blob: 4fde3d464a0c0bd1e1d01c6e11e32af5a11a5874 [file] [log] [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include "ia32/lithium-ia32.h"
#include "ia32/lithium-codegen-ia32.h"
namespace v8 {
namespace internal {
#define DEFINE_COMPILE(type) \
void L##type::CompileToNative(LCodeGen* generator) { \
generator->Do##type(this); \
}
LITHIUM_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
#undef DEFINE_COMPILE
LOsrEntry::LOsrEntry() {
for (int i = 0; i < Register::kNumAllocatableRegisters; ++i) {
register_spills_[i] = NULL;
}
for (int i = 0; i < DoubleRegister::kNumAllocatableRegisters; ++i) {
double_register_spills_[i] = NULL;
}
}
void LOsrEntry::MarkSpilledRegister(int allocation_index,
LOperand* spill_operand) {
ASSERT(spill_operand->IsStackSlot());
ASSERT(register_spills_[allocation_index] == NULL);
register_spills_[allocation_index] = spill_operand;
}
void LOsrEntry::MarkSpilledDoubleRegister(int allocation_index,
LOperand* spill_operand) {
ASSERT(spill_operand->IsDoubleStackSlot());
ASSERT(double_register_spills_[allocation_index] == NULL);
double_register_spills_[allocation_index] = spill_operand;
}
void LInstruction::PrintTo(StringStream* stream) const {
stream->Add("%s ", this->Mnemonic());
if (HasResult()) {
result()->PrintTo(stream);
stream->Add(" ");
}
PrintDataTo(stream);
if (HasEnvironment()) {
stream->Add(" ");
environment()->PrintTo(stream);
}
if (HasPointerMap()) {
stream->Add(" ");
pointer_map()->PrintTo(stream);
}
}
void LLabel::PrintDataTo(StringStream* stream) const {
LGap::PrintDataTo(stream);
LLabel* rep = replacement();
if (rep != NULL) {
stream->Add(" Dead block replaced with B%d", rep->block_id());
}
}
bool LParallelMove::IsRedundant() const {
for (int i = 0; i < move_operands_.length(); ++i) {
if (!move_operands_[i].IsRedundant()) return false;
}
return true;
}
void LParallelMove::PrintDataTo(StringStream* stream) const {
for (int i = move_operands_.length() - 1; i >= 0; --i) {
if (!move_operands_[i].IsEliminated()) {
LOperand* from = move_operands_[i].from();
LOperand* to = move_operands_[i].to();
if (from->Equals(to)) {
to->PrintTo(stream);
} else {
to->PrintTo(stream);
stream->Add(" = ");
from->PrintTo(stream);
}
stream->Add("; ");
}
}
}
bool LGap::IsRedundant() const {
for (int i = 0; i < 4; i++) {
if (parallel_moves_[i] != NULL && !parallel_moves_[i]->IsRedundant()) {
return false;
}
}
return true;
}
void LGap::PrintDataTo(StringStream* stream) const {
for (int i = 0; i < 4; i++) {
stream->Add("(");
if (parallel_moves_[i] != NULL) {
parallel_moves_[i]->PrintDataTo(stream);
}
stream->Add(") ");
}
}
const char* LArithmeticD::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-d";
case Token::SUB: return "sub-d";
case Token::MUL: return "mul-d";
case Token::DIV: return "div-d";
case Token::MOD: return "mod-d";
default:
UNREACHABLE();
return NULL;
}
}
const char* LArithmeticT::Mnemonic() const {
switch (op()) {
case Token::ADD: return "add-t";
case Token::SUB: return "sub-t";
case Token::MUL: return "mul-t";
case Token::MOD: return "mod-t";
case Token::DIV: return "div-t";
default:
UNREACHABLE();
return NULL;
}
}
void LBinaryOperation::PrintDataTo(StringStream* stream) const {
stream->Add("= ");
left()->PrintTo(stream);
stream->Add(" ");
right()->PrintTo(stream);
}
void LGoto::PrintDataTo(StringStream* stream) const {
stream->Add("B%d", block_id());
}
void LBranch::PrintDataTo(StringStream* stream) const {
stream->Add("B%d | B%d on ", true_block_id(), false_block_id());
input()->PrintTo(stream);
}
void LCmpIDAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if ");
left()->PrintTo(stream);
stream->Add(" %s ", Token::String(op()));
right()->PrintTo(stream);
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsNullAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if ");
input()->PrintTo(stream);
stream->Add(is_strict() ? " === null" : " == null");
stream->Add(" then B%d else B%d", true_block_id(), false_block_id());
}
void LIsObjectAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if is_object(");
input()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LIsSmiAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if is_smi(");
input()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasInstanceTypeAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if has_instance_type(");
input()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LHasCachedArrayIndexAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if has_cached_array_index(");
input()->PrintTo(stream);
stream->Add(") then B%d else B%d", true_block_id(), false_block_id());
}
void LClassOfTestAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if class_of_test(");
input()->PrintTo(stream);
stream->Add(", \"%o\") then B%d else B%d",
*hydrogen()->class_name(),
true_block_id(),
false_block_id());
}
void LTypeofIs::PrintDataTo(StringStream* stream) const {
input()->PrintTo(stream);
stream->Add(" == \"%s\"", *hydrogen()->type_literal()->ToCString());
}
void LTypeofIsAndBranch::PrintDataTo(StringStream* stream) const {
stream->Add("if typeof ");
input()->PrintTo(stream);
stream->Add(" == \"%s\" then B%d else B%d",
*hydrogen()->type_literal()->ToCString(),
true_block_id(), false_block_id());
}
void LCallConstantFunction::PrintDataTo(StringStream* stream) const {
stream->Add("#%d / ", arity());
}
void LUnaryMathOperation::PrintDataTo(StringStream* stream) const {
stream->Add("/%s ", hydrogen()->OpName());
input()->PrintTo(stream);
}
void LCallKeyed::PrintDataTo(StringStream* stream) const {
stream->Add("[ecx] #%d / ", arity());
}
void LCallNamed::PrintDataTo(StringStream* stream) const {
SmartPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallGlobal::PrintDataTo(StringStream* stream) const {
SmartPointer<char> name_string = name()->ToCString();
stream->Add("%s #%d / ", *name_string, arity());
}
void LCallKnownGlobal::PrintDataTo(StringStream* stream) const {
stream->Add("#%d / ", arity());
}
void LCallNew::PrintDataTo(StringStream* stream) const {
LUnaryOperation::PrintDataTo(stream);
stream->Add(" #%d / ", arity());
}
void LClassOfTest::PrintDataTo(StringStream* stream) const {
stream->Add("= class_of_test(");
input()->PrintTo(stream);
stream->Add(", \"%o\")", *hydrogen()->class_name());
}
void LUnaryOperation::PrintDataTo(StringStream* stream) const {
stream->Add("= ");
input()->PrintTo(stream);
}
void LAccessArgumentsAt::PrintDataTo(StringStream* stream) const {
arguments()->PrintTo(stream);
stream->Add(" length ");
length()->PrintTo(stream);
stream->Add(" index ");
index()->PrintTo(stream);
}
LChunk::LChunk(HGraph* graph)
: spill_slot_count_(0),
graph_(graph),
instructions_(32),
pointer_maps_(8),
inlined_closures_(1) {
}
void LChunk::Verify() const {
// TODO(twuerthinger): Implement verification for chunk.
