Upgrade to 3.29

Update V8 to 3.29.88.17 and update makefiles to support building on
all the relevant platforms.

Bug: 17370214

Change-Id: Ia3407c157fd8d72a93e23d8318ccaf6ecf77fa4e
diff --git a/third_party/fdlibm/fdlibm.js b/third_party/fdlibm/fdlibm.js
new file mode 100644
index 0000000..7fd9adf
--- /dev/null
+++ b/third_party/fdlibm/fdlibm.js
@@ -0,0 +1,814 @@
+// The following is adapted from fdlibm (http://www.netlib.org/fdlibm),
+//
+// ====================================================
+// Copyright (C) 1993-2004 by Sun Microsystems, Inc. All rights reserved.
+//
+// Developed at SunSoft, a Sun Microsystems, Inc. business.
+// Permission to use, copy, modify, and distribute this
+// software is freely granted, provided that this notice
+// is preserved.
+// ====================================================
+//
+// The original source code covered by the above license above has been
+// modified significantly by Google Inc.
+// Copyright 2014 the V8 project authors. All rights reserved.
+//
+// The following is a straightforward translation of fdlibm routines
+// by Raymond Toy (rtoy@google.com).
+
+// Double constants that do not have empty lower 32 bits are found in fdlibm.cc
+// and exposed through kMath as typed array. We assume the compiler to convert
+// from decimal to binary accurately enough to produce the intended values.
+// kMath is initialized to a Float64Array during genesis and not writable.
+var kMath;
+
+const INVPIO2 = kMath[0];
+const PIO2_1  = kMath[1];
+const PIO2_1T = kMath[2];
+const PIO2_2  = kMath[3];
+const PIO2_2T = kMath[4];
+const PIO2_3  = kMath[5];
+const PIO2_3T = kMath[6];
+const PIO4    = kMath[32];
+const PIO4LO  = kMath[33];
+
+// Compute k and r such that x - k*pi/2 = r where |r| < pi/4. For
+// precision, r is returned as two values y0 and y1 such that r = y0 + y1
+// to more than double precision.
+macro REMPIO2(X)
+  var n, y0, y1;
+  var hx = %_DoubleHi(X);
+  var ix = hx & 0x7fffffff;
+
+  if (ix < 0x4002d97c) {
+    // |X| ~< 3*pi/4, special case with n = +/- 1
+    if (hx > 0) {
+      var z = X - PIO2_1;
+      if (ix != 0x3ff921fb) {
+        // 33+53 bit pi is good enough
+        y0 = z - PIO2_1T;
+        y1 = (z - y0) - PIO2_1T;
+      } else {
+        // near pi/2, use 33+33+53 bit pi
+        z -= PIO2_2;
+        y0 = z - PIO2_2T;
+        y1 = (z - y0) - PIO2_2T;
+      }
+      n = 1;
+    } else {
+      // Negative X
+      var z = X + PIO2_1;
+      if (ix != 0x3ff921fb) {
+        // 33+53 bit pi is good enough
+        y0 = z + PIO2_1T;
+        y1 = (z - y0) + PIO2_1T;
+      } else {
+        // near pi/2, use 33+33+53 bit pi
+        z += PIO2_2;
+        y0 = z + PIO2_2T;
+        y1 = (z - y0) + PIO2_2T;
+      }
+      n = -1;
+    }
+  } else if (ix <= 0x413921fb) {
+    // |X| ~<= 2^19*(pi/2), medium size
+    var t = MathAbs(X);
+    n = (t * INVPIO2 + 0.5) | 0;
+    var r = t - n * PIO2_1;
+    var w = n * PIO2_1T;
+    // First round good to 85 bit
+    y0 = r - w;
+    if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x1000000) {
+      // 2nd iteration needed, good to 118
+      t = r;
+      w = n * PIO2_2;
+      r = t - w;
+      w = n * PIO2_2T - ((t - r) - w);
+      y0 = r - w;
+      if (ix - (%_DoubleHi(y0) & 0x7ff00000) > 0x3100000) {
+        // 3rd iteration needed. 151 bits accuracy
+        t = r;
+        w = n * PIO2_3;
+        r = t - w;
+        w = n * PIO2_3T - ((t - r) - w);
+        y0 = r - w;
+      }
+    }
+    y1 = (r - y0) - w;
+    if (hx < 0) {
+      n = -n;
+      y0 = -y0;
+      y1 = -y1;
+    }
+  } else {
+    // Need to do full Payne-Hanek reduction here.
