| // Copyright (c) 1994-2006 Sun Microsystems Inc. |
| // All Rights Reserved. |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // - Redistributions of source code must retain the above copyright notice, |
| // this list of conditions and the following disclaimer. |
| // |
| // - Redistribution in binary form must reproduce the above copyright |
| // notice, this list of conditions and the following disclaimer in the |
| // documentation and/or other materials provided with the distribution. |
| // |
| // - Neither the name of Sun Microsystems or the names of contributors may |
| // be used to endorse or promote products derived from this software without |
| // specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS |
| // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, |
| // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR |
| // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // The original source code covered by the above license above has been |
| // modified significantly by Google Inc. |
| // Copyright 2012 the V8 project authors. All rights reserved. |
| |
| #include "src/assembler.h" |
| |
| #include <cmath> |
| #include "src/api.h" |
| #include "src/base/cpu.h" |
| #include "src/base/lazy-instance.h" |
| #include "src/base/platform/platform.h" |
| #include "src/builtins.h" |
| #include "src/codegen.h" |
| #include "src/counters.h" |
| #include "src/cpu-profiler.h" |
| #include "src/debug.h" |
| #include "src/deoptimizer.h" |
| #include "src/execution.h" |
| #include "src/ic/ic.h" |
| #include "src/ic/stub-cache.h" |
| #include "src/isolate-inl.h" |
| #include "src/jsregexp.h" |
| #include "src/regexp-macro-assembler.h" |
| #include "src/regexp-stack.h" |
| #include "src/runtime.h" |
| #include "src/serialize.h" |
| #include "src/token.h" |
| |
| #if V8_TARGET_ARCH_IA32 |
| #include "src/ia32/assembler-ia32-inl.h" // NOLINT |
| #elif V8_TARGET_ARCH_X64 |
| #include "src/x64/assembler-x64-inl.h" // NOLINT |
| #elif V8_TARGET_ARCH_ARM64 |
| #include "src/arm64/assembler-arm64-inl.h" // NOLINT |
| #elif V8_TARGET_ARCH_ARM |
| #include "src/arm/assembler-arm-inl.h" // NOLINT |
| #elif V8_TARGET_ARCH_MIPS |
| #include "src/mips/assembler-mips-inl.h" // NOLINT |
| #elif V8_TARGET_ARCH_MIPS64 |
| #include "src/mips64/assembler-mips64-inl.h" // NOLINT |
| #elif V8_TARGET_ARCH_X87 |
| #include "src/x87/assembler-x87-inl.h" // NOLINT |
| #else |
| #error "Unknown architecture." |
| #endif |
| |
| // Include native regexp-macro-assembler. |
| #ifndef V8_INTERPRETED_REGEXP |
| #if V8_TARGET_ARCH_IA32 |
| #include "src/ia32/regexp-macro-assembler-ia32.h" // NOLINT |
| #elif V8_TARGET_ARCH_X64 |
| #include "src/x64/regexp-macro-assembler-x64.h" // NOLINT |
| #elif V8_TARGET_ARCH_ARM64 |
| #include "src/arm64/regexp-macro-assembler-arm64.h" // NOLINT |
| #elif V8_TARGET_ARCH_ARM |
| #include "src/arm/regexp-macro-assembler-arm.h" // NOLINT |
| #elif V8_TARGET_ARCH_MIPS |
| #include "src/mips/regexp-macro-assembler-mips.h" // NOLINT |
| #elif V8_TARGET_ARCH_MIPS64 |
| #include "src/mips64/regexp-macro-assembler-mips64.h" // NOLINT |
| #elif V8_TARGET_ARCH_X87 |
| #include "src/x87/regexp-macro-assembler-x87.h" // NOLINT |
| #else // Unknown architecture. |
| #error "Unknown architecture." |
| #endif // Target architecture. |
| #endif // V8_INTERPRETED_REGEXP |
| |
| namespace v8 { |
| namespace internal { |
| |
| // ----------------------------------------------------------------------------- |
| // Common double constants. |
| |
| struct DoubleConstant BASE_EMBEDDED { |
| double min_int; |
| double one_half; |
| double minus_one_half; |
| double negative_infinity; |
| double canonical_non_hole_nan; |
| double the_hole_nan; |
| double uint32_bias; |
| }; |
| |
| static DoubleConstant double_constants; |
| |
| const char* const RelocInfo::kFillerCommentString = "DEOPTIMIZATION PADDING"; |
| |
| static bool math_exp_data_initialized = false; |
| static base::Mutex* math_exp_data_mutex = NULL; |
| static double* math_exp_constants_array = NULL; |
| static double* math_exp_log_table_array = NULL; |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of AssemblerBase |
| |
| AssemblerBase::AssemblerBase(Isolate* isolate, void* buffer, int buffer_size) |
| : isolate_(isolate), |
| jit_cookie_(0), |
| enabled_cpu_features_(0), |
| emit_debug_code_(FLAG_debug_code), |
| predictable_code_size_(false), |
| // We may use the assembler without an isolate. |
| serializer_enabled_(isolate && isolate->serializer_enabled()) { |
| if (FLAG_mask_constants_with_cookie && isolate != NULL) { |
| jit_cookie_ = isolate->random_number_generator()->NextInt(); |
| } |
| own_buffer_ = buffer == NULL; |
| if (buffer_size == 0) buffer_size = kMinimalBufferSize; |
| DCHECK(buffer_size > 0); |
| if (own_buffer_) buffer = NewArray<byte>(buffer_size); |
| buffer_ = static_cast<byte*>(buffer); |
| buffer_size_ = buffer_size; |
| |
| pc_ = buffer_; |
| } |
| |
| |
| AssemblerBase::~AssemblerBase() { |
| if (own_buffer_) DeleteArray(buffer_); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of PredictableCodeSizeScope |
| |
| PredictableCodeSizeScope::PredictableCodeSizeScope(AssemblerBase* assembler, |
| int expected_size) |
| : assembler_(assembler), |
| expected_size_(expected_size), |
| start_offset_(assembler->pc_offset()), |
| old_value_(assembler->predictable_code_size()) { |
| assembler_->set_predictable_code_size(true); |
| } |
| |
| |
| PredictableCodeSizeScope::~PredictableCodeSizeScope() { |
| // TODO(svenpanne) Remove the 'if' when everything works. |
| if (expected_size_ >= 0) { |
| CHECK_EQ(expected_size_, assembler_->pc_offset() - start_offset_); |
| } |
| assembler_->set_predictable_code_size(old_value_); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of CpuFeatureScope |
| |
| #ifdef DEBUG |
| CpuFeatureScope::CpuFeatureScope(AssemblerBase* assembler, CpuFeature f) |
| : assembler_(assembler) { |
| DCHECK(CpuFeatures::IsSupported(f)); |
| old_enabled_ = assembler_->enabled_cpu_features(); |
| uint64_t mask = static_cast<uint64_t>(1) << f; |
| // TODO(svenpanne) This special case below doesn't belong here! |
| #if V8_TARGET_ARCH_ARM |
| // ARMv7 is implied by VFP3. |