}
int LChunk::GetNextSpillIndex(bool is_double) {
// Skip a slot if for a double-width slot.
if (is_double) spill_slot_count_++;
return spill_slot_count_++;
}
LOperand* LChunk::GetNextSpillSlot(bool is_double) {
int index = GetNextSpillIndex(is_double);
if (is_double) {
return LDoubleStackSlot::Create(index);
} else {
return LStackSlot::Create(index);
}
}
void LChunk::MarkEmptyBlocks() {
HPhase phase("Mark empty blocks", this);
for (int i = 0; i < graph()->blocks()->length(); ++i) {
HBasicBlock* block = graph()->blocks()->at(i);
int first = block->first_instruction_index();
int last = block->last_instruction_index();
LInstruction* first_instr = instructions()->at(first);
LInstruction* last_instr = instructions()->at(last);
LLabel* label = LLabel::cast(first_instr);
if (last_instr->IsGoto()) {
LGoto* goto_instr = LGoto::cast(last_instr);
if (!goto_instr->include_stack_check() &&
label->IsRedundant() &&
!label->is_loop_header()) {
bool can_eliminate = true;
for (int i = first + 1; i < last && can_eliminate; ++i) {
LInstruction* cur = instructions()->at(i);
if (cur->IsGap()) {
LGap* gap = LGap::cast(cur);
if (!gap->IsRedundant()) {
can_eliminate = false;
}
} else {
can_eliminate = false;
}
}
if (can_eliminate) {
label->set_replacement(GetLabel(goto_instr->block_id()));
}
}
}
}
}
void LStoreNamed::PrintDataTo(StringStream* stream) const {
object()->PrintTo(stream);
stream->Add(".");
stream->Add(*String::cast(*name())->ToCString());
stream->Add(" <- ");
value()->PrintTo(stream);
}
void LStoreKeyed::PrintDataTo(StringStream* stream) const {
object()->PrintTo(stream);
stream->Add("[");
key()->PrintTo(stream);
stream->Add("] <- ");
value()->PrintTo(stream);
}
int LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) {
LGap* gap = new LGap(block);
int index = -1;
if (instr->IsControl()) {
instructions_.Add(gap);
index = instructions_.length();
instructions_.Add(instr);
} else {
index = instructions_.length();
instructions_.Add(instr);
instructions_.Add(gap);
}
if (instr->HasPointerMap()) {
pointer_maps_.Add(instr->pointer_map());
instr->pointer_map()->set_lithium_position(index);
}
return index;
}
LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) {
return LConstantOperand::Create(constant->id());
}
int LChunk::GetParameterStackSlot(int index) const {
// The receiver is at index 0, the first parameter at index 1, so we
// shift all parameter indexes down by the number of parameters, and
// make sure they end up negative so they are distinguishable from
// spill slots.
int result = index - graph()->info()->scope()->num_parameters() - 1;
ASSERT(result < 0);
return result;
}
// A parameter relative to ebp in the arguments stub.
int LChunk::ParameterAt(int index) {
ASSERT(-1 <= index); // -1 is the receiver.
return (1 + graph()->info()->scope()->num_parameters() - index) *
kPointerSize;
}
LGap* LChunk::GetGapAt(int index) const {
return LGap::cast(instructions_[index]);
}
bool LChunk::IsGapAt(int index) const {
return instructions_[index]->IsGap();
}
int LChunk::NearestGapPos(int index) const {
while (!IsGapAt(index)) index--;
return index;
}
void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) {
GetGapAt(index)->GetOrCreateParallelMove(LGap::START)->AddMove(from, to);
}
class LGapNode: public ZoneObject {
public:
explicit LGapNode(LOperand* operand)
: operand_(operand), resolved_(false), visited_id_(-1) { }
LOperand* operand() const { return operand_; }
bool IsResolved() const { return !IsAssigned() || resolved_; }
void MarkResolved() {
ASSERT(!IsResolved());
resolved_ = true;
}
int visited_id() const { return visited_id_; }
void set_visited_id(int id) {
ASSERT(id > visited_id_);
visited_id_ = id;
}
bool IsAssigned() const { return assigned_from_.is_set(); }
LGapNode* assigned_from() const { return assigned_from_.get(); }
void set_assigned_from(LGapNode* n) { assigned_from_.set(n); }
private:
LOperand* operand_;
SetOncePointer<LGapNode> assigned_from_;
bool resolved_;
int visited_id_;
};
LGapResolver::LGapResolver(const ZoneList<LMoveOperands>* moves,
LOperand* marker_operand)
: nodes_(4),
identified_cycles_(4),
result_(4),
marker_operand_(marker_operand),
next_visited_id_(0) {
for (int i = 0; i < moves->length(); ++i) {
LMoveOperands move = moves->at(i);
if (!move.IsRedundant()) RegisterMove(move);
}
}
const ZoneList<LMoveOperands>* LGapResolver::ResolveInReverseOrder() {
for (int i = 0; i < identified_cycles_.length(); ++i) {
ResolveCycle(identified_cycles_[i]);
}
int unresolved_nodes;
do {
unresolved_nodes = 0;
for (int j = 0; j < nodes_.length(); j++) {
LGapNode* node = nodes_[j];
if (!node->IsResolved() && node->assigned_from()->IsResolved()) {
AddResultMove(node->assigned_from(), node);
node->MarkResolved();
}
if (!node->IsResolved()) ++unresolved_nodes;
}
} while (unresolved_nodes > 0);
return &result_;
}
void LGapResolver::AddResultMove(LGapNode* from, LGapNode* to) {
AddResultMove(from->operand(), to->operand());
}
void LGapResolver::AddResultMove(LOperand* from, LOperand* to) {
result_.Add(LMoveOperands(from, to));
}
void LGapResolver::ResolveCycle(LGapNode* start) {
ZoneList<LOperand*> circle_operands(8);
circle_operands.Add(marker_operand_);
LGapNode* cur = start;
do {
cur->MarkResolved();
circle_operands.Add(cur->operand());
cur = cur->assigned_from();
} while (cur != start);
circle_operands.Add(marker_operand_);
for (int i = circle_operands.length() - 1; i > 0; --i) {
LOperand* from = circle_operands[i];
LOperand* to = circle_operands[i - 1];
AddResultMove(from, to);
}
}
bool LGapResolver::CanReach(LGapNode* a, LGapNode* b, int visited_id) {
ASSERT(a != b);
LGapNode* cur = a;
while (cur != b && cur->visited_id() != visited_id && cur->IsAssigned()) {
cur->set_visited_id(visited_id);
cur = cur->assigned_from();
}
return cur == b;
}
bool LGapResolver::CanReach(LGapNode* a, LGapNode* b) {
ASSERT(a != b);
return CanReach(a, b, next_visited_id_++);
}
void LGapResolver::RegisterMove(LMoveOperands move) {
if (move.from()->IsConstantOperand()) {
// Constant moves should be last in the machine code. Therefore add them
// first to the result set.
AddResultMove(move.from(), move.to());
} else {
LGapNode* from = LookupNode(move.from());
LGapNode* to = LookupNode(move.to());
if (to->IsAssigned() && to->assigned_from() == from) {
move.Eliminate();
return;
}
ASSERT(!to->IsAssigned());
if (CanReach(from, to)) {
// This introduces a circle. Save.
identified_cycles_.Add(from);
}
to->set_assigned_from(from);
}
}
LGapNode* LGapResolver::LookupNode(LOperand* operand) {
for (int i = 0; i < nodes_.length(); ++i) {
if (nodes_[i]->operand()->Equals(operand)) return nodes_[i];
}
// No node found => create a new one.