+    var r = %RemPiO2(X);
+    n = r[0];
+    y0 = r[1];
+    y1 = r[2];
+  }
+endmacro
+
+
+// __kernel_sin(X, Y, IY)
+// kernel sin function on [-pi/4, pi/4], pi/4 ~ 0.7854
+// Input X is assumed to be bounded by ~pi/4 in magnitude.
+// Input Y is the tail of X so that x = X + Y.
+//
+// Algorithm
+//  1. Since ieee_sin(-x) = -ieee_sin(x), we need only to consider positive x.
+//  2. ieee_sin(x) is approximated by a polynomial of degree 13 on
+//     [0,pi/4]
+//                           3            13
+//          sin(x) ~ x + S1*x + ... + S6*x
+//     where
+//
+//    |ieee_sin(x)    2     4     6     8     10     12  |     -58
+//    |----- - (1+S1*x +S2*x +S3*x +S4*x +S5*x  +S6*x   )| <= 2
+//    |  x                                               |
+//
+//  3. ieee_sin(X+Y) = ieee_sin(X) + sin'(X')*Y
+//              ~ ieee_sin(X) + (1-X*X/2)*Y
+//     For better accuracy, let
+//               3      2      2      2      2
+//          r = X *(S2+X *(S3+X *(S4+X *(S5+X *S6))))
+//     then                   3    2
+//          sin(x) = X + (S1*X + (X *(r-Y/2)+Y))
+//
+macro KSIN(x)
+kMath[7+x]
+endmacro
+
+macro RETURN_KERNELSIN(X, Y, SIGN)
+  var z = X * X;
+  var v = z * X;
+  var r = KSIN(1) + z * (KSIN(2) + z * (KSIN(3) +
+                    z * (KSIN(4) + z * KSIN(5))));
+  return (X - ((z * (0.5 * Y - v * r) - Y) - v * KSIN(0))) SIGN;
+endmacro
+
+// __kernel_cos(X, Y)
+// kernel cos function on [-pi/4, pi/4], pi/4 ~ 0.785398164
+// Input X is assumed to be bounded by ~pi/4 in magnitude.
+// Input Y is the tail of X so that x = X + Y.
+//
+// Algorithm
+//  1. Since ieee_cos(-x) = ieee_cos(x), we need only to consider positive x.
+//  2. ieee_cos(x) is approximated by a polynomial of degree 14 on
+//     [0,pi/4]
+//                                   4            14
+//          cos(x) ~ 1 - x*x/2 + C1*x + ... + C6*x
+//     where the remez error is
+//
+//  |                   2     4     6     8     10    12     14 |     -58
+//  |ieee_cos(x)-(1-.5*x +C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  )| <= 2
+//  |                                                           |
+//
+//                 4     6     8     10    12     14
+//  3. let r = C1*x +C2*x +C3*x +C4*x +C5*x  +C6*x  , then
+//         ieee_cos(x) = 1 - x*x/2 + r
+//     since ieee_cos(X+Y) ~ ieee_cos(X) - ieee_sin(X)*Y
+//                    ~ ieee_cos(X) - X*Y,
+//     a correction term is necessary in ieee_cos(x) and hence
+//         cos(X+Y) = 1 - (X*X/2 - (r - X*Y))
+//     For better accuracy when x > 0.3, let qx = |x|/4 with
+//     the last 32 bits mask off, and if x > 0.78125, let qx = 0.28125.
+//     Then
+//         cos(X+Y) = (1-qx) - ((X*X/2-qx) - (r-X*Y)).
+//     Note that 1-qx and (X*X/2-qx) is EXACT here, and the
+//     magnitude of the latter is at least a quarter of X*X/2,
+//     thus, reducing the rounding error in the subtraction.