| if (f == VFP3) { |
| mask |= static_cast<uint64_t>(1) << ARMv7; |
| } |
| #endif |
| assembler_->set_enabled_cpu_features(old_enabled_ | mask); |
| } |
| |
| |
| CpuFeatureScope::~CpuFeatureScope() { |
| assembler_->set_enabled_cpu_features(old_enabled_); |
| } |
| #endif |
| |
| |
| bool CpuFeatures::initialized_ = false; |
| unsigned CpuFeatures::supported_ = 0; |
| unsigned CpuFeatures::cache_line_size_ = 0; |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of Label |
| |
| int Label::pos() const { |
| if (pos_ < 0) return -pos_ - 1; |
| if (pos_ > 0) return pos_ - 1; |
| UNREACHABLE(); |
| return 0; |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfoWriter and RelocIterator |
| // |
| // Relocation information is written backwards in memory, from high addresses |
| // towards low addresses, byte by byte. Therefore, in the encodings listed |
| // below, the first byte listed it at the highest address, and successive |
| // bytes in the record are at progressively lower addresses. |
| // |
| // Encoding |
| // |
| // The most common modes are given single-byte encodings. Also, it is |
| // easy to identify the type of reloc info and skip unwanted modes in |
| // an iteration. |
| // |
| // The encoding relies on the fact that there are fewer than 14 |
| // different relocation modes using standard non-compact encoding. |
| // |
| // The first byte of a relocation record has a tag in its low 2 bits: |
| // Here are the record schemes, depending on the low tag and optional higher |
| // tags. |
| // |
| // Low tag: |
| // 00: embedded_object: [6-bit pc delta] 00 |
| // |
| // 01: code_target: [6-bit pc delta] 01 |
| // |
| // 10: short_data_record: [6-bit pc delta] 10 followed by |
| // [6-bit data delta] [2-bit data type tag] |
| // |
| // 11: long_record [2-bit high tag][4 bit middle_tag] 11 |
| // followed by variable data depending on type. |
| // |
| // 2-bit data type tags, used in short_data_record and data_jump long_record: |
| // code_target_with_id: 00 |
| // position: 01 |
| // statement_position: 10 |
| // comment: 11 (not used in short_data_record) |
| // |
| // Long record format: |
| // 4-bit middle_tag: |
| // 0000 - 1100 : Short record for RelocInfo::Mode middle_tag + 2 |
| // (The middle_tag encodes rmode - RelocInfo::LAST_COMPACT_ENUM, |
| // and is between 0000 and 1100) |
| // The format is: |
| // 00 [4 bit middle_tag] 11 followed by |
| // 00 [6 bit pc delta] |
| // |
| // 1101: constant or veneer pool. Used only on ARM and ARM64 for now. |
| // The format is: [2-bit sub-type] 1101 11 |
| // signed int (size of the pool). |
| // The 2-bit sub-types are: |
| // 00: constant pool |
| // 01: veneer pool |
| // 1110: long_data_record |
| // The format is: [2-bit data_type_tag] 1110 11 |
| // signed intptr_t, lowest byte written first |
| // (except data_type code_target_with_id, which |
| // is followed by a signed int, not intptr_t.) |
| // |
| // 1111: long_pc_jump |
| // The format is: |
| // pc-jump: 00 1111 11, |
| // 00 [6 bits pc delta] |
| // or |
| // pc-jump (variable length): |
| // 01 1111 11, |
| // [7 bits data] 0 |
| // ... |
| // [7 bits data] 1 |
| // (Bits 6..31 of pc delta, with leading zeroes |
| // dropped, and last non-zero chunk tagged with 1.) |
| |
| |
| #ifdef DEBUG |
| const int kMaxStandardNonCompactModes = 14; |
| #endif |
| |
| const int kTagBits = 2; |
| const int kTagMask = (1 << kTagBits) - 1; |
| const int kExtraTagBits = 4; |
| const int kLocatableTypeTagBits = 2; |
| const int kSmallDataBits = kBitsPerByte - kLocatableTypeTagBits; |
| |
| const int kEmbeddedObjectTag = 0; |
| const int kCodeTargetTag = 1; |
| const int kLocatableTag = 2; |
| const int kDefaultTag = 3; |
| |
| const int kPCJumpExtraTag = (1 << kExtraTagBits) - 1; |
| |
| const int kSmallPCDeltaBits = kBitsPerByte - kTagBits; |
| const int kSmallPCDeltaMask = (1 << kSmallPCDeltaBits) - 1; |
| const int RelocInfo::kMaxSmallPCDelta = kSmallPCDeltaMask; |
| |
| const int kVariableLengthPCJumpTopTag = 1; |
| const int kChunkBits = 7; |
| const int kChunkMask = (1 << kChunkBits) - 1; |
| const int kLastChunkTagBits = 1; |
| const int kLastChunkTagMask = 1; |
| const int kLastChunkTag = 1; |
| |
| |
| const int kDataJumpExtraTag = kPCJumpExtraTag - 1; |
| |
| const int kCodeWithIdTag = 0; |
| const int kNonstatementPositionTag = 1; |
| const int kStatementPositionTag = 2; |
| const int kCommentTag = 3; |
| |
| const int kPoolExtraTag = kPCJumpExtraTag - 2; |
| const int kConstPoolTag = 0; |
| const int kVeneerPoolTag = 1; |
| |
| |
| uint32_t RelocInfoWriter::WriteVariableLengthPCJump(uint32_t pc_delta) { |
| // Return if the pc_delta can fit in kSmallPCDeltaBits bits. |
| // Otherwise write a variable length PC jump for the bits that do |
| // not fit in the kSmallPCDeltaBits bits. |
| if (is_uintn(pc_delta, kSmallPCDeltaBits)) return pc_delta; |
| WriteExtraTag(kPCJumpExtraTag, kVariableLengthPCJumpTopTag); |
| uint32_t pc_jump = pc_delta >> kSmallPCDeltaBits; |
| DCHECK(pc_jump > 0); |
| // Write kChunkBits size chunks of the pc_jump. |
| for (; pc_jump > 0; pc_jump = pc_jump >> kChunkBits) { |
| byte b = pc_jump & kChunkMask; |
| *--pos_ = b << kLastChunkTagBits; |
| } |
| // Tag the last chunk so it can be identified. |
| *pos_ = *pos_ | kLastChunkTag; |
| // Return the remaining kSmallPCDeltaBits of the pc_delta. |
| return pc_delta & kSmallPCDeltaMask; |
| } |
| |
| |
| void RelocInfoWriter::WriteTaggedPC(uint32_t pc_delta, int tag) { |
| // Write a byte of tagged pc-delta, possibly preceded by var. length pc-jump. |
| pc_delta = WriteVariableLengthPCJump(pc_delta); |
| *--pos_ = pc_delta << kTagBits | tag; |
| } |
| |
| |
| void RelocInfoWriter::WriteTaggedData(intptr_t data_delta, int tag) { |
| *--pos_ = static_cast<byte>(data_delta << kLocatableTypeTagBits | tag); |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTag(int extra_tag, int top_tag) { |
| *--pos_ = static_cast<int>(top_tag << (kTagBits + kExtraTagBits) | |
| extra_tag << kTagBits | |
| kDefaultTag); |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTaggedPC(uint32_t pc_delta, int extra_tag) { |
| // Write two-byte tagged pc-delta, possibly preceded by var. length pc-jump. |
