blob: bb2461ced2ef05599b4ae8c53d63bf02f90f54ab [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "arm/lithium-codegen-arm.h"
#include "code-stubs.h"
#include "stub-cache.h"
namespace v8 {
namespace internal {
class SafepointGenerator : public PostCallGenerator {
public:
SafepointGenerator(LCodeGen* codegen,
LPointerMap* pointers,
int deoptimization_index)
: codegen_(codegen),
pointers_(pointers),
deoptimization_index_(deoptimization_index) { }
virtual ~SafepointGenerator() { }
virtual void Generate() {
codegen_->RecordSafepoint(pointers_, deoptimization_index_);
}
private:
LCodeGen* codegen_;
LPointerMap* pointers_;
int deoptimization_index_;
};
#define __ masm()->
bool LCodeGen::GenerateCode() {
HPhase phase("Code generation", chunk());
ASSERT(is_unused());
status_ = GENERATING;
CpuFeatures::Scope scope1(VFP3);
CpuFeatures::Scope scope2(ARMv7);
return GeneratePrologue() &&
GenerateBody() &&
GenerateDeferredCode() &&
GenerateSafepointTable();
}
void LCodeGen::FinishCode(Handle<Code> code) {
ASSERT(is_done());
code->set_stack_slots(StackSlotCount());
code->set_safepoint_table_start(safepoints_.GetCodeOffset());
PopulateDeoptimizationData(code);
}
void LCodeGen::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartPointer<char> debug_name = graph()->debug_name()->ToCString();
PrintF("Aborting LCodeGen in @\"%s\": ", *debug_name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
void LCodeGen::Comment(const char* format, ...) {
if (!FLAG_code_comments) return;
char buffer[4 * KB];
StringBuilder builder(buffer, ARRAY_SIZE(buffer));
va_list arguments;
va_start(arguments, format);
builder.AddFormattedList(format, arguments);
va_end(arguments);
// Copy the string before recording it in the assembler to avoid
// issues when the stack allocated buffer goes out of scope.
size_t length = builder.position();
Vector<char> copy = Vector<char>::New(length + 1);
memcpy(copy.start(), builder.Finalize(), copy.length());
masm()->RecordComment(copy.start());
}
bool LCodeGen::GeneratePrologue() {
ASSERT(is_generating());
#ifdef DEBUG
if (strlen(FLAG_stop_at) > 0 &&
info_->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) {
__ stop("stop_at");
}
#endif
// r1: Callee's JS function.
// cp: Callee's context.
// fp: Caller's frame pointer.
// lr: Caller's pc.
__ stm(db_w, sp, r1.bit() | cp.bit() | fp.bit() | lr.bit());
__ add(fp, sp, Operand(2 * kPointerSize)); // Adjust FP to point to saved FP.
// Reserve space for the stack slots needed by the code.
int slots = StackSlotCount();
if (slots > 0) {
if (FLAG_debug_code) {
__ mov(r0, Operand(slots));
__ mov(r2, Operand(kSlotsZapValue));
Label loop;
__ bind(&loop);
__ push(r2);
__ sub(r0, r0, Operand(1), SetCC);
__ b(ne, &loop);
} else {
__ sub(sp, sp, Operand(slots * kPointerSize));
}
}
// Trace the call.
if (FLAG_trace) {
__ CallRuntime(Runtime::kTraceEnter, 0);
}
return !is_aborted();
}
bool LCodeGen::GenerateBody() {
ASSERT(is_generating());
bool emit_instructions = true;
for (current_instruction_ = 0;
!is_aborted() && current_instruction_ < instructions_->length();
current_instruction_++) {
LInstruction* instr = instructions_->at(current_instruction_);
if (instr->IsLabel()) {
LLabel* label = LLabel::cast(instr);
emit_instructions = !label->HasReplacement();
}
if (emit_instructions) {
Comment(";;; @%d: %s.", current_instruction_, instr->Mnemonic());
instr->CompileToNative(this);
}
}
return !is_aborted();
}
LInstruction* LCodeGen::GetNextInstruction() {
if (current_instruction_ < instructions_->length() - 1) {
return instructions_->at(current_instruction_ + 1);
} else {
return NULL;
}
}
bool LCodeGen::GenerateDeferredCode() {
ASSERT(is_generating());
for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
LDeferredCode* code = deferred_[i];
__ bind(code->entry());
code->Generate();
__ jmp(code->exit());
}
// Deferred code is the last part of the instruction sequence. Mark
// the generated code as done unless we bailed out.
if (!is_aborted()) status_ = DONE;
return !is_aborted();
}
bool LCodeGen::GenerateSafepointTable() {
ASSERT(is_done());
safepoints_.Emit(masm(), StackSlotCount());
return !is_aborted();
}
Register LCodeGen::ToRegister(int index) const {
return Register::FromAllocationIndex(index);
}
DoubleRegister LCodeGen::ToDoubleRegister(int index) const {
return DoubleRegister::FromAllocationIndex(index);
}
Register LCodeGen::ToRegister(LOperand* op) const {
ASSERT(op->IsRegister());
return ToRegister(op->index());
}
Register LCodeGen::EmitLoadRegister(LOperand* op, Register scratch) {
if (op->IsRegister()) {
return ToRegister(op->index());
} else if (op->IsConstantOperand()) {
__ mov(scratch, ToOperand(op));
return scratch;
} else if (op->IsStackSlot() || op->IsArgument()) {
__ ldr(scratch, ToMemOperand(op));
return scratch;
}
UNREACHABLE();
return scratch;
}
DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
ASSERT(op->IsDoubleRegister());
return ToDoubleRegister(op->index());
}
DoubleRegister LCodeGen::EmitLoadDoubleRegister(LOperand* op,
SwVfpRegister flt_scratch,
DoubleRegister dbl_scratch) {
if (op->IsDoubleRegister()) {
return ToDoubleRegister(op->index());
} else if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
__ mov(ip, Operand(static_cast<int32_t>(literal->Number())));
__ vmov(flt_scratch, ip);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
return dbl_scratch;
} else if (r.IsDouble()) {
Abort("unsupported double immediate");
} else if (r.IsTagged()) {
Abort("unsupported tagged immediate");
}
} else if (op->IsStackSlot() || op->IsArgument()) {
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(dbl_scratch, ToMemOperand(op));
MemOperand mem_op = ToMemOperand(op);
__ vldr(dbl_scratch, mem_op.rn(), mem_op.offset());
return dbl_scratch;
}
UNREACHABLE();
return dbl_scratch;
}
int LCodeGen::ToInteger32(LConstantOperand* op) const {
Handle<Object> value = chunk_->LookupLiteral(op);
ASSERT(chunk_->LookupLiteralRepresentation(op).IsInteger32());
ASSERT(static_cast<double>(static_cast<int32_t>(value->Number())) ==
value->Number());
return static_cast<int32_t>(value->Number());
}
Operand LCodeGen::ToOperand(LOperand* op) {
if (op->IsConstantOperand()) {
LConstantOperand* const_op = LConstantOperand::cast(op);
Handle<Object> literal = chunk_->LookupLiteral(const_op);
Representation r = chunk_->LookupLiteralRepresentation(const_op);
if (r.IsInteger32()) {
ASSERT(literal->IsNumber());
return Operand(static_cast<int32_t>(literal->Number()));
} else if (r.IsDouble()) {
Abort("ToOperand Unsupported double immediate.");
}
ASSERT(r.IsTagged());
return Operand(literal);
} else if (op->IsRegister()) {
return Operand(ToRegister(op));
} else if (op->IsDoubleRegister()) {
Abort("ToOperand IsDoubleRegister unimplemented");
return Operand(0);
}
// Stack slots not implemented, use ToMemOperand instead.
UNREACHABLE();
return Operand(0);
}
MemOperand LCodeGen::ToMemOperand(LOperand* op) const {
// TODO(regis): Revisit.
