject::kPropertiesOffset));
__ mov(FieldOperand(scratch, offset), eax);
// Update the write barrier for the array address.
// Pass the value being stored in the now unused name_reg.
__ mov(name_reg, Operand(eax));
__ RecordWrite(scratch, offset, name_reg, receiver_reg);
}
// Return the value (register eax).
__ ret(0);
}
// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCell(
MacroAssembler* masm,
GlobalObject* global,
String* name,
Register scratch,
Label* miss) {
Object* probe;
{ MaybeObject* maybe_probe = global->EnsurePropertyCell(name);
if (!maybe_probe->ToObject(&probe)) return maybe_probe;
}
JSGlobalPropertyCell* cell = JSGlobalPropertyCell::cast(probe);
ASSERT(cell->value()->IsTheHole());
if (Serializer::enabled()) {
__ mov(scratch, Immediate(Handle<Object>(cell)));
__ cmp(FieldOperand(scratch, JSGlobalPropertyCell::kValueOffset),
Immediate(masm->isolate()->factory()->the_hole_value()));
} else {
__ cmp(Operand::Cell(Handle<JSGlobalPropertyCell>(cell)),
Immediate(masm->isolate()->factory()->the_hole_value()));
}
__ j(not_equal, miss);
return cell;
}
// Calls GenerateCheckPropertyCell for each global object in the prototype chain
// from object to (but not including) holder.
MUST_USE_RESULT static MaybeObject* GenerateCheckPropertyCells(
MacroAssembler* masm,
JSObject* object,
JSObject* holder,
String* name,
Register scratch,
Label* miss) {
JSObject* current = object;
while (current != holder) {
if (current->IsGlobalObject()) {
// Returns a cell or a failure.
MaybeObject* result = GenerateCheckPropertyCell(
masm,
GlobalObject::cast(current),
name,
scratch,
miss);
if (result->IsFailure()) return result;
}
ASSERT(current->IsJSObject());
current = JSObject::cast(current->GetPrototype());
}
return NULL;
}
#undef __
#define __ ACCESS_MASM(masm())
Register StubCompiler::CheckPrototypes(JSObject* object,
Register object_reg,
JSObject* holder,
Register holder_reg,
Register scratch1,
Register scratch2,
String* name,
int save_at_depth,
Label* miss) {
// Make sure there's no overlap between holder and object registers.
ASSERT(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
ASSERT(!scratch2.is(object_reg) && !scratch2.is(holder_reg)
&& !scratch2.is(scratch1));
// Keep track of the current object in register reg.
Register reg = object_reg;
JSObject* current = object;
int depth = 0;
if (save_at_depth == depth) {
__ mov(Operand(esp, kPointerSize), reg);
}
// Traverse the prototype chain and check the maps in the prototype chain for
// fast and global objects or do negative lookup for normal objects.
while (current != holder) {
depth++;
// Only global objects and objects that do not require access
// checks are allowed in stubs.
ASSERT(current->IsJSGlobalProxy() || !current->IsAccessCheckNeeded());
ASSERT(current->GetPrototype()->IsJSObject());
JSObject* prototype = JSObject::cast(current->GetPrototype());
if (!current->HasFastProperties() &&
!current->IsJSGlobalObject() &&
!current->IsJSGlobalProxy()) {
if (!name->IsSymbol()) {
MaybeObject* maybe_lookup_result = heap()->LookupSymbol(name);
Object* lookup_result = NULL; // Initialization to please compiler.
if (!maybe_lookup_result->ToObject(&lookup_result)) {
set_failure(Failure::cast(maybe_lookup_result));
return reg;
}
name = String::cast(lookup_result);
}
ASSERT(current->property_dictionary()->FindEntry(name) ==
StringDictionary::kNotFound);
MaybeObject* negative_lookup = GenerateDictionaryNegativeLookup(masm(),
miss,
reg,
name,
scratch1,
scratch2);
if (negative_lookup->IsFailure()) {
set_failure(Failure::cast(negative_lookup));
return reg;
}
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
reg = holder_reg; // from now the object is in holder_reg
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else if (heap()->InNewSpace(prototype)) {
// Get the map of the current object.
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
__ cmp(Operand(scratch1), Immediate(Handle<Map>(current->map())));
// Branch on the result of the map check.
__ j(not_equal, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
// Restore scratch register to be the map of the object.
// We load the prototype from the map in the scratch register.
__ mov(scratch1, FieldOperand(reg, HeapObject::kMapOffset));
}
// The prototype is in new space; we cannot store a reference
// to it in the code. Load it from the map.
reg = holder_reg; // from now the object is in holder_reg
__ mov(reg, FieldOperand(scratch1, Map::kPrototypeOffset));
} else {
// Check the map of the current object.
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(current->map())));
// Branch on the result of the map check.
__ j(not_equal, miss);
// Check access rights to the global object. This has to happen
// after the map check so that we know that the object is
// actually a global object.
if (current->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
}
// The prototype is in old space; load it directly.
reg = holder_reg; // from now the object is in holder_reg
__ mov(reg, Handle<JSObject>(prototype));
}
if (save_at_depth == depth) {
__ mov(Operand(esp, kPointerSize), reg);
}
// Go to the next object in the prototype chain.
current = prototype;
}
ASSERT(current == holder);
// Log the check depth.
LOG(isolate(), IntEvent("check-maps-depth", depth + 1));
// Check the holder map.
__ cmp(FieldOperand(reg, HeapObject::kMapOffset),
Immediate(Handle<Map>(holder->map())));
__ j(not_equal, miss);
// Perform security check for access to the global object.
ASSERT(holder->IsJSGlobalProxy() || !holder->IsAccessCheckNeeded());
if (holder->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(reg, scratch1, miss);
};
// If we've skipped any global objects, it's not enough to verify
// that their maps haven't changed. We also need to check that the
// property cell for the property is still empty.
MaybeObject* result = GenerateCheckPropertyCells(masm(),
object,
holder,
name,
scratch1,
miss);
if (result->IsFailure()) set_failure(Failure::cast(result));
// Return the register containing the holder.
return reg;
}
void StubCompiler::GenerateLoadField(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
int index,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check the prototype chain.
Register reg =
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, scratch3, name, miss);
// Get the value from the properties.
GenerateFastPropertyLoad(masm(), eax, reg, holder, index);
__ ret(0);
}
MaybeObject* StubCompiler::GenerateLoadCallback(JSObject* object,
JSObject* holder,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
AccessorInfo* callback,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
Register reg =
CheckPrototypes(object, receiver, holder, scratch1,
scratch2, scratch3, name, miss);
Handle<AccessorInfo> callback_handle(callback);
// Insert additional parameters into the stack frame above return address.
ASSERT(!scratch3.is(reg));
__ pop(scratch3); // Get return address to place it below.
__ push(receiver); // receiver
__ mov(scratch2, Operand(esp));
ASSERT(!scratch2.is(reg));
__ push(reg); // holder
// Push data from AccessorInfo.
if (isolate()->heap()->InNewSpace(callback_handle->data())) {
__ mov(scratch1, Immediate(callback_handle));
__ push(FieldOperand(scratch1, AccessorInfo::kDataOffset));
} else {
__ push(Immediate(Handle<Object>(callback_handle->data())));
}
// Save a pointer to where we pushed the arguments pointer.
// This will be passed as the const AccessorInfo& to the C++ callback.
__ push(scratch2);
__ push(name_reg); // name
__ mov(ebx, esp); // esp points to reference to name (handler).
__ push(scratch3); // Restore return address.
// Do call through the api.
Address getter_address = v8::ToCData<Address>(callback->getter());
ApiFunction fun(getter_address);
// 3 elements array for v8::Agruments::values_, handler for name and pointer
// to the values (it considered as smi in GC).
const int kStackSpace = 5;
const int kApiArgc = 2;
__ PrepareCallApiFunction(kApiArgc);
__ mov(ApiParameterOperand(0), ebx); // name.
__ add(Operand(ebx), Immediate(kPointerSize));
__ mov(ApiParameterOperand(1), ebx); // arguments pointer.
// Emitting a stub call may try to allocate (if the code is not
// already generated). Do not allow the assembler to perform a
// garbage collection but instead return the allocation failure
// object.
return masm()->TryCallApiFunctionAndReturn(&fun, kStackSpace);
}
void StubCompiler::GenerateLoadConstant(JSObject* object,
JSObject* holder,
Register receiver,
Register scratch1,
Register scratch2,
Register scratch3,
Object* value,
String* name,
Label* miss) {
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// Check that the maps haven't changed.
CheckPrototypes(object, receiver, holder,
scratch1, scratch2, scratch3, name, miss);
// Return the constant value.
__ mov(eax, Handle<Object>(value));
__ ret(0);
}
void StubCompiler::GenerateLoadInterceptor(JSObject* object,
JSObject* interceptor_holder,
LookupResult* lookup,
Register receiver,
Register name_reg,
Register scratch1,
Register scratch2,
Register scratch3,
String* name,
Label* miss) {
ASSERT(interceptor_holder->HasNamedInterceptor());
ASSERT(!interceptor_holder->GetNamedInterceptor()->getter()->IsUndefined());
// Check that the receiver isn't a smi.