| pc_delta = WriteVariableLengthPCJump(pc_delta); |
| WriteExtraTag(extra_tag, 0); |
| *--pos_ = pc_delta; |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTaggedIntData(int data_delta, int top_tag) { |
| WriteExtraTag(kDataJumpExtraTag, top_tag); |
| for (int i = 0; i < kIntSize; i++) { |
| *--pos_ = static_cast<byte>(data_delta); |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| data_delta = data_delta >> kBitsPerByte; |
| } |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTaggedPoolData(int data, int pool_type) { |
| WriteExtraTag(kPoolExtraTag, pool_type); |
| for (int i = 0; i < kIntSize; i++) { |
| *--pos_ = static_cast<byte>(data); |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| data = data >> kBitsPerByte; |
| } |
| } |
| |
| |
| void RelocInfoWriter::WriteExtraTaggedData(intptr_t data_delta, int top_tag) { |
| WriteExtraTag(kDataJumpExtraTag, top_tag); |
| for (int i = 0; i < kIntptrSize; i++) { |
| *--pos_ = static_cast<byte>(data_delta); |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| data_delta = data_delta >> kBitsPerByte; |
| } |
| } |
| |
| |
| void RelocInfoWriter::Write(const RelocInfo* rinfo) { |
| #ifdef DEBUG |
| byte* begin_pos = pos_; |
| #endif |
| DCHECK(rinfo->rmode() < RelocInfo::NUMBER_OF_MODES); |
| DCHECK(rinfo->pc() - last_pc_ >= 0); |
| DCHECK(RelocInfo::LAST_STANDARD_NONCOMPACT_ENUM - RelocInfo::LAST_COMPACT_ENUM |
| <= kMaxStandardNonCompactModes); |
| // Use unsigned delta-encoding for pc. |
| uint32_t pc_delta = static_cast<uint32_t>(rinfo->pc() - last_pc_); |
| RelocInfo::Mode rmode = rinfo->rmode(); |
| |
| // The two most common modes are given small tags, and usually fit in a byte. |
| if (rmode == RelocInfo::EMBEDDED_OBJECT) { |
| WriteTaggedPC(pc_delta, kEmbeddedObjectTag); |
| } else if (rmode == RelocInfo::CODE_TARGET) { |
| WriteTaggedPC(pc_delta, kCodeTargetTag); |
| DCHECK(begin_pos - pos_ <= RelocInfo::kMaxCallSize); |
| } else if (rmode == RelocInfo::CODE_TARGET_WITH_ID) { |
| // Use signed delta-encoding for id. |
| DCHECK(static_cast<int>(rinfo->data()) == rinfo->data()); |
| int id_delta = static_cast<int>(rinfo->data()) - last_id_; |
| // Check if delta is small enough to fit in a tagged byte. |
| if (is_intn(id_delta, kSmallDataBits)) { |
| WriteTaggedPC(pc_delta, kLocatableTag); |
| WriteTaggedData(id_delta, kCodeWithIdTag); |
| } else { |
| // Otherwise, use costly encoding. |
| WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); |
| WriteExtraTaggedIntData(id_delta, kCodeWithIdTag); |
| } |
| last_id_ = static_cast<int>(rinfo->data()); |
| } else if (RelocInfo::IsPosition(rmode)) { |
| // Use signed delta-encoding for position. |
| DCHECK(static_cast<int>(rinfo->data()) == rinfo->data()); |
| int pos_delta = static_cast<int>(rinfo->data()) - last_position_; |
| int pos_type_tag = (rmode == RelocInfo::POSITION) ? kNonstatementPositionTag |
| : kStatementPositionTag; |
| // Check if delta is small enough to fit in a tagged byte. |
| if (is_intn(pos_delta, kSmallDataBits)) { |
| WriteTaggedPC(pc_delta, kLocatableTag); |
| WriteTaggedData(pos_delta, pos_type_tag); |
| } else { |
| // Otherwise, use costly encoding. |
| WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); |
| WriteExtraTaggedIntData(pos_delta, pos_type_tag); |
| } |
| last_position_ = static_cast<int>(rinfo->data()); |
| } else if (RelocInfo::IsComment(rmode)) { |
| // Comments are normally not generated, so we use the costly encoding. |
| WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); |
| WriteExtraTaggedData(rinfo->data(), kCommentTag); |
| DCHECK(begin_pos - pos_ >= RelocInfo::kMinRelocCommentSize); |
| } else if (RelocInfo::IsConstPool(rmode) || RelocInfo::IsVeneerPool(rmode)) { |
| WriteExtraTaggedPC(pc_delta, kPCJumpExtraTag); |
| WriteExtraTaggedPoolData(static_cast<int>(rinfo->data()), |
| RelocInfo::IsConstPool(rmode) ? kConstPoolTag |
| : kVeneerPoolTag); |
| } else { |
| DCHECK(rmode > RelocInfo::LAST_COMPACT_ENUM); |
| int saved_mode = rmode - RelocInfo::LAST_COMPACT_ENUM; |
| // For all other modes we simply use the mode as the extra tag. |
| // None of these modes need a data component. |
| DCHECK(saved_mode < kPCJumpExtraTag && saved_mode < kDataJumpExtraTag); |
| WriteExtraTaggedPC(pc_delta, saved_mode); |
| } |
| last_pc_ = rinfo->pc(); |
| #ifdef DEBUG |
| DCHECK(begin_pos - pos_ <= kMaxSize); |
| #endif |
| } |
| |
| |
| inline int RelocIterator::AdvanceGetTag() { |
| return *--pos_ & kTagMask; |
| } |
| |
| |
| inline int RelocIterator::GetExtraTag() { |
| return (*pos_ >> kTagBits) & ((1 << kExtraTagBits) - 1); |
| } |
| |
| |
| inline int RelocIterator::GetTopTag() { |
| return *pos_ >> (kTagBits + kExtraTagBits); |
| } |
| |
| |
| inline void RelocIterator::ReadTaggedPC() { |
| rinfo_.pc_ += *pos_ >> kTagBits; |
| } |
| |
| |
| inline void RelocIterator::AdvanceReadPC() { |
| rinfo_.pc_ += *--pos_; |
| } |
| |
| |
| void RelocIterator::AdvanceReadId() { |
| int x = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| x |= static_cast<int>(*--pos_) << i * kBitsPerByte; |
| } |
| last_id_ += x; |
| rinfo_.data_ = last_id_; |
| } |
| |
| |
| void RelocIterator::AdvanceReadPoolData() { |
| int x = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| x |= static_cast<int>(*--pos_) << i * kBitsPerByte; |
| } |
| rinfo_.data_ = x; |
| } |
| |
| |
| void RelocIterator::AdvanceReadPosition() { |
| int x = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| x |= static_cast<int>(*--pos_) << i * kBitsPerByte; |
| } |
| last_position_ += x; |
| rinfo_.data_ = last_position_; |
| } |
| |
| |
| void RelocIterator::AdvanceReadData() { |
| intptr_t x = 0; |
| for (int i = 0; i < kIntptrSize; i++) { |
| x |= static_cast<intptr_t>(*--pos_) << i * kBitsPerByte; |
| } |
| rinfo_.data_ = x; |
| } |
| |
| |
| void RelocIterator::AdvanceReadVariableLengthPCJump() { |
| // Read the 32-kSmallPCDeltaBits most significant bits of the |
| // pc jump in kChunkBits bit chunks and shift them into place. |
| // Stop when the last chunk is encountered. |
| uint32_t pc_jump = 0; |
| for (int i = 0; i < kIntSize; i++) { |
| byte pc_jump_part = *--pos_; |