ASSERT(!op->IsRegister());
ASSERT(!op->IsDoubleRegister());
ASSERT(op->IsStackSlot() || op->IsDoubleStackSlot());
int index = op->index();
if (index >= 0) {
// Local or spill slot. Skip the frame pointer, function, and
// context in the fixed part of the frame.
return MemOperand(fp, -(index + 3) * kPointerSize);
} else {
// Incoming parameter. Skip the return address.
return MemOperand(fp, -(index - 1) * kPointerSize);
}
}
void LCodeGen::AddToTranslation(Translation* translation,
LOperand* op,
bool is_tagged) {
if (op == NULL) {
// TODO(twuerthinger): Introduce marker operands to indicate that this value
// is not present and must be reconstructed from the deoptimizer. Currently
// this is only used for the arguments object.
translation->StoreArgumentsObject();
} else if (op->IsStackSlot()) {
if (is_tagged) {
translation->StoreStackSlot(op->index());
} else {
translation->StoreInt32StackSlot(op->index());
}
} else if (op->IsDoubleStackSlot()) {
translation->StoreDoubleStackSlot(op->index());
} else if (op->IsArgument()) {
ASSERT(is_tagged);
int src_index = StackSlotCount() + op->index();
translation->StoreStackSlot(src_index);
} else if (op->IsRegister()) {
Register reg = ToRegister(op);
if (is_tagged) {
translation->StoreRegister(reg);
} else {
translation->StoreInt32Register(reg);
}
} else if (op->IsDoubleRegister()) {
DoubleRegister reg = ToDoubleRegister(op);
translation->StoreDoubleRegister(reg);
} else if (op->IsConstantOperand()) {
Handle<Object> literal = chunk()->LookupLiteral(LConstantOperand::cast(op));
int src_index = DefineDeoptimizationLiteral(literal);
translation->StoreLiteral(src_index);
} else {
UNREACHABLE();
}
}
void LCodeGen::CallCode(Handle<Code> code,
RelocInfo::Mode mode,
LInstruction* instr) {
if (instr != NULL) {
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
__ Call(code, mode);
RegisterLazyDeoptimization(instr);
} else {
LPointerMap no_pointers(0);
RecordPosition(no_pointers.position());
__ Call(code, mode);
RecordSafepoint(&no_pointers, Safepoint::kNoDeoptimizationIndex);
}
}
void LCodeGen::CallRuntime(Runtime::Function* function,
int num_arguments,
LInstruction* instr) {
ASSERT(instr != NULL);
LPointerMap* pointers = instr->pointer_map();
ASSERT(pointers != NULL);
RecordPosition(pointers->position());
__ CallRuntime(function, num_arguments);
// Runtime calls to Throw are not supposed to ever return at the
// call site, so don't register lazy deoptimization for these. We do
// however have to record a safepoint since throwing exceptions can
// cause garbage collections.
if (!instr->IsThrow()) {
RegisterLazyDeoptimization(instr);
} else {
RecordSafepoint(instr->pointer_map(), Safepoint::kNoDeoptimizationIndex);
}
}
void LCodeGen::RegisterLazyDeoptimization(LInstruction* instr) {
// Create the environment to bailout to. If the call has side effects
// execution has to continue after the call otherwise execution can continue
// from a previous bailout point repeating the call.
LEnvironment* deoptimization_environment;
if (instr->HasDeoptimizationEnvironment()) {
deoptimization_environment = instr->deoptimization_environment();
} else {
deoptimization_environment = instr->environment();
}
RegisterEnvironmentForDeoptimization(deoptimization_environment);
RecordSafepoint(instr->pointer_map(),
deoptimization_environment->deoptimization_index());
}
void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment) {
if (!environment->HasBeenRegistered()) {
// Physical stack frame layout:
// -x ............. -4 0 ..................................... y
// [incoming arguments] [spill slots] [pushed outgoing arguments]
// Layout of the environment:
// 0 ..................................................... size-1
// [parameters] [locals] [expression stack including arguments]
// Layout of the translation:
// 0 ........................................................ size - 1 + 4
// [expression stack including arguments] [locals] [4 words] [parameters]
// |>------------ translation_size ------------<|
int frame_count = 0;
for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
++frame_count;
}
Translation translation(&translations_, frame_count);
environment->WriteTranslation(this, &translation);
int deoptimization_index = deoptimizations_.length();
environment->Register(deoptimization_index, translation.index());
deoptimizations_.Add(environment);
}
}
void LCodeGen::DeoptimizeIf(Condition cc, LEnvironment* environment) {
RegisterEnvironmentForDeoptimization(environment);
ASSERT(environment->HasBeenRegistered());
int id = environment->deoptimization_index();
Address entry = Deoptimizer::GetDeoptimizationEntry(id, Deoptimizer::EAGER);
ASSERT(entry != NULL);
if (entry == NULL) {
Abort("bailout was not prepared");
return;
}
ASSERT(FLAG_deopt_every_n_times < 2); // Other values not supported on ARM.
if (FLAG_deopt_every_n_times == 1 &&
info_->shared_info()->opt_count() == id) {
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
return;
}
if (cc == no_condition) {
if (FLAG_trap_on_deopt) __ stop("trap_on_deopt");
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
} else {
if (FLAG_trap_on_deopt) {
Label done;
__ b(&done, NegateCondition(cc));
__ stop("trap_on_deopt");
__ Jump(entry, RelocInfo::RUNTIME_ENTRY);
__ bind(&done);
} else {
__ Jump(entry, RelocInfo::RUNTIME_ENTRY, cc);
}
}
}
void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
int length = deoptimizations_.length();
if (length == 0) return;
ASSERT(FLAG_deopt);
Handle<DeoptimizationInputData> data =
Factory::NewDeoptimizationInputData(length, TENURED);
data->SetTranslationByteArray(*translations_.CreateByteArray());
data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
Handle<FixedArray> literals =
Factory::NewFixedArray(deoptimization_literals_.length(), TENURED);
for (int i = 0; i < deoptimization_literals_.length(); i++) {
literals->set(i, *deoptimization_literals_[i]);
}
data->SetLiteralArray(*literals);
data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id()));
data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
// Populate the deoptimization entries.
for (int i = 0; i < length; i++) {
LEnvironment* env = deoptimizations_[i];
data->SetAstId(i, Smi::FromInt(env->ast_id()));
data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
data->SetArgumentsStackHeight(i,
Smi::FromInt(env->arguments_stack_height()));
}
code->set_deoptimization_data(*data);
}
int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
int result = deoptimization_literals_.length();
for (int i = 0; i < deoptimization_literals_.length(); ++i) {
if (deoptimization_literals_[i].is_identical_to(literal)) return i;
}
deoptimization_literals_.Add(literal);
return result;
}
void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
ASSERT(deoptimization_literals_.length() == 0);
const ZoneList<Handle<JSFunction> >* inlined_closures =
chunk()->inlined_closures();
for (int i = 0, length = inlined_closures->length();
i < length;
i++) {
DefineDeoptimizationLiteral(inlined_closures->at(i));
}
inlined_function_count_ = deoptimization_literals_.length();
}
void LCodeGen::RecordSafepoint(LPointerMap* pointers,
int deoptimization_index) {
const ZoneList<LOperand*>* operands = pointers->operands();
Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
deoptimization_index);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index());
}
}
}
void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
int arguments,
int deoptimization_index) {
const ZoneList<LOperand*>* operands = pointers->operands();
Safepoint safepoint =
safepoints_.DefineSafepointWithRegisters(
masm(), arguments, deoptimization_index);
for (int i = 0; i < operands->length(); i++) {
LOperand* pointer = operands->at(i);
if (pointer->IsStackSlot()) {
safepoint.DefinePointerSlot(pointer->index());
} else if (pointer->IsRegister()) {
safepoint.DefinePointerRegister(ToRegister(pointer));
}
}
// Register cp always contains a pointer to the context.
safepoint.DefinePointerRegister(cp);
}
void LCodeGen::RecordPosition(int position) {
if (!FLAG_debug_info || position == RelocInfo::kNoPosition) return;
masm()->positions_recorder()->RecordPosition(position);
}
void LCodeGen::DoLabel(LLabel* label) {
if (label->is_loop_header()) {
Comment(";;; B%d - LOOP entry", label->block_id());
} else {
Comment(";;; B%d", label->block_id());
}
__ bind(label->label());
current_block_ = label->block_id();
LCodeGen::DoGap(label);
}
void LCodeGen::DoParallelMove(LParallelMove* move) {
// d0 must always be a scratch register.
