blob: 23cec7a809794623625823e99d8f0b2688508d6b [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/verifier.h"
#include <deque>
#include <queue>
#include "src/compiler/generic-algorithm.h"
#include "src/compiler/generic-node-inl.h"
#include "src/compiler/generic-node.h"
#include "src/compiler/graph-inl.h"
#include "src/compiler/graph.h"
#include "src/compiler/node.h"
#include "src/compiler/node-properties-inl.h"
#include "src/compiler/node-properties.h"
#include "src/compiler/opcodes.h"
#include "src/compiler/operator.h"
#include "src/compiler/schedule.h"
#include "src/data-flow.h"
namespace v8 {
namespace internal {
namespace compiler {
static bool IsDefUseChainLinkPresent(Node* def, Node* use) {
Node::Uses uses = def->uses();
for (Node::Uses::iterator it = uses.begin(); it != uses.end(); ++it) {
if (*it == use) return true;
}
return false;
}
static bool IsUseDefChainLinkPresent(Node* def, Node* use) {
Node::Inputs inputs = use->inputs();
for (Node::Inputs::iterator it = inputs.begin(); it != inputs.end(); ++it) {
if (*it == def) return true;
}
return false;
}
class Verifier::Visitor : public NullNodeVisitor {
public:
explicit Visitor(Zone* zone)
: reached_from_start(NodeSet::key_compare(),
NodeSet::allocator_type(zone)),
reached_from_end(NodeSet::key_compare(),
NodeSet::allocator_type(zone)) {}
// Fulfills the PreNodeCallback interface.
GenericGraphVisit::Control Pre(Node* node);
bool from_start;
NodeSet reached_from_start;
NodeSet reached_from_end;
};
GenericGraphVisit::Control Verifier::Visitor::Pre(Node* node) {
int value_count = OperatorProperties::GetValueInputCount(node->op());
int context_count = OperatorProperties::GetContextInputCount(node->op());
int frame_state_count =
OperatorProperties::GetFrameStateInputCount(node->op());
int effect_count = OperatorProperties::GetEffectInputCount(node->op());
int control_count = OperatorProperties::GetControlInputCount(node->op());
// Verify number of inputs matches up.
int input_count = value_count + context_count + frame_state_count +
effect_count + control_count;
CHECK_EQ(input_count, node->InputCount());
// Verify that frame state has been inserted for the nodes that need it.
if (OperatorProperties::HasFrameStateInput(node->op())) {
Node* frame_state = NodeProperties::GetFrameStateInput(node);
CHECK(frame_state->opcode() == IrOpcode::kFrameState ||
// kFrameState uses undefined as a sentinel.
(node->opcode() == IrOpcode::kFrameState &&
frame_state->opcode() == IrOpcode::kHeapConstant));
CHECK(IsDefUseChainLinkPresent(frame_state, node));
CHECK(IsUseDefChainLinkPresent(frame_state, node));
}
// Verify all value inputs actually produce a value.
for (int i = 0; i < value_count; ++i) {
Node* value = NodeProperties::GetValueInput(node, i);
CHECK(OperatorProperties::HasValueOutput(value->op()));
CHECK(IsDefUseChainLinkPresent(value, node));
CHECK(IsUseDefChainLinkPresent(value, node));
}
// Verify all context inputs are value nodes.
for (int i = 0; i < context_count; ++i) {
Node* context = NodeProperties::GetContextInput(node);
CHECK(OperatorProperties::HasValueOutput(context->op()));
CHECK(IsDefUseChainLinkPresent(context, node));
CHECK(IsUseDefChainLinkPresent(context, node));
}
// Verify all effect inputs actually have an effect.
for (int i = 0; i < effect_count; ++i) {
Node* effect = NodeProperties::GetEffectInput(node);
CHECK(OperatorProperties::HasEffectOutput(effect->op()));
CHECK(IsDefUseChainLinkPresent(effect, node));
CHECK(IsUseDefChainLinkPresent(effect, node));
}
// Verify all control inputs are control nodes.
for (int i = 0; i < control_count; ++i) {
Node* control = NodeProperties::GetControlInput(node, i);
CHECK(OperatorProperties::HasControlOutput(control->op()));
CHECK(IsDefUseChainLinkPresent(control, node));
CHECK(IsUseDefChainLinkPresent(control, node));
}
// Verify all successors are projections if multiple value outputs exist.
if (OperatorProperties::GetValueOutputCount(node->op()) > 1) {
Node::Uses uses = node->uses();
for (Node::Uses::iterator it = uses.begin(); it != uses.end(); ++it) {
CHECK(!NodeProperties::IsValueEdge(it.edge()) ||
(*it)->opcode() == IrOpcode::kProjection ||
(*it)->opcode() == IrOpcode::kParameter);
}
}
switch (node->opcode()) {
case IrOpcode::kStart:
// Start has no inputs.
CHECK_EQ(0, input_count);
break;
case IrOpcode::kEnd:
// End has no outputs.
CHECK(!OperatorProperties::HasValueOutput(node->op()));
CHECK(!OperatorProperties::HasEffectOutput(node->op()));
CHECK(!OperatorProperties::HasControlOutput(node->op()));
break;
case IrOpcode::kDead:
// Dead is never connected to the graph.
UNREACHABLE();
case IrOpcode::kBranch: {
// Branch uses are IfTrue and IfFalse.
Node::Uses uses = node->uses();
bool got_true = false, got_false = false;
for (Node::Uses::iterator it = uses.begin(); it != uses.end(); ++it) {
CHECK(((*it)->opcode() == IrOpcode::kIfTrue && !got_true) ||
((*it)->opcode() == IrOpcode::kIfFalse && !got_false));
if ((*it)->opcode() == IrOpcode::kIfTrue) got_true = true;
if ((*it)->opcode() == IrOpcode::kIfFalse) got_false = true;
}
// TODO(rossberg): Currently fails for various tests.