LGapNode* result = new LGapNode(operand);
nodes_.Add(result);
return result;
}
Handle<Object> LChunk::LookupLiteral(LConstantOperand* operand) const {
return HConstant::cast(graph_->LookupValue(operand->index()))->handle();
}
Representation LChunk::LookupLiteralRepresentation(
LConstantOperand* operand) const {
return graph_->LookupValue(operand->index())->representation();
}
LChunk* LChunkBuilder::Build() {
ASSERT(is_unused());
chunk_ = new LChunk(graph());
HPhase phase("Building chunk", chunk_);
status_ = BUILDING;
const ZoneList<HBasicBlock*>* blocks = graph()->blocks();
for (int i = 0; i < blocks->length(); i++) {
HBasicBlock* next = NULL;
if (i < blocks->length() - 1) next = blocks->at(i + 1);
DoBasicBlock(blocks->at(i), next);
if (is_aborted()) return NULL;
}
status_ = DONE;
return chunk_;
}
void LChunkBuilder::Abort(const char* format, ...) {
if (FLAG_trace_bailout) {
SmartPointer<char> debug_name = graph()->debug_name()->ToCString();
PrintF("Aborting LChunk building in @\"%s\": ", *debug_name);
va_list arguments;
va_start(arguments, format);
OS::VPrint(format, arguments);
va_end(arguments);
PrintF("\n");
}
status_ = ABORTED;
}
LRegister* LChunkBuilder::ToOperand(Register reg) {
return LRegister::Create(Register::ToAllocationIndex(reg));
}
LUnallocated* LChunkBuilder::ToUnallocated(Register reg) {
return new LUnallocated(LUnallocated::FIXED_REGISTER,
Register::ToAllocationIndex(reg));
}
LUnallocated* LChunkBuilder::ToUnallocated(XMMRegister reg) {
return new LUnallocated(LUnallocated::FIXED_DOUBLE_REGISTER,
XMMRegister::ToAllocationIndex(reg));
}
LOperand* LChunkBuilder::UseFixed(HValue* value, Register fixed_register) {
return Use(value, ToUnallocated(fixed_register));
}
LOperand* LChunkBuilder::UseFixedDouble(HValue* value, XMMRegister reg) {
return Use(value, ToUnallocated(reg));
}
LOperand* LChunkBuilder::UseRegister(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LOperand* LChunkBuilder::UseRegisterAtStart(HValue* value) {
return Use(value,
new LUnallocated(LUnallocated::MUST_HAVE_REGISTER,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseTempRegister(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::WRITABLE_REGISTER));
}
LOperand* LChunkBuilder::Use(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::NONE));
}
LOperand* LChunkBuilder::UseAtStart(HValue* value) {
return Use(value, new LUnallocated(LUnallocated::NONE,
LUnallocated::USED_AT_START));
}
LOperand* LChunkBuilder::UseOrConstant(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: Use(value);
}
LOperand* LChunkBuilder::UseOrConstantAtStart(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseAtStart(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstant(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegister(value);
}
LOperand* LChunkBuilder::UseRegisterOrConstantAtStart(HValue* value) {
return value->IsConstant()
? chunk_->DefineConstantOperand(HConstant::cast(value))
: UseRegisterAtStart(value);
}
LOperand* LChunkBuilder::Use(HValue* value, LUnallocated* operand) {
if (value->EmitAtUses()) {
HInstruction* instr = HInstruction::cast(value);
VisitInstruction(instr);
}
allocator_->RecordUse(value, operand);
return operand;
}
LInstruction* LChunkBuilder::Define(LInstruction* instr) {
return Define(instr, new LUnallocated(LUnallocated::NONE));
}
LInstruction* LChunkBuilder::DefineAsRegister(LInstruction* instr) {
return Define(instr, new LUnallocated(LUnallocated::MUST_HAVE_REGISTER));
}
LInstruction* LChunkBuilder::DefineAsSpilled(LInstruction* instr, int index) {
return Define(instr, new LUnallocated(LUnallocated::FIXED_SLOT, index));
}
LInstruction* LChunkBuilder::DefineSameAsFirst(LInstruction* instr) {
return Define(instr, new LUnallocated(LUnallocated::SAME_AS_FIRST_INPUT));
}
LInstruction* LChunkBuilder::DefineFixed(LInstruction* instr, Register reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::DefineFixedDouble(LInstruction* instr,
XMMRegister reg) {
return Define(instr, ToUnallocated(reg));
}
LInstruction* LChunkBuilder::AssignEnvironment(LInstruction* instr) {
HEnvironment* hydrogen_env = current_block_->last_environment();
instr->set_environment(CreateEnvironment(hydrogen_env));
return instr;
}
LInstruction* LChunkBuilder::SetInstructionPendingDeoptimizationEnvironment(
LInstruction* instr, int ast_id) {
ASSERT(instructions_pending_deoptimization_environment_ == NULL);
ASSERT(pending_deoptimization_ast_id_ == AstNode::kNoNumber);
instructions_pending_deoptimization_environment_ = instr;
pending_deoptimization_ast_id_ = ast_id;
return instr;
}
void LChunkBuilder::ClearInstructionPendingDeoptimizationEnvironment() {
instructions_pending_deoptimization_environment_ = NULL;
pending_deoptimization_ast_id_ = AstNode::kNoNumber;
}
LInstruction* LChunkBuilder::MarkAsCall(LInstruction* instr,
HInstruction* hinstr,
CanDeoptimize can_deoptimize) {
allocator_->MarkAsCall();
instr = AssignPointerMap(instr);
if (hinstr->HasSideEffects()) {
ASSERT(hinstr->next()->IsSimulate());
HSimulate* sim = HSimulate::cast(hinstr->next());
instr = SetInstructionPendingDeoptimizationEnvironment(
instr, sim->ast_id());
}
// If instruction does not have side-effects lazy deoptimization
// after the call will try to deoptimize to the point before the call.
// Thus we still need to attach environment to this call even if
// call sequence can not deoptimize eagerly.
bool needs_environment =
(can_deoptimize == CAN_DEOPTIMIZE_EAGERLY) || !hinstr->HasSideEffects();
if (needs_environment && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
return instr;
}
LInstruction* LChunkBuilder::AssignPointerMap(LInstruction* instr) {
ASSERT(!instr->HasPointerMap());
instr->set_pointer_map(new LPointerMap(position_));
return instr;
}
LInstruction* LChunkBuilder::Define(LInstruction* instr, LUnallocated* result) {
allocator_->RecordDefinition(current_instruction_, result);
instr->set_result(result);
return instr;
}
LOperand* LChunkBuilder::Temp() {
LUnallocated* operand = new LUnallocated(LUnallocated::NONE);
allocator_->RecordTemporary(operand);
return operand;
}
LUnallocated* LChunkBuilder::TempRegister() {
LUnallocated* operand = new LUnallocated(LUnallocated::MUST_HAVE_REGISTER);
allocator_->RecordTemporary(operand);
return operand;
}
LOperand* LChunkBuilder::FixedTemp(Register reg) {
LUnallocated* operand = ToUnallocated(reg);
allocator_->RecordTemporary(operand);
return operand;
}
LOperand* LChunkBuilder::FixedTemp(XMMRegister reg) {
LUnallocated* operand = ToUnallocated(reg);
allocator_->RecordTemporary(operand);
return operand;
}
LInstruction* LChunkBuilder::DoBlockEntry(HBlockEntry* instr) {
return new LLabel(instr->block());
}
LInstruction* LChunkBuilder::DoDeoptimize(HDeoptimize* instr) {
return AssignEnvironment(new LDeoptimize);
}
LInstruction* LChunkBuilder::DoBit(Token::Value op,
HBitwiseBinaryOperation* instr) {
ASSERT(instr->representation().IsInteger32());
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand());
LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand());
return DefineSameAsFirst(new LBitI(op, left, right));
}
LInstruction* LChunkBuilder::DoShift(Token::Value op,
HBitwiseBinaryOperation* instr) {
ASSERT(instr->representation().IsInteger32());
ASSERT(instr->OperandAt(0)->representation().IsInteger32());
ASSERT(instr->OperandAt(1)->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->OperandAt(0));
HValue* right_value = instr->OperandAt(1);
LOperand* right = NULL;
int constant_value = 0;
if (right_value->IsConstant()) {
HConstant* constant = HConstant::cast(right_value);
right = chunk_->DefineConstantOperand(constant);
constant_value = constant->Integer32Value() & 0x1f;
} else {
right = UseFixed(right_value, ecx);
}
// Shift operations can only deoptimize if we do a logical shift
// by 0 and the result cannot be truncated to int32.