DoubleRegister dbl_scratch = d0;
LUnallocated marker_operand(LUnallocated::NONE);
Register core_scratch = scratch0();
bool destroys_core_scratch = false;
LGapResolver resolver(move->move_operands(), &marker_operand);
const ZoneList<LMoveOperands>* moves = resolver.ResolveInReverseOrder();
for (int i = moves->length() - 1; i >= 0; --i) {
LMoveOperands move = moves->at(i);
LOperand* from = move.from();
LOperand* to = move.to();
ASSERT(!from->IsDoubleRegister() ||
!ToDoubleRegister(from).is(dbl_scratch));
ASSERT(!to->IsDoubleRegister() || !ToDoubleRegister(to).is(dbl_scratch));
ASSERT(!from->IsRegister() || !ToRegister(from).is(core_scratch));
ASSERT(!to->IsRegister() || !ToRegister(to).is(core_scratch));
if (from == &marker_operand) {
if (to->IsRegister()) {
__ mov(ToRegister(to), core_scratch);
ASSERT(destroys_core_scratch);
} else if (to->IsStackSlot()) {
__ str(core_scratch, ToMemOperand(to));
ASSERT(destroys_core_scratch);
} else if (to->IsDoubleRegister()) {
__ vmov(ToDoubleRegister(to), dbl_scratch);
} else {
ASSERT(to->IsDoubleStackSlot());
// TODO(regis): Why is vstr not taking a MemOperand?
// __ vstr(dbl_scratch, ToMemOperand(to));
MemOperand to_operand = ToMemOperand(to);
__ vstr(dbl_scratch, to_operand.rn(), to_operand.offset());
}
} else if (to == &marker_operand) {
if (from->IsRegister() || from->IsConstantOperand()) {
__ mov(core_scratch, ToOperand(from));
destroys_core_scratch = true;
} else if (from->IsStackSlot()) {
__ ldr(core_scratch, ToMemOperand(from));
destroys_core_scratch = true;
} else if (from->IsDoubleRegister()) {
__ vmov(dbl_scratch, ToDoubleRegister(from));
} else {
ASSERT(from->IsDoubleStackSlot());
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(dbl_scratch, ToMemOperand(from));
MemOperand from_operand = ToMemOperand(from);
__ vldr(dbl_scratch, from_operand.rn(), from_operand.offset());
}
} else if (from->IsConstantOperand()) {
if (to->IsRegister()) {
__ mov(ToRegister(to), ToOperand(from));
} else {
ASSERT(to->IsStackSlot());
__ mov(ip, ToOperand(from));
__ str(ip, ToMemOperand(to));
}
} else if (from->IsRegister()) {
if (to->IsRegister()) {
__ mov(ToRegister(to), ToOperand(from));
} else {
ASSERT(to->IsStackSlot());
__ str(ToRegister(from), ToMemOperand(to));
}
} else if (to->IsRegister()) {
ASSERT(from->IsStackSlot());
__ ldr(ToRegister(to), ToMemOperand(from));
} else if (from->IsStackSlot()) {
ASSERT(to->IsStackSlot());
__ ldr(ip, ToMemOperand(from));
__ str(ip, ToMemOperand(to));
} else if (from->IsDoubleRegister()) {
if (to->IsDoubleRegister()) {
__ vmov(ToDoubleRegister(to), ToDoubleRegister(from));
} else {
ASSERT(to->IsDoubleStackSlot());
// TODO(regis): Why is vstr not taking a MemOperand?
// __ vstr(dbl_scratch, ToMemOperand(to));
MemOperand to_operand = ToMemOperand(to);
__ vstr(ToDoubleRegister(from), to_operand.rn(), to_operand.offset());
}
} else if (to->IsDoubleRegister()) {
ASSERT(from->IsDoubleStackSlot());
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(ToDoubleRegister(to), ToMemOperand(from));
MemOperand from_operand = ToMemOperand(from);
__ vldr(ToDoubleRegister(to), from_operand.rn(), from_operand.offset());
} else {
ASSERT(to->IsDoubleStackSlot() && from->IsDoubleStackSlot());
// TODO(regis): Why is vldr not taking a MemOperand?
// __ vldr(dbl_scratch, ToMemOperand(from));
MemOperand from_operand = ToMemOperand(from);
__ vldr(dbl_scratch, from_operand.rn(), from_operand.offset());
// TODO(regis): Why is vstr not taking a MemOperand?
// __ vstr(dbl_scratch, ToMemOperand(to));
MemOperand to_operand = ToMemOperand(to);
__ vstr(dbl_scratch, to_operand.rn(), to_operand.offset());
}
}
if (destroys_core_scratch) {
__ ldr(core_scratch, MemOperand(fp, -kPointerSize));
}
LInstruction* next = GetNextInstruction();
if (next != NULL && next->IsLazyBailout()) {
int pc = masm()->pc_offset();
safepoints_.SetPcAfterGap(pc);
}
}
void LCodeGen::DoGap(LGap* gap) {
for (int i = LGap::FIRST_INNER_POSITION;
i <= LGap::LAST_INNER_POSITION;
i++) {
LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
LParallelMove* move = gap->GetParallelMove(inner_pos);
if (move != NULL) DoParallelMove(move);
}
LInstruction* next = GetNextInstruction();
if (next != NULL && next->IsLazyBailout()) {
int pc = masm()->pc_offset();
safepoints_.SetPcAfterGap(pc);
}
}
void LCodeGen::DoParameter(LParameter* instr) {
// Nothing to do.
}
void LCodeGen::DoCallStub(LCallStub* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
switch (instr->hydrogen()->major_key()) {
case CodeStub::RegExpConstructResult: {
RegExpConstructResultStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::RegExpExec: {
RegExpExecStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::SubString: {
SubStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCharAt: {
Abort("StringCharAtStub unimplemented.");
break;
}
case CodeStub::MathPow: {
Abort("MathPowStub unimplemented.");
break;
}
case CodeStub::NumberToString: {
NumberToStringStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringAdd: {
StringAddStub stub(NO_STRING_ADD_FLAGS);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::StringCompare: {
StringCompareStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
break;
}
case CodeStub::TranscendentalCache: {
Abort("TranscendentalCache unimplemented.");
break;
}
default:
UNREACHABLE();
}
}
void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
// Nothing to do.
}
void LCodeGen::DoModI(LModI* instr) {
Abort("DoModI unimplemented.");
}
void LCodeGen::DoDivI(LDivI* instr) {
Abort("DoDivI unimplemented.");
}
void LCodeGen::DoMulI(LMulI* instr) {
Register scratch = scratch0();
Register left = ToRegister(instr->left());
Register right = EmitLoadRegister(instr->right(), scratch);
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero) &&
!instr->right()->IsConstantOperand()) {
__ orr(ToRegister(instr->temp()), left, right);
}
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
// scratch:left = left * right.
__ smull(scratch, left, left, right);
__ mov(ip, Operand(left, ASR, 31));
__ cmp(ip, Operand(scratch));
DeoptimizeIf(ne, instr->environment());
} else {
__ mul(left, left, right);
}
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
// Bail out if the result is supposed to be negative zero.
Label done;
__ tst(left, Operand(left));
__ b(ne, &done);
if (instr->right()->IsConstantOperand()) {
if (ToInteger32(LConstantOperand::cast(instr->right())) < 0) {
DeoptimizeIf(no_condition, instr->environment());
}
} else {
// Test the non-zero operand for negative sign.
__ cmp(ToRegister(instr->temp()), Operand(0));
DeoptimizeIf(mi, instr->environment());
}
__ bind(&done);
}
}
void LCodeGen::DoBitI(LBitI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
Register result = ToRegister(left);
Register right_reg = EmitLoadRegister(right, ip);
switch (instr->op()) {
case Token::BIT_AND:
__ and_(result, ToRegister(left), Operand(right_reg));
break;
case Token::BIT_OR:
__ orr(result, ToRegister(left), Operand(right_reg));
break;
case Token::BIT_XOR:
__ eor(result, ToRegister(left), Operand(right_reg));
break;
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoShiftI(LShiftI* instr) {
Register scratch = scratch0();
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
ASSERT(left->IsRegister());
Register result = ToRegister(left);
if (right->IsRegister()) {
// Mask the right operand.