__ JumpIfSmi(receiver, miss);
// So far the most popular follow ups for interceptor loads are FIELD
// and CALLBACKS, so inline only them, other cases may be added
// later.
bool compile_followup_inline = false;
if (lookup->IsProperty() && lookup->IsCacheable()) {
if (lookup->type() == FIELD) {
compile_followup_inline = true;
} else if (lookup->type() == CALLBACKS &&
lookup->GetCallbackObject()->IsAccessorInfo() &&
AccessorInfo::cast(lookup->GetCallbackObject())->getter() != NULL) {
compile_followup_inline = true;
}
}
if (compile_followup_inline) {
// Compile the interceptor call, followed by inline code to load the
// property from further up the prototype chain if the call fails.
// Check that the maps haven't changed.
Register holder_reg = CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3,
name, miss);
ASSERT(holder_reg.is(receiver) || holder_reg.is(scratch1));
// Save necessary data before invoking an interceptor.
// Requires a frame to make GC aware of pushed pointers.
__ EnterInternalFrame();
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
// CALLBACKS case needs a receiver to be passed into C++ callback.
__ push(receiver);
}
__ push(holder_reg);
__ push(name_reg);
// Invoke an interceptor. Note: map checks from receiver to
// interceptor's holder has been compiled before (see a caller
// of this method.)
CompileCallLoadPropertyWithInterceptor(masm(),
receiver,
holder_reg,
name_reg,
interceptor_holder);
// Check if interceptor provided a value for property. If it's
// the case, return immediately.
Label interceptor_failed;
__ cmp(eax, factory()->no_interceptor_result_sentinel());
__ j(equal, &interceptor_failed);
__ LeaveInternalFrame();
__ ret(0);
__ bind(&interceptor_failed);
__ pop(name_reg);
__ pop(holder_reg);
if (lookup->type() == CALLBACKS && !receiver.is(holder_reg)) {
__ pop(receiver);
}
__ LeaveInternalFrame();
// Check that the maps from interceptor's holder to lookup's holder
// haven't changed. And load lookup's holder into holder_reg.
if (interceptor_holder != lookup->holder()) {
holder_reg = CheckPrototypes(interceptor_holder,
holder_reg,
lookup->holder(),
scratch1,
scratch2,
scratch3,
name,
miss);
}
if (lookup->type() == FIELD) {
// We found FIELD property in prototype chain of interceptor's holder.
// Retrieve a field from field's holder.
GenerateFastPropertyLoad(masm(), eax, holder_reg,
lookup->holder(), lookup->GetFieldIndex());
__ ret(0);
} else {
// We found CALLBACKS property in prototype chain of interceptor's
// holder.
ASSERT(lookup->type() == CALLBACKS);
ASSERT(lookup->GetCallbackObject()->IsAccessorInfo());
AccessorInfo* callback = AccessorInfo::cast(lookup->GetCallbackObject());
ASSERT(callback != NULL);
ASSERT(callback->getter() != NULL);
// Tail call to runtime.
// Important invariant in CALLBACKS case: the code above must be
// structured to never clobber |receiver| register.
__ pop(scratch2); // return address
__ push(receiver);
__ push(holder_reg);
__ mov(holder_reg, Immediate(Handle<AccessorInfo>(callback)));
__ push(FieldOperand(holder_reg, AccessorInfo::kDataOffset));
__ push(holder_reg);
__ push(name_reg);
__ push(scratch2); // restore return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadCallbackProperty),
masm()->isolate());
__ TailCallExternalReference(ref, 5, 1);
}
} else { // !compile_followup_inline
// Call the runtime system to load the interceptor.
// Check that the maps haven't changed.
Register holder_reg =
CheckPrototypes(object, receiver, interceptor_holder,
scratch1, scratch2, scratch3, name, miss);
__ pop(scratch2); // save old return address
PushInterceptorArguments(masm(), receiver, holder_reg,
name_reg, interceptor_holder);
__ push(scratch2); // restore old return address
ExternalReference ref =
ExternalReference(IC_Utility(IC::kLoadPropertyWithInterceptorForLoad),
isolate());
__ TailCallExternalReference(ref, 5, 1);
}
}
void CallStubCompiler::GenerateNameCheck(String* name, Label* miss) {
if (kind_ == Code::KEYED_CALL_IC) {
__ cmp(Operand(ecx), Immediate(Handle<String>(name)));
__ j(not_equal, miss);
}
}
void CallStubCompiler::GenerateGlobalReceiverCheck(JSObject* object,
JSObject* holder,
String* name,
Label* miss) {
ASSERT(holder->IsGlobalObject());
// Get the number of arguments.
const int argc = arguments().immediate();
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// If the object is the holder then we know that it's a global
// object which can only happen for contextual calls. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ JumpIfSmi(edx, miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, edx, holder, ebx, eax, edi, name, miss);
}
void CallStubCompiler::GenerateLoadFunctionFromCell(JSGlobalPropertyCell* cell,
JSFunction* function,
Label* miss) {
// Get the value from the cell.
if (Serializer::enabled()) {
__ mov(edi, Immediate(Handle<JSGlobalPropertyCell>(cell)));
__ mov(edi, FieldOperand(edi, JSGlobalPropertyCell::kValueOffset));
} else {
__ mov(edi, Operand::Cell(Handle<JSGlobalPropertyCell>(cell)));
}
// Check that the cell contains the same function.
if (isolate()->heap()->InNewSpace(function)) {
// We can't embed a pointer to a function in new space so we have
// to verify that the shared function info is unchanged. This has
// the nice side effect that multiple closures based on the same
// function can all use this call IC. Before we load through the
// function, we have to verify that it still is a function.
__ JumpIfSmi(edi, miss);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, miss);
// Check the shared function info. Make sure it hasn't changed.
__ cmp(FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset),
Immediate(Handle<SharedFunctionInfo>(function->shared())));
__ j(not_equal, miss);
} else {
__ cmp(Operand(edi), Immediate(Handle<JSFunction>(function)));
__ j(not_equal, miss);
}
}
MaybeObject* CallStubCompiler::GenerateMissBranch() {
MaybeObject* maybe_obj =
isolate()->stub_cache()->ComputeCallMiss(arguments().immediate(),
kind_,
extra_ic_state_);
Object* obj;
if (!maybe_obj->ToObject(&obj)) return maybe_obj;
__ jmp(Handle<Code>(Code::cast(obj)), RelocInfo::CODE_TARGET);
return obj;
}
MUST_USE_RESULT MaybeObject* CallStubCompiler::CompileCallField(
JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
// Do the right check and compute the holder register.
Register reg = CheckPrototypes(object, edx, holder, ebx, eax, edi,
name, &miss);
GenerateFastPropertyLoad(masm(), edi, reg, holder, index);
// Check that the function really is a function.
__ JumpIfSmi(edi, &miss);
__ CmpObjectType(edi, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* CallStubCompiler::CompileArrayPushCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) {
return isolate()->heap()->undefined_value();
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(JSObject::cast(object), edx,
holder, ebx,
eax, edi, name, &miss);
if (argc == 0) {
// Noop, return the length.
__ mov(eax, FieldOperand(edx, JSArray::kLengthOffset));
__ ret((argc + 1) * kPointerSize);
} else {
Label call_builtin;
// Get the elements array of the object.
__ mov(ebx, FieldOperand(edx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(factory()->fixed_array_map()));
__ j(not_equal, &call_builtin);
if (argc == 1) { // Otherwise fall through to call builtin.
Label exit, with_write_barrier, attempt_to_grow_elements;
// Get the array's length into eax and calculate new length.
__ mov(eax, FieldOperand(edx, JSArray::kLengthOffset));
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ add(Operand(eax), Immediate(Smi::FromInt(argc)));
// Get the element's length into ecx.
__ mov(ecx, FieldOperand(ebx, FixedArray::kLengthOffset));
// Check if we could survive without allocation.
__ cmp(eax, Operand(ecx));
__ j(greater, &attempt_to_grow_elements);
// Save new length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
// Push the element.
__ lea(edx, FieldOperand(ebx,
eax, times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ mov(ecx, Operand(esp, argc * kPointerSize));
__ mov(Operand(edx, 0), ecx);
// Check if value is a smi.
__ JumpIfNotSmi(ecx, &with_write_barrier);
__ bind(&exit);
__ ret((argc + 1) * kPointerSize);
__ bind(&with_write_barrier);
__ InNewSpace(ebx, ecx, equal, &exit);
__ RecordWriteHelper(ebx, edx, ecx);
__ ret((argc + 1) * kPointerSize);
__ bind(&attempt_to_grow_elements);
if (!FLAG_inline_new) {
__ jmp(&call_builtin);
}
ExternalReference new_space_allocation_top =
ExternalReference::new_space_allocation_top_address(isolate());
ExternalReference new_space_allocation_limit =
ExternalReference::new_space_allocation_limit_address(isolate());
const int kAllocationDelta = 4;
// Load top.