| pc_jump |= (pc_jump_part >> kLastChunkTagBits) << i * kChunkBits; |
| if ((pc_jump_part & kLastChunkTagMask) == 1) break; |
| } |
| // The least significant kSmallPCDeltaBits bits will be added |
| // later. |
| rinfo_.pc_ += pc_jump << kSmallPCDeltaBits; |
| } |
| |
| |
| inline int RelocIterator::GetLocatableTypeTag() { |
| return *pos_ & ((1 << kLocatableTypeTagBits) - 1); |
| } |
| |
| |
| inline void RelocIterator::ReadTaggedId() { |
| int8_t signed_b = *pos_; |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| last_id_ += signed_b >> kLocatableTypeTagBits; |
| rinfo_.data_ = last_id_; |
| } |
| |
| |
| inline void RelocIterator::ReadTaggedPosition() { |
| int8_t signed_b = *pos_; |
| // Signed right shift is arithmetic shift. Tested in test-utils.cc. |
| last_position_ += signed_b >> kLocatableTypeTagBits; |
| rinfo_.data_ = last_position_; |
| } |
| |
| |
| static inline RelocInfo::Mode GetPositionModeFromTag(int tag) { |
| DCHECK(tag == kNonstatementPositionTag || |
| tag == kStatementPositionTag); |
| return (tag == kNonstatementPositionTag) ? |
| RelocInfo::POSITION : |
| RelocInfo::STATEMENT_POSITION; |
| } |
| |
| |
| void RelocIterator::next() { |
| DCHECK(!done()); |
| // Basically, do the opposite of RelocInfoWriter::Write. |
| // Reading of data is as far as possible avoided for unwanted modes, |
| // but we must always update the pc. |
| // |
| // We exit this loop by returning when we find a mode we want. |
| while (pos_ > end_) { |
| int tag = AdvanceGetTag(); |
| if (tag == kEmbeddedObjectTag) { |
| ReadTaggedPC(); |
| if (SetMode(RelocInfo::EMBEDDED_OBJECT)) return; |
| } else if (tag == kCodeTargetTag) { |
| ReadTaggedPC(); |
| if (SetMode(RelocInfo::CODE_TARGET)) return; |
| } else if (tag == kLocatableTag) { |
| ReadTaggedPC(); |
| Advance(); |
| int locatable_tag = GetLocatableTypeTag(); |
| if (locatable_tag == kCodeWithIdTag) { |
| if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { |
| ReadTaggedId(); |
| return; |
| } |
| } else { |
| // Compact encoding is never used for comments, |
| // so it must be a position. |
| DCHECK(locatable_tag == kNonstatementPositionTag || |
| locatable_tag == kStatementPositionTag); |
| if (mode_mask_ & RelocInfo::kPositionMask) { |
| ReadTaggedPosition(); |
| if (SetMode(GetPositionModeFromTag(locatable_tag))) return; |
| } |
| } |
| } else { |
| DCHECK(tag == kDefaultTag); |
| int extra_tag = GetExtraTag(); |
| if (extra_tag == kPCJumpExtraTag) { |
| if (GetTopTag() == kVariableLengthPCJumpTopTag) { |
| AdvanceReadVariableLengthPCJump(); |
| } else { |
| AdvanceReadPC(); |
| } |
| } else if (extra_tag == kDataJumpExtraTag) { |
| int locatable_tag = GetTopTag(); |
| if (locatable_tag == kCodeWithIdTag) { |
| if (SetMode(RelocInfo::CODE_TARGET_WITH_ID)) { |
| AdvanceReadId(); |
| return; |
| } |
| Advance(kIntSize); |
| } else if (locatable_tag != kCommentTag) { |
| DCHECK(locatable_tag == kNonstatementPositionTag || |
| locatable_tag == kStatementPositionTag); |
| if (mode_mask_ & RelocInfo::kPositionMask) { |
| AdvanceReadPosition(); |
| if (SetMode(GetPositionModeFromTag(locatable_tag))) return; |
| } else { |
| Advance(kIntSize); |
| } |
| } else { |
| DCHECK(locatable_tag == kCommentTag); |
| if (SetMode(RelocInfo::COMMENT)) { |
| AdvanceReadData(); |
| return; |
| } |
| Advance(kIntptrSize); |
| } |
| } else if (extra_tag == kPoolExtraTag) { |
| int pool_type = GetTopTag(); |
| DCHECK(pool_type == kConstPoolTag || pool_type == kVeneerPoolTag); |
| RelocInfo::Mode rmode = (pool_type == kConstPoolTag) ? |
| RelocInfo::CONST_POOL : RelocInfo::VENEER_POOL; |
| if (SetMode(rmode)) { |
| AdvanceReadPoolData(); |
| return; |
| } |
| Advance(kIntSize); |
| } else { |
| AdvanceReadPC(); |
| int rmode = extra_tag + RelocInfo::LAST_COMPACT_ENUM; |
| if (SetMode(static_cast<RelocInfo::Mode>(rmode))) return; |
| } |
| } |
| } |
| if (code_age_sequence_ != NULL) { |
| byte* old_code_age_sequence = code_age_sequence_; |
| code_age_sequence_ = NULL; |
| if (SetMode(RelocInfo::CODE_AGE_SEQUENCE)) { |
| rinfo_.data_ = 0; |
| rinfo_.pc_ = old_code_age_sequence; |
| return; |
| } |
| } |
| done_ = true; |
| } |
| |
| |
| RelocIterator::RelocIterator(Code* code, int mode_mask) { |
| rinfo_.host_ = code; |
| rinfo_.pc_ = code->instruction_start(); |
| rinfo_.data_ = 0; |
| // Relocation info is read backwards. |
| pos_ = code->relocation_start() + code->relocation_size(); |
| end_ = code->relocation_start(); |
| done_ = false; |
| mode_mask_ = mode_mask; |
| last_id_ = 0; |
| last_position_ = 0; |
| byte* sequence = code->FindCodeAgeSequence(); |
| // We get the isolate from the map, because at serialization time |
| // the code pointer has been cloned and isn't really in heap space. |
| Isolate* isolate = code->map()->GetIsolate(); |
| if (sequence != NULL && !Code::IsYoungSequence(isolate, sequence)) { |
| code_age_sequence_ = sequence; |
| } else { |
| code_age_sequence_ = NULL; |
| } |
| if (mode_mask_ == 0) pos_ = end_; |
| next(); |
| } |
| |
| |
| RelocIterator::RelocIterator(const CodeDesc& desc, int mode_mask) { |
| rinfo_.pc_ = desc.buffer; |
| rinfo_.data_ = 0; |
| // Relocation info is read backwards. |
| pos_ = desc.buffer + desc.buffer_size; |
| end_ = pos_ - desc.reloc_size; |
| done_ = false; |
| mode_mask_ = mode_mask; |
| last_id_ = 0; |
| last_position_ = 0; |
| code_age_sequence_ = NULL; |
| if (mode_mask_ == 0) pos_ = end_; |
| next(); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of RelocInfo |
| |
| |
| #ifdef DEBUG |
| bool RelocInfo::RequiresRelocation(const CodeDesc& desc) { |
| // Ensure there are no code targets or embedded objects present in the |
| // deoptimization entries, they would require relocation after code |
| // generation. |
| int mode_mask = RelocInfo::kCodeTargetMask | |
| RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) | |
| RelocInfo::ModeMask(RelocInfo::CELL) | |
| RelocInfo::kApplyMask; |
| RelocIterator it(desc, mode_mask); |
| return !it.done(); |
| } |
| #endif |
| |
| |
| #ifdef ENABLE_DISASSEMBLER |
| const char* RelocInfo::RelocModeName(RelocInfo::Mode rmode) { |
| switch (rmode) { |
| case RelocInfo::NONE32: |
| return "no reloc 32"; |
| case RelocInfo::NONE64: |