__ and_(scratch, ToRegister(right), Operand(0x1F));
switch (instr->op()) {
case Token::SAR:
__ mov(result, Operand(result, ASR, scratch));
break;
case Token::SHR:
if (instr->can_deopt()) {
__ mov(result, Operand(result, LSR, scratch), SetCC);
DeoptimizeIf(mi, instr->environment());
} else {
__ mov(result, Operand(result, LSR, scratch));
}
break;
case Token::SHL:
__ mov(result, Operand(result, LSL, scratch));
break;
default:
UNREACHABLE();
break;
}
} else {
int value = ToInteger32(LConstantOperand::cast(right));
uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
switch (instr->op()) {
case Token::SAR:
if (shift_count != 0) {
__ mov(result, Operand(result, ASR, shift_count));
}
break;
case Token::SHR:
if (shift_count == 0 && instr->can_deopt()) {
__ tst(result, Operand(0x80000000));
DeoptimizeIf(ne, instr->environment());
} else {
__ mov(result, Operand(result, LSR, shift_count));
}
break;
case Token::SHL:
if (shift_count != 0) {
__ mov(result, Operand(result, LSL, shift_count));
}
break;
default:
UNREACHABLE();
break;
}
}
}
void LCodeGen::DoSubI(LSubI* instr) {
Register left = ToRegister(instr->left());
Register right = EmitLoadRegister(instr->right(), ip);
ASSERT(instr->left()->Equals(instr->result()));
__ sub(left, left, right, SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoConstantI(LConstantI* instr) {
ASSERT(instr->result()->IsRegister());
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoConstantD(LConstantD* instr) {
Abort("DoConstantD unimplemented.");
}
void LCodeGen::DoConstantT(LConstantT* instr) {
ASSERT(instr->result()->IsRegister());
__ mov(ToRegister(instr->result()), Operand(instr->value()));
}
void LCodeGen::DoJSArrayLength(LJSArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->input());
__ ldr(result, FieldMemOperand(array, JSArray::kLengthOffset));
}
void LCodeGen::DoFixedArrayLength(LFixedArrayLength* instr) {
Register result = ToRegister(instr->result());
Register array = ToRegister(instr->input());
__ ldr(result, FieldMemOperand(array, FixedArray::kLengthOffset));
Abort("DoFixedArrayLength untested.");
}
void LCodeGen::DoValueOf(LValueOf* instr) {
Abort("DoValueOf unimplemented.");
}
void LCodeGen::DoBitNotI(LBitNotI* instr) {
LOperand* input = instr->input();
ASSERT(input->Equals(instr->result()));
__ mvn(ToRegister(input), Operand(ToRegister(input)));
Abort("DoBitNotI untested.");
}
void LCodeGen::DoThrow(LThrow* instr) {
Register input_reg = EmitLoadRegister(instr->input(), ip);
__ push(input_reg);
CallRuntime(Runtime::kThrow, 1, instr);
if (FLAG_debug_code) {
__ stop("Unreachable code.");
}
}
void LCodeGen::DoAddI(LAddI* instr) {
LOperand* left = instr->left();
LOperand* right = instr->right();
ASSERT(left->Equals(instr->result()));
Register right_reg = EmitLoadRegister(right, ip);
__ add(ToRegister(left), ToRegister(left), Operand(right_reg), SetCC);
if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
DeoptimizeIf(vs, instr->environment());
}
}
void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
DoubleRegister left = ToDoubleRegister(instr->left());
DoubleRegister right = ToDoubleRegister(instr->right());
switch (instr->op()) {
case Token::ADD:
__ vadd(left, left, right);
break;
case Token::SUB:
__ vsub(left, left, right);
break;
case Token::MUL:
__ vmul(left, left, right);
break;
case Token::DIV:
__ vdiv(left, left, right);
break;
case Token::MOD: {
Abort("DoArithmeticD unimplemented for MOD.");
break;
}
default:
UNREACHABLE();
break;
}
}
void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
ASSERT(ToRegister(instr->left()).is(r1));
ASSERT(ToRegister(instr->right()).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
// TODO(regis): Implement TypeRecordingBinaryOpStub and replace current
// GenericBinaryOpStub:
// TypeRecordingBinaryOpStub stub(instr->op(), NO_OVERWRITE);
GenericBinaryOpStub stub(instr->op(), NO_OVERWRITE, r1, r0);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
int LCodeGen::GetNextEmittedBlock(int block) {
for (int i = block + 1; i < graph()->blocks()->length(); ++i) {
LLabel* label = chunk_->GetLabel(i);
if (!label->HasReplacement()) return i;
}
return -1;
}
void LCodeGen::EmitBranch(int left_block, int right_block, Condition cc) {
int next_block = GetNextEmittedBlock(current_block_);
right_block = chunk_->LookupDestination(right_block);
left_block = chunk_->LookupDestination(left_block);
if (right_block == left_block) {
EmitGoto(left_block);
} else if (left_block == next_block) {
__ b(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
} else if (right_block == next_block) {
__ b(cc, chunk_->GetAssemblyLabel(left_block));
} else {
__ b(cc, chunk_->GetAssemblyLabel(left_block));
__ b(chunk_->GetAssemblyLabel(right_block));
}
}
void LCodeGen::DoBranch(LBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Representation r = instr->hydrogen()->representation();
if (r.IsInteger32()) {
Register reg = ToRegister(instr->input());
__ cmp(reg, Operand(0));
EmitBranch(true_block, false_block, nz);
} else if (r.IsDouble()) {
DoubleRegister reg = ToDoubleRegister(instr->input());
__ vcmp(reg, 0.0);
EmitBranch(true_block, false_block, ne);
} else {
ASSERT(r.IsTagged());
Register reg = ToRegister(instr->input());
if (instr->hydrogen()->type().IsBoolean()) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(reg, ip);
EmitBranch(true_block, false_block, eq);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(reg, ip);
__ b(eq, false_label);
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(reg, ip);
__ b(eq, true_label);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(reg, ip);
__ b(eq, false_label);
__ cmp(reg, Operand(0));
__ b(eq, false_label);
__ tst(reg, Operand(kSmiTagMask));
__ b(eq, true_label);
// Test for double values. Zero is false.
Label call_stub;
DoubleRegister dbl_scratch = d0;
Register scratch = scratch0();
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
__ b(ne, &call_stub);
__ sub(ip, reg, Operand(kHeapObjectTag));
__ vldr(dbl_scratch, ip, HeapNumber::kValueOffset);
__ vcmp(dbl_scratch, 0.0);
__ b(eq, false_label);
__ b(true_label);
// The conversion stub doesn't cause garbage collections so it's
// safe to not record a safepoint after the call.
__ bind(&call_stub);
ToBooleanStub stub(reg);
RegList saved_regs = kJSCallerSaved | kCalleeSaved;
__ stm(db_w, sp, saved_regs);
__ CallStub(&stub);
__ cmp(reg, Operand(0));
__ ldm(ia_w, sp, saved_regs);
EmitBranch(true_block, false_block, nz);
}
}
}
void LCodeGen::EmitGoto(int block, LDeferredCode* deferred_stack_check) {
// TODO(srdjan): Perform stack overflow check if this goto needs it
// before jumping.
block = chunk_->LookupDestination(block);
int next_block = GetNextEmittedBlock(current_block_);
if (block != next_block) {
__ jmp(chunk_->GetAssemblyLabel(block));
}
}
void LCodeGen::DoDeferredStackCheck(LGoto* instr) {
UNIMPLEMENTED();
}
void LCodeGen::DoGoto(LGoto* instr) {
// TODO(srdjan): Implement deferred stack check.
