| // Copyright 2012 the V8 project authors. All rights reserved. |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following |
| // disclaimer in the documentation and/or other materials provided |
| // with the distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived |
| // from this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include <limits.h> // For LONG_MIN, LONG_MAX. |
| |
| #include "v8.h" |
| |
| #if defined(V8_TARGET_ARCH_MIPS) |
| |
| #include "bootstrapper.h" |
| #include "codegen.h" |
| #include "debug.h" |
| #include "runtime.h" |
| |
| namespace v8 { |
| namespace internal { |
| |
| MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) |
| : Assembler(arg_isolate, buffer, size), |
| generating_stub_(false), |
| allow_stub_calls_(true), |
| has_frame_(false) { |
| if (isolate() != NULL) { |
| code_object_ = Handle<Object>(isolate()->heap()->undefined_value(), |
| isolate()); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadRoot(Register destination, |
| Heap::RootListIndex index) { |
| lw(destination, MemOperand(s6, index << kPointerSizeLog2)); |
| } |
| |
| |
| void MacroAssembler::LoadRoot(Register destination, |
| Heap::RootListIndex index, |
| Condition cond, |
| Register src1, const Operand& src2) { |
| Branch(2, NegateCondition(cond), src1, src2); |
| lw(destination, MemOperand(s6, index << kPointerSizeLog2)); |
| } |
| |
| |
| void MacroAssembler::StoreRoot(Register source, |
| Heap::RootListIndex index) { |
| sw(source, MemOperand(s6, index << kPointerSizeLog2)); |
| } |
| |
| |
| void MacroAssembler::StoreRoot(Register source, |
| Heap::RootListIndex index, |
| Condition cond, |
| Register src1, const Operand& src2) { |
| Branch(2, NegateCondition(cond), src1, src2); |
| sw(source, MemOperand(s6, index << kPointerSizeLog2)); |
| } |
| |
| |
| void MacroAssembler::LoadHeapObject(Register result, |
| Handle<HeapObject> object) { |
| if (isolate()->heap()->InNewSpace(*object)) { |
| Handle<JSGlobalPropertyCell> cell = |
| isolate()->factory()->NewJSGlobalPropertyCell(object); |
| li(result, Operand(cell)); |
| lw(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset)); |
| } else { |
| li(result, Operand(object)); |
| } |
| } |
| |
| |
| // Push and pop all registers that can hold pointers. |
| void MacroAssembler::PushSafepointRegisters() { |
| // Safepoints expect a block of kNumSafepointRegisters values on the |
| // stack, so adjust the stack for unsaved registers. |
| const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| ASSERT(num_unsaved >= 0); |
| if (num_unsaved > 0) { |
| Subu(sp, sp, Operand(num_unsaved * kPointerSize)); |
| } |
| MultiPush(kSafepointSavedRegisters); |
| } |
| |
| |
| void MacroAssembler::PopSafepointRegisters() { |
| const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; |
| MultiPop(kSafepointSavedRegisters); |
| if (num_unsaved > 0) { |
| Addu(sp, sp, Operand(num_unsaved * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::PushSafepointRegistersAndDoubles() { |
| PushSafepointRegisters(); |
| Subu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize)); |
| for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) { |
| FPURegister reg = FPURegister::FromAllocationIndex(i); |
| sdc1(reg, MemOperand(sp, i * kDoubleSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::PopSafepointRegistersAndDoubles() { |
| for (int i = 0; i < FPURegister::kNumAllocatableRegisters; i+=2) { |
| FPURegister reg = FPURegister::FromAllocationIndex(i); |
| ldc1(reg, MemOperand(sp, i * kDoubleSize)); |
| } |
| Addu(sp, sp, Operand(FPURegister::kNumAllocatableRegisters * kDoubleSize)); |
| PopSafepointRegisters(); |
| } |
| |
| |
| void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src, |
| Register dst) { |
| sw(src, SafepointRegistersAndDoublesSlot(dst)); |
| } |
| |
| |
| void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { |
| sw(src, SafepointRegisterSlot(dst)); |
| } |
| |
| |
| void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { |
| lw(dst, SafepointRegisterSlot(src)); |
| } |
| |
| |
| int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { |
| // The registers are pushed starting with the highest encoding, |
| // which means that lowest encodings are closest to the stack pointer. |
| return kSafepointRegisterStackIndexMap[reg_code]; |
| } |
| |
| |
| MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { |
| return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); |
| } |
| |
| |
| MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { |
| UNIMPLEMENTED_MIPS(); |
| // General purpose registers are pushed last on the stack. |
| int doubles_size = FPURegister::kNumAllocatableRegisters * kDoubleSize; |
| int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; |
| return MemOperand(sp, doubles_size + register_offset); |
| } |
| |
| |
| void MacroAssembler::InNewSpace(Register object, |
| Register scratch, |
| Condition cc, |
| Label* branch) { |
| ASSERT(cc == eq || cc == ne); |
| And(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); |
| Branch(branch, cc, scratch, |
| Operand(ExternalReference::new_space_start(isolate()))); |
| } |
| |
| |
| void MacroAssembler::RecordWriteField( |
| Register object, |
| int offset, |
| Register value, |
| Register dst, |
| RAStatus ra_status, |
| SaveFPRegsMode save_fp, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| ASSERT(!AreAliased(value, dst, t8, object)); |
| // First, check if a write barrier is even needed. The tests below |
| // catch stores of Smis. |
| Label done; |
| |
| // Skip barrier if writing a smi. |
| if (smi_check == INLINE_SMI_CHECK) { |
| JumpIfSmi(value, &done); |
| } |
| |
| // Although the object register is tagged, the offset is relative to the start |
| // of the object, so so offset must be a multiple of kPointerSize. |
| ASSERT(IsAligned(offset, kPointerSize)); |
| |
| Addu(dst, object, Operand(offset - kHeapObjectTag)); |
| if (emit_debug_code()) { |
| Label ok; |
| And(t8, dst, Operand((1 << kPointerSizeLog2) - 1)); |
| Branch(&ok, eq, t8, Operand(zero_reg)); |
| stop("Unaligned cell in write barrier"); |
| bind(&ok); |
| } |
| |
| RecordWrite(object, |
| dst, |
| value, |
| ra_status, |
| save_fp, |
| remembered_set_action, |
| OMIT_SMI_CHECK); |
| |
| bind(&done); |
| |
| // Clobber clobbered input registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| li(value, Operand(BitCast<int32_t>(kZapValue + 4))); |
| li(dst, Operand(BitCast<int32_t>(kZapValue + 8))); |
| } |
| } |
| |
| |
| // Will clobber 4 registers: object, address, scratch, ip. The |
| // register 'object' contains a heap object pointer. The heap object |
| // tag is shifted away. |
| void MacroAssembler::RecordWrite(Register object, |
| Register address, |
| Register value, |
| RAStatus ra_status, |
| SaveFPRegsMode fp_mode, |
| RememberedSetAction remembered_set_action, |
| SmiCheck smi_check) { |
| ASSERT(!AreAliased(object, address, value, t8)); |
| ASSERT(!AreAliased(object, address, value, t9)); |
| // The compiled code assumes that record write doesn't change the |
| // context register, so we check that none of the clobbered |
| // registers are cp. |
| ASSERT(!address.is(cp) && !value.is(cp)); |
| |
| if (emit_debug_code()) { |
| lw(at, MemOperand(address)); |
| Assert( |
| eq, "Wrong address or value passed to RecordWrite", at, Operand(value)); |
| } |
| |
| Label done; |
| |
| if (smi_check == INLINE_SMI_CHECK) { |
| ASSERT_EQ(0, kSmiTag); |
| JumpIfSmi(value, &done); |
| } |
| |
| CheckPageFlag(value, |
| value, // Used as scratch. |
| MemoryChunk::kPointersToHereAreInterestingMask, |
| eq, |
| &done); |
| CheckPageFlag(object, |
| value, // Used as scratch. |
| MemoryChunk::kPointersFromHereAreInterestingMask, |
| eq, |
| &done); |
| |
| // Record the actual write. |
| if (ra_status == kRAHasNotBeenSaved) { |
| push(ra); |
| } |
| RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); |
| CallStub(&stub); |
| if (ra_status == kRAHasNotBeenSaved) { |
| pop(ra); |
| } |
| |
| bind(&done); |
| |
| // Clobber clobbered registers when running with the debug-code flag |
| // turned on to provoke errors. |
| if (emit_debug_code()) { |
| li(address, Operand(BitCast<int32_t>(kZapValue + 12))); |
| li(value, Operand(BitCast<int32_t>(kZapValue + 16))); |
| } |
| } |
| |
| |
| void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. |
| Register address, |
| Register scratch, |
| SaveFPRegsMode fp_mode, |
| RememberedSetFinalAction and_then) { |
| Label done; |
| if (emit_debug_code()) { |
| Label ok; |
| JumpIfNotInNewSpace(object, scratch, &ok); |
| stop("Remembered set pointer is in new space"); |
| bind(&ok); |
| } |
| // Load store buffer top. |
| ExternalReference store_buffer = |
| ExternalReference::store_buffer_top(isolate()); |
| li(t8, Operand(store_buffer)); |
| lw(scratch, MemOperand(t8)); |
| // Store pointer to buffer and increment buffer top. |
| sw(address, MemOperand(scratch)); |
| Addu(scratch, scratch, kPointerSize); |
| // Write back new top of buffer. |
| sw(scratch, MemOperand(t8)); |
| // Call stub on end of buffer. |
| // Check for end of buffer. |
| And(t8, scratch, Operand(StoreBuffer::kStoreBufferOverflowBit)); |
| if (and_then == kFallThroughAtEnd) { |
| Branch(&done, eq, t8, Operand(zero_reg)); |
| } else { |
| ASSERT(and_then == kReturnAtEnd); |
| Ret(eq, t8, Operand(zero_reg)); |
| } |
| push(ra); |
| StoreBufferOverflowStub store_buffer_overflow = |
| StoreBufferOverflowStub(fp_mode); |
| CallStub(&store_buffer_overflow); |
| pop(ra); |
| bind(&done); |
| if (and_then == kReturnAtEnd) { |
| Ret(); |
| } |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Allocation support. |
| |
| |
| void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, |
| Register scratch, |
| Label* miss) { |
| Label same_contexts; |
| |
| ASSERT(!holder_reg.is(scratch)); |
| ASSERT(!holder_reg.is(at)); |
| ASSERT(!scratch.is(at)); |
| |
| // Load current lexical context from the stack frame. |
| lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| // In debug mode, make sure the lexical context is set. |
| #ifdef DEBUG |
| Check(ne, "we should not have an empty lexical context", |
| scratch, Operand(zero_reg)); |
| #endif |
| |
| // Load the global context of the current context. |
| int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; |
| lw(scratch, FieldMemOperand(scratch, offset)); |
| lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check the context is a global context. |
| if (emit_debug_code()) { |
| // TODO(119): Avoid push(holder_reg)/pop(holder_reg). |
| push(holder_reg); // Temporarily save holder on the stack. |
| // Read the first word and compare to the global_context_map. |
| lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
| LoadRoot(at, Heap::kGlobalContextMapRootIndex); |
| Check(eq, "JSGlobalObject::global_context should be a global context.", |
| holder_reg, Operand(at)); |
| pop(holder_reg); // Restore holder. |
| } |
| |
| // Check if both contexts are the same. |
| lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| Branch(&same_contexts, eq, scratch, Operand(at)); |
| |
| // Check the context is a global context. |
| if (emit_debug_code()) { |
| // TODO(119): Avoid push(holder_reg)/pop(holder_reg). |
| push(holder_reg); // Temporarily save holder on the stack. |
| mov(holder_reg, at); // Move at to its holding place. |
| LoadRoot(at, Heap::kNullValueRootIndex); |
| Check(ne, "JSGlobalProxy::context() should not be null.", |
| holder_reg, Operand(at)); |
| |
| lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); |
| LoadRoot(at, Heap::kGlobalContextMapRootIndex); |
| Check(eq, "JSGlobalObject::global_context should be a global context.", |
| holder_reg, Operand(at)); |
| // Restore at is not needed. at is reloaded below. |
| pop(holder_reg); // Restore holder. |
| // Restore at to holder's context. |
| lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); |
| } |
| |
| // Check that the security token in the calling global object is |
| // compatible with the security token in the receiving global |
| // object. |
| int token_offset = Context::kHeaderSize + |
| Context::SECURITY_TOKEN_INDEX * kPointerSize; |
| |
| lw(scratch, FieldMemOperand(scratch, token_offset)); |
| lw(at, FieldMemOperand(at, token_offset)); |
| Branch(miss, ne, scratch, Operand(at)); |
| |
| bind(&same_contexts); |
| } |
| |
| |
| void MacroAssembler::GetNumberHash(Register reg0, Register scratch) { |
| // First of all we assign the hash seed to scratch. |
| LoadRoot(scratch, Heap::kHashSeedRootIndex); |
| SmiUntag(scratch); |
| |
| // Xor original key with a seed. |
| xor_(reg0, reg0, scratch); |
| |
| // Compute the hash code from the untagged key. This must be kept in sync |
| // with ComputeIntegerHash in utils.h. |
| // |
| // hash = ~hash + (hash << 15); |
| nor(scratch, reg0, zero_reg); |
| sll(at, reg0, 15); |
| addu(reg0, scratch, at); |
| |
| // hash = hash ^ (hash >> 12); |
| srl(at, reg0, 12); |
| xor_(reg0, reg0, at); |
| |
| // hash = hash + (hash << 2); |
| sll(at, reg0, 2); |
| addu(reg0, reg0, at); |
| |
| // hash = hash ^ (hash >> 4); |
| srl(at, reg0, 4); |
| xor_(reg0, reg0, at); |
| |
| // hash = hash * 2057; |
| sll(scratch, reg0, 11); |
| sll(at, reg0, 3); |
| addu(reg0, reg0, at); |
| addu(reg0, reg0, scratch); |
| |
| // hash = hash ^ (hash >> 16); |
| srl(at, reg0, 16); |
| xor_(reg0, reg0, at); |
| } |
| |
| |
| void MacroAssembler::LoadFromNumberDictionary(Label* miss, |
| Register elements, |
| Register key, |
| Register result, |
| Register reg0, |
| Register reg1, |
| Register reg2) { |
| // Register use: |
| // |
| // elements - holds the slow-case elements of the receiver on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // key - holds the smi key on entry. |
| // Unchanged unless 'result' is the same register. |
| // |
| // |
| // result - holds the result on exit if the load succeeded. |
| // Allowed to be the same as 'key' or 'result'. |
| // Unchanged on bailout so 'key' or 'result' can be used |
| // in further computation. |
| // |
| // Scratch registers: |
| // |
| // reg0 - holds the untagged key on entry and holds the hash once computed. |
| // |
| // reg1 - Used to hold the capacity mask of the dictionary. |
| // |
| // reg2 - Used for the index into the dictionary. |
| // at - Temporary (avoid MacroAssembler instructions also using 'at'). |
| Label done; |
| |
| GetNumberHash(reg0, reg1); |
| |
| // Compute the capacity mask. |
| lw(reg1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); |
| sra(reg1, reg1, kSmiTagSize); |
| Subu(reg1, reg1, Operand(1)); |
| |
| // Generate an unrolled loop that performs a few probes before giving up. |
| static const int kProbes = 4; |
| for (int i = 0; i < kProbes; i++) { |
| // Use reg2 for index calculations and keep the hash intact in reg0. |
| mov(reg2, reg0); |
| // Compute the masked index: (hash + i + i * i) & mask. |
| if (i > 0) { |
| Addu(reg2, reg2, Operand(SeededNumberDictionary::GetProbeOffset(i))); |
| } |
| and_(reg2, reg2, reg1); |
| |
| // Scale the index by multiplying by the element size. |
| ASSERT(SeededNumberDictionary::kEntrySize == 3); |
| sll(at, reg2, 1); // 2x. |
| addu(reg2, reg2, at); // reg2 = reg2 * 3. |
| |
| // Check if the key is identical to the name. |
| sll(at, reg2, kPointerSizeLog2); |
| addu(reg2, elements, at); |
| |
| lw(at, FieldMemOperand(reg2, SeededNumberDictionary::kElementsStartOffset)); |
| if (i != kProbes - 1) { |
| Branch(&done, eq, key, Operand(at)); |
| } else { |
| Branch(miss, ne, key, Operand(at)); |
| } |
| } |
| |
| bind(&done); |
| // Check that the value is a normal property. |
| // reg2: elements + (index * kPointerSize). |
| const int kDetailsOffset = |
| SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; |
| lw(reg1, FieldMemOperand(reg2, kDetailsOffset)); |
| And(at, reg1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); |
| Branch(miss, ne, at, Operand(zero_reg)); |
| |
| // Get the value at the masked, scaled index and return. |
| const int kValueOffset = |
| SeededNumberDictionary::kElementsStartOffset + kPointerSize; |
| lw(result, FieldMemOperand(reg2, kValueOffset)); |
| } |
| |
| |
| // --------------------------------------------------------------------------- |
| // Instruction macros. |
| |
| void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| addu(rd, rs, rt.rm()); |
| } else { |
| if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| addiu(rd, rs, rt.imm32_); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| addu(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| subu(rd, rs, rt.rm()); |
| } else { |
| if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm). |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| subu(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| if (kArchVariant == kLoongson) { |
| mult(rs, rt.rm()); |
| mflo(rd); |
| } else { |
| mul(rd, rs, rt.rm()); |
| } |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| if (kArchVariant == kLoongson) { |
| mult(rs, at); |
| mflo(rd); |
| } else { |
| mul(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Mult(Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| mult(rs, rt.rm()); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| mult(rs, at); |
| } |
| } |
| |
| |
| void MacroAssembler::Multu(Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| multu(rs, rt.rm()); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| multu(rs, at); |
| } |
| } |
| |
| |
| void MacroAssembler::Div(Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| div(rs, rt.rm()); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| div(rs, at); |
| } |
| } |
| |
| |
| void MacroAssembler::Divu(Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| divu(rs, rt.rm()); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| divu(rs, at); |
| } |
| } |
| |
| |
| void MacroAssembler::And(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| and_(rd, rs, rt.rm()); |
| } else { |
| if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| andi(rd, rs, rt.imm32_); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| and_(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| or_(rd, rs, rt.rm()); |
| } else { |
| if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| ori(rd, rs, rt.imm32_); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| or_(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| xor_(rd, rs, rt.rm()); |
| } else { |
| if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| xori(rd, rs, rt.imm32_); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| xor_(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| nor(rd, rs, rt.rm()); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| nor(rd, rs, at); |
| } |
| } |
| |
| |
| void MacroAssembler::Neg(Register rs, const Operand& rt) { |
| ASSERT(rt.is_reg()); |
| ASSERT(!at.is(rs)); |
| ASSERT(!at.is(rt.rm())); |
| li(at, -1); |
| xor_(rs, rt.rm(), at); |
| } |
| |
| |
| void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| slt(rd, rs, rt.rm()); |
| } else { |
| if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| slti(rd, rs, rt.imm32_); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| slt(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) { |