bool can_deopt = (op == Token::SHR && constant_value == 0);
if (can_deopt) {
bool can_truncate = true;
for (int i = 0; i < instr->uses()->length(); i++) {
if (!instr->uses()->at(i)->CheckFlag(HValue::kTruncatingToInt32)) {
can_truncate = false;
break;
}
}
can_deopt = !can_truncate;
}
LInstruction* result =
DefineSameAsFirst(new LShiftI(op, left, right, can_deopt));
if (can_deopt) AssignEnvironment(result);
return result;
}
LInstruction* LChunkBuilder::DoArithmeticD(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(instr->representation().IsDouble());
ASSERT(instr->left()->representation().IsDouble());
ASSERT(instr->right()->representation().IsDouble());
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
LArithmeticD* result = new LArithmeticD(op, left, right);
return DefineSameAsFirst(result);
}
LInstruction* LChunkBuilder::DoArithmeticT(Token::Value op,
HArithmeticBinaryOperation* instr) {
ASSERT(op == Token::ADD ||
op == Token::DIV ||
op == Token::MOD ||
op == Token::MUL ||
op == Token::SUB);
HValue* left = instr->left();
HValue* right = instr->right();
ASSERT(left->representation().IsTagged());
ASSERT(right->representation().IsTagged());
LOperand* left_operand = UseFixed(left, edx);
LOperand* right_operand = UseFixed(right, eax);
LInstruction* result = new LArithmeticT(op, left_operand, right_operand);
return MarkAsCall(DefineFixed(result, eax), instr);
}
void LChunkBuilder::DoBasicBlock(HBasicBlock* block, HBasicBlock* next_block) {
ASSERT(is_building());
current_block_ = block;
next_block_ = next_block;
if (block->IsStartBlock()) {
block->UpdateEnvironment(graph_->start_environment());
argument_count_ = 0;
} else if (block->predecessors()->length() == 1) {
// We have a single predecessor => copy environment and outgoing
// argument count from the predecessor.
ASSERT(block->phis()->length() == 0);
HBasicBlock* pred = block->predecessors()->at(0);
HEnvironment* last_environment = pred->last_environment();
ASSERT(last_environment != NULL);
// Only copy the environment, if it is later used again.
if (pred->end()->SecondSuccessor() == NULL) {
ASSERT(pred->end()->FirstSuccessor() == block);
} else {
if (pred->end()->FirstSuccessor()->block_id() > block->block_id() ||
pred->end()->SecondSuccessor()->block_id() > block->block_id()) {
last_environment = last_environment->Copy();
}
}
block->UpdateEnvironment(last_environment);
ASSERT(pred->argument_count() >= 0);
argument_count_ = pred->argument_count();
} else {
// We are at a state join => process phis.
HBasicBlock* pred = block->predecessors()->at(0);
// No need to copy the environment, it cannot be used later.
HEnvironment* last_environment = pred->last_environment();
for (int i = 0; i < block->phis()->length(); ++i) {
HPhi* phi = block->phis()->at(i);
last_environment->SetValueAt(phi->merged_index(), phi);
}
for (int i = 0; i < block->deleted_phis()->length(); ++i) {
last_environment->SetValueAt(block->deleted_phis()->at(i),
graph_->GetConstantUndefined());
}
block->UpdateEnvironment(last_environment);
// Pick up the outgoing argument count of one of the predecessors.
argument_count_ = pred->argument_count();
}
HInstruction* current = block->first();
int start = chunk_->instructions()->length();
while (current != NULL && !is_aborted()) {
// Code for constants in registers is generated lazily.
if (!current->EmitAtUses()) {
VisitInstruction(current);
}
current = current->next();
}
int end = chunk_->instructions()->length() - 1;
if (end >= start) {
block->set_first_instruction_index(start);
block->set_last_instruction_index(end);
}
block->set_argument_count(argument_count_);
next_block_ = NULL;
current_block_ = NULL;
}
void LChunkBuilder::VisitInstruction(HInstruction* current) {
HInstruction* old_current = current_instruction_;
current_instruction_ = current;
allocator_->BeginInstruction();
if (current->has_position()) position_ = current->position();
LInstruction* instr = current->CompileToLithium(this);
if (instr != NULL) {
if (FLAG_stress_pointer_maps && !instr->HasPointerMap()) {
instr = AssignPointerMap(instr);
}
if (FLAG_stress_environments && !instr->HasEnvironment()) {
instr = AssignEnvironment(instr);
}
if (current->IsBranch()) {
instr->set_hydrogen_value(HBranch::cast(current)->value());
} else {
instr->set_hydrogen_value(current);
}
int index = chunk_->AddInstruction(instr, current_block_);
allocator_->SummarizeInstruction(index);
} else {
// This instruction should be omitted.
allocator_->OmitInstruction();
}
current_instruction_ = old_current;
}
void LEnvironment::WriteTranslation(LCodeGen* cgen,
Translation* translation) const {
if (this == NULL) return;
// The translation includes one command per value in the environment.
int translation_size = values()->length();
// The output frame height does not include the parameters.
int height = translation_size - parameter_count();
outer()->WriteTranslation(cgen, translation);
int closure_id = cgen->DefineDeoptimizationLiteral(closure());
translation->BeginFrame(ast_id(), closure_id, height);
for (int i = 0; i < translation_size; ++i) {
LOperand* value = values()->at(i);
// spilled_registers_ and spilled_double_registers_ are either
// both NULL or both set.