+//
+macro KCOS(x)
+kMath[13+x]
+endmacro
+
+macro RETURN_KERNELCOS(X, Y, SIGN)
+  var ix = %_DoubleHi(X) & 0x7fffffff;
+  var z = X * X;
+  var r = z * (KCOS(0) + z * (KCOS(1) + z * (KCOS(2)+
+          z * (KCOS(3) + z * (KCOS(4) + z * KCOS(5))))));
+  if (ix < 0x3fd33333) {  // |x| ~< 0.3
+    return (1 - (0.5 * z - (z * r - X * Y))) SIGN;
+  } else {
+    var qx;
+    if (ix > 0x3fe90000) {  // |x| > 0.78125
+      qx = 0.28125;
+    } else {
+      qx = %_ConstructDouble(%_DoubleHi(0.25 * X), 0);
+    }
+    var hz = 0.5 * z - qx;
+    return (1 - qx - (hz - (z * r - X * Y))) SIGN;
+  }
+endmacro
+
+
+// kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
+// Input x is assumed to be bounded by ~pi/4 in magnitude.
+// Input y is the tail of x.
+// Input k indicates whether ieee_tan (if k = 1) or -1/tan (if k = -1)
+// is returned.
+//
+// Algorithm
+//  1. Since ieee_tan(-x) = -ieee_tan(x), we need only to consider positive x.
+//  2. if x < 2^-28 (hx<0x3e300000 0), return x with inexact if x!=0.
+//  3. ieee_tan(x) is approximated by a odd polynomial of degree 27 on
+//     [0,0.67434]
+//                           3             27
+//          tan(x) ~ x + T1*x + ... + T13*x
+//     where
+//
+//     |ieee_tan(x)    2     4            26   |     -59.2
+//     |----- - (1+T1*x +T2*x +.... +T13*x    )| <= 2
+//     |  x                                    |
+//
+//     Note: ieee_tan(x+y) = ieee_tan(x) + tan'(x)*y
+//                    ~ ieee_tan(x) + (1+x*x)*y
+//     Therefore, for better accuracy in computing ieee_tan(x+y), let
+//               3      2      2       2       2
+//          r = x *(T2+x *(T3+x *(...+x *(T12+x *T13))))
+//     then
+//                              3    2
+//          tan(x+y) = x + (T1*x + (x *(r+y)+y))
+//
+//  4. For x in [0.67434,pi/4],  let y = pi/4 - x, then
+//          tan(x) = ieee_tan(pi/4-y) = (1-ieee_tan(y))/(1+ieee_tan(y))
+//                 = 1 - 2*(ieee_tan(y) - (ieee_tan(y)^2)/(1+ieee_tan(y)))
+//
+// Set returnTan to 1 for tan; -1 for cot.  Anything else is illegal
+// and will cause incorrect results.
+//
+macro KTAN(x)
+kMath[19+x]
+endmacro
+
+function KernelTan(x, y, returnTan) {
+  var z;
+  var w;
+  var hx = %_DoubleHi(x);
+  var ix = hx & 0x7fffffff;
+
+  if (ix < 0x3e300000) {  // |x| < 2^-28
+    if (((ix | %_DoubleLo(x)) | (returnTan + 1)) == 0) {
+      // x == 0 && returnTan = -1
+      return 1 / MathAbs(x);
+    } else {
+      if (returnTan == 1) {
+        return x;
+      } else {
+        // Compute -1/(x + y) carefully
+        var w = x + y;
+        var z = %_ConstructDouble(%_DoubleHi(w), 0);
+        var v = y - (z - x);
+        var a = -1 / w;
+        var t = %_ConstructDouble(%_DoubleHi(a), 0);
+        var s = 1 + t * z;
+        return t + a * (s + t * v);
+      }
+    }
+  }
+  if (ix >= 0x3fe59428) {  // |x| > .6744
+    if (x < 0) {
+      x = -x;
+      y = -y;
+    }
+    z = PIO4 - x;
+    w = PIO4LO - y;
+    x = z + w;
+    y = 0;
+  }
+  z = x * x;
+  w = z * z;
+
+  // Break x^5 * (T1 + x^2*T2 + ...) into
+  // x^5 * (T1 + x^4*T3 + ... + x^20*T11) +
+  // x^5 * (x^2 * (T2 + x^4*T4 + ... + x^22*T12))
+  var r = KTAN(1) + w * (KTAN(3) + w * (KTAN(5) +
+                    w * (KTAN(7) + w * (KTAN(9) + w * KTAN(11)))));
+  var v = z * (KTAN(2) + w * (KTAN(4) + w * (KTAN(6) +
+                         w * (KTAN(8) + w * (KTAN(10) + w * KTAN(12))))));
+  var s = z * x;
+  r = y + z * (s * (r + v) + y);
+  r = r + KTAN(0) * s;
+  w = x + r;
+  if (ix >= 0x3fe59428) {
+    return (1 - ((hx >> 30) & 2)) *
+      (returnTan - 2.0 * (x - (w * w / (w + returnTan) - r)));