| if (rt.is_reg()) { |
| sltu(rd, rs, rt.rm()); |
| } else { |
| if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) { |
| sltiu(rd, rs, rt.imm32_); |
| } else { |
| // li handles the relocation. |
| ASSERT(!rs.is(at)); |
| li(at, rt); |
| sltu(rd, rs, at); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) { |
| if (kArchVariant == kMips32r2) { |
| if (rt.is_reg()) { |
| rotrv(rd, rs, rt.rm()); |
| } else { |
| rotr(rd, rs, rt.imm32_); |
| } |
| } else { |
| if (rt.is_reg()) { |
| subu(at, zero_reg, rt.rm()); |
| sllv(at, rs, at); |
| srlv(rd, rs, rt.rm()); |
| or_(rd, rd, at); |
| } else { |
| if (rt.imm32_ == 0) { |
| srl(rd, rs, 0); |
| } else { |
| srl(at, rs, rt.imm32_); |
| sll(rd, rs, (0x20 - rt.imm32_) & 0x1f); |
| or_(rd, rd, at); |
| } |
| } |
| } |
| } |
| |
| //------------Pseudo-instructions------------- |
| |
| void MacroAssembler::li(Register rd, Operand j, LiFlags mode) { |
| ASSERT(!j.is_reg()); |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| if (!MustUseReg(j.rmode_) && mode == OPTIMIZE_SIZE) { |
| // Normal load of an immediate value which does not need Relocation Info. |
| if (is_int16(j.imm32_)) { |
| addiu(rd, zero_reg, j.imm32_); |
| } else if (!(j.imm32_ & kHiMask)) { |
| ori(rd, zero_reg, j.imm32_); |
| } else if (!(j.imm32_ & kImm16Mask)) { |
| lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); |
| } else { |
| lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); |
| ori(rd, rd, (j.imm32_ & kImm16Mask)); |
| } |
| } else { |
| if (MustUseReg(j.rmode_)) { |
| RecordRelocInfo(j.rmode_, j.imm32_); |
| } |
| // We always need the same number of instructions as we may need to patch |
| // this code to load another value which may need 2 instructions to load. |
| lui(rd, (j.imm32_ >> kLuiShift) & kImm16Mask); |
| ori(rd, rd, (j.imm32_ & kImm16Mask)); |
| } |
| } |
| |
| |
| void MacroAssembler::MultiPush(RegList regs) { |
| int16_t num_to_push = NumberOfBitsSet(regs); |
| int16_t stack_offset = num_to_push * kPointerSize; |
| |
| Subu(sp, sp, Operand(stack_offset)); |
| for (int16_t i = kNumRegisters - 1; i >= 0; i--) { |
| if ((regs & (1 << i)) != 0) { |
| stack_offset -= kPointerSize; |
| sw(ToRegister(i), MemOperand(sp, stack_offset)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::MultiPushReversed(RegList regs) { |
| int16_t num_to_push = NumberOfBitsSet(regs); |
| int16_t stack_offset = num_to_push * kPointerSize; |
| |
| Subu(sp, sp, Operand(stack_offset)); |
| for (int16_t i = 0; i < kNumRegisters; i++) { |
| if ((regs & (1 << i)) != 0) { |
| stack_offset -= kPointerSize; |
| sw(ToRegister(i), MemOperand(sp, stack_offset)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::MultiPop(RegList regs) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < kNumRegisters; i++) { |
| if ((regs & (1 << i)) != 0) { |
| lw(ToRegister(i), MemOperand(sp, stack_offset)); |
| stack_offset += kPointerSize; |
| } |
| } |
| addiu(sp, sp, stack_offset); |
| } |
| |
| |
| void MacroAssembler::MultiPopReversed(RegList regs) { |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = kNumRegisters - 1; i >= 0; i--) { |
| if ((regs & (1 << i)) != 0) { |
| lw(ToRegister(i), MemOperand(sp, stack_offset)); |
| stack_offset += kPointerSize; |
| } |
| } |
| addiu(sp, sp, stack_offset); |
| } |
| |
| |
| void MacroAssembler::MultiPushFPU(RegList regs) { |
| CpuFeatures::Scope scope(FPU); |
| int16_t num_to_push = NumberOfBitsSet(regs); |
| int16_t stack_offset = num_to_push * kDoubleSize; |
| |
| Subu(sp, sp, Operand(stack_offset)); |
| for (int16_t i = kNumRegisters - 1; i >= 0; i--) { |
| if ((regs & (1 << i)) != 0) { |
| stack_offset -= kDoubleSize; |
| sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::MultiPushReversedFPU(RegList regs) { |
| CpuFeatures::Scope scope(FPU); |
| int16_t num_to_push = NumberOfBitsSet(regs); |
| int16_t stack_offset = num_to_push * kDoubleSize; |
| |
| Subu(sp, sp, Operand(stack_offset)); |
| for (int16_t i = 0; i < kNumRegisters; i++) { |
| if ((regs & (1 << i)) != 0) { |
| stack_offset -= kDoubleSize; |
| sdc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::MultiPopFPU(RegList regs) { |
| CpuFeatures::Scope scope(FPU); |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = 0; i < kNumRegisters; i++) { |
| if ((regs & (1 << i)) != 0) { |
| ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); |
| stack_offset += kDoubleSize; |
| } |
| } |
| addiu(sp, sp, stack_offset); |
| } |
| |
| |
| void MacroAssembler::MultiPopReversedFPU(RegList regs) { |
| CpuFeatures::Scope scope(FPU); |
| int16_t stack_offset = 0; |
| |
| for (int16_t i = kNumRegisters - 1; i >= 0; i--) { |
| if ((regs & (1 << i)) != 0) { |
| ldc1(FPURegister::from_code(i), MemOperand(sp, stack_offset)); |
| stack_offset += kDoubleSize; |
| } |
| } |
| addiu(sp, sp, stack_offset); |
| } |
| |
| |
| void MacroAssembler::FlushICache(Register address, unsigned instructions) { |
| RegList saved_regs = kJSCallerSaved | ra.bit(); |
| MultiPush(saved_regs); |
| AllowExternalCallThatCantCauseGC scope(this); |
| |
| // Save to a0 in case address == t0. |
| Move(a0, address); |
| PrepareCallCFunction(2, t0); |
| |
| li(a1, instructions * kInstrSize); |
| CallCFunction(ExternalReference::flush_icache_function(isolate()), 2); |
| MultiPop(saved_regs); |
| } |
| |
| |
| void MacroAssembler::Ext(Register rt, |
| Register rs, |
| uint16_t pos, |
| uint16_t size) { |
| ASSERT(pos < 32); |
| ASSERT(pos + size < 33); |
| |
| if (kArchVariant == kMips32r2) { |
| ext_(rt, rs, pos, size); |
| } else { |
| // Move rs to rt and shift it left then right to get the |
| // desired bitfield on the right side and zeroes on the left. |
| int shift_left = 32 - (pos + size); |
| sll(rt, rs, shift_left); // Acts as a move if shift_left == 0. |
| |
| int shift_right = 32 - size; |
| if (shift_right > 0) { |
| srl(rt, rt, shift_right); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Ins(Register rt, |
| Register rs, |
| uint16_t pos, |
| uint16_t size) { |
| ASSERT(pos < 32); |
| ASSERT(pos + size <= 32); |
| ASSERT(size != 0); |
| |
| if (kArchVariant == kMips32r2) { |
| ins_(rt, rs, pos, size); |
| } else { |
| ASSERT(!rt.is(t8) && !rs.is(t8)); |
| Subu(at, zero_reg, Operand(1)); |
| srl(at, at, 32 - size); |
| and_(t8, rs, at); |
| sll(t8, t8, pos); |
| sll(at, at, pos); |
| nor(at, at, zero_reg); |
| and_(at, rt, at); |
| or_(rt, t8, at); |
| } |
| } |
| |
| |
| void MacroAssembler::Cvt_d_uw(FPURegister fd, |
| FPURegister fs, |
| FPURegister scratch) { |
| // Move the data from fs to t8. |
| mfc1(t8, fs); |
| Cvt_d_uw(fd, t8, scratch); |
| } |
| |
| |
| void MacroAssembler::Cvt_d_uw(FPURegister fd, |
| Register rs, |
| FPURegister scratch) { |
| // Convert rs to a FP value in fd (and fd + 1). |
| // We do this by converting rs minus the MSB to avoid sign conversion, |
| // then adding 2^31 to the result (if needed). |
| |
| ASSERT(!fd.is(scratch)); |
| ASSERT(!rs.is(t9)); |
| ASSERT(!rs.is(at)); |
| |
| // Save rs's MSB to t9. |
| Ext(t9, rs, 31, 1); |
| // Remove rs's MSB. |
| Ext(at, rs, 0, 31); |
| // Move the result to fd. |
| mtc1(at, fd); |
| |
| // Convert fd to a real FP value. |
| cvt_d_w(fd, fd); |
| |
| Label conversion_done; |
| |
| // If rs's MSB was 0, it's done. |
| // Otherwise we need to add that to the FP register. |
| Branch(&conversion_done, eq, t9, Operand(zero_reg)); |
| |
| // Load 2^31 into f20 as its float representation. |
| li(at, 0x41E00000); |
| mtc1(at, FPURegister::from_code(scratch.code() + 1)); |
| mtc1(zero_reg, scratch); |
| // Add it to fd. |
| add_d(fd, fd, scratch); |
| |
| bind(&conversion_done); |
| } |
| |
| |
| void MacroAssembler::Trunc_uw_d(FPURegister fd, |
| FPURegister fs, |
| FPURegister scratch) { |
| Trunc_uw_d(fs, t8, scratch); |
| mtc1(t8, fd); |
| } |
| |
| void MacroAssembler::Trunc_w_d(FPURegister fd, FPURegister fs) { |
| if (kArchVariant == kLoongson && fd.is(fs)) { |
| mfc1(t8, FPURegister::from_code(fs.code() + 1)); |
| trunc_w_d(fd, fs); |
| mtc1(t8, FPURegister::from_code(fs.code() + 1)); |
| } else { |
| trunc_w_d(fd, fs); |
| } |
| } |
| |
| void MacroAssembler::Round_w_d(FPURegister fd, FPURegister fs) { |
| if (kArchVariant == kLoongson && fd.is(fs)) { |
| mfc1(t8, FPURegister::from_code(fs.code() + 1)); |
| round_w_d(fd, fs); |
| mtc1(t8, FPURegister::from_code(fs.code() + 1)); |
| } else { |
| round_w_d(fd, fs); |
| } |
| } |
| |
| |
| void MacroAssembler::Floor_w_d(FPURegister fd, FPURegister fs) { |
| if (kArchVariant == kLoongson && fd.is(fs)) { |
| mfc1(t8, FPURegister::from_code(fs.code() + 1)); |
| floor_w_d(fd, fs); |
| mtc1(t8, FPURegister::from_code(fs.code() + 1)); |
| } else { |
| floor_w_d(fd, fs); |
| } |
| } |
| |
| |
| void MacroAssembler::Ceil_w_d(FPURegister fd, FPURegister fs) { |
| if (kArchVariant == kLoongson && fd.is(fs)) { |
| mfc1(t8, FPURegister::from_code(fs.code() + 1)); |
| ceil_w_d(fd, fs); |
| mtc1(t8, FPURegister::from_code(fs.code() + 1)); |
| } else { |
| ceil_w_d(fd, fs); |
| } |
| } |
| |
| |
| void MacroAssembler::Trunc_uw_d(FPURegister fd, |
| Register rs, |
| FPURegister scratch) { |
| ASSERT(!fd.is(scratch)); |
| ASSERT(!rs.is(at)); |
| |
| // Load 2^31 into scratch as its float representation. |
| li(at, 0x41E00000); |
| mtc1(at, FPURegister::from_code(scratch.code() + 1)); |
| mtc1(zero_reg, scratch); |
| // Test if scratch > fd. |
| // If fd < 2^31 we can convert it normally. |
| Label simple_convert; |
| BranchF(&simple_convert, NULL, lt, fd, scratch); |
| |
| // First we subtract 2^31 from fd, then trunc it to rs |
| // and add 2^31 to rs. |
| sub_d(scratch, fd, scratch); |
| trunc_w_d(scratch, scratch); |
| mfc1(rs, scratch); |
| Or(rs, rs, 1 << 31); |
| |
| Label done; |
| Branch(&done); |
| // Simple conversion. |
| bind(&simple_convert); |
| trunc_w_d(scratch, fd); |
| mfc1(rs, scratch); |
| |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::BranchF(Label* target, |
| Label* nan, |
| Condition cc, |
| FPURegister cmp1, |
| FPURegister cmp2, |
| BranchDelaySlot bd) { |
| if (cc == al) { |
| Branch(bd, target); |
| return; |
| } |
| |
| ASSERT(nan || target); |
| // Check for unordered (NaN) cases. |
| if (nan) { |
| c(UN, D, cmp1, cmp2); |
| bc1t(nan); |
| } |
| |
| if (target) { |
| // Here NaN cases were either handled by this function or are assumed to |
| // have been handled by the caller. |
| // Unsigned conditions are treated as their signed counterpart. |
| switch (cc) { |
| case Uless: |
| case less: |
| c(OLT, D, cmp1, cmp2); |
| bc1t(target); |
| break; |
| case Ugreater: |
| case greater: |
| c(ULE, D, cmp1, cmp2); |
| bc1f(target); |
| break; |
| case Ugreater_equal: |
| case greater_equal: |
| c(ULT, D, cmp1, cmp2); |
| bc1f(target); |
| break; |
| case Uless_equal: |
| case less_equal: |
| c(OLE, D, cmp1, cmp2); |
| bc1t(target); |
| break; |
| case eq: |
| c(EQ, D, cmp1, cmp2); |
| bc1t(target); |
| break; |
| case ne: |
| c(EQ, D, cmp1, cmp2); |
| bc1f(target); |
| break; |
| default: |
| CHECK(0); |
| }; |
| } |
| |
| if (bd == PROTECT) { |
| nop(); |
| } |
| } |
| |
| |
| void MacroAssembler::Move(FPURegister dst, double imm) { |
| ASSERT(CpuFeatures::IsEnabled(FPU)); |
| static const DoubleRepresentation minus_zero(-0.0); |
| static const DoubleRepresentation zero(0.0); |
| DoubleRepresentation value(imm); |
| // Handle special values first. |
| bool force_load = dst.is(kDoubleRegZero); |
| if (value.bits == zero.bits && !force_load) { |
| mov_d(dst, kDoubleRegZero); |
| } else if (value.bits == minus_zero.bits && !force_load) { |
| neg_d(dst, kDoubleRegZero); |
| } else { |
| uint32_t lo, hi; |
| DoubleAsTwoUInt32(imm, &lo, &hi); |
| // Move the low part of the double into the lower of the corresponding FPU |
| // register of FPU register pair. |
| if (lo != 0) { |
| li(at, Operand(lo)); |
| mtc1(at, dst); |
| } else { |
| mtc1(zero_reg, dst); |
| } |
| // Move the high part of the double into the higher of the corresponding FPU |
| // register of FPU register pair. |
| if (hi != 0) { |
| li(at, Operand(hi)); |
| mtc1(at, dst.high()); |
| } else { |
| mtc1(zero_reg, dst.high()); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Movz(Register rd, Register rs, Register rt) { |
| if (kArchVariant == kLoongson) { |
| Label done; |
| Branch(&done, ne, rt, Operand(zero_reg)); |
| mov(rd, rs); |
| bind(&done); |
| } else { |
| movz(rd, rs, rt); |
| } |
| } |
| |
| |
| void MacroAssembler::Movn(Register rd, Register rs, Register rt) { |
| if (kArchVariant == kLoongson) { |
| Label done; |
| Branch(&done, eq, rt, Operand(zero_reg)); |
| mov(rd, rs); |
| bind(&done); |
| } else { |
| movn(rd, rs, rt); |
| } |
| } |
| |
| |
| void MacroAssembler::Movt(Register rd, Register rs, uint16_t cc) { |
| if (kArchVariant == kLoongson) { |
| // Tests an FP condition code and then conditionally move rs to rd. |
| // We do not currently use any FPU cc bit other than bit 0. |
| ASSERT(cc == 0); |
| ASSERT(!(rs.is(t8) || rd.is(t8))); |
| Label done; |
| Register scratch = t8; |
| // For testing purposes we need to fetch content of the FCSR register and |
| // than test its cc (floating point condition code) bit (for cc = 0, it is |
| // 24. bit of the FCSR). |
| cfc1(scratch, FCSR); |
| // For the MIPS I, II and III architectures, the contents of scratch is |
| // UNPREDICTABLE for the instruction immediately following CFC1. |
| nop(); |
| srl(scratch, scratch, 16); |
| andi(scratch, scratch, 0x0080); |
| Branch(&done, eq, scratch, Operand(zero_reg)); |
| mov(rd, rs); |
| bind(&done); |
| } else { |
| movt(rd, rs, cc); |
| } |
| } |
| |
| |
| void MacroAssembler::Movf(Register rd, Register rs, uint16_t cc) { |
| if (kArchVariant == kLoongson) { |
| // Tests an FP condition code and then conditionally move rs to rd. |
| // We do not currently use any FPU cc bit other than bit 0. |
| ASSERT(cc == 0); |
| ASSERT(!(rs.is(t8) || rd.is(t8))); |
| Label done; |
| Register scratch = t8; |
| // For testing purposes we need to fetch content of the FCSR register and |
| // than test its cc (floating point condition code) bit (for cc = 0, it is |
| // 24. bit of the FCSR). |
| cfc1(scratch, FCSR); |
| // For the MIPS I, II and III architectures, the contents of scratch is |
| // UNPREDICTABLE for the instruction immediately following CFC1. |
| nop(); |
| srl(scratch, scratch, 16); |
| andi(scratch, scratch, 0x0080); |
| Branch(&done, ne, scratch, Operand(zero_reg)); |
| mov(rd, rs); |
| bind(&done); |
| } else { |
| movf(rd, rs, cc); |
| } |
| } |
| |
| |
| void MacroAssembler::Clz(Register rd, Register rs) { |
| if (kArchVariant == kLoongson) { |
| ASSERT(!(rd.is(t8) || rd.is(t9)) && !(rs.is(t8) || rs.is(t9))); |
| Register mask = t8; |
| Register scratch = t9; |
| Label loop, end; |
| mov(at, rs); |
| mov(rd, zero_reg); |
| lui(mask, 0x8000); |
| bind(&loop); |
| and_(scratch, at, mask); |
| Branch(&end, ne, scratch, Operand(zero_reg)); |
| addiu(rd, rd, 1); |
| Branch(&loop, ne, mask, Operand(zero_reg), USE_DELAY_SLOT); |
| srl(mask, mask, 1); |
| bind(&end); |
| } else { |
| clz(rd, rs); |
| } |
| } |
| |
| |
| // Tries to get a signed int32 out of a double precision floating point heap |
| // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the |
| // 32bits signed integer range. |
| // This method implementation differs from the ARM version for performance |
| // reasons. |
| void MacroAssembler::ConvertToInt32(Register source, |
| Register dest, |
| Register scratch, |
| Register scratch2, |
| FPURegister double_scratch, |
| Label *not_int32) { |
| Label right_exponent, done; |
| // Get exponent word (ENDIAN issues). |
| lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); |
| // Get exponent alone in scratch2. |
| And(scratch2, scratch, Operand(HeapNumber::kExponentMask)); |
| // Load dest with zero. We use this either for the final shift or |
| // for the answer. |
| mov(dest, zero_reg); |
| // Check whether the exponent matches a 32 bit signed int that is not a Smi. |
| // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is |
| // the exponent that we are fastest at and also the highest exponent we can |
| // handle here. |
| const uint32_t non_smi_exponent = |
| (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; |
| // If we have a match of the int32-but-not-Smi exponent then skip some logic. |
| Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent)); |
| // If the exponent is higher than that then go to not_int32 case. This |
| // catches numbers that don't fit in a signed int32, infinities and NaNs. |
| Branch(not_int32, gt, scratch2, Operand(non_smi_exponent)); |
| |
| // We know the exponent is smaller than 30 (biased). If it is less than |
| // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e. |
| // it rounds to zero. |
| const uint32_t zero_exponent = |
| (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; |
| Subu(scratch2, scratch2, Operand(zero_exponent)); |
| // Dest already has a Smi zero. |
| Branch(&done, lt, scratch2, Operand(zero_reg)); |
| if (!CpuFeatures::IsSupported(FPU)) { |
| // We have a shifted exponent between 0 and 30 in scratch2. |
| srl(dest, scratch2, HeapNumber::kExponentShift); |
| // We now have the exponent in dest. Subtract from 30 to get |
| // how much to shift down. |
| li(at, Operand(30)); |
| subu(dest, at, dest); |
| } |
| bind(&right_exponent); |
| if (CpuFeatures::IsSupported(FPU)) { |
| CpuFeatures::Scope scope(FPU); |
| // MIPS FPU instructions implementing double precision to integer |
| // conversion using round to zero. Since the FP value was qualified |
| // above, the resulting integer should be a legal int32. |
| // The original 'Exponent' word is still in scratch. |
| lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1)); |
| trunc_w_d(double_scratch, double_scratch); |
| mfc1(dest, double_scratch); |
| } else { |
| // On entry, dest has final downshift, scratch has original sign/exp/mant. |
| // Save sign bit in top bit of dest. |
| And(scratch2, scratch, Operand(0x80000000)); |
| Or(dest, dest, Operand(scratch2)); |
| // Put back the implicit 1, just above mantissa field. |
| Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift)); |
| |
| // Shift up the mantissa bits to take up the space the exponent used to |
| // take. We just orred in the implicit bit so that took care of one and |
| // we want to leave the sign bit 0 so we subtract 2 bits from the shift |
| // distance. But we want to clear the sign-bit so shift one more bit |
| // left, then shift right one bit. |
| const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; |
| sll(scratch, scratch, shift_distance + 1); |
| srl(scratch, scratch, 1); |
| |
| // Get the second half of the double. For some exponents we don't |
| // actually need this because the bits get shifted out again, but |
| // it's probably slower to test than just to do it. |
| lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset)); |
| // Extract the top 10 bits, and insert those bottom 10 bits of scratch. |
| // The width of the field here is the same as the shift amount above. |
| const int field_width = shift_distance; |