EmitGoto(instr->block_id(), NULL);
}
Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
Condition cond = no_condition;
switch (op) {
case Token::EQ:
case Token::EQ_STRICT:
cond = eq;
break;
case Token::LT:
cond = is_unsigned ? lo : lt;
break;
case Token::GT:
cond = is_unsigned ? hi : gt;
break;
case Token::LTE:
cond = is_unsigned ? ls : le;
break;
case Token::GTE:
cond = is_unsigned ? hs : ge;
break;
case Token::IN:
case Token::INSTANCEOF:
default:
UNREACHABLE();
}
return cond;
}
void LCodeGen::EmitCmpI(LOperand* left, LOperand* right) {
__ cmp(ToRegister(left), ToOperand(right));
Abort("EmitCmpI untested.");
}
void LCodeGen::DoCmpID(LCmpID* instr) {
Abort("DoCmpID unimplemented.");
}
void LCodeGen::DoCmpIDAndBranch(LCmpIDAndBranch* instr) {
Abort("DoCmpIDAndBranch unimplemented.");
}
void LCodeGen::DoCmpJSObjectEq(LCmpJSObjectEq* instr) {
Register left = ToRegister(instr->left());
Register right = ToRegister(instr->right());
Register result = ToRegister(instr->result());
__ cmp(left, Operand(right));
__ LoadRoot(result, Heap::kTrueValueRootIndex, eq);
__ LoadRoot(result, Heap::kFalseValueRootIndex, ne);
Abort("DoCmpJSObjectEq untested.");
}
void LCodeGen::DoCmpJSObjectEqAndBranch(LCmpJSObjectEqAndBranch* instr) {
Abort("DoCmpJSObjectEqAndBranch unimplemented.");
}
void LCodeGen::DoIsNull(LIsNull* instr) {
Register reg = ToRegister(instr->input());
Register result = ToRegister(instr->result());
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(reg, ip);
if (instr->is_strict()) {
__ LoadRoot(result, Heap::kTrueValueRootIndex, eq);
__ LoadRoot(result, Heap::kFalseValueRootIndex, ne);
} else {
Label true_value, false_value, done;
__ b(eq, &true_value);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(ip, reg);
__ b(eq, &true_value);
__ tst(reg, Operand(kSmiTagMask));
__ b(eq, &false_value);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
Register scratch = result;
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kIsUndetectable));
__ b(ne, &true_value);
__ bind(&false_value);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ jmp(&done);
__ bind(&true_value);
__ LoadRoot(result, Heap::kTrueValueRootIndex);
__ bind(&done);
}
}
void LCodeGen::DoIsNullAndBranch(LIsNullAndBranch* instr) {
Register scratch = scratch0();
Register reg = ToRegister(instr->input());
// TODO(fsc): If the expression is known to be a smi, then it's
// definitely not null. Jump to the false block.
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(reg, ip);
if (instr->is_strict()) {
EmitBranch(true_block, false_block, eq);
} else {
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ b(eq, true_label);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(reg, ip);
__ b(eq, true_label);
__ tst(reg, Operand(kSmiTagMask));
__ b(eq, false_label);
// Check for undetectable objects by looking in the bit field in
// the map. The object has already been smi checked.
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kIsUndetectable));
EmitBranch(true_block, false_block, ne);
}
}
Condition LCodeGen::EmitIsObject(Register input,
Register temp1,
Register temp2,
Label* is_not_object,
Label* is_object) {
Abort("EmitIsObject unimplemented.");
return ne;
}
void LCodeGen::DoIsObject(LIsObject* instr) {
Abort("DoIsObject unimplemented.");
}
void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
Abort("DoIsObjectAndBranch unimplemented.");
}
void LCodeGen::DoIsSmi(LIsSmi* instr) {
ASSERT(instr->hydrogen()->value()->representation().IsTagged());
Register result = ToRegister(instr->result());
Register input_reg = EmitLoadRegister(instr->input(), ip);
__ tst(input_reg, Operand(kSmiTagMask));
__ LoadRoot(result, Heap::kTrueValueRootIndex);
Label done;
__ b(eq, &done);
__ LoadRoot(result, Heap::kFalseValueRootIndex);
__ bind(&done);
}
void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Register input_reg = EmitLoadRegister(instr->input(), ip);
__ tst(input_reg, Operand(kSmiTagMask));
EmitBranch(true_block, false_block, eq);
}
InstanceType LHasInstanceType::TestType() {
InstanceType from = hydrogen()->from();
InstanceType to = hydrogen()->to();
if (from == FIRST_TYPE) return to;
ASSERT(from == to || to == LAST_TYPE);
return from;
}
Condition LHasInstanceType::BranchCondition() {
InstanceType from = hydrogen()->from();
InstanceType to = hydrogen()->to();
if (from == to) return eq;
if (to == LAST_TYPE) return hs;
if (from == FIRST_TYPE) return ls;
UNREACHABLE();
return eq;
}
void LCodeGen::DoHasInstanceType(LHasInstanceType* instr) {
Abort("DoHasInstanceType unimplemented.");
}
void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
Register scratch = scratch0();
Register input = ToRegister(instr->input());
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* false_label = chunk_->GetAssemblyLabel(false_block);
__ tst(input, Operand(kSmiTagMask));
__ b(eq, false_label);
__ CompareObjectType(input, scratch, scratch, instr->TestType());
EmitBranch(true_block, false_block, instr->BranchCondition());
}
void LCodeGen::DoHasCachedArrayIndex(LHasCachedArrayIndex* instr) {
Abort("DoHasCachedArrayIndex unimplemented.");
}
void LCodeGen::DoHasCachedArrayIndexAndBranch(
LHasCachedArrayIndexAndBranch* instr) {
Abort("DoHasCachedArrayIndexAndBranch unimplemented.");
}
// Branches to a label or falls through with the answer in the z flag. Trashes
// the temp registers, but not the input. Only input and temp2 may alias.
void LCodeGen::EmitClassOfTest(Label* is_true,
Label* is_false,
Handle<String>class_name,
Register input,
Register temp,
Register temp2) {
Abort("EmitClassOfTest unimplemented.");
}
void LCodeGen::DoClassOfTest(LClassOfTest* instr) {
Abort("DoClassOfTest unimplemented.");
}
void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
Abort("DoClassOfTestAndBranch unimplemented.");
}
void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
Register reg = ToRegister(instr->input());
Register temp = ToRegister(instr->temp());
int true_block = instr->true_block_id();
int false_block = instr->false_block_id();
__ ldr(temp, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(temp, Operand(instr->map()));
EmitBranch(true_block, false_block, eq);
}
void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
ASSERT(ToRegister(instr->left()).is(r0)); // Object is in r0.
ASSERT(ToRegister(instr->right()).is(r1)); // Function is in r1.
InstanceofStub stub(InstanceofStub::kArgsInRegisters);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
Label true_value, done;
__ tst(r0, r0);
__ mov(r0, Operand(Factory::false_value()), LeaveCC, ne);
__ mov(r0, Operand(Factory::true_value()), LeaveCC, eq);
}
void LCodeGen::DoInstanceOfAndBranch(LInstanceOfAndBranch* instr) {
Abort("DoInstanceOfAndBranch unimplemented.");
}
static Condition ComputeCompareCondition(Token::Value op) {
switch (op) {
case Token::EQ_STRICT:
case Token::EQ:
return eq;
case Token::LT:
return lt;
case Token::GT:
return gt;
case Token::LTE:
return le;
case Token::GTE:
return ge;
default:
UNREACHABLE();
return no_condition;
}
}
void LCodeGen::DoCmpT(LCmpT* instr) {
Token::Value op = instr->op();
Handle<Code> ic = CompareIC::GetUninitialized(op);
CallCode(ic, RelocInfo::CODE_TARGET, instr);
Condition condition = ComputeCompareCondition(op);
if (op == Token::GT || op == Token::LTE) {
condition = ReverseCondition(condition);
}
__ cmp(r0, Operand(0));
__ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex,
condition);
__ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex,
NegateCondition(condition));
}
void LCodeGen::DoCmpTAndBranch(LCmpTAndBranch* instr) {
Abort("DoCmpTAndBranch unimplemented.");
}
void LCodeGen::DoReturn(LReturn* instr) {
if (FLAG_trace) {
// Push the return value on the stack as the parameter.
// Runtime::TraceExit returns its parameter in r0.
__ push(r0);
__ CallRuntime(Runtime::kTraceExit, 1);
}
int32_t sp_delta = (ParameterCount() + 1) * kPointerSize;
__ mov(sp, fp);
__ ldm(ia_w, sp, fp.bit() | lr.bit());
__ add(sp, sp, Operand(sp_delta));
__ Jump(lr);
}
void LCodeGen::DoLoadGlobal(LLoadGlobal* instr) {
Register result = ToRegister(instr->result());
__ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell())));
__ ldr(result, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
if (instr->hydrogen()->check_hole_value()) {
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(result, ip);
DeoptimizeIf(eq, instr->environment());
}
}
void LCodeGen::DoStoreGlobal(LStoreGlobal* instr) {
Register value = ToRegister(instr->input());
__ mov(ip, Operand(Handle<Object>(instr->hydrogen()->cell())));
__ str(value, FieldMemOperand(ip, JSGlobalPropertyCell::kValueOffset));
}
void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
Register object = ToRegister(instr->input());
Register result = ToRegister(instr->result());
if (instr->hydrogen()->is_in_object()) {
__ ldr(result, FieldMemOperand(object, instr->hydrogen()->offset()));
} else {
__ ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
__ ldr(result, FieldMemOperand(result, instr->hydrogen()->offset()));
}
}
void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r0));
ASSERT(ToRegister(instr->result()).is(r0));
// Name is always in r2.