| return "no reloc 64"; |
| case RelocInfo::EMBEDDED_OBJECT: |
| return "embedded object"; |
| case RelocInfo::CONSTRUCT_CALL: |
| return "code target (js construct call)"; |
| case RelocInfo::DEBUG_BREAK: |
| return "debug break"; |
| case RelocInfo::CODE_TARGET: |
| return "code target"; |
| case RelocInfo::CODE_TARGET_WITH_ID: |
| return "code target with id"; |
| case RelocInfo::CELL: |
| return "property cell"; |
| case RelocInfo::RUNTIME_ENTRY: |
| return "runtime entry"; |
| case RelocInfo::JS_RETURN: |
| return "js return"; |
| case RelocInfo::COMMENT: |
| return "comment"; |
| case RelocInfo::POSITION: |
| return "position"; |
| case RelocInfo::STATEMENT_POSITION: |
| return "statement position"; |
| case RelocInfo::EXTERNAL_REFERENCE: |
| return "external reference"; |
| case RelocInfo::INTERNAL_REFERENCE: |
| return "internal reference"; |
| case RelocInfo::CONST_POOL: |
| return "constant pool"; |
| case RelocInfo::VENEER_POOL: |
| return "veneer pool"; |
| case RelocInfo::DEBUG_BREAK_SLOT: |
| return "debug break slot"; |
| case RelocInfo::CODE_AGE_SEQUENCE: |
| return "code_age_sequence"; |
| case RelocInfo::NUMBER_OF_MODES: |
| UNREACHABLE(); |
| return "number_of_modes"; |
| } |
| return "unknown relocation type"; |
| } |
| |
| |
| void RelocInfo::Print(Isolate* isolate, OStream& os) { // NOLINT |
| os << pc_ << " " << RelocModeName(rmode_); |
| if (IsComment(rmode_)) { |
| os << " (" << reinterpret_cast<char*>(data_) << ")"; |
| } else if (rmode_ == EMBEDDED_OBJECT) { |
| os << " (" << Brief(target_object()) << ")"; |
| } else if (rmode_ == EXTERNAL_REFERENCE) { |
| ExternalReferenceEncoder ref_encoder(isolate); |
| os << " (" << ref_encoder.NameOfAddress(target_reference()) << ") (" |
| << target_reference() << ")"; |
| } else if (IsCodeTarget(rmode_)) { |
| Code* code = Code::GetCodeFromTargetAddress(target_address()); |
| os << " (" << Code::Kind2String(code->kind()) << ") (" << target_address() |
| << ")"; |
| if (rmode_ == CODE_TARGET_WITH_ID) { |
| os << " (id=" << static_cast<int>(data_) << ")"; |
| } |
| } else if (IsPosition(rmode_)) { |
| os << " (" << data() << ")"; |
| } else if (IsRuntimeEntry(rmode_) && |
| isolate->deoptimizer_data() != NULL) { |
| // Depotimization bailouts are stored as runtime entries. |
| int id = Deoptimizer::GetDeoptimizationId( |
| isolate, target_address(), Deoptimizer::EAGER); |
| if (id != Deoptimizer::kNotDeoptimizationEntry) { |
| os << " (deoptimization bailout " << id << ")"; |
| } |
| } |
| |
| os << "\n"; |
| } |
| #endif // ENABLE_DISASSEMBLER |
| |
| |
| #ifdef VERIFY_HEAP |
| void RelocInfo::Verify(Isolate* isolate) { |
| switch (rmode_) { |
| case EMBEDDED_OBJECT: |
| Object::VerifyPointer(target_object()); |
| break; |
| case CELL: |
| Object::VerifyPointer(target_cell()); |
| break; |
| case DEBUG_BREAK: |
| case CONSTRUCT_CALL: |
| case CODE_TARGET_WITH_ID: |
| case CODE_TARGET: { |
| // convert inline target address to code object |
| Address addr = target_address(); |
| CHECK(addr != NULL); |
| // Check that we can find the right code object. |
| Code* code = Code::GetCodeFromTargetAddress(addr); |
| Object* found = isolate->FindCodeObject(addr); |
| CHECK(found->IsCode()); |
| CHECK(code->address() == HeapObject::cast(found)->address()); |
| break; |
| } |
| case RUNTIME_ENTRY: |
| case JS_RETURN: |
| case COMMENT: |
| case POSITION: |
| case STATEMENT_POSITION: |
| case EXTERNAL_REFERENCE: |
| case INTERNAL_REFERENCE: |
| case CONST_POOL: |
| case VENEER_POOL: |
| case DEBUG_BREAK_SLOT: |
| case NONE32: |
| case NONE64: |
| break; |
| case NUMBER_OF_MODES: |
| UNREACHABLE(); |
| break; |
| case CODE_AGE_SEQUENCE: |
| DCHECK(Code::IsYoungSequence(isolate, pc_) || code_age_stub()->IsCode()); |
| break; |
| } |
| } |
| #endif // VERIFY_HEAP |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Implementation of ExternalReference |
| |
| void ExternalReference::SetUp() { |
| double_constants.min_int = kMinInt; |
| double_constants.one_half = 0.5; |
| double_constants.minus_one_half = -0.5; |
| double_constants.canonical_non_hole_nan = base::OS::nan_value(); |
| double_constants.the_hole_nan = bit_cast<double>(kHoleNanInt64); |
| double_constants.negative_infinity = -V8_INFINITY; |
| double_constants.uint32_bias = |
| static_cast<double>(static_cast<uint32_t>(0xFFFFFFFF)) + 1; |
| |
| math_exp_data_mutex = new base::Mutex(); |
| } |
| |
| |
| void ExternalReference::InitializeMathExpData() { |
| // Early return? |
| if (math_exp_data_initialized) return; |
| |
| base::LockGuard<base::Mutex> lock_guard(math_exp_data_mutex); |
| if (!math_exp_data_initialized) { |
| // If this is changed, generated code must be adapted too. |
| const int kTableSizeBits = 11; |
| const int kTableSize = 1 << kTableSizeBits; |
| const double kTableSizeDouble = static_cast<double>(kTableSize); |
| |
| math_exp_constants_array = new double[9]; |
| // Input values smaller than this always return 0. |
| math_exp_constants_array[0] = -708.39641853226408; |
| // Input values larger than this always return +Infinity. |
| math_exp_constants_array[1] = 709.78271289338397; |
| math_exp_constants_array[2] = V8_INFINITY; |
| // The rest is black magic. Do not attempt to understand it. It is |
| // loosely based on the "expd" function published at: |
| // http://herumi.blogspot.com/2011/08/fast-double-precision-exponential.html |
| const double constant3 = (1 << kTableSizeBits) / std::log(2.0); |
| math_exp_constants_array[3] = constant3; |
| math_exp_constants_array[4] = |
| static_cast<double>(static_cast<int64_t>(3) << 51); |
| math_exp_constants_array[5] = 1 / constant3; |
| math_exp_constants_array[6] = 3.0000000027955394; |
| math_exp_constants_array[7] = 0.16666666685227835; |
| math_exp_constants_array[8] = 1; |
| |
| math_exp_log_table_array = new double[kTableSize]; |
| for (int i = 0; i < kTableSize; i++) { |
| double value = std::pow(2, i / kTableSizeDouble); |
| uint64_t bits = bit_cast<uint64_t, double>(value); |
| bits &= (static_cast<uint64_t>(1) << 52) - 1; |
| double mantissa = bit_cast<double, uint64_t>(bits); |
| math_exp_log_table_array[i] = mantissa; |
| } |
| |
| math_exp_data_initialized = true; |
| } |
| } |