if (spilled_registers_ != NULL && value != NULL) {
if (value->IsRegister() &&
spilled_registers_[value->index()] != NULL) {
translation->MarkDuplicate();
cgen->AddToTranslation(translation,
spilled_registers_[value->index()],
HasTaggedValueAt(i));
} else if (value->IsDoubleRegister() &&
spilled_double_registers_[value->index()] != NULL) {
translation->MarkDuplicate();
cgen->AddToTranslation(translation,
spilled_double_registers_[value->index()],
false);
}
}
cgen->AddToTranslation(translation, value, HasTaggedValueAt(i));
}
}
void LEnvironment::PrintTo(StringStream* stream) const {
stream->Add("[id=%d|", ast_id());
stream->Add("[parameters=%d|", parameter_count());
stream->Add("[arguments_stack_height=%d|", arguments_stack_height());
for (int i = 0; i < values_.length(); ++i) {
if (i != 0) stream->Add(";");
if (values_[i] == NULL) {
stream->Add("[hole]");
} else {
values_[i]->PrintTo(stream);
}
}
stream->Add("]");
}
LEnvironment* LChunkBuilder::CreateEnvironment(HEnvironment* hydrogen_env) {
if (hydrogen_env == NULL) return NULL;
LEnvironment* outer = CreateEnvironment(hydrogen_env->outer());
int ast_id = hydrogen_env->ast_id();
ASSERT(ast_id != AstNode::kNoNumber);
int value_count = hydrogen_env->length();
LEnvironment* result = new LEnvironment(hydrogen_env->closure(),
ast_id,
hydrogen_env->parameter_count(),
argument_count_,
value_count,
outer);
int argument_index = 0;
for (int i = 0; i < value_count; ++i) {
HValue* value = hydrogen_env->values()->at(i);
LOperand* op = NULL;
if (value->IsArgumentsObject()) {
op = NULL;
} else if (value->IsPushArgument()) {
op = new LArgument(argument_index++);
} else {
op = UseOrConstant(value);
if (op->IsUnallocated()) {
LUnallocated* unalloc = LUnallocated::cast(op);
unalloc->set_policy(LUnallocated::ANY);
}
}
result->AddValue(op, value->representation());
}
return result;
}
LInstruction* LChunkBuilder::DoGoto(HGoto* instr) {
LInstruction* result = new LGoto(instr->FirstSuccessor()->block_id(),
instr->include_stack_check());
if (instr->include_stack_check()) result = AssignPointerMap(result);
return result;
}
LInstruction* LChunkBuilder::DoBranch(HBranch* instr) {
HValue* v = instr->value();
HBasicBlock* first = instr->FirstSuccessor();
HBasicBlock* second = instr->SecondSuccessor();
ASSERT(first != NULL && second != NULL);
int first_id = first->block_id();
int second_id = second->block_id();
if (v->EmitAtUses()) {
if (v->IsClassOfTest()) {
HClassOfTest* compare = HClassOfTest::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LClassOfTestAndBranch(UseTempRegister(compare->value()),
TempRegister(),
TempRegister(),
first_id,
second_id);
} else if (v->IsCompare()) {
HCompare* compare = HCompare::cast(v);
Token::Value op = compare->token();
HValue* left = compare->left();
HValue* right = compare->right();
if (left->representation().IsInteger32()) {
ASSERT(right->representation().IsInteger32());
return new LCmpIDAndBranch(op,
UseRegisterAtStart(left),
UseOrConstantAtStart(right),
first_id,
second_id,
false);
} else if (left->representation().IsDouble()) {
ASSERT(right->representation().IsDouble());
return new LCmpIDAndBranch(op,
UseRegisterAtStart(left),
UseRegisterAtStart(right),
first_id,
second_id,
true);
} else {
ASSERT(left->representation().IsTagged());
ASSERT(right->representation().IsTagged());
bool reversed = op == Token::GT || op == Token::LTE;
LOperand* left_operand = UseFixed(left, reversed ? eax : edx);
LOperand* right_operand = UseFixed(right, reversed ? edx : eax);
LInstruction* result = new LCmpTAndBranch(left_operand,
right_operand,
first_id,
second_id);
return MarkAsCall(result, instr);
}
} else if (v->IsIsSmi()) {
HIsSmi* compare = HIsSmi::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LIsSmiAndBranch(Use(compare->value()),
first_id,
second_id);
} else if (v->IsHasInstanceType()) {
HHasInstanceType* compare = HHasInstanceType::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LHasInstanceTypeAndBranch(UseRegisterAtStart(compare->value()),
TempRegister(),
first_id,
second_id);
} else if (v->IsHasCachedArrayIndex()) {
HHasCachedArrayIndex* compare = HHasCachedArrayIndex::cast(v);
ASSERT(compare->value()->representation().IsTagged());
return new LHasCachedArrayIndexAndBranch(
UseRegisterAtStart(compare->value()), first_id, second_id);
} else if (v->IsIsNull()) {
HIsNull* compare = HIsNull::cast(v);
ASSERT(compare->value()->representation().IsTagged());
// We only need a temp register for non-strict compare.
LOperand* temp = compare->is_strict() ? NULL : TempRegister();
return new LIsNullAndBranch(UseRegisterAtStart(compare->value()),
compare->is_strict(),
temp,
first_id,
second_id);
} else if (v->IsIsObject()) {
HIsObject* compare = HIsObject::cast(v);
ASSERT(compare->value()->representation().IsTagged());
LOperand* temp1 = TempRegister();
LOperand* temp2 = TempRegister();
return new LIsObjectAndBranch(UseRegisterAtStart(compare->value()),
temp1,
temp2,
first_id,
second_id);
} else if (v->IsCompareJSObjectEq()) {
HCompareJSObjectEq* compare = HCompareJSObjectEq::cast(v);
return new LCmpJSObjectEqAndBranch(UseRegisterAtStart(compare->left()),
UseRegisterAtStart(compare->right()),
first_id,
second_id);
} else if (v->IsInstanceOf()) {
HInstanceOf* instance_of = HInstanceOf::cast(v);
LInstruction* result =
new LInstanceOfAndBranch(UseFixed(instance_of->left(), eax),
UseFixed(instance_of->right(), edx),
first_id,
second_id);
return MarkAsCall(result, instr);
} else if (v->IsTypeofIs()) {
HTypeofIs* typeof_is = HTypeofIs::cast(v);
return new LTypeofIsAndBranch(UseTempRegister(typeof_is->value()),
first_id,
second_id);
} else {
if (v->IsConstant()) {
if (HConstant::cast(v)->handle()->IsTrue()) {
return new LGoto(first_id);
} else if (HConstant::cast(v)->handle()->IsFalse()) {
return new LGoto(second_id);
}
}
Abort("Undefined compare before branch");
return NULL;
}
}
return new LBranch(UseRegisterAtStart(v), first_id, second_id);
}
LInstruction* LChunkBuilder::DoCompareMapAndBranch(
HCompareMapAndBranch* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
HBasicBlock* first = instr->FirstSuccessor();
HBasicBlock* second = instr->SecondSuccessor();
return new LCmpMapAndBranch(value,
instr->map(),
first->block_id(),
second->block_id());
}
LInstruction* LChunkBuilder::DoArgumentsLength(HArgumentsLength* length) {
return DefineAsRegister(new LArgumentsLength(Use(length->value())));
}
LInstruction* LChunkBuilder::DoArgumentsElements(HArgumentsElements* elems) {
return DefineAsRegister(new LArgumentsElements);
}
LInstruction* LChunkBuilder::DoInstanceOf(HInstanceOf* instr) {
LInstruction* result =
new LInstanceOf(UseFixed(instr->left(), eax),
UseFixed(instr->right(), edx));
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoApplyArguments(HApplyArguments* instr) {
LOperand* function = UseFixed(instr->function(), edi);
LOperand* receiver = UseFixed(instr->receiver(), eax);
LOperand* length = UseRegisterAtStart(instr->length());
LOperand* elements = UseRegisterAtStart(instr->elements());
LInstruction* result = new LApplyArguments(function,