__ mov(r2, Operand(instr->name()));
Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
Register scratch = scratch0();
Register function = ToRegister(instr->function());
Register result = ToRegister(instr->result());
// Check that the function really is a function. Load map into the
// result register.
__ CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE);
DeoptimizeIf(ne, instr->environment());
// Make sure that the function has an instance prototype.
Label non_instance;
__ ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
__ tst(scratch, Operand(1 << Map::kHasNonInstancePrototype));
__ b(ne, &non_instance);
// Get the prototype or initial map from the function.
__ ldr(result,
FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
// Check that the function has a prototype or an initial map.
__ LoadRoot(ip, Heap::kTheHoleValueRootIndex);
__ cmp(result, ip);
DeoptimizeIf(eq, instr->environment());
// If the function does not have an initial map, we're done.
Label done;
__ CompareObjectType(result, scratch, scratch, MAP_TYPE);
__ b(ne, &done);
// Get the prototype from the initial map.
__ ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
__ jmp(&done);
// Non-instance prototype: Fetch prototype from constructor field
// in initial map.
__ bind(&non_instance);
__ ldr(result, FieldMemOperand(result, Map::kConstructorOffset));
// All done.
__ bind(&done);
}
void LCodeGen::DoLoadElements(LLoadElements* instr) {
Abort("DoLoadElements unimplemented.");
}
void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
Abort("DoAccessArgumentsAt unimplemented.");
}
void LCodeGen::DoLoadKeyedFastElement(LLoadKeyedFastElement* instr) {
Abort("DoLoadKeyedFastElement unimplemented.");
}
void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r1));
ASSERT(ToRegister(instr->key()).is(r0));
Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
Abort("DoArgumentsElements unimplemented.");
}
void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
Abort("DoArgumentsLength unimplemented.");
}
void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
Abort("DoApplyArguments unimplemented.");
}
void LCodeGen::DoPushArgument(LPushArgument* instr) {
LOperand* argument = instr->input();
if (argument->IsDoubleRegister() || argument->IsDoubleStackSlot()) {
Abort("DoPushArgument not implemented for double type.");
} else {
Register argument_reg = EmitLoadRegister(argument, ip);
__ push(argument_reg);
}
}
void LCodeGen::DoGlobalObject(LGlobalObject* instr) {
Register result = ToRegister(instr->result());
__ ldr(result, ContextOperand(cp, Context::GLOBAL_INDEX));
}
void LCodeGen::DoGlobalReceiver(LGlobalReceiver* instr) {
Register result = ToRegister(instr->result());
__ ldr(result, ContextOperand(cp, Context::GLOBAL_INDEX));
__ ldr(result, FieldMemOperand(result, GlobalObject::kGlobalReceiverOffset));
}
void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
int arity,
LInstruction* instr) {
// Change context if needed.
bool change_context =
(graph()->info()->closure()->context() != function->context()) ||
scope()->contains_with() ||
(scope()->num_heap_slots() > 0);
if (change_context) {
__ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
}
// Set r0 to arguments count if adaption is not needed. Assumes that r0
// is available to write to at this point.
if (!function->NeedsArgumentsAdaption()) {
__ mov(r0, Operand(arity));
}
LPointerMap* pointers = instr->pointer_map();
RecordPosition(pointers->position());
// Invoke function.
__ ldr(ip, FieldMemOperand(r1, JSFunction::kCodeEntryOffset));
__ Call(ip);
// Setup deoptimization.
RegisterLazyDeoptimization(instr);
// Restore context.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallConstantFunction(LCallConstantFunction* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
__ mov(r1, Operand(instr->function()));
CallKnownFunction(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LUnaryMathOperation* instr) {
Abort("DoDeferredMathAbsTaggedHeapNumber unimplemented.");
}
void LCodeGen::DoMathAbs(LUnaryMathOperation* instr) {
Abort("DoMathAbs unimplemented.");
}
void LCodeGen::DoMathFloor(LUnaryMathOperation* instr) {
Abort("DoMathFloor unimplemented.");
}
void LCodeGen::DoMathSqrt(LUnaryMathOperation* instr) {
Abort("DoMathSqrt unimplemented.");
}
void LCodeGen::DoUnaryMathOperation(LUnaryMathOperation* instr) {
switch (instr->op()) {
case kMathAbs:
DoMathAbs(instr);
break;
case kMathFloor:
DoMathFloor(instr);
break;
case kMathSqrt:
DoMathSqrt(instr);
break;
default:
Abort("Unimplemented type of LUnaryMathOperation.");
UNREACHABLE();
}
}
void LCodeGen::DoCallKeyed(LCallKeyed* instr) {
Abort("DoCallKeyed unimplemented.");
}
void LCodeGen::DoCallNamed(LCallNamed* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
Handle<Code> ic = StubCache::ComputeCallInitialize(arity, NOT_IN_LOOP);
__ mov(r2, Operand(instr->name()));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
// Restore context register.
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallFunction(LCallFunction* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
int arity = instr->arity();
CallFunctionStub stub(arity, NOT_IN_LOOP, RECEIVER_MIGHT_BE_VALUE);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ Drop(1);
__ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
}
void LCodeGen::DoCallGlobal(LCallGlobal* instr) {
Abort("DoCallGlobal unimplemented.");
}
void LCodeGen::DoCallKnownGlobal(LCallKnownGlobal* instr) {
ASSERT(ToRegister(instr->result()).is(r0));
__ mov(r1, Operand(instr->target()));
CallKnownFunction(instr->target(), instr->arity(), instr);
}
void LCodeGen::DoCallNew(LCallNew* instr) {
ASSERT(ToRegister(instr->input()).is(r1));
ASSERT(ToRegister(instr->result()).is(r0));
Handle<Code> builtin(Builtins::builtin(Builtins::JSConstructCall));
__ mov(r0, Operand(instr->arity()));
CallCode(builtin, RelocInfo::CONSTRUCT_CALL, instr);
}
void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
CallRuntime(instr->function(), instr->arity(), instr);
}
void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
Abort("DoStoreNamedField unimplemented.");
}
void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
// Name is always in r2.
__ mov(r2, Operand(instr->name()));
Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
__ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
DeoptimizeIf(hs, instr->environment());
}
void LCodeGen::DoStoreKeyedFastElement(LStoreKeyedFastElement* instr) {
Abort("DoStoreKeyedFastElement unimplemented.");
}
void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
ASSERT(ToRegister(instr->object()).is(r2));
ASSERT(ToRegister(instr->key()).is(r1));
ASSERT(ToRegister(instr->value()).is(r0));
Handle<Code> ic(Builtins::builtin(Builtins::KeyedStoreIC_Initialize));
CallCode(ic, RelocInfo::CODE_TARGET, instr);
}
void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
Abort("DoInteger32ToDouble unimplemented.");
}
void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
class DeferredNumberTagI: public LDeferredCode {
public:
DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagI(instr_); }
private:
LNumberTagI* instr_;
};
LOperand* input = instr->input();
ASSERT(input->IsRegister() && input->Equals(instr->result()));
Register reg = ToRegister(input);
DeferredNumberTagI* deferred = new DeferredNumberTagI(this, instr);
__ SmiTag(reg, SetCC);
__ b(vs, deferred->entry());
__ bind(deferred->exit());
}
void LCodeGen::DoDeferredNumberTagI(LNumberTagI* instr) {
Label slow;
Register reg = ToRegister(instr->input());
DoubleRegister dbl_scratch = d0;
SwVfpRegister flt_scratch = s0;
// Preserve the value of all registers.
__ PushSafepointRegisters();
// There was overflow, so bits 30 and 31 of the original integer
// disagree. Try to allocate a heap number in new space and store
// the value in there. If that fails, call the runtime system.