| |
| |
| void ExternalReference::TearDownMathExpData() { |
| delete[] math_exp_constants_array; |
| math_exp_constants_array = NULL; |
| delete[] math_exp_log_table_array; |
| math_exp_log_table_array = NULL; |
| delete math_exp_data_mutex; |
| math_exp_data_mutex = NULL; |
| } |
| |
| |
| ExternalReference::ExternalReference(Builtins::CFunctionId id, Isolate* isolate) |
| : address_(Redirect(isolate, Builtins::c_function_address(id))) {} |
| |
| |
| ExternalReference::ExternalReference( |
| ApiFunction* fun, |
| Type type = ExternalReference::BUILTIN_CALL, |
| Isolate* isolate = NULL) |
| : address_(Redirect(isolate, fun->address(), type)) {} |
| |
| |
| ExternalReference::ExternalReference(Builtins::Name name, Isolate* isolate) |
| : address_(isolate->builtins()->builtin_address(name)) {} |
| |
| |
| ExternalReference::ExternalReference(Runtime::FunctionId id, |
| Isolate* isolate) |
| : address_(Redirect(isolate, Runtime::FunctionForId(id)->entry)) {} |
| |
| |
| ExternalReference::ExternalReference(const Runtime::Function* f, |
| Isolate* isolate) |
| : address_(Redirect(isolate, f->entry)) {} |
| |
| |
| ExternalReference ExternalReference::isolate_address(Isolate* isolate) { |
| return ExternalReference(isolate); |
| } |
| |
| |
| ExternalReference::ExternalReference(const IC_Utility& ic_utility, |
| Isolate* isolate) |
| : address_(Redirect(isolate, ic_utility.address())) {} |
| |
| |
| ExternalReference::ExternalReference(StatsCounter* counter) |
| : address_(reinterpret_cast<Address>(counter->GetInternalPointer())) {} |
| |
| |
| ExternalReference::ExternalReference(Isolate::AddressId id, Isolate* isolate) |
| : address_(isolate->get_address_from_id(id)) {} |
| |
| |
| ExternalReference::ExternalReference(const SCTableReference& table_ref) |
| : address_(table_ref.address()) {} |
| |
| |
| ExternalReference ExternalReference:: |
| incremental_marking_record_write_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(IncrementalMarking::RecordWriteFromCode))); |
| } |
| |
| |
| ExternalReference ExternalReference:: |
| store_buffer_overflow_function(Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(StoreBuffer::StoreBufferOverflow))); |
| } |
| |
| |
| ExternalReference ExternalReference::flush_icache_function(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(CpuFeatures::FlushICache))); |
| } |
| |
| |
| ExternalReference ExternalReference::delete_handle_scope_extensions( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(HandleScope::DeleteExtensions))); |
| } |
| |
| |
| ExternalReference ExternalReference::get_date_field_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(JSDate::GetField))); |
| } |
| |
| |
| ExternalReference ExternalReference::get_make_code_young_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(Code::MakeCodeAgeSequenceYoung))); |
| } |
| |
| |
| ExternalReference ExternalReference::get_mark_code_as_executed_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, FUNCTION_ADDR(Code::MarkCodeAsExecuted))); |
| } |
| |
| |
| ExternalReference ExternalReference::date_cache_stamp(Isolate* isolate) { |
| return ExternalReference(isolate->date_cache()->stamp_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::stress_deopt_count(Isolate* isolate) { |
| return ExternalReference(isolate->stress_deopt_count_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_deoptimizer_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Deoptimizer::New))); |
| } |
| |
| |
| ExternalReference ExternalReference::compute_output_frames_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Deoptimizer::ComputeOutputFrames))); |
| } |
| |
| |
| ExternalReference ExternalReference::log_enter_external_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Logger::EnterExternal))); |
| } |
| |
| |
| ExternalReference ExternalReference::log_leave_external_function( |
| Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(Logger::LeaveExternal))); |
| } |
| |
| |
| ExternalReference ExternalReference::keyed_lookup_cache_keys(Isolate* isolate) { |
| return ExternalReference(isolate->keyed_lookup_cache()->keys_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::keyed_lookup_cache_field_offsets( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->keyed_lookup_cache()->field_offsets_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::roots_array_start(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->roots_array_start()); |
| } |
| |
| |
| ExternalReference ExternalReference::allocation_sites_list_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->allocation_sites_list_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_stack_limit(Isolate* isolate) { |
| return ExternalReference(isolate->stack_guard()->address_of_jslimit()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_real_stack_limit( |
| Isolate* isolate) { |
| return ExternalReference(isolate->stack_guard()->address_of_real_jslimit()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_limit( |
| Isolate* isolate) { |
| return ExternalReference(isolate->regexp_stack()->limit_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_start(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceStart()); |
| } |
| |
| |
| ExternalReference ExternalReference::store_buffer_top(Isolate* isolate) { |
| return ExternalReference(isolate->heap()->store_buffer()->TopAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_mask(Isolate* isolate) { |
| return ExternalReference(reinterpret_cast<Address>( |
| isolate->heap()->NewSpaceMask())); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_allocation_top_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceAllocationTopAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::new_space_allocation_limit_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->heap()->NewSpaceAllocationLimitAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::old_pointer_space_allocation_top_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->heap()->OldPointerSpaceAllocationTopAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::old_pointer_space_allocation_limit_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->heap()->OldPointerSpaceAllocationLimitAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::old_data_space_allocation_top_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->heap()->OldDataSpaceAllocationTopAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::old_data_space_allocation_limit_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->heap()->OldDataSpaceAllocationLimitAddress()); |