+  }
+  if (returnTan == 1) {
+    return w;
+  } else {
+    z = %_ConstructDouble(%_DoubleHi(w), 0);
+    v = r - (z - x);
+    var a = -1 / w;
+    var t = %_ConstructDouble(%_DoubleHi(a), 0);
+    s = 1 + t * z;
+    return t + a * (s + t * v);
+  }
+}
+
+function MathSinSlow(x) {
+  REMPIO2(x);
+  var sign = 1 - (n & 2);
+  if (n & 1) {
+    RETURN_KERNELCOS(y0, y1, * sign);
+  } else {
+    RETURN_KERNELSIN(y0, y1, * sign);
+  }
+}
+
+function MathCosSlow(x) {
+  REMPIO2(x);
+  if (n & 1) {
+    var sign = (n & 2) - 1;
+    RETURN_KERNELSIN(y0, y1, * sign);
+  } else {
+    var sign = 1 - (n & 2);
+    RETURN_KERNELCOS(y0, y1, * sign);
+  }
+}
+
+// ECMA 262 - 15.8.2.16
+function MathSin(x) {
+  x = x * 1;  // Convert to number.
+  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
+    // |x| < pi/4, approximately.  No reduction needed.
+    RETURN_KERNELSIN(x, 0, /* empty */);
+  }
+  return MathSinSlow(x);
+}
+
+// ECMA 262 - 15.8.2.7
+function MathCos(x) {
+  x = x * 1;  // Convert to number.
+  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
+    // |x| < pi/4, approximately.  No reduction needed.
+    RETURN_KERNELCOS(x, 0, /* empty */);
+  }
+  return MathCosSlow(x);
+}
+
+// ECMA 262 - 15.8.2.18
+function MathTan(x) {
+  x = x * 1;  // Convert to number.
+  if ((%_DoubleHi(x) & 0x7fffffff) <= 0x3fe921fb) {
+    // |x| < pi/4, approximately.  No reduction needed.
+    return KernelTan(x, 0, 1);
+  }
+  REMPIO2(x);
+  return KernelTan(y0, y1, (n & 1) ? -1 : 1);
+}
+
+// ES6 draft 09-27-13, section 20.2.2.20.
+// Math.log1p
+//
+// Method :
+//   1. Argument Reduction: find k and f such that
+//                      1+x = 2^k * (1+f),
+//         where  sqrt(2)/2 < 1+f < sqrt(2) .
+//
+//      Note. If k=0, then f=x is exact. However, if k!=0, then f
+//      may not be representable exactly. In that case, a correction
+//      term is need. Let u=1+x rounded. Let c = (1+x)-u, then
+//      log(1+x) - log(u) ~ c/u. Thus, we proceed to compute log(u),
+//      and add back the correction term c/u.
+//      (Note: when x > 2**53, one can simply return log(x))
+//
+//   2. Approximation of log1p(f).
+//      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+//            = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+//            = 2s + s*R
+//      We use a special Reme algorithm on [0,0.1716] to generate
+//      a polynomial of degree 14 to approximate R The maximum error
+//      of this polynomial approximation is bounded by 2**-58.45. In
+//      other words,
+//                      2      4      6      8      10      12      14
+//          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
+//      (the values of Lp1 to Lp7 are listed in the program)
+//      and
+//          |      2          14          |     -58.45
+//          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
+//          |                             |
+//      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+//      In order to guarantee error in log below 1ulp, we compute log
+//      by
+//              log1p(f) = f - (hfsq - s*(hfsq+R)).
+//
+//      3. Finally, log1p(x) = k*ln2 + log1p(f).
+//                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+//         Here ln2 is split into two floating point number:
+//                      ln2_hi + ln2_lo,
+//         where n*ln2_hi is always exact for |n| < 2000.
+//
+// Special cases:
+//      log1p(x) is NaN with signal if x < -1 (including -INF) ;
+//      log1p(+INF) is +INF; log1p(-1) is -INF with signal;
+//      log1p(NaN) is that NaN with no signal.