| Ext(scratch2, scratch2, 32-shift_distance, field_width); |
| Ins(scratch, scratch2, 0, field_width); |
| // Move down according to the exponent. |
| srlv(scratch, scratch, dest); |
| // Prepare the negative version of our integer. |
| subu(scratch2, zero_reg, scratch); |
| // Trick to check sign bit (msb) held in dest, count leading zero. |
| // 0 indicates negative, save negative version with conditional move. |
| Clz(dest, dest); |
| Movz(scratch, scratch2, dest); |
| mov(dest, scratch); |
| } |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::EmitFPUTruncate(FPURoundingMode rounding_mode, |
| FPURegister result, |
| DoubleRegister double_input, |
| Register scratch1, |
| Register except_flag, |
| CheckForInexactConversion check_inexact) { |
| ASSERT(CpuFeatures::IsSupported(FPU)); |
| CpuFeatures::Scope scope(FPU); |
| |
| int32_t except_mask = kFCSRFlagMask; // Assume interested in all exceptions. |
| |
| if (check_inexact == kDontCheckForInexactConversion) { |
| // Ingore inexact exceptions. |
| except_mask &= ~kFCSRInexactFlagMask; |
| } |
| |
| // Save FCSR. |
| cfc1(scratch1, FCSR); |
| // Disable FPU exceptions. |
| ctc1(zero_reg, FCSR); |
| |
| // Do operation based on rounding mode. |
| switch (rounding_mode) { |
| case kRoundToNearest: |
| Round_w_d(result, double_input); |
| break; |
| case kRoundToZero: |
| Trunc_w_d(result, double_input); |
| break; |
| case kRoundToPlusInf: |
| Ceil_w_d(result, double_input); |
| break; |
| case kRoundToMinusInf: |
| Floor_w_d(result, double_input); |
| break; |
| } // End of switch-statement. |
| |
| // Retrieve FCSR. |
| cfc1(except_flag, FCSR); |
| // Restore FCSR. |
| ctc1(scratch1, FCSR); |
| |
| // Check for fpu exceptions. |
| And(except_flag, except_flag, Operand(except_mask)); |
| } |
| |
| |
| void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result, |
| Register input_high, |
| Register input_low, |
| Register scratch) { |
| Label done, normal_exponent, restore_sign; |
| // Extract the biased exponent in result. |
| Ext(result, |
| input_high, |
| HeapNumber::kExponentShift, |
| HeapNumber::kExponentBits); |
| |
| // Check for Infinity and NaNs, which should return 0. |
| Subu(scratch, result, HeapNumber::kExponentMask); |
| Movz(result, zero_reg, scratch); |
| Branch(&done, eq, scratch, Operand(zero_reg)); |
| |
| // Express exponent as delta to (number of mantissa bits + 31). |
| Subu(result, |
| result, |
| Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31)); |
| |
| // If the delta is strictly positive, all bits would be shifted away, |
| // which means that we can return 0. |
| Branch(&normal_exponent, le, result, Operand(zero_reg)); |
| mov(result, zero_reg); |
| Branch(&done); |
| |
| bind(&normal_exponent); |
| const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; |
| // Calculate shift. |
| Addu(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits)); |
| |
| // Save the sign. |
| Register sign = result; |
| result = no_reg; |
| And(sign, input_high, Operand(HeapNumber::kSignMask)); |
| |
| // On ARM shifts > 31 bits are valid and will result in zero. On MIPS we need |
| // to check for this specific case. |
| Label high_shift_needed, high_shift_done; |
| Branch(&high_shift_needed, lt, scratch, Operand(32)); |
| mov(input_high, zero_reg); |
| Branch(&high_shift_done); |
| bind(&high_shift_needed); |
| |
| // Set the implicit 1 before the mantissa part in input_high. |
| Or(input_high, |
| input_high, |
| Operand(1 << HeapNumber::kMantissaBitsInTopWord)); |
| // Shift the mantissa bits to the correct position. |
| // We don't need to clear non-mantissa bits as they will be shifted away. |
| // If they weren't, it would mean that the answer is in the 32bit range. |
| sllv(input_high, input_high, scratch); |
| |
| bind(&high_shift_done); |
| |
| // Replace the shifted bits with bits from the lower mantissa word. |
| Label pos_shift, shift_done; |
| li(at, 32); |
| subu(scratch, at, scratch); |
| Branch(&pos_shift, ge, scratch, Operand(zero_reg)); |
| |
| // Negate scratch. |
| Subu(scratch, zero_reg, scratch); |
| sllv(input_low, input_low, scratch); |
| Branch(&shift_done); |
| |
| bind(&pos_shift); |
| srlv(input_low, input_low, scratch); |
| |
| bind(&shift_done); |
| Or(input_high, input_high, Operand(input_low)); |
| // Restore sign if necessary. |
| mov(scratch, sign); |
| result = sign; |
| sign = no_reg; |
| Subu(result, zero_reg, input_high); |
| Movz(result, input_high, scratch); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::EmitECMATruncate(Register result, |
| FPURegister double_input, |
| FPURegister single_scratch, |
| Register scratch, |
| Register scratch2, |
| Register scratch3) { |
| CpuFeatures::Scope scope(FPU); |
| ASSERT(!scratch2.is(result)); |
| ASSERT(!scratch3.is(result)); |
| ASSERT(!scratch3.is(scratch2)); |
| ASSERT(!scratch.is(result) && |
| !scratch.is(scratch2) && |
| !scratch.is(scratch3)); |
| ASSERT(!single_scratch.is(double_input)); |
| |
| Label done; |
| Label manual; |
| |
| // Clear cumulative exception flags and save the FCSR. |
| cfc1(scratch2, FCSR); |
| ctc1(zero_reg, FCSR); |
| // Try a conversion to a signed integer. |
| trunc_w_d(single_scratch, double_input); |
| mfc1(result, single_scratch); |
| // Retrieve and restore the FCSR. |
| cfc1(scratch, FCSR); |
| ctc1(scratch2, FCSR); |
| // Check for overflow and NaNs. |
| And(scratch, |
| scratch, |
| kFCSROverflowFlagMask | kFCSRUnderflowFlagMask | kFCSRInvalidOpFlagMask); |
| // If we had no exceptions we are done. |
| Branch(&done, eq, scratch, Operand(zero_reg)); |
| |
| // Load the double value and perform a manual truncation. |
| Register input_high = scratch2; |
| Register input_low = scratch3; |
| Move(input_low, input_high, double_input); |
| EmitOutOfInt32RangeTruncate(result, |
| input_high, |
| input_low, |
| scratch); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::GetLeastBitsFromSmi(Register dst, |
| Register src, |
| int num_least_bits) { |
| Ext(dst, src, kSmiTagSize, num_least_bits); |
| } |
| |
| |
| void MacroAssembler::GetLeastBitsFromInt32(Register dst, |
| Register src, |
| int num_least_bits) { |
| And(dst, src, Operand((1 << num_least_bits) - 1)); |
| } |
| |
| |
| // Emulated condtional branches do not emit a nop in the branch delay slot. |
| // |
| // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. |
| #define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT( \ |
| (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \ |
| (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg)))) |
| |
| |
| void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) { |
| BranchShort(offset, bdslot); |
| } |
| |
| |
| void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot) { |
| BranchShort(offset, cond, rs, rt, bdslot); |
| } |
| |
| |
| void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) { |
| if (L->is_bound()) { |
| if (is_near(L)) { |
| BranchShort(L, bdslot); |
| } else { |
| Jr(L, bdslot); |
| } |
| } else { |
| if (is_trampoline_emitted()) { |
| Jr(L, bdslot); |
| } else { |
| BranchShort(L, bdslot); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Branch(Label* L, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot) { |
| if (L->is_bound()) { |
| if (is_near(L)) { |
| BranchShort(L, cond, rs, rt, bdslot); |
| } else { |
| Label skip; |
| Condition neg_cond = NegateCondition(cond); |
| BranchShort(&skip, neg_cond, rs, rt); |
| Jr(L, bdslot); |
| bind(&skip); |
| } |
| } else { |
| if (is_trampoline_emitted()) { |
| Label skip; |
| Condition neg_cond = NegateCondition(cond); |
| BranchShort(&skip, neg_cond, rs, rt); |
| Jr(L, bdslot); |
| bind(&skip); |
| } else { |
| BranchShort(L, cond, rs, rt, bdslot); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::Branch(Label* L, |
| Condition cond, |
| Register rs, |
| Heap::RootListIndex index, |
| BranchDelaySlot bdslot) { |
| LoadRoot(at, index); |
| Branch(L, cond, rs, Operand(at), bdslot); |
| } |
| |
| |
| void MacroAssembler::BranchShort(int16_t offset, BranchDelaySlot bdslot) { |
| b(offset); |
| |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::BranchShort(int16_t offset, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot) { |
| BRANCH_ARGS_CHECK(cond, rs, rt); |
| ASSERT(!rs.is(zero_reg)); |
| Register r2 = no_reg; |
| Register scratch = at; |
| |
| if (rt.is_reg()) { |
| // NOTE: 'at' can be clobbered by Branch but it is legal to use it as rs or |
| // rt. |
| r2 = rt.rm_; |
| switch (cond) { |
| case cc_always: |
| b(offset); |
| break; |
| case eq: |
| beq(rs, r2, offset); |
| break; |
| case ne: |
| bne(rs, r2, offset); |
| break; |
| // Signed comparison. |
| case greater: |
| if (r2.is(zero_reg)) { |
| bgtz(rs, offset); |
| } else { |
| slt(scratch, r2, rs); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case greater_equal: |
| if (r2.is(zero_reg)) { |
| bgez(rs, offset); |
| } else { |
| slt(scratch, rs, r2); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case less: |
| if (r2.is(zero_reg)) { |
| bltz(rs, offset); |
| } else { |
| slt(scratch, rs, r2); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case less_equal: |
| if (r2.is(zero_reg)) { |
| blez(rs, offset); |
| } else { |
| slt(scratch, r2, rs); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| // Unsigned comparison. |
| case Ugreater: |
| if (r2.is(zero_reg)) { |
| bgtz(rs, offset); |
| } else { |
| sltu(scratch, r2, rs); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Ugreater_equal: |
| if (r2.is(zero_reg)) { |
| bgez(rs, offset); |
| } else { |
| sltu(scratch, rs, r2); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless: |
| if (r2.is(zero_reg)) { |
| // No code needs to be emitted. |
| return; |
| } else { |
| sltu(scratch, rs, r2); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless_equal: |
| if (r2.is(zero_reg)) { |
| b(offset); |
| } else { |
| sltu(scratch, r2, rs); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| // Be careful to always use shifted_branch_offset only just before the |
| // branch instruction, as the location will be remember for patching the |
| // target. |
| switch (cond) { |
| case cc_always: |
| b(offset); |
| break; |
| case eq: |
| // We don't want any other register but scratch clobbered. |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| beq(rs, r2, offset); |
| break; |
| case ne: |
| // We don't want any other register but scratch clobbered. |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| bne(rs, r2, offset); |
| break; |
| // Signed comparison. |
| case greater: |
| if (rt.imm32_ == 0) { |
| bgtz(rs, offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, r2, rs); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case greater_equal: |
| if (rt.imm32_ == 0) { |
| bgez(rs, offset); |
| } else if (is_int16(rt.imm32_)) { |
| slti(scratch, rs, rt.imm32_); |
| beq(scratch, zero_reg, offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, rs, r2); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case less: |
| if (rt.imm32_ == 0) { |
| bltz(rs, offset); |
| } else if (is_int16(rt.imm32_)) { |
| slti(scratch, rs, rt.imm32_); |
| bne(scratch, zero_reg, offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, rs, r2); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case less_equal: |
| if (rt.imm32_ == 0) { |
| blez(rs, offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, r2, rs); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| // Unsigned comparison. |
| case Ugreater: |
| if (rt.imm32_ == 0) { |
| bgtz(rs, offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, r2, rs); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Ugreater_equal: |
| if (rt.imm32_ == 0) { |
| bgez(rs, offset); |
| } else if (is_int16(rt.imm32_)) { |
| sltiu(scratch, rs, rt.imm32_); |
| beq(scratch, zero_reg, offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, rs, r2); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless: |
| if (rt.imm32_ == 0) { |
| // No code needs to be emitted. |
| return; |
| } else if (is_int16(rt.imm32_)) { |
| sltiu(scratch, rs, rt.imm32_); |
| bne(scratch, zero_reg, offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, rs, r2); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless_equal: |
| if (rt.imm32_ == 0) { |
| b(offset); |
| } else { |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, r2, rs); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::BranchShort(Label* L, BranchDelaySlot bdslot) { |
| // We use branch_offset as an argument for the branch instructions to be sure |
| // it is called just before generating the branch instruction, as needed. |
| |
| b(shifted_branch_offset(L, false)); |
| |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::BranchShort(Label* L, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot) { |
| BRANCH_ARGS_CHECK(cond, rs, rt); |
| |
| int32_t offset; |
| Register r2 = no_reg; |
| Register scratch = at; |
| if (rt.is_reg()) { |
| r2 = rt.rm_; |
| // Be careful to always use shifted_branch_offset only just before the |
| // branch instruction, as the location will be remember for patching the |
| // target. |
| switch (cond) { |
| case cc_always: |
| offset = shifted_branch_offset(L, false); |
| b(offset); |
| break; |
| case eq: |
| offset = shifted_branch_offset(L, false); |
| beq(rs, r2, offset); |
| break; |
| case ne: |
| offset = shifted_branch_offset(L, false); |
| bne(rs, r2, offset); |
| break; |
| // Signed comparison. |
| case greater: |
| if (r2.is(zero_reg)) { |
| offset = shifted_branch_offset(L, false); |
| bgtz(rs, offset); |
| } else { |
| slt(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case greater_equal: |
| if (r2.is(zero_reg)) { |
| offset = shifted_branch_offset(L, false); |
| bgez(rs, offset); |
| } else { |
| slt(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case less: |
| if (r2.is(zero_reg)) { |
| offset = shifted_branch_offset(L, false); |
| bltz(rs, offset); |
| } else { |
| slt(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case less_equal: |
| if (r2.is(zero_reg)) { |
| offset = shifted_branch_offset(L, false); |
| blez(rs, offset); |
| } else { |
| slt(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| // Unsigned comparison. |
| case Ugreater: |
| if (r2.is(zero_reg)) { |
| offset = shifted_branch_offset(L, false); |
| bgtz(rs, offset); |
| } else { |
| sltu(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Ugreater_equal: |
| if (r2.is(zero_reg)) { |
| offset = shifted_branch_offset(L, false); |
| bgez(rs, offset); |
| } else { |
| sltu(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless: |
| if (r2.is(zero_reg)) { |
| // No code needs to be emitted. |
| return; |
| } else { |
| sltu(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless_equal: |
| if (r2.is(zero_reg)) { |
| offset = shifted_branch_offset(L, false); |
| b(offset); |
| } else { |
| sltu(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } else { |
| // Be careful to always use shifted_branch_offset only just before the |
| // branch instruction, as the location will be remember for patching the |
| // target. |
| switch (cond) { |
| case cc_always: |
| offset = shifted_branch_offset(L, false); |
| b(offset); |
| break; |
| case eq: |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| offset = shifted_branch_offset(L, false); |
| beq(rs, r2, offset); |
| break; |
| case ne: |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| offset = shifted_branch_offset(L, false); |
| bne(rs, r2, offset); |
| break; |
| // Signed comparison. |
| case greater: |
| if (rt.imm32_ == 0) { |
| offset = shifted_branch_offset(L, false); |
| bgtz(rs, offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case greater_equal: |
| if (rt.imm32_ == 0) { |
| offset = shifted_branch_offset(L, false); |
| bgez(rs, offset); |
| } else if (is_int16(rt.imm32_)) { |
| slti(scratch, rs, rt.imm32_); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case less: |
| if (rt.imm32_ == 0) { |
| offset = shifted_branch_offset(L, false); |
| bltz(rs, offset); |
| } else if (is_int16(rt.imm32_)) { |
| slti(scratch, rs, rt.imm32_); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case less_equal: |
| if (rt.imm32_ == 0) { |
| offset = shifted_branch_offset(L, false); |
| blez(rs, offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| slt(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| // Unsigned comparison. |
| case Ugreater: |
| if (rt.imm32_ == 0) { |
| offset = shifted_branch_offset(L, false); |
| bgtz(rs, offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Ugreater_equal: |
| if (rt.imm32_ == 0) { |
| offset = shifted_branch_offset(L, false); |
| bgez(rs, offset); |
| } else if (is_int16(rt.imm32_)) { |
| sltiu(scratch, rs, rt.imm32_); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless: |
| if (rt.imm32_ == 0) { |
| // No code needs to be emitted. |
| return; |
| } else if (is_int16(rt.imm32_)) { |
| sltiu(scratch, rs, rt.imm32_); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, rs, r2); |
| offset = shifted_branch_offset(L, false); |
| bne(scratch, zero_reg, offset); |
| } |
| break; |
| case Uless_equal: |
| if (rt.imm32_ == 0) { |
| offset = shifted_branch_offset(L, false); |
| b(offset); |
| } else { |
| ASSERT(!scratch.is(rs)); |
| r2 = scratch; |
| li(r2, rt); |
| sltu(scratch, r2, rs); |
| offset = shifted_branch_offset(L, false); |
| beq(scratch, zero_reg, offset); |
| } |
| break; |
| default: |
| UNREACHABLE(); |
| } |
| } |
| // Check that offset could actually hold on an int16_t. |
| ASSERT(is_int16(offset)); |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::BranchAndLink(int16_t offset, BranchDelaySlot bdslot) { |
| BranchAndLinkShort(offset, bdslot); |
| } |
| |
| |
| void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot) { |
| BranchAndLinkShort(offset, cond, rs, rt, bdslot); |
| } |
| |
| |
| void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) { |
| if (L->is_bound()) { |
| if (is_near(L)) { |
| BranchAndLinkShort(L, bdslot); |
| } else { |
| Jalr(L, bdslot); |
| } |
| } else { |
| if (is_trampoline_emitted()) { |
| Jalr(L, bdslot); |
| } else { |
| BranchAndLinkShort(L, bdslot); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot) { |
| if (L->is_bound()) { |
| if (is_near(L)) { |
| BranchAndLinkShort(L, cond, rs, rt, bdslot); |
| } else { |
| Label skip; |
| Condition neg_cond = NegateCondition(cond); |
| BranchShort(&skip, neg_cond, rs, rt); |
| Jalr(L, bdslot); |
| bind(&skip); |
| } |
| } else { |
| if (is_trampoline_emitted()) { |
| Label skip; |
| Condition neg_cond = NegateCondition(cond); |
| BranchShort(&skip, neg_cond, rs, rt); |
| Jalr(L, bdslot); |
| bind(&skip); |
| } else { |
| BranchAndLinkShort(L, cond, rs, rt, bdslot); |
| } |
| } |
| } |
| |
| |
| // We need to use a bgezal or bltzal, but they can't be used directly with the |
| // slt instructions. We could use sub or add instead but we would miss overflow |
| // cases, so we keep slt and add an intermediate third instruction. |
| void MacroAssembler::BranchAndLinkShort(int16_t offset, |
| BranchDelaySlot bdslot) { |
| bal(offset); |