| } |
| |
| |
| ExternalReference ExternalReference::handle_scope_level_address( |
| Isolate* isolate) { |
| return ExternalReference(HandleScope::current_level_address(isolate)); |
| } |
| |
| |
| ExternalReference ExternalReference::handle_scope_next_address( |
| Isolate* isolate) { |
| return ExternalReference(HandleScope::current_next_address(isolate)); |
| } |
| |
| |
| ExternalReference ExternalReference::handle_scope_limit_address( |
| Isolate* isolate) { |
| return ExternalReference(HandleScope::current_limit_address(isolate)); |
| } |
| |
| |
| ExternalReference ExternalReference::scheduled_exception_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->scheduled_exception_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_pending_message_obj( |
| Isolate* isolate) { |
| return ExternalReference(isolate->pending_message_obj_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_has_pending_message( |
| Isolate* isolate) { |
| return ExternalReference(isolate->has_pending_message_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_pending_message_script( |
| Isolate* isolate) { |
| return ExternalReference(isolate->pending_message_script_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_min_int() { |
| return ExternalReference(reinterpret_cast<void*>(&double_constants.min_int)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_one_half() { |
| return ExternalReference(reinterpret_cast<void*>(&double_constants.one_half)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_minus_one_half() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.minus_one_half)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_negative_infinity() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.negative_infinity)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_canonical_non_hole_nan() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.canonical_non_hole_nan)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_the_hole_nan() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.the_hole_nan)); |
| } |
| |
| |
| ExternalReference ExternalReference::address_of_uint32_bias() { |
| return ExternalReference( |
| reinterpret_cast<void*>(&double_constants.uint32_bias)); |
| } |
| |
| |
| ExternalReference ExternalReference::is_profiling_address(Isolate* isolate) { |
| return ExternalReference(isolate->cpu_profiler()->is_profiling_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::invoke_function_callback( |
| Isolate* isolate) { |
| Address thunk_address = FUNCTION_ADDR(&InvokeFunctionCallback); |
| ExternalReference::Type thunk_type = ExternalReference::PROFILING_API_CALL; |
| ApiFunction thunk_fun(thunk_address); |
| return ExternalReference(&thunk_fun, thunk_type, isolate); |
| } |
| |
| |
| ExternalReference ExternalReference::invoke_accessor_getter_callback( |
| Isolate* isolate) { |
| Address thunk_address = FUNCTION_ADDR(&InvokeAccessorGetterCallback); |
| ExternalReference::Type thunk_type = |
| ExternalReference::PROFILING_GETTER_CALL; |
| ApiFunction thunk_fun(thunk_address); |
| return ExternalReference(&thunk_fun, thunk_type, isolate); |
| } |
| |
| |
| #ifndef V8_INTERPRETED_REGEXP |
| |
| ExternalReference ExternalReference::re_check_stack_guard_state( |
| Isolate* isolate) { |
| Address function; |
| #if V8_TARGET_ARCH_X64 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerX64::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_IA32 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerIA32::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_ARM64 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerARM64::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_ARM |
| function = FUNCTION_ADDR(RegExpMacroAssemblerARM::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_MIPS |
| function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_MIPS64 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerMIPS::CheckStackGuardState); |
| #elif V8_TARGET_ARCH_X87 |
| function = FUNCTION_ADDR(RegExpMacroAssemblerX87::CheckStackGuardState); |
| #else |
| UNREACHABLE(); |
| #endif |
| return ExternalReference(Redirect(isolate, function)); |
| } |
| |
| |
| ExternalReference ExternalReference::re_grow_stack(Isolate* isolate) { |
| return ExternalReference( |
| Redirect(isolate, FUNCTION_ADDR(NativeRegExpMacroAssembler::GrowStack))); |
| } |
| |
| ExternalReference ExternalReference::re_case_insensitive_compare_uc16( |
| Isolate* isolate) { |
| return ExternalReference(Redirect( |
| isolate, |
| FUNCTION_ADDR(NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16))); |
| } |
| |
| |
| ExternalReference ExternalReference::re_word_character_map() { |
| return ExternalReference( |
| NativeRegExpMacroAssembler::word_character_map_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_static_offsets_vector( |
| Isolate* isolate) { |
| return ExternalReference( |
| reinterpret_cast<Address>(isolate->jsregexp_static_offsets_vector())); |
| } |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_memory_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->regexp_stack()->memory_address()); |
| } |
| |
| ExternalReference ExternalReference::address_of_regexp_stack_memory_size( |
| Isolate* isolate) { |
| return ExternalReference(isolate->regexp_stack()->memory_size_address()); |
| } |
| |
| #endif // V8_INTERPRETED_REGEXP |
| |
| |
| ExternalReference ExternalReference::math_log_double_function( |
| Isolate* isolate) { |
| typedef double (*d2d)(double x); |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(static_cast<d2d>(std::log)), |
| BUILTIN_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::math_exp_constants(int constant_index) { |
| DCHECK(math_exp_data_initialized); |
| return ExternalReference( |
| reinterpret_cast<void*>(math_exp_constants_array + constant_index)); |