__ mov(ecx, Operand::StaticVariable(new_space_allocation_top));
// Check if it's the end of elements.
__ lea(edx, FieldOperand(ebx,
eax, times_half_pointer_size,
FixedArray::kHeaderSize - argc * kPointerSize));
__ cmp(edx, Operand(ecx));
__ j(not_equal, &call_builtin);
__ add(Operand(ecx), Immediate(kAllocationDelta * kPointerSize));
__ cmp(ecx, Operand::StaticVariable(new_space_allocation_limit));
__ j(above, &call_builtin);
// We fit and could grow elements.
__ mov(Operand::StaticVariable(new_space_allocation_top), ecx);
__ mov(ecx, Operand(esp, argc * kPointerSize));
// Push the argument...
__ mov(Operand(edx, 0), ecx);
// ... and fill the rest with holes.
for (int i = 1; i < kAllocationDelta; i++) {
__ mov(Operand(edx, i * kPointerSize),
Immediate(factory()->the_hole_value()));
}
// Restore receiver to edx as finish sequence assumes it's here.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Increment element's and array's sizes.
__ add(FieldOperand(ebx, FixedArray::kLengthOffset),
Immediate(Smi::FromInt(kAllocationDelta)));
__ mov(FieldOperand(edx, JSArray::kLengthOffset), eax);
// Elements are in new space, so write barrier is not required.
__ ret((argc + 1) * kPointerSize);
}
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPush, isolate()),
argc + 1,
1);
}
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileArrayPopCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not an array, bail out to regular call.
if (!object->IsJSArray() || cell != NULL) {
return heap()->undefined_value();
}
Label miss, return_undefined, call_builtin;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss);
CheckPrototypes(JSObject::cast(object), edx,
holder, ebx,
eax, edi, name, &miss);
// Get the elements array of the object.
__ mov(ebx, FieldOperand(edx, JSArray::kElementsOffset));
// Check that the elements are in fast mode and writable.
__ cmp(FieldOperand(ebx, HeapObject::kMapOffset),
Immediate(factory()->fixed_array_map()));
__ j(not_equal, &call_builtin);
// Get the array's length into ecx and calculate new length.
__ mov(ecx, FieldOperand(edx, JSArray::kLengthOffset));
__ sub(Operand(ecx), Immediate(Smi::FromInt(1)));
__ j(negative, &return_undefined);
// Get the last element.
STATIC_ASSERT(kSmiTagSize == 1);
STATIC_ASSERT(kSmiTag == 0);
__ mov(eax, FieldOperand(ebx,
ecx, times_half_pointer_size,
FixedArray::kHeaderSize));
__ cmp(Operand(eax), Immediate(factory()->the_hole_value()));
__ j(equal, &call_builtin);
// Set the array's length.
__ mov(FieldOperand(edx, JSArray::kLengthOffset), ecx);
// Fill with the hole.
__ mov(FieldOperand(ebx,
ecx, times_half_pointer_size,
FixedArray::kHeaderSize),
Immediate(factory()->the_hole_value()));
__ ret((argc + 1) * kPointerSize);
__ bind(&return_undefined);
__ mov(eax, Immediate(factory()->undefined_value()));
__ ret((argc + 1) * kPointerSize);
__ bind(&call_builtin);
__ TailCallExternalReference(
ExternalReference(Builtins::c_ArrayPop, isolate()),
argc + 1,
1);
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharCodeAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) {
return isolate()->heap()->undefined_value();
}
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_ic_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
eax,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder,
ebx, edx, edi, name, &miss);
Register receiver = ebx;
Register index = edi;
Register scratch = edx;
Register result = eax;
__ mov(receiver, Operand(esp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ mov(index, Operand(esp, (argc - 0) * kPointerSize));
} else {
__ Set(index, Immediate(factory()->undefined_value()));
}
StringCharCodeAtGenerator char_code_at_generator(receiver,
index,
scratch,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
char_code_at_generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
char_code_at_generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ Set(eax, Immediate(factory()->nan_value()));
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in ecx.
__ Set(ecx, Immediate(Handle<String>(name)));
__ bind(&name_miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringCharAtCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
// If object is not a string, bail out to regular call.
if (!object->IsString() || cell != NULL) {
return heap()->undefined_value();
}
const int argc = arguments().immediate();
Label miss;
Label name_miss;
Label index_out_of_range;
Label* index_out_of_range_label = &index_out_of_range;
if (kind_ == Code::CALL_IC &&
(CallICBase::StringStubState::decode(extra_ic_state_) ==
DEFAULT_STRING_STUB)) {
index_out_of_range_label = &miss;
}
GenerateNameCheck(name, &name_miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(masm(),
Context::STRING_FUNCTION_INDEX,
eax,
&miss);
ASSERT(object != holder);
CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder,
ebx, edx, edi, name, &miss);
Register receiver = eax;
Register index = edi;
Register scratch1 = ebx;
Register scratch2 = edx;
Register result = eax;
__ mov(receiver, Operand(esp, (argc + 1) * kPointerSize));
if (argc > 0) {
__ mov(index, Operand(esp, (argc - 0) * kPointerSize));
} else {
__ Set(index, Immediate(factory()->undefined_value()));
}
StringCharAtGenerator char_at_generator(receiver,
index,
scratch1,
scratch2,
result,
&miss, // When not a string.
&miss, // When not a number.
index_out_of_range_label,
STRING_INDEX_IS_NUMBER);
char_at_generator.GenerateFast(masm());
__ ret((argc + 1) * kPointerSize);
StubRuntimeCallHelper call_helper;
char_at_generator.GenerateSlow(masm(), call_helper);
if (index_out_of_range.is_linked()) {
__ bind(&index_out_of_range);
__ Set(eax, Immediate(factory()->empty_string()));
__ ret((argc + 1) * kPointerSize);
}
__ bind(&miss);
// Restore function name in ecx.
__ Set(ecx, Immediate(Handle<String>(name)));
__ bind(&name_miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileStringFromCharCodeCall(
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : function name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return isolate()->heap()->undefined_value();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the char code argument.
Register code = ebx;
__ mov(code, Operand(esp, 1 * kPointerSize));
// Check the code is a smi.
Label slow;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(code, &slow);
// Convert the smi code to uint16.
__ and_(code, Immediate(Smi::FromInt(0xffff)));
StringCharFromCodeGenerator char_from_code_generator(code, eax);
char_from_code_generator.GenerateFast(masm());
__ ret(2 * kPointerSize);
StubRuntimeCallHelper call_helper;
char_from_code_generator.GenerateSlow(masm(), call_helper);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
__ bind(&miss);
// ecx: function name.
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileMathFloorCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (!CpuFeatures::IsSupported(SSE2)) {
return isolate()->heap()->undefined_value();
}
CpuFeatures::Scope use_sse2(SSE2);
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return isolate()->heap()->undefined_value();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into eax.
__ mov(eax, Operand(esp, 1 * kPointerSize));
// Check if the argument is a smi.
Label smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(eax, &smi);
// Check if the argument is a heap number and load its value into xmm0.
Label slow;
__ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ movdbl(xmm0, FieldOperand(eax, HeapNumber::kValueOffset));
// Check if the argument is strictly positive. Note this also
// discards NaN.
__ xorpd(xmm1, xmm1);
__ ucomisd(xmm0, xmm1);
__ j(below_equal, &slow);
// Do a truncating conversion.
__ cvttsd2si(eax, Operand(xmm0));
// Check if the result fits into a smi. Note this also checks for
// 0x80000000 which signals a failed conversion.
Label wont_fit_into_smi;
__ test(eax, Immediate(0xc0000000));
__ j(not_zero, &wont_fit_into_smi);
// Smi tag and return.
__ SmiTag(eax);
__ bind(&smi);
__ ret(2 * kPointerSize);
// Check if the argument is < 2^kMantissaBits.
Label already_round;
__ bind(&wont_fit_into_smi);
__ LoadPowerOf2(xmm1, ebx, HeapNumber::kMantissaBits);
__ ucomisd(xmm0, xmm1);
__ j(above_equal, &already_round);
// Save a copy of the argument.
__ movaps(xmm2, xmm0);
// Compute (argument + 2^kMantissaBits) - 2^kMantissaBits.
__ addsd(xmm0, xmm1);
__ subsd(xmm0, xmm1);
// Compare the argument and the tentative result to get the right mask:
// if xmm2 < xmm0:
// xmm2 = 1...1
// else:
// xmm2 = 0...0
__ cmpltsd(xmm2, xmm0);
// Subtract 1 if the argument was less than the tentative result.
__ LoadPowerOf2(xmm1, ebx, 0);
__ andpd(xmm1, xmm2);
__ subsd(xmm0, xmm1);
// Return a new heap number.
__ AllocateHeapNumber(eax, ebx, edx, &slow);
__ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0);
__ ret(2 * kPointerSize);
// Return the argument (when it's an already round heap number).
__ bind(&already_round);
__ mov(eax, Operand(esp, 1 * kPointerSize));
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// ecx: function name.