+//
+// Accuracy:
+//      according to an error analysis, the error is always less than
+//      1 ulp (unit in the last place).
+//
+// Constants:
+//      Constants are found in fdlibm.cc. We assume the C++ compiler to convert
+//      from decimal to binary accurately enough to produce the intended values.
+//
+// Note: Assuming log() return accurate answer, the following
+//       algorithm can be used to compute log1p(x) to within a few ULP:
+//
+//              u = 1+x;
+//              if (u==1.0) return x ; else
+//                          return log(u)*(x/(u-1.0));
+//
+//       See HP-15C Advanced Functions Handbook, p.193.
+//
+const LN2_HI    = kMath[34];
+const LN2_LO    = kMath[35];
+const TWO54     = kMath[36];
+const TWO_THIRD = kMath[37];
+macro KLOG1P(x)
+(kMath[38+x])
+endmacro
+
+function MathLog1p(x) {
+  x = x * 1;  // Convert to number.
+  var hx = %_DoubleHi(x);
+  var ax = hx & 0x7fffffff;
+  var k = 1;
+  var f = x;
+  var hu = 1;
+  var c = 0;
+  var u = x;
+
+  if (hx < 0x3fda827a) {
+    // x < 0.41422
+    if (ax >= 0x3ff00000) {  // |x| >= 1
+      if (x === -1) {
+        return -INFINITY;  // log1p(-1) = -inf
+      } else {
+        return NAN;  // log1p(x<-1) = NaN
+      }
+    } else if (ax < 0x3c900000)  {
+      // For |x| < 2^-54 we can return x.
+      return x;
+    } else if (ax < 0x3e200000) {
+      // For |x| < 2^-29 we can use a simple two-term Taylor series.
+      return x - x * x * 0.5;
+    }
+
+    if ((hx > 0) || (hx <= -0x402D413D)) {  // (int) 0xbfd2bec3 = -0x402d413d
+      // -.2929 < x < 0.41422
+      k = 0;
+    }
+  }
+
+  // Handle Infinity and NAN
+  if (hx >= 0x7ff00000) return x;
+
+  if (k !== 0) {
+    if (hx < 0x43400000) {
+      // x < 2^53
+      u = 1 + x;
+      hu = %_DoubleHi(u);
+      k = (hu >> 20) - 1023;
+      c = (k > 0) ? 1 - (u - x) : x - (u - 1);
+      c = c / u;
+    } else {
+      hu = %_DoubleHi(u);
+      k = (hu >> 20) - 1023;
+    }
+    hu = hu & 0xfffff;
+    if (hu < 0x6a09e) {
+      u = %_ConstructDouble(hu | 0x3ff00000, %_DoubleLo(u));  // Normalize u.
+    } else {
+      ++k;
+      u = %_ConstructDouble(hu | 0x3fe00000, %_DoubleLo(u));  // Normalize u/2.
+      hu = (0x00100000 - hu) >> 2;
+    }
+    f = u - 1;
+  }
+
+  var hfsq = 0.5 * f * f;
+  if (hu === 0) {
+    // |f| < 2^-20;
+    if (f === 0) {
+      if (k === 0) {
+        return 0.0;
+      } else {
+        return k * LN2_HI + (c + k * LN2_LO);
+      }
+    }
+    var R = hfsq * (1 - TWO_THIRD * f);
+    if (k === 0) {
+      return f - R;
+    } else {
+      return k * LN2_HI - ((R - (k * LN2_LO + c)) - f);
+    }
+  }
+
+  var s = f / (2 + f);
+  var z = s * s;
+  var R = z * (KLOG1P(0) + z * (KLOG1P(1) + z *
+              (KLOG1P(2) + z * (KLOG1P(3) + z *
+              (KLOG1P(4) + z * (KLOG1P(5) + z * KLOG1P(6)))))));
+  if (k === 0) {
+    return f - (hfsq - s * (hfsq + R));
+  } else {
+    return k * LN2_HI - ((hfsq - (s * (hfsq + R) + (k * LN2_LO + c))) - f);
+  }
+}
+
+// ES6 draft 09-27-13, section 20.2.2.14.
+// Math.expm1
+// Returns exp(x)-1, the exponential of x minus 1.