receiver,
length,
elements);
return MarkAsCall(DefineFixed(result, eax), instr, CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoPushArgument(HPushArgument* instr) {
++argument_count_;
LOperand* argument = UseOrConstant(instr->argument());
return new LPushArgument(argument);
}
LInstruction* LChunkBuilder::DoGlobalObject(HGlobalObject* instr) {
return DefineAsRegister(new LGlobalObject);
}
LInstruction* LChunkBuilder::DoGlobalReceiver(HGlobalReceiver* instr) {
return DefineAsRegister(new LGlobalReceiver);
}
LInstruction* LChunkBuilder::DoCallConstantFunction(
HCallConstantFunction* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallConstantFunction, eax), instr);
}
LInstruction* LChunkBuilder::DoUnaryMathOperation(HUnaryMathOperation* instr) {
BuiltinFunctionId op = instr->op();
if (op == kMathLog || op == kMathSin || op == kMathCos) {
LOperand* input = UseFixedDouble(instr->value(), xmm1);
LInstruction* result = new LUnaryMathOperation(input);
return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
} else {
LOperand* input = UseRegisterAtStart(instr->value());
LInstruction* result = new LUnaryMathOperation(input);
switch (op) {
case kMathAbs:
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
case kMathFloor:
return AssignEnvironment(DefineAsRegister(result));
case kMathRound:
return AssignEnvironment(DefineAsRegister(result));
case kMathSqrt:
return DefineSameAsFirst(result);
case kMathPowHalf:
return AssignEnvironment(DefineSameAsFirst(result));
default:
UNREACHABLE();
return NULL;
}
}
}
LInstruction* LChunkBuilder::DoCallKeyed(HCallKeyed* instr) {
ASSERT(instr->key()->representation().IsTagged());
argument_count_ -= instr->argument_count();
UseFixed(instr->key(), ecx);
return MarkAsCall(DefineFixed(new LCallKeyed, eax), instr);
}
LInstruction* LChunkBuilder::DoCallNamed(HCallNamed* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallNamed, eax), instr);
}
LInstruction* LChunkBuilder::DoCallGlobal(HCallGlobal* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallGlobal, eax), instr);
}
LInstruction* LChunkBuilder::DoCallKnownGlobal(HCallKnownGlobal* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallKnownGlobal, eax), instr);
}
LInstruction* LChunkBuilder::DoCallNew(HCallNew* instr) {
LOperand* constructor = UseFixed(instr->constructor(), edi);
argument_count_ -= instr->argument_count();
LInstruction* result = new LCallNew(constructor);
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoCallFunction(HCallFunction* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallFunction, eax), instr);
}
LInstruction* LChunkBuilder::DoCallRuntime(HCallRuntime* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallRuntime, eax), instr);
}
LInstruction* LChunkBuilder::DoShr(HShr* instr) {
return DoShift(Token::SHR, instr);
}
LInstruction* LChunkBuilder::DoSar(HSar* instr) {
return DoShift(Token::SAR, instr);
}
LInstruction* LChunkBuilder::DoShl(HShl* instr) {
return DoShift(Token::SHL, instr);
}
LInstruction* LChunkBuilder::DoBitAnd(HBitAnd* instr) {
return DoBit(Token::BIT_AND, instr);
}
LInstruction* LChunkBuilder::DoBitNot(HBitNot* instr) {
ASSERT(instr->value()->representation().IsInteger32());
ASSERT(instr->representation().IsInteger32());
return DefineSameAsFirst(new LBitNotI(UseRegisterAtStart(instr->value())));
}
LInstruction* LChunkBuilder::DoBitOr(HBitOr* instr) {
return DoBit(Token::BIT_OR, instr);
}
LInstruction* LChunkBuilder::DoBitXor(HBitXor* instr) {
return DoBit(Token::BIT_XOR, instr);
}
LInstruction* LChunkBuilder::DoDiv(HDiv* instr) {
if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::DIV, instr);
} else if (instr->representation().IsInteger32()) {
// The temporary operand is necessary to ensure that right is not allocated
// into edx.
FixedTemp(edx);
LOperand* value = UseFixed(instr->left(), eax);
LOperand* divisor = UseRegister(instr->right());
return AssignEnvironment(DefineFixed(new LDivI(value, divisor), eax));
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::DIV, instr);
}
}
LInstruction* LChunkBuilder::DoMod(HMod* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
// The temporary operand is necessary to ensure that right is not allocated
// into edx.
FixedTemp(edx);
LOperand* value = UseFixed(instr->left(), eax);
LOperand* divisor = UseRegister(instr->right());
LInstruction* result = DefineFixed(new LModI(value, divisor), edx);
if (instr->CheckFlag(HValue::kBailoutOnMinusZero) ||
instr->CheckFlag(HValue::kCanBeDivByZero)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsTagged()) {
return DoArithmeticT(Token::MOD, instr);
} else {
ASSERT(instr->representation().IsDouble());
// We call a C function for double modulo. It can't trigger a GC.
// We need to use fixed result register for the call.
// TODO(fschneider): Allow any register as input registers.
LOperand* left = UseFixedDouble(instr->left(), xmm1);
LOperand* right = UseFixedDouble(instr->right(), xmm2);
LArithmeticD* result = new LArithmeticD(Token::MOD, left, right);
return MarkAsCall(DefineFixedDouble(result, xmm1), instr);
}
}
LInstruction* LChunkBuilder::DoMul(HMul* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand());
LOperand* right = UseOrConstant(instr->MostConstantOperand());
LOperand* temp = NULL;
if (instr->CheckFlag(HValue::kBailoutOnMinusZero)) {
temp = TempRegister();
}
LMulI* mul = new LMulI(left, right, temp);
return AssignEnvironment(DefineSameAsFirst(mul));
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::MUL, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::MUL, instr);
}
}
LInstruction* LChunkBuilder::DoSub(HSub* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand());
LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand());
LSubI* sub = new LSubI(left, right);
LInstruction* result = DefineSameAsFirst(sub);
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::SUB, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::SUB, instr);
}
}
LInstruction* LChunkBuilder::DoAdd(HAdd* instr) {
if (instr->representation().IsInteger32()) {
ASSERT(instr->left()->representation().IsInteger32());
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->LeastConstantOperand());
LOperand* right = UseOrConstantAtStart(instr->MostConstantOperand());
LAddI* add = new LAddI(left, right);
LInstruction* result = DefineSameAsFirst(add);
if (instr->CheckFlag(HValue::kCanOverflow)) {
result = AssignEnvironment(result);
}
return result;
} else if (instr->representation().IsDouble()) {
return DoArithmeticD(Token::ADD, instr);
} else {
ASSERT(instr->representation().IsTagged());
return DoArithmeticT(Token::ADD, instr);
}
}
LInstruction* LChunkBuilder::DoPower(HPower* instr) {
ASSERT(instr->representation().IsDouble());
// We call a C function for double power. It can't trigger a GC.
// We need to use fixed result register for the call.
Representation exponent_type = instr->right()->representation();
ASSERT(instr->left()->representation().IsDouble());
LOperand* left = UseFixedDouble(instr->left(), xmm1);
LOperand* right = exponent_type.IsDouble() ?