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileMathAbsCall(Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
const int argc = arguments().immediate();
// If the object is not a JSObject or we got an unexpected number of
// arguments, bail out to the regular call.
if (!object->IsJSObject() || argc != 1) {
return isolate()->heap()->undefined_value();
}
Label miss;
GenerateNameCheck(name, &miss);
if (cell == NULL) {
__ mov(edx, Operand(esp, 2 * kPointerSize));
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfSmi(edx, &miss);
CheckPrototypes(JSObject::cast(object), edx, holder, ebx, eax, edi, name,
&miss);
} else {
ASSERT(cell->value() == function);
GenerateGlobalReceiverCheck(JSObject::cast(object), holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
}
// Load the (only) argument into eax.
__ mov(eax, Operand(esp, 1 * kPointerSize));
// Check if the argument is a smi.
Label not_smi;
STATIC_ASSERT(kSmiTag == 0);
__ JumpIfNotSmi(eax, &not_smi);
// Set ebx to 1...1 (== -1) if the argument is negative, or to 0...0
// otherwise.
__ mov(ebx, eax);
__ sar(ebx, kBitsPerInt - 1);
// Do bitwise not or do nothing depending on ebx.
__ xor_(eax, Operand(ebx));
// Add 1 or do nothing depending on ebx.
__ sub(eax, Operand(ebx));
// If the result is still negative, go to the slow case.
// This only happens for the most negative smi.
Label slow;
__ j(negative, &slow);
// Smi case done.
__ ret(2 * kPointerSize);
// Check if the argument is a heap number and load its exponent and
// sign into ebx.
__ bind(&not_smi);
__ CheckMap(eax, factory()->heap_number_map(), &slow, DONT_DO_SMI_CHECK);
__ mov(ebx, FieldOperand(eax, HeapNumber::kExponentOffset));
// Check the sign of the argument. If the argument is positive,
// just return it.
Label negative_sign;
__ test(ebx, Immediate(HeapNumber::kSignMask));
__ j(not_zero, &negative_sign);
__ ret(2 * kPointerSize);
// If the argument is negative, clear the sign, and return a new
// number.
__ bind(&negative_sign);
__ and_(ebx, ~HeapNumber::kSignMask);
__ mov(ecx, FieldOperand(eax, HeapNumber::kMantissaOffset));
__ AllocateHeapNumber(eax, edi, edx, &slow);
__ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ebx);
__ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx);
__ ret(2 * kPointerSize);
// Tail call the full function. We do not have to patch the receiver
// because the function makes no use of it.
__ bind(&slow);
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), CALL_AS_METHOD);
__ bind(&miss);
// ecx: function name.
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return (cell == NULL) ? GetCode(function) : GetCode(NORMAL, name);
}
MaybeObject* CallStubCompiler::CompileFastApiCall(
const CallOptimization& optimization,
Object* object,
JSObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
ASSERT(optimization.is_simple_api_call());
// Bail out if object is a global object as we don't want to
// repatch it to global receiver.
if (object->IsGlobalObject()) return heap()->undefined_value();
if (cell != NULL) return heap()->undefined_value();
if (!object->IsJSObject()) return heap()->undefined_value();
int depth = optimization.GetPrototypeDepthOfExpectedType(
JSObject::cast(object), holder);
if (depth == kInvalidProtoDepth) return heap()->undefined_value();
Label miss, miss_before_stack_reserved;
GenerateNameCheck(name, &miss_before_stack_reserved);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
__ JumpIfSmi(edx, &miss_before_stack_reserved);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_const(), 1);
__ IncrementCounter(counters->call_const_fast_api(), 1);
// Allocate space for v8::Arguments implicit values. Must be initialized
// before calling any runtime function.
__ sub(Operand(esp), Immediate(kFastApiCallArguments * kPointerSize));
// Check that the maps haven't changed and find a Holder as a side effect.
CheckPrototypes(JSObject::cast(object), edx, holder,
ebx, eax, edi, name, depth, &miss);
// Move the return address on top of the stack.
__ mov(eax, Operand(esp, 3 * kPointerSize));
__ mov(Operand(esp, 0 * kPointerSize), eax);
// esp[2 * kPointerSize] is uninitialized, esp[3 * kPointerSize] contains
// duplicate of return address and will be overwritten.
MaybeObject* result = GenerateFastApiCall(masm(), optimization, argc);
if (result->IsFailure()) return result;
__ bind(&miss);
__ add(Operand(esp), Immediate(kFastApiCallArguments * kPointerSize));
__ bind(&miss_before_stack_reserved);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileCallConstant(
Object* object,
JSObject* holder,
JSFunction* function,
String* name,
CheckType check) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (HasCustomCallGenerator(function)) {
MaybeObject* maybe_result = CompileCustomCall(
object, holder, NULL, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) return result;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the receiver from the stack.
const int argc = arguments().immediate();
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the receiver isn't a smi.
if (check != NUMBER_CHECK) {
__ JumpIfSmi(edx, &miss);
}
// Make sure that it's okay not to patch the on stack receiver
// unless we're doing a receiver map check.
ASSERT(!object->IsGlobalObject() || check == RECEIVER_MAP_CHECK);
SharedFunctionInfo* function_info = function->shared();
switch (check) {
case RECEIVER_MAP_CHECK:
__ IncrementCounter(isolate()->counters()->call_const(), 1);
// Check that the maps haven't changed.
CheckPrototypes(JSObject::cast(object), edx, holder,
ebx, eax, edi, name, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
break;
case STRING_CHECK:
if (!function->IsBuiltin() && !function_info->strict_mode()) {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
} else {
// Check that the object is a string or a symbol.
__ CmpObjectType(edx, FIRST_NONSTRING_TYPE, eax);
__ j(above_equal, &miss);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::STRING_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder,
ebx, edx, edi, name, &miss);
}
break;
case NUMBER_CHECK: {
if (!function->IsBuiltin() && !function_info->strict_mode()) {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a smi or a heap number.
__ JumpIfSmi(edx, &fast);
__ CmpObjectType(edx, HEAP_NUMBER_TYPE, eax);
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::NUMBER_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder,
ebx, edx, edi, name, &miss);
}
break;
}
case BOOLEAN_CHECK: {
if (!function->IsBuiltin() && !function_info->strict_mode()) {
// Calling non-strict non-builtins with a value as the receiver
// requires boxing.
__ jmp(&miss);
} else {
Label fast;
// Check that the object is a boolean.
__ cmp(edx, factory()->true_value());
__ j(equal, &fast);
__ cmp(edx, factory()->false_value());
__ j(not_equal, &miss);
__ bind(&fast);
// Check that the maps starting from the prototype haven't changed.
GenerateDirectLoadGlobalFunctionPrototype(
masm(), Context::BOOLEAN_FUNCTION_INDEX, eax, &miss);
CheckPrototypes(JSObject::cast(object->GetPrototype()), eax, holder,
ebx, edx, edi, name, &miss);
}
break;
}
default:
UNREACHABLE();
}
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(function, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle call cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(function);
}
MaybeObject* CallStubCompiler::CompileCallInterceptor(JSObject* object,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
// Get the receiver from the stack.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
CallInterceptorCompiler compiler(this, arguments(), ecx, extra_ic_state_);
MaybeObject* result = compiler.Compile(masm(),
object,
holder,
name,
&lookup,
edx,
ebx,
edi,
eax,
&miss);
if (result->IsFailure()) return result;
// Restore receiver.
__ mov(edx, Operand(esp, (argc + 1) * kPointerSize));
// Check that the function really is a function.
__ JumpIfSmi(eax, &miss);
__ CmpObjectType(eax, JS_FUNCTION_TYPE, ebx);
__ j(not_equal, &miss);
// Patch the receiver on the stack with the global proxy if
// necessary.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Invoke the function.
__ mov(edi, eax);
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
__ InvokeFunction(edi, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
// Handle load cache miss.
__ bind(&miss);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* CallStubCompiler::CompileCallGlobal(
JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
JSFunction* function,
String* name) {
// ----------- S t a t e -------------
// -- ecx : name
// -- esp[0] : return address
// -- esp[(argc - n) * 4] : arg[n] (zero-based)
// -- ...
// -- esp[(argc + 1) * 4] : receiver
// -----------------------------------
if (HasCustomCallGenerator(function)) {
MaybeObject* maybe_result = CompileCustomCall(
object, holder, cell, function, name);
Object* result;
if (!maybe_result->ToObject(&result)) return maybe_result;
// undefined means bail out to regular compiler.
if (!result->IsUndefined()) return result;
}
Label miss;
GenerateNameCheck(name, &miss);
// Get the number of arguments.
const int argc = arguments().immediate();
GenerateGlobalReceiverCheck(object, holder, name, &miss);
GenerateLoadFunctionFromCell(cell, function, &miss);
// Patch the receiver on the stack with the global proxy.
if (object->IsGlobalObject()) {
__ mov(edx, FieldOperand(edx, GlobalObject::kGlobalReceiverOffset));
__ mov(Operand(esp, (argc + 1) * kPointerSize), edx);
}
// Setup the context (function already in edi).
__ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
// Jump to the cached code (tail call).