| } |
| |
| |
| ExternalReference ExternalReference::math_exp_log_table() { |
| DCHECK(math_exp_data_initialized); |
| return ExternalReference(reinterpret_cast<void*>(math_exp_log_table_array)); |
| } |
| |
| |
| ExternalReference ExternalReference::page_flags(Page* page) { |
| return ExternalReference(reinterpret_cast<Address>(page) + |
| MemoryChunk::kFlagsOffset); |
| } |
| |
| |
| ExternalReference ExternalReference::ForDeoptEntry(Address entry) { |
| return ExternalReference(entry); |
| } |
| |
| |
| ExternalReference ExternalReference::cpu_features() { |
| DCHECK(CpuFeatures::initialized_); |
| return ExternalReference(&CpuFeatures::supported_); |
| } |
| |
| |
| ExternalReference ExternalReference::debug_is_active_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->is_active_address()); |
| } |
| |
| |
| ExternalReference ExternalReference::debug_after_break_target_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->after_break_target_address()); |
| } |
| |
| |
| ExternalReference |
| ExternalReference::debug_restarter_frame_function_pointer_address( |
| Isolate* isolate) { |
| return ExternalReference( |
| isolate->debug()->restarter_frame_function_pointer_address()); |
| } |
| |
| |
| double power_helper(double x, double y) { |
| int y_int = static_cast<int>(y); |
| if (y == y_int) { |
| return power_double_int(x, y_int); // Returns 1 if exponent is 0. |
| } |
| if (y == 0.5) { |
| return (std::isinf(x)) ? V8_INFINITY |
| : fast_sqrt(x + 0.0); // Convert -0 to +0. |
| } |
| if (y == -0.5) { |
| return (std::isinf(x)) ? 0 : 1.0 / fast_sqrt(x + 0.0); // Convert -0 to +0. |
| } |
| return power_double_double(x, y); |
| } |
| |
| |
| // Helper function to compute x^y, where y is known to be an |
| // integer. Uses binary decomposition to limit the number of |
| // multiplications; see the discussion in "Hacker's Delight" by Henry |
| // S. Warren, Jr., figure 11-6, page 213. |
| double power_double_int(double x, int y) { |
| double m = (y < 0) ? 1 / x : x; |
| unsigned n = (y < 0) ? -y : y; |
| double p = 1; |
| while (n != 0) { |
| if ((n & 1) != 0) p *= m; |
| m *= m; |
| if ((n & 2) != 0) p *= m; |
| m *= m; |
| n >>= 2; |
| } |
| return p; |
| } |
| |
| |
| double power_double_double(double x, double y) { |
| #if defined(__MINGW64_VERSION_MAJOR) && \ |
| (!defined(__MINGW64_VERSION_RC) || __MINGW64_VERSION_RC < 1) |
| // MinGW64 has a custom implementation for pow. This handles certain |
| // special cases that are different. |
| if ((x == 0.0 || std::isinf(x)) && std::isfinite(y)) { |
| double f; |
| if (std::modf(y, &f) != 0.0) { |
| return ((x == 0.0) ^ (y > 0)) ? V8_INFINITY : 0; |
| } |
| } |
| |
| if (x == 2.0) { |
| int y_int = static_cast<int>(y); |
| if (y == y_int) { |
| return std::ldexp(1.0, y_int); |
| } |
| } |
| #endif |
| |
| // The checks for special cases can be dropped in ia32 because it has already |
| // been done in generated code before bailing out here. |
| if (std::isnan(y) || ((x == 1 || x == -1) && std::isinf(y))) { |
| return base::OS::nan_value(); |
| } |
| return std::pow(x, y); |
| } |
| |
| |
| ExternalReference ExternalReference::power_double_double_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(power_double_double), |
| BUILTIN_FP_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::power_double_int_function( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(power_double_int), |
| BUILTIN_FP_INT_CALL)); |
| } |
| |
| |
| bool EvalComparison(Token::Value op, double op1, double op2) { |
| DCHECK(Token::IsCompareOp(op)); |
| switch (op) { |
| case Token::EQ: |
| case Token::EQ_STRICT: return (op1 == op2); |
| case Token::NE: return (op1 != op2); |
| case Token::LT: return (op1 < op2); |
| case Token::GT: return (op1 > op2); |
| case Token::LTE: return (op1 <= op2); |
| case Token::GTE: return (op1 >= op2); |
| default: |
| UNREACHABLE(); |
| return false; |
| } |
| } |
| |
| |
| ExternalReference ExternalReference::mod_two_doubles_operation( |
| Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, |
| FUNCTION_ADDR(modulo), |
| BUILTIN_FP_FP_CALL)); |
| } |
| |
| |
| ExternalReference ExternalReference::debug_break(Isolate* isolate) { |
| return ExternalReference(Redirect(isolate, FUNCTION_ADDR(Debug_Break))); |
| } |
| |
| |
| ExternalReference ExternalReference::debug_step_in_fp_address( |
| Isolate* isolate) { |
| return ExternalReference(isolate->debug()->step_in_fp_addr()); |
| } |
| |
| |
| void PositionsRecorder::RecordPosition(int pos) { |
| DCHECK(pos != RelocInfo::kNoPosition); |
| DCHECK(pos >= 0); |
| state_.current_position = pos; |
| LOG_CODE_EVENT(assembler_->isolate(), |
| CodeLinePosInfoAddPositionEvent(jit_handler_data_, |
| assembler_->pc_offset(), |
| pos)); |
| } |
| |
| |
| void PositionsRecorder::RecordStatementPosition(int pos) { |
| DCHECK(pos != RelocInfo::kNoPosition); |
| DCHECK(pos >= 0); |
| state_.current_statement_position = pos; |
| LOG_CODE_EVENT(assembler_->isolate(), |
| CodeLinePosInfoAddStatementPositionEvent( |
| jit_handler_data_, |
| assembler_->pc_offset(), |
| pos)); |
| } |
| |
| |
| bool PositionsRecorder::WriteRecordedPositions() { |
| bool written = false; |
| |
| // Write the statement position if it is different from what was written last |
| // time. |
| if (state_.current_statement_position != state_.written_statement_position) { |
| EnsureSpace ensure_space(assembler_); |
| assembler_->RecordRelocInfo(RelocInfo::STATEMENT_POSITION, |
| state_.current_statement_position); |
| state_.written_statement_position = state_.current_statement_position; |
| written = true; |
| } |
| |
| // Write the position if it is different from what was written last time and |
| // also different from the written statement position. |
| if (state_.current_position != state_.written_position && |
| state_.current_position != state_.written_statement_position) { |
| EnsureSpace ensure_space(assembler_); |
| assembler_->RecordRelocInfo(RelocInfo::POSITION, state_.current_position); |
| state_.written_position = state_.current_position; |
| written = true; |
| } |
| |
| // Return whether something was written. |
| return written; |
| } |
| |
| } } // namespace v8::internal |