UseFixedDouble(instr->right(), xmm2) :
UseFixed(instr->right(), eax);
LPower* result = new LPower(left, right);
return MarkAsCall(DefineFixedDouble(result, xmm3), instr,
CAN_DEOPTIMIZE_EAGERLY);
}
LInstruction* LChunkBuilder::DoCompare(HCompare* instr) {
Token::Value op = instr->token();
if (instr->left()->representation().IsInteger32()) {
ASSERT(instr->right()->representation().IsInteger32());
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseOrConstantAtStart(instr->right());
return DefineAsRegister(new LCmpID(op, left, right, false));
} else if (instr->left()->representation().IsDouble()) {
ASSERT(instr->right()->representation().IsDouble());
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
return DefineAsRegister(new LCmpID(op, left, right, true));
} else {
bool reversed = (op == Token::GT || op == Token::LTE);
LOperand* left = UseFixed(instr->left(), reversed ? eax : edx);
LOperand* right = UseFixed(instr->right(), reversed ? edx : eax);
LInstruction* result = new LCmpT(left, right);
return MarkAsCall(DefineFixed(result, eax), instr);
}
}
LInstruction* LChunkBuilder::DoCompareJSObjectEq(
HCompareJSObjectEq* instr) {
LOperand* left = UseRegisterAtStart(instr->left());
LOperand* right = UseRegisterAtStart(instr->right());
LInstruction* result = new LCmpJSObjectEq(left, right);
return DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoIsNull(HIsNull* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LIsNull(value,
instr->is_strict()));
}
LInstruction* LChunkBuilder::DoIsObject(HIsObject* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegister(instr->value());
return DefineAsRegister(new LIsObject(value, TempRegister()));
}
LInstruction* LChunkBuilder::DoIsSmi(HIsSmi* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseAtStart(instr->value());
return DefineAsRegister(new LIsSmi(value));
}
LInstruction* LChunkBuilder::DoHasInstanceType(HHasInstanceType* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LHasInstanceType(value));
}
LInstruction* LChunkBuilder::DoHasCachedArrayIndex(
HHasCachedArrayIndex* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseRegister(instr->value());
return DefineAsRegister(new LHasCachedArrayIndex(value));
}
LInstruction* LChunkBuilder::DoClassOfTest(HClassOfTest* instr) {
ASSERT(instr->value()->representation().IsTagged());
LOperand* value = UseTempRegister(instr->value());
return DefineSameAsFirst(new LClassOfTest(value, TempRegister()));
}
LInstruction* LChunkBuilder::DoJSArrayLength(HJSArrayLength* instr) {
LOperand* array = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LJSArrayLength(array));
}
LInstruction* LChunkBuilder::DoFixedArrayLength(HFixedArrayLength* instr) {
LOperand* array = UseRegisterAtStart(instr->value());
return DefineAsRegister(new LFixedArrayLength(array));
}
LInstruction* LChunkBuilder::DoValueOf(HValueOf* instr) {
LOperand* object = UseRegister(instr->value());
LInstruction* result = new LValueOf(object, TempRegister());
return AssignEnvironment(DefineSameAsFirst(result));
}
LInstruction* LChunkBuilder::DoBoundsCheck(HBoundsCheck* instr) {
return AssignEnvironment(new LBoundsCheck(UseRegisterAtStart(instr->index()),
Use(instr->length())));
}
LInstruction* LChunkBuilder::DoThrow(HThrow* instr) {
LOperand* value = UseFixed(instr->value(), eax);
return MarkAsCall(new LThrow(value), instr);
}
LInstruction* LChunkBuilder::DoChange(HChange* instr) {
Representation from = instr->from();
Representation to = instr->to();
if (from.IsTagged()) {
if (to.IsDouble()) {
LOperand* value = UseRegister(instr->value());
LInstruction* res = new LNumberUntagD(value);
return AssignEnvironment(DefineAsRegister(res));
} else {
ASSERT(to.IsInteger32());
LOperand* value = UseRegister(instr->value());
bool needs_check = !instr->value()->type().IsSmi();
if (needs_check) {
LOperand* xmm_temp =
(instr->CanTruncateToInt32() && CpuFeatures::IsSupported(SSE3))
? NULL
: FixedTemp(xmm1);
LInstruction* res = new LTaggedToI(value, xmm_temp);
return AssignEnvironment(DefineSameAsFirst(res));
} else {
return DefineSameAsFirst(new LSmiUntag(value, needs_check));
}
}
} else if (from.IsDouble()) {
if (to.IsTagged()) {
LOperand* value = UseRegister(instr->value());
LOperand* temp = TempRegister();
// Make sure that temp and result_temp are different registers.
LUnallocated* result_temp = TempRegister();
LInstruction* result = new LNumberTagD(value, temp);
return AssignPointerMap(Define(result, result_temp));
} else {
ASSERT(to.IsInteger32());
LOperand* value = UseRegister(instr->value());
return AssignEnvironment(DefineAsRegister(new LDoubleToI(value)));
}
} else if (from.IsInteger32()) {
if (to.IsTagged()) {
HValue* val = instr->value();
LOperand* value = UseRegister(val);
if (val->HasRange() && val->range()->IsInSmiRange()) {
return DefineSameAsFirst(new LSmiTag(value));
} else {
LInstruction* result = new LNumberTagI(value);
return AssignEnvironment(AssignPointerMap(DefineSameAsFirst(result)));
}
} else {
ASSERT(to.IsDouble());
return DefineAsRegister(new LInteger32ToDouble(Use(instr->value())));
}
}
UNREACHABLE();
return NULL;
}
LInstruction* LChunkBuilder::DoCheckNonSmi(HCheckNonSmi* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new LCheckSmi(value, zero));
}
LInstruction* LChunkBuilder::DoCheckInstanceType(HCheckInstanceType* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LOperand* temp = TempRegister();
LInstruction* result = new LCheckInstanceType(value, temp);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoCheckPrototypeMaps(HCheckPrototypeMaps* instr) {
LOperand* temp = TempRegister();
LInstruction* result =
new LCheckPrototypeMaps(temp,
instr->holder(),
instr->receiver_map());
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoCheckSmi(HCheckSmi* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new LCheckSmi(value, not_zero));
}
LInstruction* LChunkBuilder::DoCheckFunction(HCheckFunction* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
return AssignEnvironment(new LCheckFunction(value));
}
LInstruction* LChunkBuilder::DoCheckMap(HCheckMap* instr) {
LOperand* value = UseRegisterAtStart(instr->value());
LInstruction* result = new LCheckMap(value);
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoReturn(HReturn* instr) {
return new LReturn(UseFixed(instr->value(), eax));
}
LInstruction* LChunkBuilder::DoConstant(HConstant* instr) {
Representation r = instr->representation();
if (r.IsInteger32()) {
int32_t value = instr->Integer32Value();
return DefineAsRegister(new LConstantI(value));
} else if (r.IsDouble()) {
double value = instr->DoubleValue();
return DefineAsRegister(new LConstantD(value));
} else if (r.IsTagged()) {
return DefineAsRegister(new LConstantT(instr->handle()));
} else {
Abort("unsupported constant of type double");
return NULL;
}
}
LInstruction* LChunkBuilder::DoLoadGlobal(HLoadGlobal* instr) {
LInstruction* result = new LLoadGlobal;
return instr->check_hole_value()
? AssignEnvironment(DefineAsRegister(result))
: DefineAsRegister(result);
}
LInstruction* LChunkBuilder::DoStoreGlobal(HStoreGlobal* instr) {
return new LStoreGlobal(UseRegisterAtStart(instr->value()));
}
LInstruction* LChunkBuilder::DoLoadNamedField(HLoadNamedField* instr) {
return DefineAsRegister(
new LLoadNamedField(UseRegisterAtStart(instr->object())));
}
LInstruction* LChunkBuilder::DoLoadNamedGeneric(HLoadNamedGeneric* instr) {
LOperand* object = UseFixed(instr->object(), eax);
LInstruction* result = DefineFixed(new LLoadNamedGeneric(object), eax);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoLoadFunctionPrototype(
HLoadFunctionPrototype* instr) {
return AssignEnvironment(DefineAsRegister(
new LLoadFunctionPrototype(UseRegister(instr->function()),
TempRegister())));
}
LInstruction* LChunkBuilder::DoLoadElements(HLoadElements* instr) {
LOperand* input = UseRegisterAtStart(instr->value());
return DefineSameAsFirst(new LLoadElements(input));
}
LInstruction* LChunkBuilder::DoLoadKeyedFastElement(
HLoadKeyedFastElement* instr) {
Representation r = instr->representation();
LOperand* obj = UseRegisterAtStart(instr->object());
ASSERT(instr->key()->representation().IsInteger32());
LOperand* key = UseRegisterAtStart(instr->key());
LOperand* load_result = NULL;
// Double needs an extra temp, because the result is converted from heap
// number to a double register.