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->call_global_inline(), 1);
ASSERT(function->is_compiled());
ParameterCount expected(function->shared()->formal_parameter_count());
CallKind call_kind = CallICBase::Contextual::decode(extra_ic_state_)
? CALL_AS_FUNCTION
: CALL_AS_METHOD;
if (V8::UseCrankshaft()) {
// TODO(kasperl): For now, we always call indirectly through the
// code field in the function to allow recompilation to take effect
// without changing any of the call sites.
__ InvokeCode(FieldOperand(edi, JSFunction::kCodeEntryOffset),
expected, arguments(), JUMP_FUNCTION,
NullCallWrapper(), call_kind);
} else {
Handle<Code> code(function->code());
__ InvokeCode(code, expected, arguments(),
RelocInfo::CODE_TARGET, JUMP_FUNCTION,
NullCallWrapper(), call_kind);
}
// Handle call cache miss.
__ bind(&miss);
__ IncrementCounter(counters->call_global_inline_miss(), 1);
MaybeObject* maybe_result = GenerateMissBranch();
if (maybe_result->IsFailure()) return maybe_result;
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* StoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Generate store field code. Trashes the name register.
GenerateStoreField(masm(),
object,
index,
transition,
edx, ecx, ebx,
&miss);
// Handle store cache miss.
__ bind(&miss);
__ mov(ecx, Immediate(Handle<String>(name))); // restore name
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
MaybeObject* StoreStubCompiler::CompileStoreCallback(JSObject* object,
AccessorInfo* callback,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(edx, &miss);
// Check that the map of the object hasn't changed.
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
__ j(not_equal, &miss);
// Perform global security token check if needed.
if (object->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(edx, ebx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(object->IsJSGlobalProxy() || !object->IsAccessCheckNeeded());
__ pop(ebx); // remove the return address
__ push(edx); // receiver
__ push(Immediate(Handle<AccessorInfo>(callback))); // callback info
__ push(ecx); // name
__ push(eax); // value
__ push(ebx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_callback_property =
ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
__ TailCallExternalReference(store_callback_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* StoreStubCompiler::CompileStoreInterceptor(JSObject* receiver,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the object isn't a smi.
__ JumpIfSmi(edx, &miss);
// Check that the map of the object hasn't changed.
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Immediate(Handle<Map>(receiver->map())));
__ j(not_equal, &miss);
// Perform global security token check if needed.
if (receiver->IsJSGlobalProxy()) {
__ CheckAccessGlobalProxy(edx, ebx, &miss);
}
// Stub never generated for non-global objects that require access
// checks.
ASSERT(receiver->IsJSGlobalProxy() || !receiver->IsAccessCheckNeeded());
__ pop(ebx); // remove the return address
__ push(edx); // receiver
__ push(ecx); // name
__ push(eax); // value
__ push(Immediate(Smi::FromInt(strict_mode_)));
__ push(ebx); // restore return address
// Do tail-call to the runtime system.
ExternalReference store_ic_property =
ExternalReference(IC_Utility(IC::kStoreInterceptorProperty), isolate());
__ TailCallExternalReference(store_ic_property, 4, 1);
// Handle store cache miss.
__ bind(&miss);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* StoreStubCompiler::CompileStoreGlobal(GlobalObject* object,
JSGlobalPropertyCell* cell,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : name
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the map of the global has not changed.
__ cmp(FieldOperand(edx, HeapObject::kMapOffset),
Immediate(Handle<Map>(object->map())));
__ j(not_equal, &miss);
// Compute the cell operand to use.
Operand cell_operand = Operand::Cell(Handle<JSGlobalPropertyCell>(cell));
if (Serializer::enabled()) {
__ mov(ebx, Immediate(Handle<JSGlobalPropertyCell>(cell)));
cell_operand = FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset);
}
// Check that the value in the cell is not the hole. If it is, this
// cell could have been deleted and reintroducing the global needs
// to update the property details in the property dictionary of the
// global object. We bail out to the runtime system to do that.
__ cmp(cell_operand, factory()->the_hole_value());
__ j(equal, &miss);
// Store the value in the cell.
__ mov(cell_operand, eax);
// Return the value (register eax).
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_store_global_inline(), 1);
__ ret(0);
// Handle store cache miss.
__ bind(&miss);
__ IncrementCounter(counters->named_store_global_inline_miss(), 1);
Handle<Code> ic = isolate()->builtins()->StoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreField(JSObject* object,
int index,
Map* transition,
String* name) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_store_field(), 1);
// Check that the name has not changed.
__ cmp(Operand(ecx), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
// Generate store field code. Trashes the name register.
GenerateStoreField(masm(),
object,
index,
transition,
edx, ecx, ebx,
&miss);
// Handle store cache miss.
__ bind(&miss);
__ DecrementCounter(counters->keyed_store_field(), 1);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(transition == NULL ? FIELD : MAP_TRANSITION, name);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreElement(Map* receiver_map) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Code* stub;
JSObject::ElementsKind elements_kind = receiver_map->elements_kind();
bool is_jsarray = receiver_map->instance_type() == JS_ARRAY_TYPE;
MaybeObject* maybe_stub =
KeyedStoreElementStub(is_jsarray, elements_kind).TryGetCode();
if (!maybe_stub->To(&stub)) return maybe_stub;
__ DispatchMap(edx,
Handle<Map>(receiver_map),
Handle<Code>(stub),
DO_SMI_CHECK);
Handle<Code> ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, NULL);
}
MaybeObject* KeyedStoreStubCompiler::CompileStoreMegamorphic(
MapList* receiver_maps,
CodeList* handler_ics) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
__ JumpIfSmi(edx, &miss);
Register map_reg = ebx;
__ mov(map_reg, FieldOperand(edx, HeapObject::kMapOffset));
int receiver_count = receiver_maps->length();
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map(receiver_maps->at(current));
__ cmp(map_reg, map);
__ j(equal, Handle<Code>(handler_ics->at(current)));
}
__ bind(&miss);
Handle<Code> miss_ic = isolate()->builtins()->KeyedStoreIC_Miss();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode(NORMAL, NULL, MEGAMORPHIC);
}
MaybeObject* LoadStubCompiler::CompileLoadNonexistent(String* name,
JSObject* object,
JSObject* last) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
// Check that the receiver isn't a smi.
__ JumpIfSmi(eax, &miss);
ASSERT(last->IsGlobalObject() || last->HasFastProperties());
// Check the maps of the full prototype chain. Also check that
// global property cells up to (but not including) the last object
// in the prototype chain are empty.
CheckPrototypes(object, eax, last, ebx, edx, edi, name, &miss);
// If the last object in the prototype chain is a global object,
// check that the global property cell is empty.
if (last->IsGlobalObject()) {
MaybeObject* cell = GenerateCheckPropertyCell(masm(),
GlobalObject::cast(last),
name,
edx,
&miss);
if (cell->IsFailure()) {
miss.Unuse();
return cell;
}
}
// Return undefined if maps of the full prototype chain are still the
// same and no global property with this name contains a value.
__ mov(eax, isolate()->factory()->undefined_value());
__ ret(0);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NONEXISTENT, isolate()->heap()->empty_string());
}
MaybeObject* LoadStubCompiler::CompileLoadField(JSObject* object,
JSObject* holder,
int index,
String* name) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadField(object, holder, eax, ebx, edx, edi, index, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* LoadStubCompiler::CompileLoadCallback(String* name,
JSObject* object,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
MaybeObject* result = GenerateLoadCallback(object, holder, eax, ecx, ebx, edx,
edi, callback, name, &miss);
if (result->IsFailure()) {
miss.Unuse();
return result;
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* LoadStubCompiler::CompileLoadConstant(JSObject* object,
JSObject* holder,
Object* value,
String* name) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
GenerateLoadConstant(object, holder, eax, ebx, edx, edi, value, name, &miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* LoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
// TODO(368): Compile in the whole chain: all the interceptors in
// prototypes and ultimate answer.
GenerateLoadInterceptor(receiver,
holder,
&lookup,
eax,
ecx,
edx,
ebx,
edi,
name,
&miss);
__ bind(&miss);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* LoadStubCompiler::CompileLoadGlobal(JSObject* object,
GlobalObject* holder,
JSGlobalPropertyCell* cell,
String* name,
bool is_dont_delete) {
// ----------- S t a t e -------------
// -- eax : receiver
// -- ecx : name
// -- esp[0] : return address
// -----------------------------------
Label miss;
// If the object is the holder then we know that it's a global
// object which can only happen for contextual loads. In this case,
// the receiver cannot be a smi.
if (object != holder) {
__ JumpIfSmi(eax, &miss);
}
// Check that the maps haven't changed.