| |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::BranchAndLinkShort(int16_t offset, Condition cond, |
| Register rs, const Operand& rt, |
| BranchDelaySlot bdslot) { |
| BRANCH_ARGS_CHECK(cond, rs, rt); |
| Register r2 = no_reg; |
| Register scratch = at; |
| |
| if (rt.is_reg()) { |
| r2 = rt.rm_; |
| } else if (cond != cc_always) { |
| r2 = scratch; |
| li(r2, rt); |
| } |
| |
| switch (cond) { |
| case cc_always: |
| bal(offset); |
| break; |
| case eq: |
| bne(rs, r2, 2); |
| nop(); |
| bal(offset); |
| break; |
| case ne: |
| beq(rs, r2, 2); |
| nop(); |
| bal(offset); |
| break; |
| |
| // Signed comparison. |
| case greater: |
| slt(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| bgezal(scratch, offset); |
| break; |
| case greater_equal: |
| slt(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| bltzal(scratch, offset); |
| break; |
| case less: |
| slt(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| bgezal(scratch, offset); |
| break; |
| case less_equal: |
| slt(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| bltzal(scratch, offset); |
| break; |
| |
| // Unsigned comparison. |
| case Ugreater: |
| sltu(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| bgezal(scratch, offset); |
| break; |
| case Ugreater_equal: |
| sltu(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| bltzal(scratch, offset); |
| break; |
| case Uless: |
| sltu(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| bgezal(scratch, offset); |
| break; |
| case Uless_equal: |
| sltu(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| bltzal(scratch, offset); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::BranchAndLinkShort(Label* L, BranchDelaySlot bdslot) { |
| bal(shifted_branch_offset(L, false)); |
| |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::BranchAndLinkShort(Label* L, Condition cond, Register rs, |
| const Operand& rt, |
| BranchDelaySlot bdslot) { |
| BRANCH_ARGS_CHECK(cond, rs, rt); |
| |
| int32_t offset; |
| Register r2 = no_reg; |
| Register scratch = at; |
| if (rt.is_reg()) { |
| r2 = rt.rm_; |
| } else if (cond != cc_always) { |
| r2 = scratch; |
| li(r2, rt); |
| } |
| |
| switch (cond) { |
| case cc_always: |
| offset = shifted_branch_offset(L, false); |
| bal(offset); |
| break; |
| case eq: |
| bne(rs, r2, 2); |
| nop(); |
| offset = shifted_branch_offset(L, false); |
| bal(offset); |
| break; |
| case ne: |
| beq(rs, r2, 2); |
| nop(); |
| offset = shifted_branch_offset(L, false); |
| bal(offset); |
| break; |
| |
| // Signed comparison. |
| case greater: |
| slt(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bgezal(scratch, offset); |
| break; |
| case greater_equal: |
| slt(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bltzal(scratch, offset); |
| break; |
| case less: |
| slt(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bgezal(scratch, offset); |
| break; |
| case less_equal: |
| slt(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bltzal(scratch, offset); |
| break; |
| |
| // Unsigned comparison. |
| case Ugreater: |
| sltu(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bgezal(scratch, offset); |
| break; |
| case Ugreater_equal: |
| sltu(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bltzal(scratch, offset); |
| break; |
| case Uless: |
| sltu(scratch, rs, r2); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bgezal(scratch, offset); |
| break; |
| case Uless_equal: |
| sltu(scratch, r2, rs); |
| addiu(scratch, scratch, -1); |
| offset = shifted_branch_offset(L, false); |
| bltzal(scratch, offset); |
| break; |
| |
| default: |
| UNREACHABLE(); |
| } |
| |
| // Check that offset could actually hold on an int16_t. |
| ASSERT(is_int16(offset)); |
| |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::Jump(Register target, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| if (cond == cc_always) { |
| jr(target); |
| } else { |
| BRANCH_ARGS_CHECK(cond, rs, rt); |
| Branch(2, NegateCondition(cond), rs, rt); |
| jr(target); |
| } |
| // Emit a nop in the branch delay slot if required. |
| if (bd == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::Jump(intptr_t target, |
| RelocInfo::Mode rmode, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| Label skip; |
| if (cond != cc_always) { |
| Branch(USE_DELAY_SLOT, &skip, NegateCondition(cond), rs, rt); |
| } |
| // The first instruction of 'li' may be placed in the delay slot. |
| // This is not an issue, t9 is expected to be clobbered anyway. |
| li(t9, Operand(target, rmode)); |
| Jump(t9, al, zero_reg, Operand(zero_reg), bd); |
| bind(&skip); |
| } |
| |
| |
| void MacroAssembler::Jump(Address target, |
| RelocInfo::Mode rmode, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| ASSERT(!RelocInfo::IsCodeTarget(rmode)); |
| Jump(reinterpret_cast<intptr_t>(target), rmode, cond, rs, rt, bd); |
| } |
| |
| |
| void MacroAssembler::Jump(Handle<Code> code, |
| RelocInfo::Mode rmode, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| Jump(reinterpret_cast<intptr_t>(code.location()), rmode, cond, rs, rt, bd); |
| } |
| |
| |
| int MacroAssembler::CallSize(Register target, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| int size = 0; |
| |
| if (cond == cc_always) { |
| size += 1; |
| } else { |
| size += 3; |
| } |
| |
| if (bd == PROTECT) |
| size += 1; |
| |
| return size * kInstrSize; |
| } |
| |
| |
| // Note: To call gcc-compiled C code on mips, you must call thru t9. |
| void MacroAssembler::Call(Register target, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| Label start; |
| bind(&start); |
| if (cond == cc_always) { |
| jalr(target); |
| } else { |
| BRANCH_ARGS_CHECK(cond, rs, rt); |
| Branch(2, NegateCondition(cond), rs, rt); |
| jalr(target); |
| } |
| // Emit a nop in the branch delay slot if required. |
| if (bd == PROTECT) |
| nop(); |
| |
| ASSERT_EQ(CallSize(target, cond, rs, rt, bd), |
| SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| |
| int MacroAssembler::CallSize(Address target, |
| RelocInfo::Mode rmode, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| int size = CallSize(t9, cond, rs, rt, bd); |
| return size + 2 * kInstrSize; |
| } |
| |
| |
| void MacroAssembler::Call(Address target, |
| RelocInfo::Mode rmode, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| Label start; |
| bind(&start); |
| int32_t target_int = reinterpret_cast<int32_t>(target); |
| // Must record previous source positions before the |
| // li() generates a new code target. |
| positions_recorder()->WriteRecordedPositions(); |
| li(t9, Operand(target_int, rmode), CONSTANT_SIZE); |
| Call(t9, cond, rs, rt, bd); |
| ASSERT_EQ(CallSize(target, rmode, cond, rs, rt, bd), |
| SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| |
| int MacroAssembler::CallSize(Handle<Code> code, |
| RelocInfo::Mode rmode, |
| unsigned ast_id, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| return CallSize(reinterpret_cast<Address>(code.location()), |
| rmode, cond, rs, rt, bd); |
| } |
| |
| |
| void MacroAssembler::Call(Handle<Code> code, |
| RelocInfo::Mode rmode, |
| unsigned ast_id, |
| Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| Label start; |
| bind(&start); |
| ASSERT(RelocInfo::IsCodeTarget(rmode)); |
| if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) { |
| SetRecordedAstId(ast_id); |
| rmode = RelocInfo::CODE_TARGET_WITH_ID; |
| } |
| Call(reinterpret_cast<Address>(code.location()), rmode, cond, rs, rt, bd); |
| ASSERT_EQ(CallSize(code, rmode, ast_id, cond, rs, rt, bd), |
| SizeOfCodeGeneratedSince(&start)); |
| } |
| |
| |
| void MacroAssembler::Ret(Condition cond, |
| Register rs, |
| const Operand& rt, |
| BranchDelaySlot bd) { |
| Jump(ra, cond, rs, rt, bd); |
| } |
| |
| |
| void MacroAssembler::J(Label* L, BranchDelaySlot bdslot) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| |
| uint32_t imm28; |
| imm28 = jump_address(L); |
| imm28 &= kImm28Mask; |
| { BlockGrowBufferScope block_buf_growth(this); |
| // Buffer growth (and relocation) must be blocked for internal references |
| // until associated instructions are emitted and available to be patched. |
| RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| j(imm28); |
| } |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::Jr(Label* L, BranchDelaySlot bdslot) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| |
| uint32_t imm32; |
| imm32 = jump_address(L); |
| { BlockGrowBufferScope block_buf_growth(this); |
| // Buffer growth (and relocation) must be blocked for internal references |
| // until associated instructions are emitted and available to be patched. |
| RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| lui(at, (imm32 & kHiMask) >> kLuiShift); |
| ori(at, at, (imm32 & kImm16Mask)); |
| } |
| jr(at); |
| |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| |
| void MacroAssembler::Jalr(Label* L, BranchDelaySlot bdslot) { |
| BlockTrampolinePoolScope block_trampoline_pool(this); |
| |
| uint32_t imm32; |
| imm32 = jump_address(L); |
| { BlockGrowBufferScope block_buf_growth(this); |
| // Buffer growth (and relocation) must be blocked for internal references |
| // until associated instructions are emitted and available to be patched. |
| RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE); |
| lui(at, (imm32 & kHiMask) >> kLuiShift); |
| ori(at, at, (imm32 & kImm16Mask)); |
| } |
| jalr(at); |
| |
| // Emit a nop in the branch delay slot if required. |
| if (bdslot == PROTECT) |
| nop(); |
| } |
| |
| void MacroAssembler::DropAndRet(int drop) { |
| Ret(USE_DELAY_SLOT); |
| addiu(sp, sp, drop * kPointerSize); |
| } |
| |
| void MacroAssembler::DropAndRet(int drop, |
| Condition cond, |
| Register r1, |
| const Operand& r2) { |
| // Both Drop and Ret need to be conditional. |
| Label skip; |
| if (cond != cc_always) { |
| Branch(&skip, NegateCondition(cond), r1, r2); |
| } |
| |
| Drop(drop); |
| Ret(); |
| |
| if (cond != cc_always) { |
| bind(&skip); |
| } |
| } |
| |
| |
| void MacroAssembler::Drop(int count, |
| Condition cond, |
| Register reg, |
| const Operand& op) { |
| if (count <= 0) { |
| return; |
| } |
| |
| Label skip; |
| |
| if (cond != al) { |
| Branch(&skip, NegateCondition(cond), reg, op); |
| } |
| |
| addiu(sp, sp, count * kPointerSize); |
| |
| if (cond != al) { |
| bind(&skip); |
| } |
| } |
| |
| |
| |
| void MacroAssembler::Swap(Register reg1, |
| Register reg2, |
| Register scratch) { |
| if (scratch.is(no_reg)) { |
| Xor(reg1, reg1, Operand(reg2)); |
| Xor(reg2, reg2, Operand(reg1)); |
| Xor(reg1, reg1, Operand(reg2)); |
| } else { |
| mov(scratch, reg1); |
| mov(reg1, reg2); |
| mov(reg2, scratch); |
| } |
| } |
| |
| |
| void MacroAssembler::Call(Label* target) { |
| BranchAndLink(target); |
| } |
| |
| |
| void MacroAssembler::Push(Handle<Object> handle) { |
| li(at, Operand(handle)); |
| push(at); |
| } |
| |
| |
| #ifdef ENABLE_DEBUGGER_SUPPORT |
| |
| void MacroAssembler::DebugBreak() { |
| PrepareCEntryArgs(0); |
| PrepareCEntryFunction(ExternalReference(Runtime::kDebugBreak, isolate())); |
| CEntryStub ces(1); |
| ASSERT(AllowThisStubCall(&ces)); |
| Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); |
| } |
| |
| #endif // ENABLE_DEBUGGER_SUPPORT |
| |
| |
| // --------------------------------------------------------------------------- |
| // Exception handling. |
| |
| void MacroAssembler::PushTryHandler(StackHandler::Kind kind, |
| int handler_index) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // For the JSEntry handler, we must preserve a0-a3 and s0. |
| // t1-t3 are available. We will build up the handler from the bottom by |
| // pushing on the stack. |
| // Set up the code object (t1) and the state (t2) for pushing. |
| unsigned state = |
| StackHandler::IndexField::encode(handler_index) | |
| StackHandler::KindField::encode(kind); |
| li(t1, Operand(CodeObject()), CONSTANT_SIZE); |
| li(t2, Operand(state)); |
| |
| // Push the frame pointer, context, state, and code object. |
| if (kind == StackHandler::JS_ENTRY) { |
| ASSERT_EQ(Smi::FromInt(0), 0); |
| // The second zero_reg indicates no context. |
| // The first zero_reg is the NULL frame pointer. |
| // The operands are reversed to match the order of MultiPush/Pop. |
| Push(zero_reg, zero_reg, t2, t1); |
| } else { |
| MultiPush(t1.bit() | t2.bit() | cp.bit() | fp.bit()); |
| } |
| |
| // Link the current handler as the next handler. |
| li(t2, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
| lw(t1, MemOperand(t2)); |
| push(t1); |
| // Set this new handler as the current one. |
| sw(sp, MemOperand(t2)); |
| } |
| |
| |
| void MacroAssembler::PopTryHandler() { |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| pop(a1); |
| Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); |
| li(at, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
| sw(a1, MemOperand(at)); |
| } |
| |
| |
| void MacroAssembler::JumpToHandlerEntry() { |
| // Compute the handler entry address and jump to it. The handler table is |
| // a fixed array of (smi-tagged) code offsets. |
| // v0 = exception, a1 = code object, a2 = state. |
| lw(a3, FieldMemOperand(a1, Code::kHandlerTableOffset)); // Handler table. |
| Addu(a3, a3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
| srl(a2, a2, StackHandler::kKindWidth); // Handler index. |
| sll(a2, a2, kPointerSizeLog2); |
| Addu(a2, a3, a2); |
| lw(a2, MemOperand(a2)); // Smi-tagged offset. |
| Addu(a1, a1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start. |
| sra(t9, a2, kSmiTagSize); |
| Addu(t9, t9, a1); |
| Jump(t9); // Jump. |
| } |
| |
| |
| void MacroAssembler::Throw(Register value) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // The exception is expected in v0. |
| Move(v0, value); |
| |
| // Drop the stack pointer to the top of the top handler. |
| li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, |
| isolate()))); |
| lw(sp, MemOperand(a3)); |
| |
| // Restore the next handler. |
| pop(a2); |
| sw(a2, MemOperand(a3)); |
| |
| // Get the code object (a1) and state (a2). Restore the context and frame |
| // pointer. |
| MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); |
| |
| // If the handler is a JS frame, restore the context to the frame. |
| // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp |
| // or cp. |
| Label done; |
| Branch(&done, eq, cp, Operand(zero_reg)); |
| sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); |
| bind(&done); |
| |
| JumpToHandlerEntry(); |
| } |
| |
| |
| void MacroAssembler::ThrowUncatchable(Register value) { |
| // Adjust this code if not the case. |
| STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); |
| STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); |
| |
| // The exception is expected in v0. |
| if (!value.is(v0)) { |
| mov(v0, value); |
| } |
| // Drop the stack pointer to the top of the top stack handler. |
| li(a3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); |
| lw(sp, MemOperand(a3)); |
| |
| // Unwind the handlers until the ENTRY handler is found. |
| Label fetch_next, check_kind; |
| jmp(&check_kind); |
| bind(&fetch_next); |
| lw(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); |
| |
| bind(&check_kind); |
| STATIC_ASSERT(StackHandler::JS_ENTRY == 0); |
| lw(a2, MemOperand(sp, StackHandlerConstants::kStateOffset)); |
| And(a2, a2, Operand(StackHandler::KindField::kMask)); |
| Branch(&fetch_next, ne, a2, Operand(zero_reg)); |
| |
| // Set the top handler address to next handler past the top ENTRY handler. |
| pop(a2); |
| sw(a2, MemOperand(a3)); |
| |
| // Get the code object (a1) and state (a2). Clear the context and frame |
| // pointer (0 was saved in the handler). |
| MultiPop(a1.bit() | a2.bit() | cp.bit() | fp.bit()); |
| |
| JumpToHandlerEntry(); |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(int object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| li(result, 0x7091); |
| li(scratch1, 0x7191); |
| li(scratch2, 0x7291); |
| } |
| jmp(gc_required); |
| return; |
| } |
| |
| ASSERT(!result.is(scratch1)); |
| ASSERT(!result.is(scratch2)); |
| ASSERT(!scratch1.is(scratch2)); |
| ASSERT(!scratch1.is(t9)); |
| ASSERT(!scratch2.is(t9)); |
| ASSERT(!result.is(t9)); |
| |
| // Make object size into bytes. |
| if ((flags & SIZE_IN_WORDS) != 0) { |
| object_size *= kPointerSize; |
| } |
| ASSERT_EQ(0, object_size & kObjectAlignmentMask); |
| |
| // Check relative positions of allocation top and limit addresses. |
| // ARM adds additional checks to make sure the ldm instruction can be |
| // used. On MIPS we don't have ldm so we don't need additional checks either. |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| intptr_t top = |
| reinterpret_cast<intptr_t>(new_space_allocation_top.address()); |
| intptr_t limit = |
| reinterpret_cast<intptr_t>(new_space_allocation_limit.address()); |
| ASSERT((limit - top) == kPointerSize); |
| |
| // Set up allocation top address and object size registers. |
| Register topaddr = scratch1; |
| Register obj_size_reg = scratch2; |
| li(topaddr, Operand(new_space_allocation_top)); |
| li(obj_size_reg, Operand(object_size)); |
| |
| // This code stores a temporary value in t9. |
| if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| // Load allocation top into result and allocation limit into t9. |
| lw(result, MemOperand(topaddr)); |
| lw(t9, MemOperand(topaddr, kPointerSize)); |
| } else { |
| if (emit_debug_code()) { |
| // Assert that result actually contains top on entry. t9 is used |
| // immediately below so this use of t9 does not cause difference with |
| // respect to register content between debug and release mode. |
| lw(t9, MemOperand(topaddr)); |
| Check(eq, "Unexpected allocation top", result, Operand(t9)); |
| } |
| // Load allocation limit into t9. Result already contains allocation top. |
| lw(t9, MemOperand(topaddr, limit - top)); |
| } |
| |
| // Calculate new top and bail out if new space is exhausted. Use result |
| // to calculate the new top. |
| Addu(scratch2, result, Operand(obj_size_reg)); |
| Branch(gc_required, Ugreater, scratch2, Operand(t9)); |
| sw(scratch2, MemOperand(topaddr)); |
| |
| // Tag object if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| Addu(result, result, Operand(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::AllocateInNewSpace(Register object_size, |
| Register result, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required, |
| AllocationFlags flags) { |
| if (!FLAG_inline_new) { |
| if (emit_debug_code()) { |
| // Trash the registers to simulate an allocation failure. |
| li(result, 0x7091); |
| li(scratch1, 0x7191); |
| li(scratch2, 0x7291); |
| } |
| jmp(gc_required); |
| return; |
| } |
| |
| ASSERT(!result.is(scratch1)); |
| ASSERT(!result.is(scratch2)); |
| ASSERT(!scratch1.is(scratch2)); |
| ASSERT(!object_size.is(t9)); |
| ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9)); |
| |
| // Check relative positions of allocation top and limit addresses. |
| // ARM adds additional checks to make sure the ldm instruction can be |
| // used. On MIPS we don't have ldm so we don't need additional checks either. |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| ExternalReference new_space_allocation_limit = |