+//
+// Method
+//   1. Argument reduction:
+//      Given x, find r and integer k such that
+//
+//               x = k*ln2 + r,  |r| <= 0.5*ln2 ~ 0.34658
+//
+//      Here a correction term c will be computed to compensate
+//      the error in r when rounded to a floating-point number.
+//
+//   2. Approximating expm1(r) by a special rational function on
+//      the interval [0,0.34658]:
+//      Since
+//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 - r^4/360 + ...
+//      we define R1(r*r) by
+//          r*(exp(r)+1)/(exp(r)-1) = 2+ r^2/6 * R1(r*r)
+//      That is,
+//          R1(r**2) = 6/r *((exp(r)+1)/(exp(r)-1) - 2/r)
+//                   = 6/r * ( 1 + 2.0*(1/(exp(r)-1) - 1/r))
+//                   = 1 - r^2/60 + r^4/2520 - r^6/100800 + ...
+//      We use a special Remes algorithm on [0,0.347] to generate
+//      a polynomial of degree 5 in r*r to approximate R1. The
+//      maximum error of this polynomial approximation is bounded
+//      by 2**-61. In other words,
+//          R1(z) ~ 1.0 + Q1*z + Q2*z**2 + Q3*z**3 + Q4*z**4 + Q5*z**5
+//      where   Q1  =  -1.6666666666666567384E-2,
+//              Q2  =   3.9682539681370365873E-4,
+//              Q3  =  -9.9206344733435987357E-6,
+//              Q4  =   2.5051361420808517002E-7,
+//              Q5  =  -6.2843505682382617102E-9;
+//      (where z=r*r, and the values of Q1 to Q5 are listed below)
+//      with error bounded by
+//          |                  5           |     -61
+//          | 1.0+Q1*z+...+Q5*z   -  R1(z) | <= 2
+//          |                              |
+//
+//      expm1(r) = exp(r)-1 is then computed by the following
+//      specific way which minimize the accumulation rounding error:
+//                             2     3
+//                            r     r    [ 3 - (R1 + R1*r/2)  ]
+//            expm1(r) = r + --- + --- * [--------------------]
+//                            2     2    [ 6 - r*(3 - R1*r/2) ]
+//
+//      To compensate the error in the argument reduction, we use
+//              expm1(r+c) = expm1(r) + c + expm1(r)*c
+//                         ~ expm1(r) + c + r*c
+//      Thus c+r*c will be added in as the correction terms for
+//      expm1(r+c). Now rearrange the term to avoid optimization
+//      screw up:
+//                      (      2                                    2 )
+//                      ({  ( r    [ R1 -  (3 - R1*r/2) ]  )  }    r  )
+//       expm1(r+c)~r - ({r*(--- * [--------------------]-c)-c} - --- )
+//                      ({  ( 2    [ 6 - r*(3 - R1*r/2) ]  )  }    2  )
+//                      (                                             )
+//
+//                 = r - E
+//   3. Scale back to obtain expm1(x):
+//      From step 1, we have
+//         expm1(x) = either 2^k*[expm1(r)+1] - 1
+//                  = or     2^k*[expm1(r) + (1-2^-k)]
+//   4. Implementation notes:
+//      (A). To save one multiplication, we scale the coefficient Qi
+//           to Qi*2^i, and replace z by (x^2)/2.
+//      (B). To achieve maximum accuracy, we compute expm1(x) by
+//        (i)   if x < -56*ln2, return -1.0, (raise inexact if x!=inf)
+//        (ii)  if k=0, return r-E
+//        (iii) if k=-1, return 0.5*(r-E)-0.5
+//        (iv)  if k=1 if r < -0.25, return 2*((r+0.5)- E)
+//                     else          return  1.0+2.0*(r-E);
+//        (v)   if (k<-2||k>56) return 2^k(1-(E-r)) - 1 (or exp(x)-1)
+//        (vi)  if k <= 20, return 2^k((1-2^-k)-(E-r)), else
+//        (vii) return 2^k(1-((E+2^-k)-r))
+//
+// Special cases:
+//      expm1(INF) is INF, expm1(NaN) is NaN;
+//      expm1(-INF) is -1, and
+//      for finite argument, only expm1(0)=0 is exact.
+//
+// Accuracy:
+//      according to an error analysis, the error is always less than
+//      1 ulp (unit in the last place).
+//
+// Misc. info.