if (r.IsDouble()) load_result = TempRegister();
LInstruction* result = new LLoadKeyedFastElement(obj,
key,
load_result);
if (r.IsDouble()) {
result = DefineAsRegister(result);
} else {
result = DefineSameAsFirst(result);
}
return AssignEnvironment(result);
}
LInstruction* LChunkBuilder::DoLoadKeyedGeneric(HLoadKeyedGeneric* instr) {
LOperand* object = UseFixed(instr->object(), edx);
LOperand* key = UseFixed(instr->key(), eax);
LInstruction* result =
DefineFixed(new LLoadKeyedGeneric(object, key), eax);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoStoreKeyedFastElement(
HStoreKeyedFastElement* instr) {
bool needs_write_barrier = instr->NeedsWriteBarrier();
ASSERT(instr->value()->representation().IsTagged());
ASSERT(instr->object()->representation().IsTagged());
ASSERT(instr->key()->representation().IsInteger32());
LOperand* obj = UseTempRegister(instr->object());
LOperand* val = needs_write_barrier
? UseTempRegister(instr->value())
: UseRegisterAtStart(instr->value());
LOperand* key = needs_write_barrier
? UseTempRegister(instr->key())
: UseRegisterOrConstantAtStart(instr->key());
return AssignEnvironment(new LStoreKeyedFastElement(obj, key, val));
}
LInstruction* LChunkBuilder::DoStoreKeyedGeneric(HStoreKeyedGeneric* instr) {
LOperand* obj = UseFixed(instr->object(), edx);
LOperand* key = UseFixed(instr->key(), ecx);
LOperand* val = UseFixed(instr->value(), eax);
ASSERT(instr->object()->representation().IsTagged());
ASSERT(instr->key()->representation().IsTagged());
ASSERT(instr->value()->representation().IsTagged());
return MarkAsCall(new LStoreKeyedGeneric(obj, key, val), instr);
}
LInstruction* LChunkBuilder::DoStoreNamedField(HStoreNamedField* instr) {
bool needs_write_barrier = instr->NeedsWriteBarrier();
LOperand* obj = needs_write_barrier
? UseTempRegister(instr->object())
: UseRegisterAtStart(instr->object());
LOperand* val = needs_write_barrier
? UseTempRegister(instr->value())
: UseRegister(instr->value());
// We only need a scratch register if we have a write barrier or we
// have a store into the properties array (not in-object-property).
LOperand* temp = (!instr->is_in_object() || needs_write_barrier)
? TempRegister() : NULL;
return new LStoreNamedField(obj,
instr->name(),
val,
instr->is_in_object(),
instr->offset(),
temp,
needs_write_barrier,
instr->transition());
}
LInstruction* LChunkBuilder::DoStoreNamedGeneric(HStoreNamedGeneric* instr) {
LOperand* obj = UseFixed(instr->object(), edx);
LOperand* val = UseFixed(instr->value(), eax);
LInstruction* result = new LStoreNamedGeneric(obj, instr->name(), val);
return MarkAsCall(result, instr);
}
LInstruction* LChunkBuilder::DoArrayLiteral(HArrayLiteral* instr) {
return MarkAsCall(DefineFixed(new LArrayLiteral, eax), instr);
}
LInstruction* LChunkBuilder::DoObjectLiteral(HObjectLiteral* instr) {
return MarkAsCall(DefineFixed(new LObjectLiteral, eax), instr);
}
LInstruction* LChunkBuilder::DoRegExpLiteral(HRegExpLiteral* instr) {
return MarkAsCall(DefineFixed(new LRegExpLiteral, eax), instr);
}
LInstruction* LChunkBuilder::DoFunctionLiteral(HFunctionLiteral* instr) {
return MarkAsCall(DefineFixed(new LFunctionLiteral, eax), instr);
}
LInstruction* LChunkBuilder::DoDeleteProperty(HDeleteProperty* instr) {
LInstruction* result = new LDeleteProperty(Use(instr->object()),
UseOrConstant(instr->key()));
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoOsrEntry(HOsrEntry* instr) {
allocator_->MarkAsOsrEntry();
current_block_->last_environment()->set_ast_id(instr->ast_id());
return AssignEnvironment(new LOsrEntry);
}
LInstruction* LChunkBuilder::DoParameter(HParameter* instr) {
int spill_index = chunk()->GetParameterStackSlot(instr->index());
return DefineAsSpilled(new LParameter, spill_index);
}
LInstruction* LChunkBuilder::DoUnknownOSRValue(HUnknownOSRValue* instr) {
int spill_index = chunk()->GetNextSpillIndex(false); // Not double-width.
return DefineAsSpilled(new LUnknownOSRValue, spill_index);
}
LInstruction* LChunkBuilder::DoCallStub(HCallStub* instr) {
argument_count_ -= instr->argument_count();
return MarkAsCall(DefineFixed(new LCallStub, eax), instr);
}
LInstruction* LChunkBuilder::DoArgumentsObject(HArgumentsObject* instr) {
// There are no real uses of the arguments object (we bail out in all other
// cases).
return NULL;
}
LInstruction* LChunkBuilder::DoAccessArgumentsAt(HAccessArgumentsAt* instr) {
LOperand* arguments = UseRegister(instr->arguments());
LOperand* length = UseTempRegister(instr->length());
LOperand* index = Use(instr->index());
LInstruction* result = new LAccessArgumentsAt(arguments, length, index);
return DefineAsRegister(AssignEnvironment(result));
}
LInstruction* LChunkBuilder::DoTypeof(HTypeof* instr) {
LInstruction* result = new LTypeof(UseAtStart(instr->value()));
return MarkAsCall(DefineFixed(result, eax), instr);
}
LInstruction* LChunkBuilder::DoTypeofIs(HTypeofIs* instr) {
return DefineSameAsFirst(new LTypeofIs(UseRegister(instr->value())));
}
LInstruction* LChunkBuilder::DoSimulate(HSimulate* instr) {
HEnvironment* env = current_block_->last_environment();
ASSERT(env != NULL);
env->set_ast_id(instr->ast_id());
env->Drop(instr->pop_count());
for (int i = 0; i < instr->values()->length(); ++i) {
HValue* value = instr->values()->at(i);
if (instr->HasAssignedIndexAt(i)) {
env->Bind(instr->GetAssignedIndexAt(i), value);
} else {
env->Push(value);
}
}
ASSERT(env->length() == instr->environment_length());
// If there is an instruction pending deoptimization environment create a
// lazy bailout instruction to capture the environment.
if (pending_deoptimization_ast_id_ == instr->ast_id()) {
LInstruction* result = new LLazyBailout;
result = AssignEnvironment(result);
instructions_pending_deoptimization_environment_->
set_deoptimization_environment(result->environment());
ClearInstructionPendingDeoptimizationEnvironment();
return result;
}
return NULL;
}
LInstruction* LChunkBuilder::DoStackCheck(HStackCheck* instr) {
return MarkAsCall(new LStackCheck, instr);
}
LInstruction* LChunkBuilder::DoEnterInlined(HEnterInlined* instr) {
HEnvironment* outer = current_block_->last_environment();
HConstant* undefined = graph()->GetConstantUndefined();
HEnvironment* inner = outer->CopyForInlining(instr->closure(),
instr->function(),
false,
undefined);
current_block_->UpdateEnvironment(inner);
chunk_->AddInlinedClosure(instr->closure());
return NULL;
}
LInstruction* LChunkBuilder::DoLeaveInlined(HLeaveInlined* instr) {
HEnvironment* outer = current_block_->last_environment()->outer();
current_block_->UpdateEnvironment(outer);
return NULL;
}
void LPointerMap::RecordPointer(LOperand* op) {
// Do not record arguments as pointers.
if (op->IsStackSlot() && op->index() < 0) return;
ASSERT(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
pointer_operands_.Add(op);
}
void LPointerMap::PrintTo(StringStream* stream) const {
stream->Add("{");
for (int i = 0; i < pointer_operands_.length(); ++i) {
if (i != 0) stream->Add(";");
pointer_operands_[i]->PrintTo(stream);
}
stream->Add("} @%d", position());
}
} } // namespace v8::internal