| ExternalReference::new_space_allocation_limit_address(isolate()); |
| intptr_t top = |
| reinterpret_cast<intptr_t>(new_space_allocation_top.address()); |
| intptr_t limit = |
| reinterpret_cast<intptr_t>(new_space_allocation_limit.address()); |
| ASSERT((limit - top) == kPointerSize); |
| |
| // Set up allocation top address and object size registers. |
| Register topaddr = scratch1; |
| li(topaddr, Operand(new_space_allocation_top)); |
| |
| // This code stores a temporary value in t9. |
| if ((flags & RESULT_CONTAINS_TOP) == 0) { |
| // Load allocation top into result and allocation limit into t9. |
| lw(result, MemOperand(topaddr)); |
| lw(t9, MemOperand(topaddr, kPointerSize)); |
| } else { |
| if (emit_debug_code()) { |
| // Assert that result actually contains top on entry. t9 is used |
| // immediately below so this use of t9 does not cause difference with |
| // respect to register content between debug and release mode. |
| lw(t9, MemOperand(topaddr)); |
| Check(eq, "Unexpected allocation top", result, Operand(t9)); |
| } |
| // Load allocation limit into t9. Result already contains allocation top. |
| lw(t9, MemOperand(topaddr, limit - top)); |
| } |
| |
| // Calculate new top and bail out if new space is exhausted. Use result |
| // to calculate the new top. Object size may be in words so a shift is |
| // required to get the number of bytes. |
| if ((flags & SIZE_IN_WORDS) != 0) { |
| sll(scratch2, object_size, kPointerSizeLog2); |
| Addu(scratch2, result, scratch2); |
| } else { |
| Addu(scratch2, result, Operand(object_size)); |
| } |
| Branch(gc_required, Ugreater, scratch2, Operand(t9)); |
| |
| // Update allocation top. result temporarily holds the new top. |
| if (emit_debug_code()) { |
| And(t9, scratch2, Operand(kObjectAlignmentMask)); |
| Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg)); |
| } |
| sw(scratch2, MemOperand(topaddr)); |
| |
| // Tag object if requested. |
| if ((flags & TAG_OBJECT) != 0) { |
| Addu(result, result, Operand(kHeapObjectTag)); |
| } |
| } |
| |
| |
| void MacroAssembler::UndoAllocationInNewSpace(Register object, |
| Register scratch) { |
| ExternalReference new_space_allocation_top = |
| ExternalReference::new_space_allocation_top_address(isolate()); |
| |
| // Make sure the object has no tag before resetting top. |
| And(object, object, Operand(~kHeapObjectTagMask)); |
| #ifdef DEBUG |
| // Check that the object un-allocated is below the current top. |
| li(scratch, Operand(new_space_allocation_top)); |
| lw(scratch, MemOperand(scratch)); |
| Check(less, "Undo allocation of non allocated memory", |
| object, Operand(scratch)); |
| #endif |
| // Write the address of the object to un-allocate as the current top. |
| li(scratch, Operand(new_space_allocation_top)); |
| sw(object, MemOperand(scratch)); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string while |
| // observing object alignment. |
| ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
| sll(scratch1, length, 1); // Length in bytes, not chars. |
| addiu(scratch1, scratch1, |
| kObjectAlignmentMask + SeqTwoByteString::kHeaderSize); |
| And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); |
| |
| // Allocate two-byte string in new space. |
| AllocateInNewSpace(scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| InitializeNewString(result, |
| length, |
| Heap::kStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Label* gc_required) { |
| // Calculate the number of bytes needed for the characters in the string |
| // while observing object alignment. |
| ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); |
| ASSERT(kCharSize == 1); |
| addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize); |
| And(scratch1, scratch1, Operand(~kObjectAlignmentMask)); |
| |
| // Allocate ASCII string in new space. |
| AllocateInNewSpace(scratch1, |
| result, |
| scratch2, |
| scratch3, |
| gc_required, |
| TAG_OBJECT); |
| |
| // Set the map, length and hash field. |
| InitializeNewString(result, |
| length, |
| Heap::kAsciiStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| InitializeNewString(result, |
| length, |
| Heap::kConsStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiConsString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(ConsString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| InitializeNewString(result, |
| length, |
| Heap::kConsAsciiStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateTwoByteSlicedString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(SlicedString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| InitializeNewString(result, |
| length, |
| Heap::kSlicedStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| void MacroAssembler::AllocateAsciiSlicedString(Register result, |
| Register length, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| AllocateInNewSpace(SlicedString::kSize, |
| result, |
| scratch1, |
| scratch2, |
| gc_required, |
| TAG_OBJECT); |
| |
| InitializeNewString(result, |
| length, |
| Heap::kSlicedAsciiStringMapRootIndex, |
| scratch1, |
| scratch2); |
| } |
| |
| |
| // Allocates a heap number or jumps to the label if the young space is full and |
| // a scavenge is needed. |
| void MacroAssembler::AllocateHeapNumber(Register result, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* need_gc) { |
| // Allocate an object in the heap for the heap number and tag it as a heap |
| // object. |
| AllocateInNewSpace(HeapNumber::kSize, |
| result, |
| scratch1, |
| scratch2, |
| need_gc, |
| TAG_OBJECT); |
| |
| // Store heap number map in the allocated object. |
| AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); |
| } |
| |
| |
| void MacroAssembler::AllocateHeapNumberWithValue(Register result, |
| FPURegister value, |
| Register scratch1, |
| Register scratch2, |
| Label* gc_required) { |
| LoadRoot(t8, Heap::kHeapNumberMapRootIndex); |
| AllocateHeapNumber(result, scratch1, scratch2, t8, gc_required); |
| sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset)); |
| } |
| |
| |
| // Copies a fixed number of fields of heap objects from src to dst. |
| void MacroAssembler::CopyFields(Register dst, |
| Register src, |
| RegList temps, |
| int field_count) { |
| ASSERT((temps & dst.bit()) == 0); |
| ASSERT((temps & src.bit()) == 0); |
| // Primitive implementation using only one temporary register. |
| |
| Register tmp = no_reg; |
| // Find a temp register in temps list. |
| for (int i = 0; i < kNumRegisters; i++) { |
| if ((temps & (1 << i)) != 0) { |
| tmp.code_ = i; |
| break; |
| } |
| } |
| ASSERT(!tmp.is(no_reg)); |
| |
| for (int i = 0; i < field_count; i++) { |
| lw(tmp, FieldMemOperand(src, i * kPointerSize)); |
| sw(tmp, FieldMemOperand(dst, i * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::CopyBytes(Register src, |
| Register dst, |
| Register length, |
| Register scratch) { |
| Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done; |
| |
| // Align src before copying in word size chunks. |
| bind(&align_loop); |
| Branch(&done, eq, length, Operand(zero_reg)); |
| bind(&align_loop_1); |
| And(scratch, src, kPointerSize - 1); |
| Branch(&word_loop, eq, scratch, Operand(zero_reg)); |
| lbu(scratch, MemOperand(src)); |
| Addu(src, src, 1); |
| sb(scratch, MemOperand(dst)); |
| Addu(dst, dst, 1); |
| Subu(length, length, Operand(1)); |
| Branch(&byte_loop_1, ne, length, Operand(zero_reg)); |
| |
| // Copy bytes in word size chunks. |
| bind(&word_loop); |
| if (emit_debug_code()) { |
| And(scratch, src, kPointerSize - 1); |
| Assert(eq, "Expecting alignment for CopyBytes", |
| scratch, Operand(zero_reg)); |
| } |
| Branch(&byte_loop, lt, length, Operand(kPointerSize)); |
| lw(scratch, MemOperand(src)); |
| Addu(src, src, kPointerSize); |
| |
| // TODO(kalmard) check if this can be optimized to use sw in most cases. |
| // Can't use unaligned access - copy byte by byte. |
| sb(scratch, MemOperand(dst, 0)); |
| srl(scratch, scratch, 8); |
| sb(scratch, MemOperand(dst, 1)); |
| srl(scratch, scratch, 8); |
| sb(scratch, MemOperand(dst, 2)); |
| srl(scratch, scratch, 8); |
| sb(scratch, MemOperand(dst, 3)); |
| Addu(dst, dst, 4); |
| |
| Subu(length, length, Operand(kPointerSize)); |
| Branch(&word_loop); |
| |
| // Copy the last bytes if any left. |
| bind(&byte_loop); |
| Branch(&done, eq, length, Operand(zero_reg)); |
| bind(&byte_loop_1); |
| lbu(scratch, MemOperand(src)); |
| Addu(src, src, 1); |
| sb(scratch, MemOperand(dst)); |
| Addu(dst, dst, 1); |
| Subu(length, length, Operand(1)); |
| Branch(&byte_loop_1, ne, length, Operand(zero_reg)); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, |
| Register end_offset, |
| Register filler) { |
| Label loop, entry; |
| Branch(&entry); |
| bind(&loop); |
| sw(filler, MemOperand(start_offset)); |
| Addu(start_offset, start_offset, kPointerSize); |
| bind(&entry); |
| Branch(&loop, lt, start_offset, Operand(end_offset)); |
| } |
| |
| |
| void MacroAssembler::CheckFastElements(Register map, |
| Register scratch, |
| Label* fail) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| STATIC_ASSERT(FAST_ELEMENTS == 1); |
| lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
| Branch(fail, hi, scratch, Operand(Map::kMaximumBitField2FastElementValue)); |
| } |
| |
| |
| void MacroAssembler::CheckFastObjectElements(Register map, |
| Register scratch, |
| Label* fail) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| STATIC_ASSERT(FAST_ELEMENTS == 1); |
| lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
| Branch(fail, ls, scratch, |
| Operand(Map::kMaximumBitField2FastSmiOnlyElementValue)); |
| Branch(fail, hi, scratch, |
| Operand(Map::kMaximumBitField2FastElementValue)); |
| } |
| |
| |
| void MacroAssembler::CheckFastSmiOnlyElements(Register map, |
| Register scratch, |
| Label* fail) { |
| STATIC_ASSERT(FAST_SMI_ONLY_ELEMENTS == 0); |
| lbu(scratch, FieldMemOperand(map, Map::kBitField2Offset)); |
| Branch(fail, hi, scratch, |
| Operand(Map::kMaximumBitField2FastSmiOnlyElementValue)); |
| } |
| |
| |
| void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, |
| Register key_reg, |
| Register receiver_reg, |
| Register elements_reg, |
| Register scratch1, |
| Register scratch2, |
| Register scratch3, |
| Register scratch4, |
| Label* fail) { |
| Label smi_value, maybe_nan, have_double_value, is_nan, done; |
| Register mantissa_reg = scratch2; |
| Register exponent_reg = scratch3; |
| |
| // Handle smi values specially. |
| JumpIfSmi(value_reg, &smi_value); |
| |
| // Ensure that the object is a heap number |
| CheckMap(value_reg, |
| scratch1, |
| Heap::kHeapNumberMapRootIndex, |
| fail, |
| DONT_DO_SMI_CHECK); |
| |
| // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 |
| // in the exponent. |
| li(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32)); |
| lw(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); |
| Branch(&maybe_nan, ge, exponent_reg, Operand(scratch1)); |
| |
| lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); |
| |
| bind(&have_double_value); |
| sll(scratch1, key_reg, kDoubleSizeLog2 - kSmiTagSize); |
| Addu(scratch1, scratch1, elements_reg); |
| sw(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize)); |
| uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); |
| sw(exponent_reg, FieldMemOperand(scratch1, offset)); |
| jmp(&done); |
| |
| bind(&maybe_nan); |
| // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise |
| // it's an Infinity, and the non-NaN code path applies. |
| Branch(&is_nan, gt, exponent_reg, Operand(scratch1)); |
| lw(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); |
| Branch(&have_double_value, eq, mantissa_reg, Operand(zero_reg)); |
| bind(&is_nan); |
| // Load canonical NaN for storing into the double array. |
| uint64_t nan_int64 = BitCast<uint64_t>( |
| FixedDoubleArray::canonical_not_the_hole_nan_as_double()); |
| li(mantissa_reg, Operand(static_cast<uint32_t>(nan_int64))); |
| li(exponent_reg, Operand(static_cast<uint32_t>(nan_int64 >> 32))); |
| jmp(&have_double_value); |
| |
| bind(&smi_value); |
| Addu(scratch1, elements_reg, |
| Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); |
| sll(scratch2, key_reg, kDoubleSizeLog2 - kSmiTagSize); |
| Addu(scratch1, scratch1, scratch2); |
| // scratch1 is now effective address of the double element |
| |
| FloatingPointHelper::Destination destination; |
| if (CpuFeatures::IsSupported(FPU)) { |
| destination = FloatingPointHelper::kFPURegisters; |
| } else { |
| destination = FloatingPointHelper::kCoreRegisters; |
| } |
| |
| Register untagged_value = receiver_reg; |
| SmiUntag(untagged_value, value_reg); |
| FloatingPointHelper::ConvertIntToDouble(this, |
| untagged_value, |
| destination, |
| f0, |
| mantissa_reg, |
| exponent_reg, |
| scratch4, |
| f2); |
| if (destination == FloatingPointHelper::kFPURegisters) { |
| CpuFeatures::Scope scope(FPU); |
| sdc1(f0, MemOperand(scratch1, 0)); |
| } else { |
| sw(mantissa_reg, MemOperand(scratch1, 0)); |
| sw(exponent_reg, MemOperand(scratch1, Register::kSizeInBytes)); |
| } |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::CompareMapAndBranch(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* early_success, |
| Condition cond, |
| Label* branch_to, |
| CompareMapMode mode) { |
| lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| Operand right = Operand(map); |
| if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) { |
| Map* transitioned_fast_element_map( |
| map->LookupElementsTransitionMap(FAST_ELEMENTS, NULL)); |
| ASSERT(transitioned_fast_element_map == NULL || |
| map->elements_kind() != FAST_ELEMENTS); |
| if (transitioned_fast_element_map != NULL) { |
| Branch(early_success, eq, scratch, right); |
| right = Operand(Handle<Map>(transitioned_fast_element_map)); |
| } |
| |
| Map* transitioned_double_map( |
| map->LookupElementsTransitionMap(FAST_DOUBLE_ELEMENTS, NULL)); |
| ASSERT(transitioned_double_map == NULL || |
| map->elements_kind() == FAST_SMI_ONLY_ELEMENTS); |
| if (transitioned_double_map != NULL) { |
| Branch(early_success, eq, scratch, right); |
| right = Operand(Handle<Map>(transitioned_double_map)); |
| } |
| } |
| |
| Branch(branch_to, cond, scratch, right); |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Label* fail, |
| SmiCheckType smi_check_type, |
| CompareMapMode mode) { |
| if (smi_check_type == DO_SMI_CHECK) { |
| JumpIfSmi(obj, fail); |
| } |
| Label success; |
| CompareMapAndBranch(obj, scratch, map, &success, ne, fail, mode); |
| bind(&success); |
| } |
| |
| |
| void MacroAssembler::DispatchMap(Register obj, |
| Register scratch, |
| Handle<Map> map, |
| Handle<Code> success, |
| SmiCheckType smi_check_type) { |
| Label fail; |
| if (smi_check_type == DO_SMI_CHECK) { |
| JumpIfSmi(obj, &fail); |
| } |
| lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| Jump(success, RelocInfo::CODE_TARGET, eq, scratch, Operand(map)); |
| bind(&fail); |
| } |
| |
| |
| void MacroAssembler::CheckMap(Register obj, |
| Register scratch, |
| Heap::RootListIndex index, |
| Label* fail, |
| SmiCheckType smi_check_type) { |
| if (smi_check_type == DO_SMI_CHECK) { |
| JumpIfSmi(obj, fail); |
| } |
| lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); |
| LoadRoot(at, index); |
| Branch(fail, ne, scratch, Operand(at)); |
| } |
| |
| |
| void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) { |
| CpuFeatures::Scope scope(FPU); |
| if (IsMipsSoftFloatABI) { |
| Move(dst, v0, v1); |
| } else { |
| Move(dst, f0); // Reg f0 is o32 ABI FP return value. |
| } |
| } |
| |
| |
| void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) { |
| CpuFeatures::Scope scope(FPU); |
| if (!IsMipsSoftFloatABI) { |
| Move(f12, dreg); |
| } else { |
| Move(a0, a1, dreg); |
| } |
| } |
| |
| |
| void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1, |
| DoubleRegister dreg2) { |
| CpuFeatures::Scope scope(FPU); |
| if (!IsMipsSoftFloatABI) { |
| if (dreg2.is(f12)) { |
| ASSERT(!dreg1.is(f14)); |
| Move(f14, dreg2); |
| Move(f12, dreg1); |
| } else { |
| Move(f12, dreg1); |
| Move(f14, dreg2); |
| } |
| } else { |
| Move(a0, a1, dreg1); |
| Move(a2, a3, dreg2); |
| } |
| } |
| |
| |
| void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg, |
| Register reg) { |
| CpuFeatures::Scope scope(FPU); |
| if (!IsMipsSoftFloatABI) { |
| Move(f12, dreg); |
| Move(a2, reg); |
| } else { |
| Move(a2, reg); |
| Move(a0, a1, dreg); |
| } |
| } |
| |
| |
| void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { |
| // This macro takes the dst register to make the code more readable |
| // at the call sites. However, the dst register has to be t1 to |
| // follow the calling convention which requires the call type to be |
| // in t1. |
| ASSERT(dst.is(t1)); |
| if (call_kind == CALL_AS_FUNCTION) { |
| li(dst, Operand(Smi::FromInt(1))); |
| } else { |
| li(dst, Operand(Smi::FromInt(0))); |
| } |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // JavaScript invokes. |
| |
| void MacroAssembler::InvokePrologue(const ParameterCount& expected, |
| const ParameterCount& actual, |
| Handle<Code> code_constant, |
| Register code_reg, |
| Label* done, |
| bool* definitely_mismatches, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| bool definitely_matches = false; |
| *definitely_mismatches = false; |
| Label regular_invoke; |
| |
| // Check whether the expected and actual arguments count match. If not, |
| // setup registers according to contract with ArgumentsAdaptorTrampoline: |
| // a0: actual arguments count |
| // a1: function (passed through to callee) |
| // a2: expected arguments count |
| // a3: callee code entry |
| |
| // The code below is made a lot easier because the calling code already sets |
| // up actual and expected registers according to the contract if values are |
| // passed in registers. |
| ASSERT(actual.is_immediate() || actual.reg().is(a0)); |
| ASSERT(expected.is_immediate() || expected.reg().is(a2)); |
| ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3)); |
| |
| if (expected.is_immediate()) { |
| ASSERT(actual.is_immediate()); |
| if (expected.immediate() == actual.immediate()) { |
| definitely_matches = true; |
| } else { |
| li(a0, Operand(actual.immediate())); |
| const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; |
| if (expected.immediate() == sentinel) { |
| // Don't worry about adapting arguments for builtins that |
| // don't want that done. Skip adaption code by making it look |
| // like we have a match between expected and actual number of |
| // arguments. |
| definitely_matches = true; |
| } else { |
| *definitely_mismatches = true; |
| li(a2, Operand(expected.immediate())); |
| } |
| } |
| } else if (actual.is_immediate()) { |
| Branch(®ular_invoke, eq, expected.reg(), Operand(actual.immediate())); |
| li(a0, Operand(actual.immediate())); |
| } else { |
| Branch(®ular_invoke, eq, expected.reg(), Operand(actual.reg())); |
| } |
| |
| if (!definitely_matches) { |
| if (!code_constant.is_null()) { |
| li(a3, Operand(code_constant)); |
| addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag); |
| } |
| |
| Handle<Code> adaptor = |
| isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(adaptor)); |