CheckPrototypes(object, eax, holder, ebx, edx, edi, name, &miss);
// Get the value from the cell.
if (Serializer::enabled()) {
__ mov(ebx, Immediate(Handle<JSGlobalPropertyCell>(cell)));
__ mov(ebx, FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset));
} else {
__ mov(ebx, Operand::Cell(Handle<JSGlobalPropertyCell>(cell)));
}
// Check for deleted property if property can actually be deleted.
if (!is_dont_delete) {
__ cmp(ebx, factory()->the_hole_value());
__ j(equal, &miss);
} else if (FLAG_debug_code) {
__ cmp(ebx, factory()->the_hole_value());
__ Check(not_equal, "DontDelete cells can't contain the hole");
}
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->named_load_global_stub(), 1);
__ mov(eax, ebx);
__ ret(0);
__ bind(&miss);
__ IncrementCounter(counters->named_load_global_stub_miss(), 1);
GenerateLoadMiss(masm(), Code::LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadField(String* name,
JSObject* receiver,
JSObject* holder,
int index) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_field(), 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
GenerateLoadField(receiver, holder, edx, ebx, ecx, edi, index, name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_field(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(FIELD, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadCallback(
String* name,
JSObject* receiver,
JSObject* holder,
AccessorInfo* callback) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_callback(), 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
MaybeObject* result = GenerateLoadCallback(receiver, holder, edx, eax, ebx,
ecx, edi, callback, name, &miss);
if (result->IsFailure()) {
miss.Unuse();
return result;
}
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_callback(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadConstant(String* name,
JSObject* receiver,
JSObject* holder,
Object* value) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_constant_function(), 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
GenerateLoadConstant(receiver, holder, edx, ebx, ecx, edi,
value, name, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_constant_function(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CONSTANT_FUNCTION, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadInterceptor(JSObject* receiver,
JSObject* holder,
String* name) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_interceptor(), 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
LookupResult lookup;
LookupPostInterceptor(holder, name, &lookup);
GenerateLoadInterceptor(receiver,
holder,
&lookup,
edx,
eax,
ecx,
ebx,
edi,
name,
&miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_interceptor(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(INTERCEPTOR, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadArrayLength(String* name) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_array_length(), 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
GenerateLoadArrayLength(masm(), edx, ecx, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_array_length(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadStringLength(String* name) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_string_length(), 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
GenerateLoadStringLength(masm(), edx, ecx, ebx, &miss, true);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_string_length(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadFunctionPrototype(String* name) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->keyed_load_function_prototype(), 1);
// Check that the name has not changed.
__ cmp(Operand(eax), Immediate(Handle<String>(name)));
__ j(not_equal, &miss);
GenerateLoadFunctionPrototype(masm(), edx, ecx, ebx, &miss);
__ bind(&miss);
__ DecrementCounter(counters->keyed_load_function_prototype(), 1);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(CALLBACKS, name);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadElement(Map* receiver_map) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Code* stub;
JSObject::ElementsKind elements_kind = receiver_map->elements_kind();
MaybeObject* maybe_stub = KeyedLoadElementStub(elements_kind).TryGetCode();
if (!maybe_stub->To(&stub)) return maybe_stub;
__ DispatchMap(edx,
Handle<Map>(receiver_map),
Handle<Code>(stub),
DO_SMI_CHECK);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, NULL);
}
MaybeObject* KeyedLoadStubCompiler::CompileLoadMegamorphic(
MapList* receiver_maps,
CodeList* handler_ics) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss;
__ JumpIfSmi(edx, &miss);
Register map_reg = ebx;
__ mov(map_reg, FieldOperand(edx, HeapObject::kMapOffset));
int receiver_count = receiver_maps->length();
for (int current = 0; current < receiver_count; ++current) {
Handle<Map> map(receiver_maps->at(current));
__ cmp(map_reg, map);
__ j(equal, Handle<Code>(handler_ics->at(current)));
}
__ bind(&miss);
GenerateLoadMiss(masm(), Code::KEYED_LOAD_IC);
// Return the generated code.
return GetCode(NORMAL, NULL, MEGAMORPHIC);
}
// Specialized stub for constructing objects from functions which only have only
// simple assignments of the form this.x = ...; in their body.
MaybeObject* ConstructStubCompiler::CompileConstructStub(JSFunction* function) {
// ----------- S t a t e -------------
// -- eax : argc
// -- edi : constructor
// -- esp[0] : return address
// -- esp[4] : last argument
// -----------------------------------
Label generic_stub_call;
#ifdef ENABLE_DEBUGGER_SUPPORT
// Check to see whether there are any break points in the function code. If
// there are jump to the generic constructor stub which calls the actual
// code for the function thereby hitting the break points.
__ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset));
__ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kDebugInfoOffset));
__ cmp(ebx, factory()->undefined_value());
__ j(not_equal, &generic_stub_call);
#endif
// Load the initial map and verify that it is in fact a map.
__ mov(ebx, FieldOperand(edi, JSFunction::kPrototypeOrInitialMapOffset));
// Will both indicate a NULL and a Smi.
__ JumpIfSmi(ebx, &generic_stub_call);
__ CmpObjectType(ebx, MAP_TYPE, ecx);
__ j(not_equal, &generic_stub_call);
#ifdef DEBUG
// Cannot construct functions this way.
// edi: constructor
// ebx: initial map
__ CmpInstanceType(ebx, JS_FUNCTION_TYPE);
__ Assert(not_equal, "Function constructed by construct stub.");
#endif
// Now allocate the JSObject on the heap by moving the new space allocation
// top forward.
// edi: constructor
// ebx: initial map
__ movzx_b(ecx, FieldOperand(ebx, Map::kInstanceSizeOffset));
__ shl(ecx, kPointerSizeLog2);
__ AllocateInNewSpace(ecx,
edx,
ecx,
no_reg,
&generic_stub_call,
NO_ALLOCATION_FLAGS);
// Allocated the JSObject, now initialize the fields and add the heap tag.
// ebx: initial map
// edx: JSObject (untagged)
__ mov(Operand(edx, JSObject::kMapOffset), ebx);
__ mov(ebx, factory()->empty_fixed_array());
__ mov(Operand(edx, JSObject::kPropertiesOffset), ebx);
__ mov(Operand(edx, JSObject::kElementsOffset), ebx);
// Push the allocated object to the stack. This is the object that will be
// returned (after it is tagged).
__ push(edx);
// eax: argc
// edx: JSObject (untagged)
// Load the address of the first in-object property into edx.
__ lea(edx, Operand(edx, JSObject::kHeaderSize));
// Calculate the location of the first argument. The stack contains the
// allocated object and the return address on top of the argc arguments.
__ lea(ecx, Operand(esp, eax, times_4, 1 * kPointerSize));
// Use edi for holding undefined which is used in several places below.
__ mov(edi, factory()->undefined_value());
// eax: argc
// ecx: first argument
// edx: first in-object property of the JSObject
// edi: undefined
// Fill the initialized properties with a constant value or a passed argument
// depending on the this.x = ...; assignment in the function.
SharedFunctionInfo* shared = function->shared();
for (int i = 0; i < shared->this_property_assignments_count(); i++) {
if (shared->IsThisPropertyAssignmentArgument(i)) {
// Check if the argument assigned to the property is actually passed.
// If argument is not passed the property is set to undefined,
// otherwise find it on the stack.
int arg_number = shared->GetThisPropertyAssignmentArgument(i);
__ mov(ebx, edi);
__ cmp(eax, arg_number);
if (CpuFeatures::IsSupported(CMOV)) {
CpuFeatures::Scope use_cmov(CMOV);
__ cmov(above, ebx, Operand(ecx, arg_number * -kPointerSize));
} else {
Label not_passed;
__ j(below_equal, &not_passed);
__ mov(ebx, Operand(ecx, arg_number * -kPointerSize));
__ bind(&not_passed);
}
// Store value in the property.
__ mov(Operand(edx, i * kPointerSize), ebx);
} else {
// Set the property to the constant value.
Handle<Object> constant(shared->GetThisPropertyAssignmentConstant(i));
__ mov(Operand(edx, i * kPointerSize), Immediate(constant));
}
}
// Fill the unused in-object property fields with undefined.
ASSERT(function->has_initial_map());
for (int i = shared->this_property_assignments_count();
i < function->initial_map()->inobject_properties();
i++) {
__ mov(Operand(edx, i * kPointerSize), edi);
}
// Move argc to ebx and retrieve and tag the JSObject to return.
__ mov(ebx, eax);
__ pop(eax);
__ or_(Operand(eax), Immediate(kHeapObjectTag));
// Remove caller arguments and receiver from the stack and return.
__ pop(ecx);
__ lea(esp, Operand(esp, ebx, times_pointer_size, 1 * kPointerSize));
__ push(ecx);
Counters* counters = isolate()->counters();
__ IncrementCounter(counters->constructed_objects(), 1);
__ IncrementCounter(counters->constructed_objects_stub(), 1);
__ ret(0);
// Jump to the generic stub in case the specialized code cannot handle the
// construction.
__ bind(&generic_stub_call);
Handle<Code> generic_construct_stub =
isolate()->builtins()->JSConstructStubGeneric();
__ jmp(generic_construct_stub, RelocInfo::CODE_TARGET);
// Return the generated code.
return GetCode();
}
#undef __
#define __ ACCESS_MASM(masm)
void KeyedLoadStubCompiler::GenerateLoadDictionaryElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label slow, miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
__ JumpIfNotSmi(eax, &miss_force_generic);
__ mov(ebx, eax);
__ SmiUntag(ebx);
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
// Push receiver on the stack to free up a register for the dictionary
// probing.