Label done;
__ SmiUntag(reg);
__ eor(reg, reg, Operand(0x80000000));
__ vmov(flt_scratch, reg);
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
if (FLAG_inline_new) {
__ LoadRoot(r6, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(r5, r3, r4, r6, &slow);
if (!reg.is(r5)) __ mov(reg, r5);
__ b(&done);
}
// Slow case: Call the runtime system to do the number allocation.
__ bind(&slow);
// TODO(3095996): Put a valid pointer value in the stack slot where the result
// register is stored, as this register is in the pointer map, but contains an
// integer value.
__ mov(ip, Operand(0));
int reg_stack_index = __ SafepointRegisterStackIndex(reg.code());
__ str(ip, MemOperand(sp, reg_stack_index * kPointerSize));
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
if (!reg.is(r0)) __ mov(reg, r0);
// Done. Put the value in dbl_scratch into the value of the allocated heap
// number.
__ bind(&done);
__ sub(ip, reg, Operand(kHeapObjectTag));
__ vstr(dbl_scratch, ip, HeapNumber::kValueOffset);
__ str(reg, MemOperand(sp, reg_stack_index * kPointerSize));
__ PopSafepointRegisters();
}
void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
class DeferredNumberTagD: public LDeferredCode {
public:
DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
private:
LNumberTagD* instr_;
};
DoubleRegister input_reg = ToDoubleRegister(instr->input());
Register scratch = scratch0();
Register reg = ToRegister(instr->result());
Register temp1 = ToRegister(instr->temp1());
Register temp2 = ToRegister(instr->temp2());
DeferredNumberTagD* deferred = new DeferredNumberTagD(this, instr);
if (FLAG_inline_new) {
__ LoadRoot(scratch, Heap::kHeapNumberMapRootIndex);
__ AllocateHeapNumber(reg, temp1, temp2, scratch, deferred->entry());
} else {
__ jmp(deferred->entry());
}
__ bind(deferred->exit());
__ sub(ip, reg, Operand(kHeapObjectTag));
__ vstr(input_reg, ip, HeapNumber::kValueOffset);
}
void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
// TODO(3095996): Get rid of this. For now, we need to make the
// result register contain a valid pointer because it is already
// contained in the register pointer map.
Register reg = ToRegister(instr->result());
__ mov(reg, Operand(0));
__ PushSafepointRegisters();
__ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
RecordSafepointWithRegisters(
instr->pointer_map(), 0, Safepoint::kNoDeoptimizationIndex);
int reg_stack_index = __ SafepointRegisterStackIndex(reg.code());
__ str(r0, MemOperand(sp, reg_stack_index * kPointerSize));
__ PopSafepointRegisters();
}
void LCodeGen::DoSmiTag(LSmiTag* instr) {
LOperand* input = instr->input();
ASSERT(input->IsRegister() && input->Equals(instr->result()));
ASSERT(!instr->hydrogen_value()->CheckFlag(HValue::kCanOverflow));
__ SmiTag(ToRegister(input));
}
void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
Abort("DoSmiUntag unimplemented.");
}
void LCodeGen::EmitNumberUntagD(Register input_reg,
DoubleRegister result_reg,
LEnvironment* env) {
Register scratch = scratch0();
SwVfpRegister flt_scratch = s0;
ASSERT(!result_reg.is(d0));
Label load_smi, heap_number, done;
// Smi check.
__ tst(input_reg, Operand(kSmiTagMask));
__ b(eq, &load_smi);
// Heap number map check.
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
__ b(eq, &heap_number);
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(input_reg, Operand(ip));
DeoptimizeIf(ne, env);
// Convert undefined to NaN.
__ LoadRoot(ip, Heap::kNanValueRootIndex);
__ sub(ip, ip, Operand(kHeapObjectTag));
__ vldr(result_reg, ip, HeapNumber::kValueOffset);
__ jmp(&done);
// Heap number to double register conversion.
__ bind(&heap_number);
__ sub(ip, input_reg, Operand(kHeapObjectTag));
__ vldr(result_reg, ip, HeapNumber::kValueOffset);
__ jmp(&done);
// Smi to double register conversion
__ bind(&load_smi);
__ SmiUntag(input_reg); // Untag smi before converting to float.
__ vmov(flt_scratch, input_reg);
__ vcvt_f64_s32(result_reg, flt_scratch);
__ SmiTag(input_reg); // Retag smi.
__ bind(&done);
}
class DeferredTaggedToI: public LDeferredCode {
public:
DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
: LDeferredCode(codegen), instr_(instr) { }
virtual void Generate() { codegen()->DoDeferredTaggedToI(instr_); }
private:
LTaggedToI* instr_;
};
void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr) {
Label done;
Register input_reg = ToRegister(instr->input());
Register scratch = scratch0();
DoubleRegister dbl_scratch = d0;
SwVfpRegister flt_scratch = s0;
DoubleRegister dbl_tmp = ToDoubleRegister(instr->temp());
// Heap number map check.
__ ldr(scratch, FieldMemOperand(input_reg, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(scratch, Operand(ip));
if (instr->truncating()) {
Label heap_number;
__ b(eq, &heap_number);
// Check for undefined. Undefined is converted to zero for truncating
// conversions.
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(input_reg, Operand(ip));
DeoptimizeIf(ne, instr->environment());
__ mov(input_reg, Operand(0));
__ b(&done);
__ bind(&heap_number);
__ sub(ip, input_reg, Operand(kHeapObjectTag));
__ vldr(dbl_tmp, ip, HeapNumber::kValueOffset);
__ vcmp(dbl_tmp, 0.0); // Sets overflow bit if NaN.
__ vcvt_s32_f64(flt_scratch, dbl_tmp);
__ vmov(input_reg, flt_scratch); // 32-bit result of conversion.
__ vmrs(pc); // Move vector status bits to normal status bits.
// Overflow bit is set if dbl_tmp is Nan.
__ cmn(input_reg, Operand(1), vc); // 0x7fffffff + 1 -> overflow.
__ cmp(input_reg, Operand(1), vc); // 0x80000000 - 1 -> overflow.
DeoptimizeIf(vs, instr->environment()); // Saturation may have occured.
} else {
// Deoptimize if we don't have a heap number.
DeoptimizeIf(ne, instr->environment());
__ sub(ip, input_reg, Operand(kHeapObjectTag));
__ vldr(dbl_tmp, ip, HeapNumber::kValueOffset);
__ vcvt_s32_f64(flt_scratch, dbl_tmp);
__ vmov(input_reg, flt_scratch); // 32-bit result of conversion.
// Non-truncating conversion means that we cannot lose bits, so we convert
// back to check; note that using non-overlapping s and d regs would be
// slightly faster.
__ vcvt_f64_s32(dbl_scratch, flt_scratch);
__ vcmp(dbl_scratch, dbl_tmp);
__ vmrs(pc); // Move vector status bits to normal status bits.
DeoptimizeIf(ne, instr->environment()); // Not equal or unordered.
if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
__ tst(input_reg, Operand(input_reg));
__ b(ne, &done);
__ vmov(lr, ip, dbl_tmp);
__ tst(ip, Operand(1 << 31)); // Test sign bit.
DeoptimizeIf(ne, instr->environment());
}
}
__ bind(&done);
}
void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
LOperand* input = instr->input();
ASSERT(input->IsRegister());
ASSERT(input->Equals(instr->result()));
Register input_reg = ToRegister(input);
DeferredTaggedToI* deferred = new DeferredTaggedToI(this, instr);
// Smi check.