| SetCallKind(t1, call_kind); |
| Call(adaptor); |
| call_wrapper.AfterCall(); |
| if (!*definitely_mismatches) { |
| Branch(done); |
| } |
| } else { |
| SetCallKind(t1, call_kind); |
| Jump(adaptor, RelocInfo::CODE_TARGET); |
| } |
| bind(®ular_invoke); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Register code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| Label done; |
| |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, Handle<Code>::null(), code, |
| &done, &definitely_mismatches, flag, |
| call_wrapper, call_kind); |
| if (!definitely_mismatches) { |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(code)); |
| SetCallKind(t1, call_kind); |
| Call(code); |
| call_wrapper.AfterCall(); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| SetCallKind(t1, call_kind); |
| Jump(code); |
| } |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeCode(Handle<Code> code, |
| const ParameterCount& expected, |
| const ParameterCount& actual, |
| RelocInfo::Mode rmode, |
| InvokeFlag flag, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| Label done; |
| |
| bool definitely_mismatches = false; |
| InvokePrologue(expected, actual, code, no_reg, |
| &done, &definitely_mismatches, flag, |
| NullCallWrapper(), call_kind); |
| if (!definitely_mismatches) { |
| if (flag == CALL_FUNCTION) { |
| SetCallKind(t1, call_kind); |
| Call(code, rmode); |
| } else { |
| SetCallKind(t1, call_kind); |
| Jump(code, rmode); |
| } |
| // Continue here if InvokePrologue does handle the invocation due to |
| // mismatched parameter counts. |
| bind(&done); |
| } |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Register function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Contract with called JS functions requires that function is passed in a1. |
| ASSERT(function.is(a1)); |
| Register expected_reg = a2; |
| Register code_reg = a3; |
| |
| lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); |
| lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| lw(expected_reg, |
| FieldMemOperand(code_reg, |
| SharedFunctionInfo::kFormalParameterCountOffset)); |
| sra(expected_reg, expected_reg, kSmiTagSize); |
| lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
| |
| ParameterCount expected(expected_reg); |
| InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind); |
| } |
| |
| |
| void MacroAssembler::InvokeFunction(Handle<JSFunction> function, |
| const ParameterCount& actual, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper, |
| CallKind call_kind) { |
| // You can't call a function without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| // Get the function and setup the context. |
| LoadHeapObject(a1, function); |
| lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); |
| |
| ParameterCount expected(function->shared()->formal_parameter_count()); |
| // We call indirectly through the code field in the function to |
| // allow recompilation to take effect without changing any of the |
| // call sites. |
| lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
| InvokeCode(a3, expected, actual, flag, call_wrapper, call_kind); |
| } |
| |
| |
| void MacroAssembler::IsObjectJSObjectType(Register heap_object, |
| Register map, |
| Register scratch, |
| Label* fail) { |
| lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); |
| IsInstanceJSObjectType(map, scratch, fail); |
| } |
| |
| |
| void MacroAssembler::IsInstanceJSObjectType(Register map, |
| Register scratch, |
| Label* fail) { |
| lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| Branch(fail, lt, scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| Branch(fail, gt, scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); |
| } |
| |
| |
| void MacroAssembler::IsObjectJSStringType(Register object, |
| Register scratch, |
| Label* fail) { |
| ASSERT(kNotStringTag != 0); |
| |
| lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| And(scratch, scratch, Operand(kIsNotStringMask)); |
| Branch(fail, ne, scratch, Operand(zero_reg)); |
| } |
| |
| |
| // --------------------------------------------------------------------------- |
| // Support functions. |
| |
| |
| void MacroAssembler::TryGetFunctionPrototype(Register function, |
| Register result, |
| Register scratch, |
| Label* miss, |
| bool miss_on_bound_function) { |
| // Check that the receiver isn't a smi. |
| JumpIfSmi(function, miss); |
| |
| // Check that the function really is a function. Load map into result reg. |
| GetObjectType(function, result, scratch); |
| Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE)); |
| |
| if (miss_on_bound_function) { |
| lw(scratch, |
| FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); |
| lw(scratch, |
| FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); |
| And(scratch, scratch, |
| Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction))); |
| Branch(miss, ne, scratch, Operand(zero_reg)); |
| } |
| |
| // Make sure that the function has an instance prototype. |
| Label non_instance; |
| lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); |
| And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype)); |
| Branch(&non_instance, ne, scratch, Operand(zero_reg)); |
| |
| // Get the prototype or initial map from the function. |
| lw(result, |
| FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| |
| // If the prototype or initial map is the hole, don't return it and |
| // simply miss the cache instead. This will allow us to allocate a |
| // prototype object on-demand in the runtime system. |
| LoadRoot(t8, Heap::kTheHoleValueRootIndex); |
| Branch(miss, eq, result, Operand(t8)); |
| |
| // If the function does not have an initial map, we're done. |
| Label done; |
| GetObjectType(result, scratch, scratch); |
| Branch(&done, ne, scratch, Operand(MAP_TYPE)); |
| |
| // Get the prototype from the initial map. |
| lw(result, FieldMemOperand(result, Map::kPrototypeOffset)); |
| jmp(&done); |
| |
| // Non-instance prototype: Fetch prototype from constructor field |
| // in initial map. |
| bind(&non_instance); |
| lw(result, FieldMemOperand(result, Map::kConstructorOffset)); |
| |
| // All done. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::GetObjectType(Register object, |
| Register map, |
| Register type_reg) { |
| lw(map, FieldMemOperand(object, HeapObject::kMapOffset)); |
| lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Runtime calls. |
| |
| void MacroAssembler::CallStub(CodeStub* stub, |
| Condition cond, |
| Register r1, |
| const Operand& r2, |
| BranchDelaySlot bd) { |
| ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. |
| Call(stub->GetCode(), RelocInfo::CODE_TARGET, kNoASTId, cond, r1, r2, bd); |
| } |
| |
| |
| void MacroAssembler::TailCallStub(CodeStub* stub) { |
| ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe()); |
| Jump(stub->GetCode(), RelocInfo::CODE_TARGET); |
| } |
| |
| |
| static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { |
| return ref0.address() - ref1.address(); |
| } |
| |
| |
| void MacroAssembler::CallApiFunctionAndReturn(ExternalReference function, |
| int stack_space) { |
| ExternalReference next_address = |
| ExternalReference::handle_scope_next_address(); |
| const int kNextOffset = 0; |
| const int kLimitOffset = AddressOffset( |
| ExternalReference::handle_scope_limit_address(), |
| next_address); |
| const int kLevelOffset = AddressOffset( |
| ExternalReference::handle_scope_level_address(), |
| next_address); |
| |
| // Allocate HandleScope in callee-save registers. |
| li(s3, Operand(next_address)); |
| lw(s0, MemOperand(s3, kNextOffset)); |
| lw(s1, MemOperand(s3, kLimitOffset)); |
| lw(s2, MemOperand(s3, kLevelOffset)); |
| Addu(s2, s2, Operand(1)); |
| sw(s2, MemOperand(s3, kLevelOffset)); |
| |
| // The O32 ABI requires us to pass a pointer in a0 where the returned struct |
| // (4 bytes) will be placed. This is also built into the Simulator. |
| // Set up the pointer to the returned value (a0). It was allocated in |
| // EnterExitFrame. |
| addiu(a0, fp, ExitFrameConstants::kStackSpaceOffset); |
| |
| // Native call returns to the DirectCEntry stub which redirects to the |
| // return address pushed on stack (could have moved after GC). |
| // DirectCEntry stub itself is generated early and never moves. |
| DirectCEntryStub stub; |
| stub.GenerateCall(this, function); |
| |
| // As mentioned above, on MIPS a pointer is returned - we need to dereference |
| // it to get the actual return value (which is also a pointer). |
| lw(v0, MemOperand(v0)); |
| |
| Label promote_scheduled_exception; |
| Label delete_allocated_handles; |
| Label leave_exit_frame; |
| |
| // If result is non-zero, dereference to get the result value |
| // otherwise set it to undefined. |
| Label skip; |
| LoadRoot(a0, Heap::kUndefinedValueRootIndex); |
| Branch(&skip, eq, v0, Operand(zero_reg)); |
| lw(a0, MemOperand(v0)); |
| bind(&skip); |
| mov(v0, a0); |
| |
| // No more valid handles (the result handle was the last one). Restore |
| // previous handle scope. |
| sw(s0, MemOperand(s3, kNextOffset)); |
| if (emit_debug_code()) { |
| lw(a1, MemOperand(s3, kLevelOffset)); |
| Check(eq, "Unexpected level after return from api call", a1, Operand(s2)); |
| } |
| Subu(s2, s2, Operand(1)); |
| sw(s2, MemOperand(s3, kLevelOffset)); |
| lw(at, MemOperand(s3, kLimitOffset)); |
| Branch(&delete_allocated_handles, ne, s1, Operand(at)); |
| |
| // Check if the function scheduled an exception. |
| bind(&leave_exit_frame); |
| LoadRoot(t0, Heap::kTheHoleValueRootIndex); |
| li(at, Operand(ExternalReference::scheduled_exception_address(isolate()))); |
| lw(t1, MemOperand(at)); |
| Branch(&promote_scheduled_exception, ne, t0, Operand(t1)); |
| li(s0, Operand(stack_space)); |
| LeaveExitFrame(false, s0, true); |
| |
| bind(&promote_scheduled_exception); |
| TailCallExternalReference( |
| ExternalReference(Runtime::kPromoteScheduledException, isolate()), |
| 0, |
| 1); |
| |
| // HandleScope limit has changed. Delete allocated extensions. |
| bind(&delete_allocated_handles); |
| sw(s1, MemOperand(s3, kLimitOffset)); |
| mov(s0, v0); |
| mov(a0, v0); |
| PrepareCallCFunction(1, s1); |
| li(a0, Operand(ExternalReference::isolate_address())); |
| CallCFunction(ExternalReference::delete_handle_scope_extensions(isolate()), |
| 1); |
| mov(v0, s0); |
| jmp(&leave_exit_frame); |
| } |
| |
| |
| bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { |
| if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false; |
| return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe(); |
| } |
| |
| |
| void MacroAssembler::IllegalOperation(int num_arguments) { |
| if (num_arguments > 0) { |
| addiu(sp, sp, num_arguments * kPointerSize); |
| } |
| LoadRoot(v0, Heap::kUndefinedValueRootIndex); |
| } |
| |
| |
| void MacroAssembler::IndexFromHash(Register hash, |
| Register index) { |
| // If the hash field contains an array index pick it out. The assert checks |
| // that the constants for the maximum number of digits for an array index |
| // cached in the hash field and the number of bits reserved for it does not |
| // conflict. |
| ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < |
| (1 << String::kArrayIndexValueBits)); |
| // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in |
| // the low kHashShift bits. |
| STATIC_ASSERT(kSmiTag == 0); |
| Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits); |
| sll(index, hash, kSmiTagSize); |
| } |
| |
| |
| void MacroAssembler::ObjectToDoubleFPURegister(Register object, |
| FPURegister result, |
| Register scratch1, |
| Register scratch2, |
| Register heap_number_map, |
| Label* not_number, |
| ObjectToDoubleFlags flags) { |
| Label done; |
| if ((flags & OBJECT_NOT_SMI) == 0) { |
| Label not_smi; |
| JumpIfNotSmi(object, ¬_smi); |
| // Remove smi tag and convert to double. |
| sra(scratch1, object, kSmiTagSize); |
| mtc1(scratch1, result); |
| cvt_d_w(result, result); |
| Branch(&done); |
| bind(¬_smi); |
| } |
| // Check for heap number and load double value from it. |
| lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); |
| Branch(not_number, ne, scratch1, Operand(heap_number_map)); |
| |
| if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { |
| // If exponent is all ones the number is either a NaN or +/-Infinity. |
| Register exponent = scratch1; |
| Register mask_reg = scratch2; |
| lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset)); |
| li(mask_reg, HeapNumber::kExponentMask); |
| |
| And(exponent, exponent, mask_reg); |
| Branch(not_number, eq, exponent, Operand(mask_reg)); |
| } |
| ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset)); |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::SmiToDoubleFPURegister(Register smi, |
| FPURegister value, |
| Register scratch1) { |
| sra(scratch1, smi, kSmiTagSize); |
| mtc1(scratch1, value); |
| cvt_d_w(value, value); |
| } |
| |
| |
| void MacroAssembler::AdduAndCheckForOverflow(Register dst, |
| Register left, |
| Register right, |
| Register overflow_dst, |
| Register scratch) { |
| ASSERT(!dst.is(overflow_dst)); |
| ASSERT(!dst.is(scratch)); |
| ASSERT(!overflow_dst.is(scratch)); |
| ASSERT(!overflow_dst.is(left)); |
| ASSERT(!overflow_dst.is(right)); |
| |
| if (left.is(right) && dst.is(left)) { |
| ASSERT(!dst.is(t9)); |
| ASSERT(!scratch.is(t9)); |
| ASSERT(!left.is(t9)); |
| ASSERT(!right.is(t9)); |
| ASSERT(!overflow_dst.is(t9)); |
| mov(t9, right); |
| right = t9; |
| } |
| |
| if (dst.is(left)) { |
| mov(scratch, left); // Preserve left. |
| addu(dst, left, right); // Left is overwritten. |
| xor_(scratch, dst, scratch); // Original left. |
| xor_(overflow_dst, dst, right); |
| and_(overflow_dst, overflow_dst, scratch); |
| } else if (dst.is(right)) { |
| mov(scratch, right); // Preserve right. |
| addu(dst, left, right); // Right is overwritten. |
| xor_(scratch, dst, scratch); // Original right. |
| xor_(overflow_dst, dst, left); |
| and_(overflow_dst, overflow_dst, scratch); |
| } else { |
| addu(dst, left, right); |
| xor_(overflow_dst, dst, left); |
| xor_(scratch, dst, right); |
| and_(overflow_dst, scratch, overflow_dst); |
| } |
| } |
| |
| |
| void MacroAssembler::SubuAndCheckForOverflow(Register dst, |
| Register left, |
| Register right, |
| Register overflow_dst, |
| Register scratch) { |
| ASSERT(!dst.is(overflow_dst)); |
| ASSERT(!dst.is(scratch)); |
| ASSERT(!overflow_dst.is(scratch)); |
| ASSERT(!overflow_dst.is(left)); |
| ASSERT(!overflow_dst.is(right)); |
| ASSERT(!scratch.is(left)); |
| ASSERT(!scratch.is(right)); |
| |
| // This happens with some crankshaft code. Since Subu works fine if |
| // left == right, let's not make that restriction here. |
| if (left.is(right)) { |
| mov(dst, zero_reg); |
| mov(overflow_dst, zero_reg); |
| return; |
| } |
| |
| if (dst.is(left)) { |
| mov(scratch, left); // Preserve left. |
| subu(dst, left, right); // Left is overwritten. |
| xor_(overflow_dst, dst, scratch); // scratch is original left. |
| xor_(scratch, scratch, right); // scratch is original left. |
| and_(overflow_dst, scratch, overflow_dst); |
| } else if (dst.is(right)) { |
| mov(scratch, right); // Preserve right. |
| subu(dst, left, right); // Right is overwritten. |
| xor_(overflow_dst, dst, left); |
| xor_(scratch, left, scratch); // Original right. |
| and_(overflow_dst, scratch, overflow_dst); |
| } else { |
| subu(dst, left, right); |
| xor_(overflow_dst, dst, left); |
| xor_(scratch, left, right); |
| and_(overflow_dst, scratch, overflow_dst); |
| } |
| } |
| |
| |
| void MacroAssembler::CallRuntime(const Runtime::Function* f, |
| int num_arguments) { |
| // All parameters are on the stack. v0 has the return value after call. |
| |
| // If the expected number of arguments of the runtime function is |
| // constant, we check that the actual number of arguments match the |
| // expectation. |
| if (f->nargs >= 0 && f->nargs != num_arguments) { |
| IllegalOperation(num_arguments); |
| return; |
| } |
| |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| PrepareCEntryArgs(num_arguments); |
| PrepareCEntryFunction(ExternalReference(f, isolate())); |
| CEntryStub stub(1); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { |
| const Runtime::Function* function = Runtime::FunctionForId(id); |
| PrepareCEntryArgs(function->nargs); |
| PrepareCEntryFunction(ExternalReference(function, isolate())); |
| CEntryStub stub(1, kSaveFPRegs); |
| CallStub(&stub); |
| } |
| |
| |
| void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { |
| CallRuntime(Runtime::FunctionForId(fid), num_arguments); |
| } |
| |
| |
| void MacroAssembler::CallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| BranchDelaySlot bd) { |
| PrepareCEntryArgs(num_arguments); |
| PrepareCEntryFunction(ext); |
| |
| CEntryStub stub(1); |
| CallStub(&stub, al, zero_reg, Operand(zero_reg), bd); |
| } |
| |
| |
| void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, |
| int num_arguments, |
| int result_size) { |
| // TODO(1236192): Most runtime routines don't need the number of |
| // arguments passed in because it is constant. At some point we |
| // should remove this need and make the runtime routine entry code |
| // smarter. |
| PrepareCEntryArgs(num_arguments); |
| JumpToExternalReference(ext); |
| } |
| |
| |
| void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, |
| int num_arguments, |
| int result_size) { |
| TailCallExternalReference(ExternalReference(fid, isolate()), |
| num_arguments, |
| result_size); |
| } |
| |
| |
| void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, |
| BranchDelaySlot bd) { |
| PrepareCEntryFunction(builtin); |
| CEntryStub stub(1); |
| Jump(stub.GetCode(), |
| RelocInfo::CODE_TARGET, |
| al, |
| zero_reg, |
| Operand(zero_reg), |
| bd); |
| } |
| |
| |
| void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, |
| InvokeFlag flag, |
| const CallWrapper& call_wrapper) { |
| // You can't call a builtin without a valid frame. |
| ASSERT(flag == JUMP_FUNCTION || has_frame()); |
| |
| GetBuiltinEntry(t9, id); |
| if (flag == CALL_FUNCTION) { |
| call_wrapper.BeforeCall(CallSize(t9)); |
| SetCallKind(t1, CALL_AS_METHOD); |
| Call(t9); |
| call_wrapper.AfterCall(); |
| } else { |
| ASSERT(flag == JUMP_FUNCTION); |
| SetCallKind(t1, CALL_AS_METHOD); |
| Jump(t9); |
| } |
| } |
| |
| |
| void MacroAssembler::GetBuiltinFunction(Register target, |
| Builtins::JavaScript id) { |
| // Load the builtins object into target register. |
| lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); |
| // Load the JavaScript builtin function from the builtins object. |
| lw(target, FieldMemOperand(target, |
| JSBuiltinsObject::OffsetOfFunctionWithId(id))); |
| } |
| |
| |
| void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { |
| ASSERT(!target.is(a1)); |
| GetBuiltinFunction(a1, id); |
| // Load the code entry point from the builtins object. |
| lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset)); |
| } |
| |
| |
| void MacroAssembler::SetCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| li(scratch1, Operand(value)); |
| li(scratch2, Operand(ExternalReference(counter))); |
| sw(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| li(scratch2, Operand(ExternalReference(counter))); |