__ push(edx);
__ LoadFromNumberDictionary(&slow,
ecx,
eax,
ebx,
edx,
edi,
eax);
// Pop receiver before returning.
__ pop(edx);
__ ret(0);
__ bind(&slow);
__ pop(edx);
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> miss_force_generic_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_force_generic_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadExternalArray(
MacroAssembler* masm,
JSObject::ElementsKind elements_kind) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, failed_allocation, slow;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(eax, &miss_force_generic);
// Check that the index is in range.
__ mov(ebx, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(eax, FieldOperand(ebx, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &miss_force_generic);
__ mov(ebx, FieldOperand(ebx, ExternalArray::kExternalPointerOffset));
// ebx: base pointer of external storage
switch (elements_kind) {
case JSObject::EXTERNAL_BYTE_ELEMENTS:
__ SmiUntag(eax); // Untag the index.
__ movsx_b(eax, Operand(ebx, eax, times_1, 0));
break;
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
case JSObject::EXTERNAL_PIXEL_ELEMENTS:
__ SmiUntag(eax); // Untag the index.
__ movzx_b(eax, Operand(ebx, eax, times_1, 0));
break;
case JSObject::EXTERNAL_SHORT_ELEMENTS:
__ movsx_w(eax, Operand(ebx, eax, times_1, 0));
break;
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ movzx_w(eax, Operand(ebx, eax, times_1, 0));
break;
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
case JSObject::EXTERNAL_INT_ELEMENTS:
__ mov(ecx, Operand(ebx, eax, times_2, 0));
break;
case JSObject::EXTERNAL_FLOAT_ELEMENTS:
__ fld_s(Operand(ebx, eax, times_2, 0));
break;
case JSObject::EXTERNAL_DOUBLE_ELEMENTS:
__ fld_d(Operand(ebx, eax, times_4, 0));
break;
default:
UNREACHABLE();
break;
}
// For integer array types:
// ecx: value
// For floating-point array type:
// FP(0): value
if (elements_kind == JSObject::EXTERNAL_INT_ELEMENTS ||
elements_kind == JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS) {
// For the Int and UnsignedInt array types, we need to see whether
// the value can be represented in a Smi. If not, we need to convert
// it to a HeapNumber.
Label box_int;
if (elements_kind == JSObject::EXTERNAL_INT_ELEMENTS) {
__ cmp(ecx, 0xC0000000);
__ j(sign, &box_int);
} else {
ASSERT_EQ(JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS, elements_kind);
// The test is different for unsigned int values. Since we need
// the value to be in the range of a positive smi, we can't
// handle either of the top two bits being set in the value.
__ test(ecx, Immediate(0xC0000000));
__ j(not_zero, &box_int);
}
__ mov(eax, ecx);
__ SmiTag(eax);
__ ret(0);
__ bind(&box_int);
// Allocate a HeapNumber for the int and perform int-to-double
// conversion.
if (elements_kind == JSObject::EXTERNAL_INT_ELEMENTS) {
__ push(ecx);
__ fild_s(Operand(esp, 0));
__ pop(ecx);
} else {
ASSERT_EQ(JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS, elements_kind);
// Need to zero-extend the value.
// There's no fild variant for unsigned values, so zero-extend
// to a 64-bit int manually.
__ push(Immediate(0));
__ push(ecx);
__ fild_d(Operand(esp, 0));
__ pop(ecx);
__ pop(ecx);
}
// FP(0): value
__ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation);
// Set the value.
__ mov(eax, ecx);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else if (elements_kind == JSObject::EXTERNAL_FLOAT_ELEMENTS ||
elements_kind == JSObject::EXTERNAL_DOUBLE_ELEMENTS) {
// For the floating-point array type, we need to always allocate a
// HeapNumber.
__ AllocateHeapNumber(ecx, ebx, edi, &failed_allocation);
// Set the value.
__ mov(eax, ecx);
__ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ ret(0);
} else {
__ SmiTag(eax);
__ ret(0);
}
// If we fail allocation of the HeapNumber, we still have a value on
// top of the FPU stack. Remove it.
__ bind(&failed_allocation);
__ ffree();
__ fincstp();
// Fall through to slow case.
// Slow case: Jump to runtime.
__ bind(&slow);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_load_external_array_slow(), 1);
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> ic = masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(ic, RelocInfo::CODE_TARGET);
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
// Miss case: Jump to runtime.
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreExternalArray(
MacroAssembler* masm,
JSObject::ElementsKind elements_kind) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, slow, check_heap_number;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(ecx, &miss_force_generic);
// Check that the index is in range.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(ecx, FieldOperand(edi, ExternalArray::kLengthOffset));
// Unsigned comparison catches both negative and too-large values.
__ j(above_equal, &slow);
// Handle both smis and HeapNumbers in the fast path. Go to the
// runtime for all other kinds of values.
// eax: value
// edx: receiver
// ecx: key
// edi: elements array
if (elements_kind == JSObject::EXTERNAL_PIXEL_ELEMENTS) {
__ JumpIfNotSmi(eax, &slow);
} else {
__ JumpIfNotSmi(eax, &check_heap_number);
}
// smi case
__ mov(ebx, eax); // Preserve the value in eax as the return value.
__ SmiUntag(ebx);
__ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset));
// edi: base pointer of external storage
switch (elements_kind) {
case JSObject::EXTERNAL_PIXEL_ELEMENTS:
__ ClampUint8(ebx);
__ SmiUntag(ecx);
__ mov_b(Operand(edi, ecx, times_1, 0), ebx);
break;
case JSObject::EXTERNAL_BYTE_ELEMENTS:
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ SmiUntag(ecx);
__ mov_b(Operand(edi, ecx, times_1, 0), ebx);
break;
case JSObject::EXTERNAL_SHORT_ELEMENTS:
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ mov_w(Operand(edi, ecx, times_1, 0), ebx);
break;
case JSObject::EXTERNAL_INT_ELEMENTS:
case JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS:
__ mov(Operand(edi, ecx, times_2, 0), ebx);
break;
case JSObject::EXTERNAL_FLOAT_ELEMENTS:
case JSObject::EXTERNAL_DOUBLE_ELEMENTS:
// Need to perform int-to-float conversion.
__ push(ebx);
__ fild_s(Operand(esp, 0));
__ pop(ebx);
if (elements_kind == JSObject::EXTERNAL_FLOAT_ELEMENTS) {
__ fstp_s(Operand(edi, ecx, times_2, 0));
} else { // elements_kind == JSObject::EXTERNAL_DOUBLE_ELEMENTS.
__ fstp_d(Operand(edi, ecx, times_4, 0));
}
break;
default:
UNREACHABLE();
break;
}
__ ret(0); // Return the original value.
// TODO(danno): handle heap number -> pixel array conversion
if (elements_kind != JSObject::EXTERNAL_PIXEL_ELEMENTS) {
__ bind(&check_heap_number);
// eax: value
// edx: receiver
// ecx: key
// edi: elements array
__ cmp(FieldOperand(eax, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->heap_number_map()));
__ j(not_equal, &slow);
// The WebGL specification leaves the behavior of storing NaN and
// +/-Infinity into integer arrays basically undefined. For more
// reproducible behavior, convert these to zero.
__ mov(edi, FieldOperand(edi, ExternalArray::kExternalPointerOffset));
// edi: base pointer of external storage
if (elements_kind == JSObject::EXTERNAL_FLOAT_ELEMENTS) {
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ fstp_s(Operand(edi, ecx, times_2, 0));
__ ret(0);
} else if (elements_kind == JSObject::EXTERNAL_DOUBLE_ELEMENTS) {
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ fstp_d(Operand(edi, ecx, times_4, 0));
__ ret(0);
} else {
// Perform float-to-int conversion with truncation (round-to-zero)
// behavior.
// For the moment we make the slow call to the runtime on
// processors that don't support SSE2. The code in IntegerConvert
// (code-stubs-ia32.cc) is roughly what is needed here though the
// conversion failure case does not need to be handled.
if (CpuFeatures::IsSupported(SSE2)) {
if (elements_kind != JSObject::EXTERNAL_INT_ELEMENTS &&
elements_kind != JSObject::EXTERNAL_UNSIGNED_INT_ELEMENTS) {
ASSERT(CpuFeatures::IsSupported(SSE2));
CpuFeatures::Scope scope(SSE2);
__ cvttsd2si(ebx, FieldOperand(eax, HeapNumber::kValueOffset));
// ecx: untagged integer value
switch (elements_kind) {
case JSObject::EXTERNAL_PIXEL_ELEMENTS:
__ ClampUint8(ebx);
// Fall through.
case JSObject::EXTERNAL_BYTE_ELEMENTS:
case JSObject::EXTERNAL_UNSIGNED_BYTE_ELEMENTS:
__ SmiUntag(ecx);
__ mov_b(Operand(edi, ecx, times_1, 0), ebx);
break;
case JSObject::EXTERNAL_SHORT_ELEMENTS:
case JSObject::EXTERNAL_UNSIGNED_SHORT_ELEMENTS:
__ mov_w(Operand(edi, ecx, times_1, 0), ebx);
break;
default:
UNREACHABLE();
break;
}
} else {
if (CpuFeatures::IsSupported(SSE3)) {
CpuFeatures::Scope scope(SSE3);
// fisttp stores values as signed integers. To represent the
// entire range of int and unsigned int arrays, store as a
// 64-bit int and discard the high 32 bits.