+//      For IEEE double
+//          if x > 7.09782712893383973096e+02 then expm1(x) overflow
+//
+const KEXPM1_OVERFLOW = kMath[45];
+const INVLN2          = kMath[46];
+macro KEXPM1(x)
+(kMath[47+x])
+endmacro
+
+function MathExpm1(x) {
+  x = x * 1;  // Convert to number.
+  var y;
+  var hi;
+  var lo;
+  var k;
+  var t;
+  var c;
+
+  var hx = %_DoubleHi(x);
+  var xsb = hx & 0x80000000;     // Sign bit of x
+  var y = (xsb === 0) ? x : -x;  // y = |x|
+  hx &= 0x7fffffff;              // High word of |x|
+
+  // Filter out huge and non-finite argument
+  if (hx >= 0x4043687a) {     // if |x| ~=> 56 * ln2
+    if (hx >= 0x40862e42) {   // if |x| >= 709.78
+      if (hx >= 0x7ff00000) {
+        // expm1(inf) = inf; expm1(-inf) = -1; expm1(nan) = nan;
+        return (x === -INFINITY) ? -1 : x;
+      }
+      if (x > KEXPM1_OVERFLOW) return INFINITY;  // Overflow
+    }
+    if (xsb != 0) return -1;  // x < -56 * ln2, return -1.
+  }
+
+  // Argument reduction
+  if (hx > 0x3fd62e42) {    // if |x| > 0.5 * ln2
+    if (hx < 0x3ff0a2b2) {  // and |x| < 1.5 * ln2
+      if (xsb === 0) {
+        hi = x - LN2_HI;
+        lo = LN2_LO;
+        k = 1;
+      } else {
+        hi = x + LN2_HI;
+        lo = -LN2_LO;
+        k = -1;
+      }
+    } else {
+      k = (INVLN2 * x + ((xsb === 0) ? 0.5 : -0.5)) | 0;
+      t = k;
+      // t * ln2_hi is exact here.
+      hi = x - t * LN2_HI;
+      lo = t * LN2_LO;
+    }
+    x = hi - lo;
+    c = (hi - x) - lo;
+  } else if (hx < 0x3c900000)	{
+    // When |x| < 2^-54, we can return x.
+    return x;
+  } else {
+    // Fall through.
+    k = 0;
+  }
+
+  // x is now in primary range
+  var hfx = 0.5 * x;
+  var hxs = x * hfx;
+  var r1 = 1 + hxs * (KEXPM1(0) + hxs * (KEXPM1(1) + hxs *
+                     (KEXPM1(2) + hxs * (KEXPM1(3) + hxs * KEXPM1(4)))));
+  t = 3 - r1 * hfx;
+  var e = hxs * ((r1 - t) / (6 - x * t));
+  if (k === 0) {  // c is 0
+    return x - (x*e - hxs);
+  } else {
+    e = (x * (e - c) - c);
+    e -= hxs;
+    if (k === -1) return 0.5 * (x - e) - 0.5;
+    if (k === 1) {
+      if (x < -0.25) return -2 * (e - (x + 0.5));
+      return 1 + 2 * (x - e);
+    }
+
+    if (k <= -2 || k > 56) {
+      // suffice to return exp(x) + 1
+      y = 1 - (e - x);
+      // Add k to y's exponent
+      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
+      return y - 1;
+    }
+    if (k < 20) {
+      // t = 1 - 2^k
+      t = %_ConstructDouble(0x3ff00000 - (0x200000 >> k), 0);
+      y = t - (e - x);
+      // Add k to y's exponent
+      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
+    } else {
+      // t = 2^-k
+      t = %_ConstructDouble((0x3ff - k) << 20, 0);
+      y = x - (e + t);
+      y += 1;
+      // Add k to y's exponent
+      y = %_ConstructDouble(%_DoubleHi(y) + (k << 20), %_DoubleLo(y));
+    }
+  }
+  return y;
+}
+
+
+// ES6 draft 09-27-13, section 20.2.2.30.
+// Math.sinh
+// Method :
+// mathematically sinh(x) if defined to be (exp(x)-exp(-x))/2
+//      1. Replace x by |x| (sinh(-x) = -sinh(x)).
+//      2.