| lw(scratch1, MemOperand(scratch2)); |
| Addu(scratch1, scratch1, Operand(value)); |
| sw(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, |
| Register scratch1, Register scratch2) { |
| ASSERT(value > 0); |
| if (FLAG_native_code_counters && counter->Enabled()) { |
| li(scratch2, Operand(ExternalReference(counter))); |
| lw(scratch1, MemOperand(scratch2)); |
| Subu(scratch1, scratch1, Operand(value)); |
| sw(scratch1, MemOperand(scratch2)); |
| } |
| } |
| |
| |
| // ----------------------------------------------------------------------------- |
| // Debugging. |
| |
| void MacroAssembler::Assert(Condition cc, const char* msg, |
| Register rs, Operand rt) { |
| if (emit_debug_code()) |
| Check(cc, msg, rs, rt); |
| } |
| |
| |
| void MacroAssembler::AssertRegisterIsRoot(Register reg, |
| Heap::RootListIndex index) { |
| if (emit_debug_code()) { |
| LoadRoot(at, index); |
| Check(eq, "Register did not match expected root", reg, Operand(at)); |
| } |
| } |
| |
| |
| void MacroAssembler::AssertFastElements(Register elements) { |
| if (emit_debug_code()) { |
| ASSERT(!elements.is(at)); |
| Label ok; |
| push(elements); |
| lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); |
| LoadRoot(at, Heap::kFixedArrayMapRootIndex); |
| Branch(&ok, eq, elements, Operand(at)); |
| LoadRoot(at, Heap::kFixedDoubleArrayMapRootIndex); |
| Branch(&ok, eq, elements, Operand(at)); |
| LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex); |
| Branch(&ok, eq, elements, Operand(at)); |
| Abort("JSObject with fast elements map has slow elements"); |
| bind(&ok); |
| pop(elements); |
| } |
| } |
| |
| |
| void MacroAssembler::Check(Condition cc, const char* msg, |
| Register rs, Operand rt) { |
| Label L; |
| Branch(&L, cc, rs, rt); |
| Abort(msg); |
| // Will not return here. |
| bind(&L); |
| } |
| |
| |
| void MacroAssembler::Abort(const char* msg) { |
| Label abort_start; |
| bind(&abort_start); |
| // We want to pass the msg string like a smi to avoid GC |
| // problems, however msg is not guaranteed to be aligned |
| // properly. Instead, we pass an aligned pointer that is |
| // a proper v8 smi, but also pass the alignment difference |
| // from the real pointer as a smi. |
| intptr_t p1 = reinterpret_cast<intptr_t>(msg); |
| intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; |
| ASSERT(reinterpret_cast<Object*>(p0)->IsSmi()); |
| #ifdef DEBUG |
| if (msg != NULL) { |
| RecordComment("Abort message: "); |
| RecordComment(msg); |
| } |
| #endif |
| |
| li(a0, Operand(p0)); |
| push(a0); |
| li(a0, Operand(Smi::FromInt(p1 - p0))); |
| push(a0); |
| // Disable stub call restrictions to always allow calls to abort. |
| if (!has_frame_) { |
| // We don't actually want to generate a pile of code for this, so just |
| // claim there is a stack frame, without generating one. |
| FrameScope scope(this, StackFrame::NONE); |
| CallRuntime(Runtime::kAbort, 2); |
| } else { |
| CallRuntime(Runtime::kAbort, 2); |
| } |
| // Will not return here. |
| if (is_trampoline_pool_blocked()) { |
| // If the calling code cares about the exact number of |
| // instructions generated, we insert padding here to keep the size |
| // of the Abort macro constant. |
| // Currently in debug mode with debug_code enabled the number of |
| // generated instructions is 14, so we use this as a maximum value. |
| static const int kExpectedAbortInstructions = 14; |
| int abort_instructions = InstructionsGeneratedSince(&abort_start); |
| ASSERT(abort_instructions <= kExpectedAbortInstructions); |
| while (abort_instructions++ < kExpectedAbortInstructions) { |
| nop(); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::LoadContext(Register dst, int context_chain_length) { |
| if (context_chain_length > 0) { |
| // Move up the chain of contexts to the context containing the slot. |
| lw(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| for (int i = 1; i < context_chain_length; i++) { |
| lw(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); |
| } |
| } else { |
| // Slot is in the current function context. Move it into the |
| // destination register in case we store into it (the write barrier |
| // cannot be allowed to destroy the context in esi). |
| Move(dst, cp); |
| } |
| } |
| |
| |
| void MacroAssembler::LoadTransitionedArrayMapConditional( |
| ElementsKind expected_kind, |
| ElementsKind transitioned_kind, |
| Register map_in_out, |
| Register scratch, |
| Label* no_map_match) { |
| // Load the global or builtins object from the current context. |
| lw(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); |
| |
| // Check that the function's map is the same as the expected cached map. |
| int expected_index = |
| Context::GetContextMapIndexFromElementsKind(expected_kind); |
| lw(at, MemOperand(scratch, Context::SlotOffset(expected_index))); |
| Branch(no_map_match, ne, map_in_out, Operand(at)); |
| |
| // Use the transitioned cached map. |
| int trans_index = |
| Context::GetContextMapIndexFromElementsKind(transitioned_kind); |
| lw(map_in_out, MemOperand(scratch, Context::SlotOffset(trans_index))); |
| } |
| |
| |
| void MacroAssembler::LoadInitialArrayMap( |
| Register function_in, Register scratch, Register map_out) { |
| ASSERT(!function_in.is(map_out)); |
| Label done; |
| lw(map_out, FieldMemOperand(function_in, |
| JSFunction::kPrototypeOrInitialMapOffset)); |
| if (!FLAG_smi_only_arrays) { |
| LoadTransitionedArrayMapConditional(FAST_SMI_ONLY_ELEMENTS, |
| FAST_ELEMENTS, |
| map_out, |
| scratch, |
| &done); |
| } |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::LoadGlobalFunction(int index, Register function) { |
| // Load the global or builtins object from the current context. |
| lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); |
| // Load the global context from the global or builtins object. |
| lw(function, FieldMemOperand(function, |
| GlobalObject::kGlobalContextOffset)); |
| // Load the function from the global context. |
| lw(function, MemOperand(function, Context::SlotOffset(index))); |
| } |
| |
| |
| void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, |
| Register map, |
| Register scratch) { |
| // Load the initial map. The global functions all have initial maps. |
| lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); |
| if (emit_debug_code()) { |
| Label ok, fail; |
| CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); |
| Branch(&ok); |
| bind(&fail); |
| Abort("Global functions must have initial map"); |
| bind(&ok); |
| } |
| } |
| |
| |
| void MacroAssembler::EnterFrame(StackFrame::Type type) { |
| addiu(sp, sp, -5 * kPointerSize); |
| li(t8, Operand(Smi::FromInt(type))); |
| li(t9, Operand(CodeObject()), CONSTANT_SIZE); |
| sw(ra, MemOperand(sp, 4 * kPointerSize)); |
| sw(fp, MemOperand(sp, 3 * kPointerSize)); |
| sw(cp, MemOperand(sp, 2 * kPointerSize)); |
| sw(t8, MemOperand(sp, 1 * kPointerSize)); |
| sw(t9, MemOperand(sp, 0 * kPointerSize)); |
| addiu(fp, sp, 3 * kPointerSize); |
| } |
| |
| |
| void MacroAssembler::LeaveFrame(StackFrame::Type type) { |
| mov(sp, fp); |
| lw(fp, MemOperand(sp, 0 * kPointerSize)); |
| lw(ra, MemOperand(sp, 1 * kPointerSize)); |
| addiu(sp, sp, 2 * kPointerSize); |
| } |
| |
| |
| void MacroAssembler::EnterExitFrame(bool save_doubles, |
| int stack_space) { |
| // Set up the frame structure on the stack. |
| STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); |
| STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); |
| STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); |
| |
| // This is how the stack will look: |
| // fp + 2 (==kCallerSPDisplacement) - old stack's end |
| // [fp + 1 (==kCallerPCOffset)] - saved old ra |
| // [fp + 0 (==kCallerFPOffset)] - saved old fp |
| // [fp - 1 (==kSPOffset)] - sp of the called function |
| // [fp - 2 (==kCodeOffset)] - CodeObject |
| // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the |
| // new stack (will contain saved ra) |
| |
| // Save registers. |
| addiu(sp, sp, -4 * kPointerSize); |
| sw(ra, MemOperand(sp, 3 * kPointerSize)); |
| sw(fp, MemOperand(sp, 2 * kPointerSize)); |
| addiu(fp, sp, 2 * kPointerSize); // Set up new frame pointer. |
| |
| if (emit_debug_code()) { |
| sw(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| |
| // Accessed from ExitFrame::code_slot. |
| li(t8, Operand(CodeObject()), CONSTANT_SIZE); |
| sw(t8, MemOperand(fp, ExitFrameConstants::kCodeOffset)); |
| |
| // Save the frame pointer and the context in top. |
| li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
| sw(fp, MemOperand(t8)); |
| li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); |
| sw(cp, MemOperand(t8)); |
| |
| const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); |
| if (save_doubles) { |
| // The stack must be allign to 0 modulo 8 for stores with sdc1. |
| ASSERT(kDoubleSize == frame_alignment); |
| if (frame_alignment > 0) { |
| ASSERT(IsPowerOf2(frame_alignment)); |
| And(sp, sp, Operand(-frame_alignment)); // Align stack. |
| } |
| int space = FPURegister::kNumRegisters * kDoubleSize; |
| Subu(sp, sp, Operand(space)); |
| // Remember: we only need to save every 2nd double FPU value. |
| for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { |
| FPURegister reg = FPURegister::from_code(i); |
| sdc1(reg, MemOperand(sp, i * kDoubleSize)); |
| } |
| } |
| |
| // Reserve place for the return address, stack space and an optional slot |
| // (used by the DirectCEntryStub to hold the return value if a struct is |
| // returned) and align the frame preparing for calling the runtime function. |
| ASSERT(stack_space >= 0); |
| Subu(sp, sp, Operand((stack_space + 2) * kPointerSize)); |
| if (frame_alignment > 0) { |
| ASSERT(IsPowerOf2(frame_alignment)); |
| And(sp, sp, Operand(-frame_alignment)); // Align stack. |
| } |
| |
| // Set the exit frame sp value to point just before the return address |
| // location. |
| addiu(at, sp, kPointerSize); |
| sw(at, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| } |
| |
| |
| void MacroAssembler::LeaveExitFrame(bool save_doubles, |
| Register argument_count, |
| bool do_return) { |
| // Optionally restore all double registers. |
| if (save_doubles) { |
| // Remember: we only need to restore every 2nd double FPU value. |
| lw(t8, MemOperand(fp, ExitFrameConstants::kSPOffset)); |
| for (int i = 0; i < FPURegister::kNumRegisters; i+=2) { |
| FPURegister reg = FPURegister::from_code(i); |
| ldc1(reg, MemOperand(t8, i * kDoubleSize + kPointerSize)); |
| } |
| } |
| |
| // Clear top frame. |
| li(t8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
| sw(zero_reg, MemOperand(t8)); |
| |
| // Restore current context from top and clear it in debug mode. |
| li(t8, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); |
| lw(cp, MemOperand(t8)); |
| #ifdef DEBUG |
| sw(a3, MemOperand(t8)); |
| #endif |
| |
| // Pop the arguments, restore registers, and return. |
| mov(sp, fp); // Respect ABI stack constraint. |
| lw(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); |
| lw(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); |
| |
| if (argument_count.is_valid()) { |
| sll(t8, argument_count, kPointerSizeLog2); |
| addu(sp, sp, t8); |
| } |
| |
| if (do_return) { |
| Ret(USE_DELAY_SLOT); |
| // If returning, the instruction in the delay slot will be the addiu below. |
| } |
| addiu(sp, sp, 8); |
| } |
| |
| |
| void MacroAssembler::InitializeNewString(Register string, |
| Register length, |
| Heap::RootListIndex map_index, |
| Register scratch1, |
| Register scratch2) { |
| sll(scratch1, length, kSmiTagSize); |
| LoadRoot(scratch2, map_index); |
| sw(scratch1, FieldMemOperand(string, String::kLengthOffset)); |
| li(scratch1, Operand(String::kEmptyHashField)); |
| sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); |
| sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); |
| } |
| |
| |
| int MacroAssembler::ActivationFrameAlignment() { |
| #if defined(V8_HOST_ARCH_MIPS) |
| // Running on the real platform. Use the alignment as mandated by the local |
| // environment. |
| // Note: This will break if we ever start generating snapshots on one Mips |
| // platform for another Mips platform with a different alignment. |
| return OS::ActivationFrameAlignment(); |
| #else // defined(V8_HOST_ARCH_MIPS) |
| // If we are using the simulator then we should always align to the expected |
| // alignment. As the simulator is used to generate snapshots we do not know |
| // if the target platform will need alignment, so this is controlled from a |
| // flag. |
| return FLAG_sim_stack_alignment; |
| #endif // defined(V8_HOST_ARCH_MIPS) |
| } |
| |
| |
| void MacroAssembler::AssertStackIsAligned() { |
| if (emit_debug_code()) { |
| const int frame_alignment = ActivationFrameAlignment(); |
| const int frame_alignment_mask = frame_alignment - 1; |
| |
| if (frame_alignment > kPointerSize) { |
| Label alignment_as_expected; |
| ASSERT(IsPowerOf2(frame_alignment)); |
| andi(at, sp, frame_alignment_mask); |
| Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); |
| // Don't use Check here, as it will call Runtime_Abort re-entering here. |
| stop("Unexpected stack alignment"); |
| bind(&alignment_as_expected); |
| } |
| } |
| } |
| |
| |
| void MacroAssembler::JumpIfNotPowerOfTwoOrZero( |
| Register reg, |
| Register scratch, |
| Label* not_power_of_two_or_zero) { |
| Subu(scratch, reg, Operand(1)); |
| Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt, |
| scratch, Operand(zero_reg)); |
| and_(at, scratch, reg); // In the delay slot. |
| Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg)); |
| } |
| |
| |
| void MacroAssembler::SmiTagCheckOverflow(Register reg, Register overflow) { |
| ASSERT(!reg.is(overflow)); |
| mov(overflow, reg); // Save original value. |
| SmiTag(reg); |
| xor_(overflow, overflow, reg); // Overflow if (value ^ 2 * value) < 0. |
| } |
| |
| |
| void MacroAssembler::SmiTagCheckOverflow(Register dst, |
| Register src, |
| Register overflow) { |
| if (dst.is(src)) { |
| // Fall back to slower case. |
| SmiTagCheckOverflow(dst, overflow); |
| } else { |
| ASSERT(!dst.is(src)); |
| ASSERT(!dst.is(overflow)); |
| ASSERT(!src.is(overflow)); |
| SmiTag(dst, src); |
| xor_(overflow, dst, src); // Overflow if (value ^ 2 * value) < 0. |
| } |
| } |
| |
| |
| void MacroAssembler::UntagAndJumpIfSmi(Register dst, |
| Register src, |
| Label* smi_case) { |
| JumpIfSmi(src, smi_case, at, USE_DELAY_SLOT); |
| SmiUntag(dst, src); |
| } |
| |
| |
| void MacroAssembler::UntagAndJumpIfNotSmi(Register dst, |
| Register src, |
| Label* non_smi_case) { |
| JumpIfNotSmi(src, non_smi_case, at, USE_DELAY_SLOT); |
| SmiUntag(dst, src); |
| } |
| |
| void MacroAssembler::JumpIfSmi(Register value, |
| Label* smi_label, |
| Register scratch, |
| BranchDelaySlot bd) { |
| ASSERT_EQ(0, kSmiTag); |
| andi(scratch, value, kSmiTagMask); |
| Branch(bd, smi_label, eq, scratch, Operand(zero_reg)); |
| } |
| |
| void MacroAssembler::JumpIfNotSmi(Register value, |
| Label* not_smi_label, |
| Register scratch, |
| BranchDelaySlot bd) { |
| ASSERT_EQ(0, kSmiTag); |
| andi(scratch, value, kSmiTagMask); |
| Branch(bd, not_smi_label, ne, scratch, Operand(zero_reg)); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSmi(Register reg1, |
| Register reg2, |
| Label* on_not_both_smi) { |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(1, kSmiTagMask); |
| or_(at, reg1, reg2); |
| JumpIfNotSmi(at, on_not_both_smi); |
| } |
| |
| |
| void MacroAssembler::JumpIfEitherSmi(Register reg1, |
| Register reg2, |
| Label* on_either_smi) { |
| STATIC_ASSERT(kSmiTag == 0); |
| ASSERT_EQ(1, kSmiTagMask); |
| // Both Smi tags must be 1 (not Smi). |
| and_(at, reg1, reg2); |
| JumpIfSmi(at, on_either_smi); |
| } |
| |
| |
| void MacroAssembler::AbortIfSmi(Register object) { |
| STATIC_ASSERT(kSmiTag == 0); |
| andi(at, object, kSmiTagMask); |
| Assert(ne, "Operand is a smi", at, Operand(zero_reg)); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotSmi(Register object) { |
| STATIC_ASSERT(kSmiTag == 0); |
| andi(at, object, kSmiTagMask); |
| Assert(eq, "Operand is a smi", at, Operand(zero_reg)); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotString(Register object) { |
| STATIC_ASSERT(kSmiTag == 0); |
| And(t0, object, Operand(kSmiTagMask)); |
| Assert(ne, "Operand is not a string", t0, Operand(zero_reg)); |
| push(object); |
| lw(object, FieldMemOperand(object, HeapObject::kMapOffset)); |
| lbu(object, FieldMemOperand(object, Map::kInstanceTypeOffset)); |
| Assert(lo, "Operand is not a string", object, Operand(FIRST_NONSTRING_TYPE)); |
| pop(object); |
| } |
| |
| |
| void MacroAssembler::AbortIfNotRootValue(Register src, |
| Heap::RootListIndex root_value_index, |
| const char* message) { |
| ASSERT(!src.is(at)); |
| LoadRoot(at, root_value_index); |
| Assert(eq, message, src, Operand(at)); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotHeapNumber(Register object, |
| Register heap_number_map, |
| Register scratch, |
| Label* on_not_heap_number) { |
| lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); |
| AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); |
| Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map)); |
| } |
| |
| |
| void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( |
| Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| // Test that both first and second are sequential ASCII strings. |
| // Assume that they are non-smis. |
| lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); |
| lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); |
| lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); |
| lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); |
| |
| JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, |
| scratch2, |
| scratch1, |
| scratch2, |
| failure); |
| } |
| |
| |
| void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| // Check that neither is a smi. |
| STATIC_ASSERT(kSmiTag == 0); |
| And(scratch1, first, Operand(second)); |
| JumpIfSmi(scratch1, failure); |
| JumpIfNonSmisNotBothSequentialAsciiStrings(first, |
| second, |
| scratch1, |
| scratch2, |
| failure); |
| } |
| |
| |
| void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( |
| Register first, |
| Register second, |
| Register scratch1, |
| Register scratch2, |
| Label* failure) { |
| int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| ASSERT(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed. |
| andi(scratch1, first, kFlatAsciiStringMask); |
| Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag)); |
| andi(scratch2, second, kFlatAsciiStringMask); |
| Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag)); |
| } |
| |
| |
| void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, |
| Register scratch, |
| Label* failure) { |
| int kFlatAsciiStringMask = |
| kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; |
| int kFlatAsciiStringTag = ASCII_STRING_TYPE; |
| And(scratch, type, Operand(kFlatAsciiStringMask)); |
| Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag)); |
| } |
| |
| |
| static const int kRegisterPassedArguments = 4; |
| |