// If the value is NaN or +/-infinity, the result is 0x80000000,
// which is automatically zero when taken mod 2^n, n < 32.
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ sub(Operand(esp), Immediate(2 * kPointerSize));
__ fisttp_d(Operand(esp, 0));
__ pop(ebx);
__ add(Operand(esp), Immediate(kPointerSize));
} else {
ASSERT(CpuFeatures::IsSupported(SSE2));
CpuFeatures::Scope scope(SSE2);
// We can easily implement the correct rounding behavior for the
// range [0, 2^31-1]. For the time being, to keep this code simple,
// make the slow runtime call for values outside this range.
// Note: we could do better for signed int arrays.
__ movd(xmm0, FieldOperand(eax, HeapNumber::kValueOffset));
// We will need the key if we have to make the slow runtime call.
__ push(ebx);
__ LoadPowerOf2(xmm1, ebx, 31);
__ pop(ebx);
__ ucomisd(xmm1, xmm0);
__ j(above_equal, &slow);
__ cvttsd2si(ebx, Operand(xmm0));
}
// ebx: untagged integer value
__ mov(Operand(edi, ecx, times_2, 0), ebx);
}
__ ret(0); // Return original value.
}
}
}
// Slow case: call runtime.
__ bind(&slow);
Counters* counters = masm->isolate()->counters();
__ IncrementCounter(counters->keyed_store_external_array_slow(), 1);
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Handle<Code> ic = masm->isolate()->builtins()->KeyedStoreIC_Slow();
__ jmp(ic, RelocInfo::CODE_TARGET);
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastElement(MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(eax, &miss_force_generic);
// Get the elements array.
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
__ AssertFastElements(ecx);
// Check that the key is within bounds.
__ cmp(eax, FieldOperand(ecx, FixedArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
// Load the result and make sure it's not the hole.
__ mov(ebx, Operand(ecx, eax, times_2,
FixedArray::kHeaderSize - kHeapObjectTag));
__ cmp(ebx, masm->isolate()->factory()->the_hole_value());
__ j(equal, &miss_force_generic);
__ mov(eax, ebx);
__ ret(0);
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedLoadStubCompiler::GenerateLoadFastDoubleElement(
MacroAssembler* masm) {
// ----------- S t a t e -------------
// -- eax : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, slow_allocate_heapnumber;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(eax, &miss_force_generic);
// Get the elements array.
__ mov(ecx, FieldOperand(edx, JSObject::kElementsOffset));
__ AssertFastElements(ecx);
// Check that the key is within bounds.
__ cmp(eax, FieldOperand(ecx, FixedDoubleArray::kLengthOffset));
__ j(above_equal, &miss_force_generic);
// Check for the hole
uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32);
__ cmp(FieldOperand(ecx, eax, times_4, offset), Immediate(kHoleNanUpper32));
__ j(equal, &miss_force_generic);
// Always allocate a heap number for the result.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ movdbl(xmm0, FieldOperand(ecx, eax, times_4,
FixedDoubleArray::kHeaderSize));
} else {
__ fld_d(FieldOperand(ecx, eax, times_4, FixedDoubleArray::kHeaderSize));
}
__ AllocateHeapNumber(ecx, ebx, edi, &slow_allocate_heapnumber);
// Set the value.
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0);
} else {
__ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset));
}
__ mov(eax, ecx);
__ ret(0);
__ bind(&slow_allocate_heapnumber);
// A value was pushed on the floating point stack before the allocation, if
// the allocation fails it needs to be removed.
if (!CpuFeatures::IsSupported(SSE2)) {
__ ffree();
__ fincstp();
}
Handle<Code> slow_ic =
masm->isolate()->builtins()->KeyedLoadIC_Slow();
__ jmp(slow_ic, RelocInfo::CODE_TARGET);
__ bind(&miss_force_generic);
Handle<Code> miss_ic =
masm->isolate()->builtins()->KeyedLoadIC_MissForceGeneric();
__ jmp(miss_ic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastElement(MacroAssembler* masm,
bool is_js_array) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(ecx, &miss_force_generic);
// Get the elements array and make sure it is a fast element array, not 'cow'.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ cmp(FieldOperand(edi, HeapObject::kMapOffset),
Immediate(masm->isolate()->factory()->fixed_array_map()));
__ j(not_equal, &miss_force_generic);
if (is_js_array) {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // smis.
__ j(above_equal, &miss_force_generic);
} else {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset)); // smis.
__ j(above_equal, &miss_force_generic);
}
// Do the store and update the write barrier. Make sure to preserve
// the value in register eax.
__ mov(edx, Operand(eax));
__ mov(FieldOperand(edi, ecx, times_2, FixedArray::kHeaderSize), eax);
__ RecordWrite(edi, 0, edx, ecx);
// Done.
__ ret(0);
// Handle store cache miss, replacing the ic with the generic stub.
__ bind(&miss_force_generic);
Handle<Code> ic_force_generic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(ic_force_generic, RelocInfo::CODE_TARGET);
}
void KeyedStoreStubCompiler::GenerateStoreFastDoubleElement(
MacroAssembler* masm,
bool is_js_array) {
// ----------- S t a t e -------------
// -- eax : value
// -- ecx : key
// -- edx : receiver
// -- esp[0] : return address
// -----------------------------------
Label miss_force_generic, smi_value, is_nan, maybe_nan;
Label have_double_value, not_nan;
// This stub is meant to be tail-jumped to, the receiver must already
// have been verified by the caller to not be a smi.
// Check that the key is a smi.
__ JumpIfNotSmi(ecx, &miss_force_generic);
// Get the elements array.
__ mov(edi, FieldOperand(edx, JSObject::kElementsOffset));
__ AssertFastElements(edi);
if (is_js_array) {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edx, JSArray::kLengthOffset)); // smis.
} else {
// Check that the key is within bounds.
__ cmp(ecx, FieldOperand(edi, FixedArray::kLengthOffset)); // smis.
}
__ j(above_equal, &miss_force_generic);
__ JumpIfSmi(eax, &smi_value, Label::kNear);
__ CheckMap(eax,
masm->isolate()->factory()->heap_number_map(),
&miss_force_generic,
DONT_DO_SMI_CHECK);
// Double value, canonicalize NaN.
uint32_t offset = HeapNumber::kValueOffset + sizeof(kHoleNanLower32);
__ cmp(FieldOperand(eax, offset), Immediate(kNaNOrInfinityLowerBoundUpper32));
__ j(greater_equal, &maybe_nan, Label::kNear);
__ bind(&not_nan);
ExternalReference canonical_nan_reference =
ExternalReference::address_of_canonical_non_hole_nan();
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ movdbl(xmm0, FieldOperand(eax, HeapNumber::kValueOffset));
__ bind(&have_double_value);
__ movdbl(FieldOperand(edi, ecx, times_4, FixedDoubleArray::kHeaderSize),
xmm0);
__ ret(0);
} else {
__ fld_d(FieldOperand(eax, HeapNumber::kValueOffset));
__ bind(&have_double_value);
__ fstp_d(FieldOperand(edi, ecx, times_4, FixedDoubleArray::kHeaderSize));
__ ret(0);
}
__ bind(&maybe_nan);
// Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise
// it's an Infinity, and the non-NaN code path applies.
__ j(greater, &is_nan, Label::kNear);
__ cmp(FieldOperand(eax, HeapNumber::kValueOffset), Immediate(0));
__ j(zero, &not_nan);
__ bind(&is_nan);
if (CpuFeatures::IsSupported(SSE2)) {
CpuFeatures::Scope use_sse2(SSE2);
__ movdbl(xmm0, Operand::StaticVariable(canonical_nan_reference));
} else {
__ fld_d(Operand::StaticVariable(canonical_nan_reference));
}
__ jmp(&have_double_value, Label::kNear);
__ bind(&smi_value);
// Value is a smi. convert to a double and store.
// Preserve original value.
__ mov(edx, eax);
__ SmiUntag(edx);
__ push(edx);
__ fild_s(Operand(esp, 0));
__ pop(edx);
__ fstp_d(FieldOperand(edi, ecx, times_4, FixedDoubleArray::kHeaderSize));
__ ret(0);
// Handle store cache miss, replacing the ic with the generic stub.
__ bind(&miss_force_generic);
Handle<Code> ic_force_generic =
masm->isolate()->builtins()->KeyedStoreIC_MissForceGeneric();
__ jmp(ic_force_generic, RelocInfo::CODE_TARGET);
}
#undef __
} } // namespace v8::internal
#endif // V8_TARGET_ARCH_IA32