__ tst(input_reg, Operand(kSmiTagMask));
__ b(ne, deferred->entry());
// Smi to int32 conversion
__ SmiUntag(input_reg); // Untag smi.
__ bind(deferred->exit());
}
void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
LOperand* input = instr->input();
ASSERT(input->IsRegister());
LOperand* result = instr->result();
ASSERT(result->IsDoubleRegister());
Register input_reg = ToRegister(input);
DoubleRegister result_reg = ToDoubleRegister(result);
EmitNumberUntagD(input_reg, result_reg, instr->environment());
}
void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
Abort("DoDoubleToI unimplemented.");
}
void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
LOperand* input = instr->input();
ASSERT(input->IsRegister());
__ tst(ToRegister(input), Operand(kSmiTagMask));
DeoptimizeIf(instr->condition(), instr->environment());
}
void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
Abort("DoCheckInstanceType unimplemented.");
}
void LCodeGen::DoCheckFunction(LCheckFunction* instr) {
ASSERT(instr->input()->IsRegister());
Register reg = ToRegister(instr->input());
__ cmp(reg, Operand(instr->hydrogen()->target()));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoCheckMap(LCheckMap* instr) {
Register scratch = scratch0();
LOperand* input = instr->input();
ASSERT(input->IsRegister());
Register reg = ToRegister(input);
__ ldr(scratch, FieldMemOperand(reg, HeapObject::kMapOffset));
__ cmp(scratch, Operand(instr->hydrogen()->map()));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::LoadPrototype(Register result,
Handle<JSObject> prototype) {
if (Heap::InNewSpace(*prototype)) {
Handle<JSGlobalPropertyCell> cell =
Factory::NewJSGlobalPropertyCell(prototype);
__ mov(result, Operand(cell));
} else {
__ mov(result, Operand(prototype));
}
}
void LCodeGen::DoCheckPrototypeMaps(LCheckPrototypeMaps* instr) {
Register temp1 = ToRegister(instr->temp1());
Register temp2 = ToRegister(instr->temp2());
Handle<JSObject> holder = instr->holder();
Handle<Map> receiver_map = instr->receiver_map();
Handle<JSObject> current_prototype(JSObject::cast(receiver_map->prototype()));
// Load prototype object.
LoadPrototype(temp1, current_prototype);
// Check prototype maps up to the holder.
while (!current_prototype.is_identical_to(holder)) {
__ ldr(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
__ cmp(temp2, Operand(Handle<Map>(current_prototype->map())));
DeoptimizeIf(ne, instr->environment());
current_prototype =
Handle<JSObject>(JSObject::cast(current_prototype->GetPrototype()));
// Load next prototype object.
LoadPrototype(temp1, current_prototype);
}
// Check the holder map.
__ ldr(temp2, FieldMemOperand(temp1, HeapObject::kMapOffset));
__ cmp(temp2, Operand(Handle<Map>(current_prototype->map())));
DeoptimizeIf(ne, instr->environment());
}
void LCodeGen::DoArrayLiteral(LArrayLiteral* instr) {
__ ldr(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r3, FieldMemOperand(r3, JSFunction::kLiteralsOffset));
__ mov(r2, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r1, Operand(instr->hydrogen()->constant_elements()));
__ Push(r3, r2, r1);
// Pick the right runtime function or stub to call.
int length = instr->hydrogen()->length();
if (instr->hydrogen()->IsCopyOnWrite()) {
ASSERT(instr->hydrogen()->depth() == 1);
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
} else if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateArrayLiteral, 3, instr);
} else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) {
CallRuntime(Runtime::kCreateArrayLiteralShallow, 3, instr);
} else {
FastCloneShallowArrayStub::Mode mode =
FastCloneShallowArrayStub::CLONE_ELEMENTS;
FastCloneShallowArrayStub stub(mode, length);
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
}
}
void LCodeGen::DoObjectLiteral(LObjectLiteral* instr) {
__ ldr(r4, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
__ ldr(r4, FieldMemOperand(r4, JSFunction::kLiteralsOffset));
__ mov(r3, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
__ mov(r2, Operand(instr->hydrogen()->constant_properties()));
__ mov(r1, Operand(Smi::FromInt(instr->hydrogen()->fast_elements() ? 1 : 0)));
__ Push(r4, r3, r2, r1);
// Pick the right runtime function to call.
if (instr->hydrogen()->depth() > 1) {
CallRuntime(Runtime::kCreateObjectLiteral, 4, instr);
} else {
CallRuntime(Runtime::kCreateObjectLiteralShallow, 4, instr);
}
}
void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
Abort("DoRegExpLiteral unimplemented.");
}
void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
Abort("DoFunctionLiteral unimplemented.");
}
void LCodeGen::DoTypeof(LTypeof* instr) {
Abort("DoTypeof unimplemented.");
}
void LCodeGen::DoTypeofIs(LTypeofIs* instr) {
Abort("DoTypeofIs unimplemented.");
}
void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
Register input = ToRegister(instr->input());
int true_block = chunk_->LookupDestination(instr->true_block_id());
int false_block = chunk_->LookupDestination(instr->false_block_id());
Label* true_label = chunk_->GetAssemblyLabel(true_block);
Label* false_label = chunk_->GetAssemblyLabel(false_block);
Condition final_branch_condition = EmitTypeofIs(true_label,
false_label,
input,
instr->type_literal());
EmitBranch(true_block, false_block, final_branch_condition);
}
Condition LCodeGen::EmitTypeofIs(Label* true_label,
Label* false_label,
Register input,
Handle<String> type_name) {
Condition final_branch_condition = no_condition;
Register scratch = scratch0();
if (type_name->Equals(Heap::number_symbol())) {
__ tst(input, Operand(kSmiTagMask));
__ b(eq, true_label);
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
__ LoadRoot(ip, Heap::kHeapNumberMapRootIndex);
__ cmp(input, Operand(ip));
final_branch_condition = eq;
} else if (type_name->Equals(Heap::string_symbol())) {
__ tst(input, Operand(kSmiTagMask));
__ b(eq, false_label);
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
__ b(ne, false_label);
__ CompareInstanceType(input, scratch, FIRST_NONSTRING_TYPE);
final_branch_condition = lo;
} else if (type_name->Equals(Heap::boolean_symbol())) {
__ LoadRoot(ip, Heap::kTrueValueRootIndex);
__ cmp(input, ip);
__ b(eq, true_label);
__ LoadRoot(ip, Heap::kFalseValueRootIndex);
__ cmp(input, ip);
final_branch_condition = eq;
} else if (type_name->Equals(Heap::undefined_symbol())) {
__ LoadRoot(ip, Heap::kUndefinedValueRootIndex);
__ cmp(input, ip);
__ b(eq, true_label);
__ tst(input, Operand(kSmiTagMask));
__ b(eq, false_label);
// Check for undetectable objects => true.
__ ldr(input, FieldMemOperand(input, HeapObject::kMapOffset));
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
final_branch_condition = ne;
} else if (type_name->Equals(Heap::function_symbol())) {
__ tst(input, Operand(kSmiTagMask));
__ b(eq, false_label);
__ CompareObjectType(input, input, scratch, JS_FUNCTION_TYPE);
__ b(eq, true_label);
// Regular expressions => 'function' (they are callable).
__ CompareInstanceType(input, scratch, JS_REGEXP_TYPE);
final_branch_condition = eq;
} else if (type_name->Equals(Heap::object_symbol())) {
__ tst(input, Operand(kSmiTagMask));
__ b(eq, false_label);
__ LoadRoot(ip, Heap::kNullValueRootIndex);
__ cmp(input, ip);
__ b(eq, true_label);
// Regular expressions => 'function', not 'object'.
__ CompareObjectType(input, input, scratch, JS_REGEXP_TYPE);
__ b(eq, false_label);
// Check for undetectable objects => false.
__ ldrb(ip, FieldMemOperand(input, Map::kBitFieldOffset));
__ tst(ip, Operand(1 << Map::kIsUndetectable));
__ b(ne, false_label);
// Check for JS objects => true.
__ CompareInstanceType(input, scratch, FIRST_JS_OBJECT_TYPE);
__ b(lo, false_label);
__ CompareInstanceType(input, scratch, LAST_JS_OBJECT_TYPE);
final_branch_condition = ls;
} else {
final_branch_condition = ne;
__ b(false_label);
// A dead branch instruction will be generated after this point.
}
return final_branch_condition;
}
void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
// No code for lazy bailout instruction. Used to capture environment after a
// call for populating the safepoint data with deoptimization data.
}
void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
DeoptimizeIf(no_condition, instr->environment());
}
void LCodeGen::DoDeleteProperty(LDeleteProperty* instr) {
Abort("DoDeleteProperty unimplemented.");
}
void LCodeGen::DoStackCheck(LStackCheck* instr) {
// Perform stack overflow check.
Label ok;
__ LoadRoot(ip, Heap::kStackLimitRootIndex);
__ cmp(sp, Operand(ip));
__ b(hs, &ok);
StackCheckStub stub;
CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
__ bind(&ok);
}
void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
Abort("DoOsrEntry unimplemented.");
}
#undef __
} } // namespace v8::internal