| int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, |
| int num_double_arguments) { |
| int stack_passed_words = 0; |
| num_reg_arguments += 2 * num_double_arguments; |
| |
| // Up to four simple arguments are passed in registers a0..a3. |
| if (num_reg_arguments > kRegisterPassedArguments) { |
| stack_passed_words += num_reg_arguments - kRegisterPassedArguments; |
| } |
| stack_passed_words += kCArgSlotCount; |
| return stack_passed_words; |
| } |
| |
| |
| void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, |
| int num_double_arguments, |
| Register scratch) { |
| int frame_alignment = ActivationFrameAlignment(); |
| |
| // Up to four simple arguments are passed in registers a0..a3. |
| // Those four arguments must have reserved argument slots on the stack for |
| // mips, even though those argument slots are not normally used. |
| // Remaining arguments are pushed on the stack, above (higher address than) |
| // the argument slots. |
| int stack_passed_arguments = CalculateStackPassedWords( |
| num_reg_arguments, num_double_arguments); |
| if (frame_alignment > kPointerSize) { |
| // Make stack end at alignment and make room for num_arguments - 4 words |
| // and the original value of sp. |
| mov(scratch, sp); |
| Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); |
| ASSERT(IsPowerOf2(frame_alignment)); |
| And(sp, sp, Operand(-frame_alignment)); |
| sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| } else { |
| Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize)); |
| } |
| } |
| |
| |
| void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, |
| Register scratch) { |
| PrepareCallCFunction(num_reg_arguments, 0, scratch); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(ExternalReference function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| li(t8, Operand(function)); |
| CallCFunctionHelper(t8, num_reg_arguments, num_double_arguments); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(Register function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(ExternalReference function, |
| int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| |
| void MacroAssembler::CallCFunction(Register function, |
| int num_arguments) { |
| CallCFunction(function, num_arguments, 0); |
| } |
| |
| |
| void MacroAssembler::CallCFunctionHelper(Register function, |
| int num_reg_arguments, |
| int num_double_arguments) { |
| ASSERT(has_frame()); |
| // Make sure that the stack is aligned before calling a C function unless |
| // running in the simulator. The simulator has its own alignment check which |
| // provides more information. |
| // The argument stots are presumed to have been set up by |
| // PrepareCallCFunction. The C function must be called via t9, for mips ABI. |
| |
| #if defined(V8_HOST_ARCH_MIPS) |
| if (emit_debug_code()) { |
| int frame_alignment = OS::ActivationFrameAlignment(); |
| int frame_alignment_mask = frame_alignment - 1; |
| if (frame_alignment > kPointerSize) { |
| ASSERT(IsPowerOf2(frame_alignment)); |
| Label alignment_as_expected; |
| And(at, sp, Operand(frame_alignment_mask)); |
| Branch(&alignment_as_expected, eq, at, Operand(zero_reg)); |
| // Don't use Check here, as it will call Runtime_Abort possibly |
| // re-entering here. |
| stop("Unexpected alignment in CallCFunction"); |
| bind(&alignment_as_expected); |
| } |
| } |
| #endif // V8_HOST_ARCH_MIPS |
| |
| // Just call directly. The function called cannot cause a GC, or |
| // allow preemption, so the return address in the link register |
| // stays correct. |
| |
| if (!function.is(t9)) { |
| mov(t9, function); |
| function = t9; |
| } |
| |
| Call(function); |
| |
| int stack_passed_arguments = CalculateStackPassedWords( |
| num_reg_arguments, num_double_arguments); |
| |
| if (OS::ActivationFrameAlignment() > kPointerSize) { |
| lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); |
| } else { |
| Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); |
| } |
| } |
| |
| |
| #undef BRANCH_ARGS_CHECK |
| |
| |
| void MacroAssembler::PatchRelocatedValue(Register li_location, |
| Register scratch, |
| Register new_value) { |
| lw(scratch, MemOperand(li_location)); |
| // At this point scratch is a lui(at, ...) instruction. |
| if (emit_debug_code()) { |
| And(scratch, scratch, kOpcodeMask); |
| Check(eq, "The instruction to patch should be a lui.", |
| scratch, Operand(LUI)); |
| lw(scratch, MemOperand(li_location)); |
| } |
| srl(t9, new_value, kImm16Bits); |
| Ins(scratch, t9, 0, kImm16Bits); |
| sw(scratch, MemOperand(li_location)); |
| |
| lw(scratch, MemOperand(li_location, kInstrSize)); |
| // scratch is now ori(at, ...). |
| if (emit_debug_code()) { |
| And(scratch, scratch, kOpcodeMask); |
| Check(eq, "The instruction to patch should be an ori.", |
| scratch, Operand(ORI)); |
| lw(scratch, MemOperand(li_location, kInstrSize)); |
| } |
| Ins(scratch, new_value, 0, kImm16Bits); |
| sw(scratch, MemOperand(li_location, kInstrSize)); |
| |
| // Update the I-cache so the new lui and ori can be executed. |
| FlushICache(li_location, 2); |
| } |
| |
| void MacroAssembler::GetRelocatedValue(Register li_location, |
| Register value, |
| Register scratch) { |
| lw(value, MemOperand(li_location)); |
| if (emit_debug_code()) { |
| And(value, value, kOpcodeMask); |
| Check(eq, "The instruction should be a lui.", |
| value, Operand(LUI)); |
| lw(value, MemOperand(li_location)); |
| } |
| |
| // value now holds a lui instruction. Extract the immediate. |
| sll(value, value, kImm16Bits); |
| |
| lw(scratch, MemOperand(li_location, kInstrSize)); |
| if (emit_debug_code()) { |
| And(scratch, scratch, kOpcodeMask); |
| Check(eq, "The instruction should be an ori.", |
| scratch, Operand(ORI)); |
| lw(scratch, MemOperand(li_location, kInstrSize)); |
| } |
| // "scratch" now holds an ori instruction. Extract the immediate. |
| andi(scratch, scratch, kImm16Mask); |
| |
| // Merge the results. |
| or_(value, value, scratch); |
| } |
| |
| |
| void MacroAssembler::CheckPageFlag( |
| Register object, |
| Register scratch, |
| int mask, |
| Condition cc, |
| Label* condition_met) { |
| And(scratch, object, Operand(~Page::kPageAlignmentMask)); |
| lw(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); |
| And(scratch, scratch, Operand(mask)); |
| Branch(condition_met, cc, scratch, Operand(zero_reg)); |
| } |
| |
| |
| void MacroAssembler::JumpIfBlack(Register object, |
| Register scratch0, |
| Register scratch1, |
| Label* on_black) { |
| HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. |
| ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| } |
| |
| |
| void MacroAssembler::HasColor(Register object, |
| Register bitmap_scratch, |
| Register mask_scratch, |
| Label* has_color, |
| int first_bit, |
| int second_bit) { |
| ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t8)); |
| ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, t9)); |
| |
| GetMarkBits(object, bitmap_scratch, mask_scratch); |
| |
| Label other_color, word_boundary; |
| lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| And(t8, t9, Operand(mask_scratch)); |
| Branch(&other_color, first_bit == 1 ? eq : ne, t8, Operand(zero_reg)); |
| // Shift left 1 by adding. |
| Addu(mask_scratch, mask_scratch, Operand(mask_scratch)); |
| Branch(&word_boundary, eq, mask_scratch, Operand(zero_reg)); |
| And(t8, t9, Operand(mask_scratch)); |
| Branch(has_color, second_bit == 1 ? ne : eq, t8, Operand(zero_reg)); |
| jmp(&other_color); |
| |
| bind(&word_boundary); |
| lw(t9, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); |
| And(t9, t9, Operand(1)); |
| Branch(has_color, second_bit == 1 ? ne : eq, t9, Operand(zero_reg)); |
| bind(&other_color); |
| } |
| |
| |
| // Detect some, but not all, common pointer-free objects. This is used by the |
| // incremental write barrier which doesn't care about oddballs (they are always |
| // marked black immediately so this code is not hit). |
| void MacroAssembler::JumpIfDataObject(Register value, |
| Register scratch, |
| Label* not_data_object) { |
| ASSERT(!AreAliased(value, scratch, t8, no_reg)); |
| Label is_data_object; |
| lw(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); |
| LoadRoot(t8, Heap::kHeapNumberMapRootIndex); |
| Branch(&is_data_object, eq, t8, Operand(scratch)); |
| ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
| ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
| // If it's a string and it's not a cons string then it's an object containing |
| // no GC pointers. |
| lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); |
| And(t8, scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); |
| Branch(not_data_object, ne, t8, Operand(zero_reg)); |
| bind(&is_data_object); |
| } |
| |
| |
| void MacroAssembler::GetMarkBits(Register addr_reg, |
| Register bitmap_reg, |
| Register mask_reg) { |
| ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); |
| And(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); |
| Ext(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); |
| const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; |
| Ext(t8, addr_reg, kLowBits, kPageSizeBits - kLowBits); |
| sll(t8, t8, kPointerSizeLog2); |
| Addu(bitmap_reg, bitmap_reg, t8); |
| li(t8, Operand(1)); |
| sllv(mask_reg, t8, mask_reg); |
| } |
| |
| |
| void MacroAssembler::EnsureNotWhite( |
| Register value, |
| Register bitmap_scratch, |
| Register mask_scratch, |
| Register load_scratch, |
| Label* value_is_white_and_not_data) { |
| ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, t8)); |
| GetMarkBits(value, bitmap_scratch, mask_scratch); |
| |
| // If the value is black or grey we don't need to do anything. |
| ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); |
| ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); |
| ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); |
| ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); |
| |
| Label done; |
| |
| // Since both black and grey have a 1 in the first position and white does |
| // not have a 1 there we only need to check one bit. |
| lw(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| And(t8, mask_scratch, load_scratch); |
| Branch(&done, ne, t8, Operand(zero_reg)); |
| |
| if (emit_debug_code()) { |
| // Check for impossible bit pattern. |
| Label ok; |
| // sll may overflow, making the check conservative. |
| sll(t8, mask_scratch, 1); |
| And(t8, load_scratch, t8); |
| Branch(&ok, eq, t8, Operand(zero_reg)); |
| stop("Impossible marking bit pattern"); |
| bind(&ok); |
| } |
| |
| // Value is white. We check whether it is data that doesn't need scanning. |
| // Currently only checks for HeapNumber and non-cons strings. |
| Register map = load_scratch; // Holds map while checking type. |
| Register length = load_scratch; // Holds length of object after testing type. |
| Label is_data_object; |
| |
| // Check for heap-number |
| lw(map, FieldMemOperand(value, HeapObject::kMapOffset)); |
| LoadRoot(t8, Heap::kHeapNumberMapRootIndex); |
| { |
| Label skip; |
| Branch(&skip, ne, t8, Operand(map)); |
| li(length, HeapNumber::kSize); |
| Branch(&is_data_object); |
| bind(&skip); |
| } |
| |
| // Check for strings. |
| ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); |
| ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); |
| // If it's a string and it's not a cons string then it's an object containing |
| // no GC pointers. |
| Register instance_type = load_scratch; |
| lbu(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); |
| And(t8, instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); |
| Branch(value_is_white_and_not_data, ne, t8, Operand(zero_reg)); |
| // It's a non-indirect (non-cons and non-slice) string. |
| // If it's external, the length is just ExternalString::kSize. |
| // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). |
| // External strings are the only ones with the kExternalStringTag bit |
| // set. |
| ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); |
| ASSERT_EQ(0, kConsStringTag & kExternalStringTag); |
| And(t8, instance_type, Operand(kExternalStringTag)); |
| { |
| Label skip; |
| Branch(&skip, eq, t8, Operand(zero_reg)); |
| li(length, ExternalString::kSize); |
| Branch(&is_data_object); |
| bind(&skip); |
| } |
| |
| // Sequential string, either ASCII or UC16. |
| // For ASCII (char-size of 1) we shift the smi tag away to get the length. |
| // For UC16 (char-size of 2) we just leave the smi tag in place, thereby |
| // getting the length multiplied by 2. |
| ASSERT(kAsciiStringTag == 4 && kStringEncodingMask == 4); |
| ASSERT(kSmiTag == 0 && kSmiTagSize == 1); |
| lw(t9, FieldMemOperand(value, String::kLengthOffset)); |
| And(t8, instance_type, Operand(kStringEncodingMask)); |
| { |
| Label skip; |
| Branch(&skip, eq, t8, Operand(zero_reg)); |
| srl(t9, t9, 1); |
| bind(&skip); |
| } |
| Addu(length, t9, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); |
| And(length, length, Operand(~kObjectAlignmentMask)); |
| |
| bind(&is_data_object); |
| // Value is a data object, and it is white. Mark it black. Since we know |
| // that the object is white we can make it black by flipping one bit. |
| lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| Or(t8, t8, Operand(mask_scratch)); |
| sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); |
| |
| And(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask)); |
| lw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
| Addu(t8, t8, Operand(length)); |
| sw(t8, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); |
| |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::LoadInstanceDescriptors(Register map, |
| Register descriptors) { |
| lw(descriptors, |
| FieldMemOperand(map, Map::kInstanceDescriptorsOrBitField3Offset)); |
| Label not_smi; |
| JumpIfNotSmi(descriptors, ¬_smi); |
| LoadRoot(descriptors, Heap::kEmptyDescriptorArrayRootIndex); |
| bind(¬_smi); |
| } |
| |
| |
| void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { |
| Label next; |
| // Preload a couple of values used in the loop. |
| Register empty_fixed_array_value = t2; |
| LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); |
| Register empty_descriptor_array_value = t3; |
| LoadRoot(empty_descriptor_array_value, |
| Heap::kEmptyDescriptorArrayRootIndex); |
| mov(a1, a0); |
| bind(&next); |
| |
| // Check that there are no elements. Register a1 contains the |
| // current JS object we've reached through the prototype chain. |
| lw(a2, FieldMemOperand(a1, JSObject::kElementsOffset)); |
| Branch(call_runtime, ne, a2, Operand(empty_fixed_array_value)); |
| |
| // Check that instance descriptors are not empty so that we can |
| // check for an enum cache. Leave the map in a2 for the subsequent |
| // prototype load. |
| lw(a2, FieldMemOperand(a1, HeapObject::kMapOffset)); |
| lw(a3, FieldMemOperand(a2, Map::kInstanceDescriptorsOrBitField3Offset)); |
| JumpIfSmi(a3, call_runtime); |
| |
| // Check that there is an enum cache in the non-empty instance |
| // descriptors (a3). This is the case if the next enumeration |
| // index field does not contain a smi. |
| lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumerationIndexOffset)); |
| JumpIfSmi(a3, call_runtime); |
| |
| // For all objects but the receiver, check that the cache is empty. |
| Label check_prototype; |
| Branch(&check_prototype, eq, a1, Operand(a0)); |
| lw(a3, FieldMemOperand(a3, DescriptorArray::kEnumCacheBridgeCacheOffset)); |
| Branch(call_runtime, ne, a3, Operand(empty_fixed_array_value)); |
| |
| // Load the prototype from the map and loop if non-null. |
| bind(&check_prototype); |
| lw(a1, FieldMemOperand(a2, Map::kPrototypeOffset)); |
| Branch(&next, ne, a1, Operand(null_value)); |
| } |
| |
| |
| void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { |
| ASSERT(!output_reg.is(input_reg)); |
| Label done; |
| li(output_reg, Operand(255)); |
| // Normal branch: nop in delay slot. |
| Branch(&done, gt, input_reg, Operand(output_reg)); |
| // Use delay slot in this branch. |
| Branch(USE_DELAY_SLOT, &done, lt, input_reg, Operand(zero_reg)); |
| mov(output_reg, zero_reg); // In delay slot. |
| mov(output_reg, input_reg); // Value is in range 0..255. |
| bind(&done); |
| } |
| |
| |
| void MacroAssembler::ClampDoubleToUint8(Register result_reg, |
| DoubleRegister input_reg, |
| DoubleRegister temp_double_reg) { |
| Label above_zero; |
| Label done; |
| Label in_bounds; |
| |
| Move(temp_double_reg, 0.0); |
| BranchF(&above_zero, NULL, gt, input_reg, temp_double_reg); |
| |
| // Double value is less than zero, NaN or Inf, return 0. |
| mov(result_reg, zero_reg); |
| Branch(&done); |
| |
| // Double value is >= 255, return 255. |
| bind(&above_zero); |
| Move(temp_double_reg, 255.0); |
| BranchF(&in_bounds, NULL, le, input_reg, temp_double_reg); |
| li(result_reg, Operand(255)); |
| Branch(&done); |
| |
| // In 0-255 range, round and truncate. |
| bind(&in_bounds); |
| round_w_d(temp_double_reg, input_reg); |
| mfc1(result_reg, temp_double_reg); |
| bind(&done); |
| } |
| |
| |
| bool AreAliased(Register r1, Register r2, Register r3, Register r4) { |
| if (r1.is(r2)) return true; |
| if (r1.is(r3)) return true; |
| if (r1.is(r4)) return true; |
| if (r2.is(r3)) return true; |
| if (r2.is(r4)) return true; |
| if (r3.is(r4)) return true; |
| return false; |
| } |
| |
| |
| CodePatcher::CodePatcher(byte* address, int instructions) |
| : address_(address), |
| instructions_(instructions), |
| size_(instructions * Assembler::kInstrSize), |
| masm_(Isolate::Current(), address, size_ + Assembler::kGap) { |
| // Create a new macro assembler pointing to the address of the code to patch. |
| // The size is adjusted with kGap on order for the assembler to generate size |
| // bytes of instructions without failing with buffer size constraints. |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| CodePatcher::~CodePatcher() { |
| // Indicate that code has changed. |
| CPU::FlushICache(address_, size_); |
| |
| // Check that the code was patched as expected. |
| ASSERT(masm_.pc_ == address_ + size_); |
| ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); |
| } |
| |
| |
| void CodePatcher::Emit(Instr instr) { |
| masm()->emit(instr); |
| } |
| |
| |
| void CodePatcher::Emit(Address addr) { |
| masm()->emit(reinterpret_cast<Instr>(addr)); |
| } |
| |
| |
| void CodePatcher::ChangeBranchCondition(Condition cond) { |
| Instr instr = Assembler::instr_at(masm_.pc_); |
| ASSERT(Assembler::IsBranch(instr)); |
| uint32_t opcode = Assembler::GetOpcodeField(instr); |
| // Currently only the 'eq' and 'ne' cond values are supported and the simple |
| // branch instructions (with opcode being the branch type). |
| // There are some special cases (see Assembler::IsBranch()) so extending this |
| // would be tricky. |
| ASSERT(opcode == BEQ || |
| opcode == BNE || |
| opcode == BLEZ || |
| opcode == BGTZ || |
| opcode == BEQL || |
| opcode == BNEL || |
| opcode == BLEZL || |
| opcode == BGTZL); |
| opcode = (cond == eq) ? BEQ : BNE; |
| instr = (instr & ~kOpcodeMask) | opcode; |
| masm_.emit(instr); |
| } |
| |
| |
| } } // namespace v8::internal |
| |
| #endif // V8_TARGET_ARCH_MIPS |