+//                                                  E + E/(E+1)
+//          0        <= x <= 22     :  sinh(x) := --------------, E=expm1(x)
+//                                                      2
+//
+//          22       <= x <= lnovft :  sinh(x) := exp(x)/2
+//          lnovft   <= x <= ln2ovft:  sinh(x) := exp(x/2)/2 * exp(x/2)
+//          ln2ovft  <  x           :  sinh(x) := x*shuge (overflow)
+//
+// Special cases:
+//      sinh(x) is |x| if x is +Infinity, -Infinity, or NaN.
+//      only sinh(0)=0 is exact for finite x.
+//
+const KSINH_OVERFLOW = kMath[52];
+const TWO_M28 = 3.725290298461914e-9;  // 2^-28, empty lower half
+const LOG_MAXD = 709.7822265625;  // 0x40862e42 00000000, empty lower half
+
+function MathSinh(x) {
+  x = x * 1;  // Convert to number.
+  var h = (x < 0) ? -0.5 : 0.5;
+  // |x| in [0, 22]. return sign(x)*0.5*(E+E/(E+1))
+  var ax = MathAbs(x);
+  if (ax < 22) {
+    // For |x| < 2^-28, sinh(x) = x
+    if (ax < TWO_M28) return x;
+    var t = MathExpm1(ax);
+    if (ax < 1) return h * (2 * t - t * t / (t + 1));
+    return h * (t + t / (t + 1));
+  }
+  // |x| in [22, log(maxdouble)], return 0.5 * exp(|x|)
+  if (ax < LOG_MAXD) return h * MathExp(ax);
+  // |x| in [log(maxdouble), overflowthreshold]
+  // overflowthreshold = 710.4758600739426
+  if (ax <= KSINH_OVERFLOW) {
+    var w = MathExp(0.5 * ax);
+    var t = h * w;
+    return t * w;
+  }
+  // |x| > overflowthreshold or is NaN.
+  // Return Infinity of the appropriate sign or NaN.
+  return x * INFINITY;
+}
+
+
+// ES6 draft 09-27-13, section 20.2.2.12.
+// Math.cosh
+// Method :
+// mathematically cosh(x) if defined to be (exp(x)+exp(-x))/2
+//      1. Replace x by |x| (cosh(x) = cosh(-x)).
+//      2.
+//                                                      [ exp(x) - 1 ]^2
+//          0        <= x <= ln2/2  :  cosh(x) := 1 + -------------------
+//                                                         2*exp(x)
+//
+//                                                 exp(x) + 1/exp(x)
+//          ln2/2    <= x <= 22     :  cosh(x) := -------------------
+//                                                        2
+//          22       <= x <= lnovft :  cosh(x) := exp(x)/2
+//          lnovft   <= x <= ln2ovft:  cosh(x) := exp(x/2)/2 * exp(x/2)
+//          ln2ovft  <  x           :  cosh(x) := huge*huge (overflow)
+//
+// Special cases:
+//      cosh(x) is |x| if x is +INF, -INF, or NaN.
+//      only cosh(0)=1 is exact for finite x.
+//
+const KCOSH_OVERFLOW = kMath[52];
+
+function MathCosh(x) {
+  x = x * 1;  // Convert to number.
+  var ix = %_DoubleHi(x) & 0x7fffffff;
+  // |x| in [0,0.5*log2], return 1+expm1(|x|)^2/(2*exp(|x|))
+  if (ix < 0x3fd62e43) {
+    var t = MathExpm1(MathAbs(x));
+    var w = 1 + t;
+    // For |x| < 2^-55, cosh(x) = 1
+    if (ix < 0x3c800000) return w;
+    return 1 + (t * t) / (w + w);
+  }
+  // |x| in [0.5*log2, 22], return (exp(|x|)+1/exp(|x|)/2
+  if (ix < 0x40360000) {
+    var t = MathExp(MathAbs(x));
+    return 0.5 * t + 0.5 / t;
+  }
+  // |x| in [22, log(maxdouble)], return half*exp(|x|)
+  if (ix < 0x40862e42) return 0.5 * MathExp(MathAbs(x));
+  // |x| in [log(maxdouble), overflowthreshold]
+  if (MathAbs(x) <= KCOSH_OVERFLOW) {
+    var w = MathExp(0.5 * MathAbs(x));
+    var t = 0.5 * w;
+    return t * w;
+  }
+  if (NUMBER_IS_NAN(x)) return x;
+  // |x| > overflowthreshold.
+  return INFINITY;
+}