// CHECK(got_true && got_false);
break;
}
case IrOpcode::kIfTrue:
case IrOpcode::kIfFalse:
CHECK_EQ(IrOpcode::kBranch,
NodeProperties::GetControlInput(node, 0)->opcode());
break;
case IrOpcode::kLoop:
case IrOpcode::kMerge:
break;
case IrOpcode::kReturn:
// TODO(rossberg): check successor is End
break;
case IrOpcode::kThrow:
// TODO(rossberg): what are the constraints on these?
break;
case IrOpcode::kParameter: {
// Parameters have the start node as inputs.
CHECK_EQ(1, input_count);
CHECK_EQ(IrOpcode::kStart,
NodeProperties::GetValueInput(node, 0)->opcode());
// Parameter has an input that produces enough values.
int index = OpParameter<int>(node);
Node* input = NodeProperties::GetValueInput(node, 0);
// Currently, parameter indices start at -1 instead of 0.
CHECK_GT(OperatorProperties::GetValueOutputCount(input->op()), index + 1);
break;
}
case IrOpcode::kInt32Constant:
case IrOpcode::kInt64Constant:
case IrOpcode::kFloat64Constant:
case IrOpcode::kExternalConstant:
case IrOpcode::kNumberConstant:
case IrOpcode::kHeapConstant:
// Constants have no inputs.
CHECK_EQ(0, input_count);
break;
case IrOpcode::kPhi: {
// Phi input count matches parent control node.
CHECK_EQ(1, control_count);
Node* control = NodeProperties::GetControlInput(node, 0);
CHECK_EQ(value_count,
OperatorProperties::GetControlInputCount(control->op()));
break;
}
case IrOpcode::kEffectPhi: {
// EffectPhi input count matches parent control node.
CHECK_EQ(1, control_count);
Node* control = NodeProperties::GetControlInput(node, 0);
CHECK_EQ(effect_count,
OperatorProperties::GetControlInputCount(control->op()));
break;
}
case IrOpcode::kFrameState:
// TODO(jarin): what are the constraints on these?
break;
case IrOpcode::kCall:
// TODO(rossberg): what are the constraints on these?
break;
case IrOpcode::kProjection: {
// Projection has an input that produces enough values.
size_t index = OpParameter<size_t>(node);
Node* input = NodeProperties::GetValueInput(node, 0);
CHECK_GT(OperatorProperties::GetValueOutputCount(input->op()),
static_cast<int>(index));
break;
}
default:
// TODO(rossberg): Check other node kinds.
break;
}
if (from_start) {
reached_from_start.insert(node);
} else {
reached_from_end.insert(node);
}
return GenericGraphVisit::CONTINUE;
}
void Verifier::Run(Graph* graph) {
Visitor visitor(graph->zone());
CHECK_NE(NULL, graph->start());
visitor.from_start = true;
graph->VisitNodeUsesFromStart(&visitor);
CHECK_NE(NULL, graph->end());
visitor.from_start = false;
graph->VisitNodeInputsFromEnd(&visitor);
// All control nodes reachable from end are reachable from start.
for (NodeSet::iterator it = visitor.reached_from_end.begin();
it != visitor.reached_from_end.end(); ++it) {
CHECK(!NodeProperties::IsControl(*it) ||
visitor.reached_from_start.count(*it));
}
}
static bool HasDominatingDef(Schedule* schedule, Node* node,
BasicBlock* container, BasicBlock* use_block,
int use_pos) {
BasicBlock* block = use_block;
while (true) {
while (use_pos >= 0) {
if (block->nodes_[use_pos] == node) return true;
use_pos--;
}
block = block->dominator_;
if (block == NULL) break;
use_pos = static_cast<int>(block->nodes_.size()) - 1;
if (node == block->control_input_) return true;
}
return false;
}
static void CheckInputsDominate(Schedule* schedule, BasicBlock* block,
Node* node, int use_pos) {
for (int j = OperatorProperties::GetValueInputCount(node->op()) - 1; j >= 0;
j--) {
BasicBlock* use_block = block;
if (node->opcode() == IrOpcode::kPhi) {
use_block = use_block->PredecessorAt(j);
use_pos = static_cast<int>(use_block->nodes_.size()) - 1;
}
Node* input = node->InputAt(j);
if (!HasDominatingDef(schedule, node->InputAt(j), block, use_block,
use_pos)) {
V8_Fatal(__FILE__, __LINE__,
"Node #%d:%s in B%d is not dominated by input@%d #%d:%s",
node->id(), node->op()->mnemonic(), block->id(), j, input->id(),
input->op()->mnemonic());
}
}
}
void ScheduleVerifier::Run(Schedule* schedule) {
const int count = schedule->BasicBlockCount();
Zone tmp_zone(schedule->zone()->isolate());
Zone* zone = &tmp_zone;
BasicBlock* start = schedule->start();
BasicBlockVector* rpo_order = schedule->rpo_order();
// Verify the RPO order contains only blocks from this schedule.
CHECK_GE(count, static_cast<int>(rpo_order->size()));
for (BasicBlockVector::iterator b = rpo_order->begin(); b != rpo_order->end();
++b) {
CHECK_EQ((*b), schedule->GetBlockById((*b)->id()));
}
// Verify RPO numbers of blocks.
CHECK_EQ(start, rpo_order->at(0)); // Start should be first.
for (size_t b = 0; b < rpo_order->size(); b++) {
BasicBlock* block = rpo_order->at(b);
CHECK_EQ(static_cast<int>(b), block->rpo_number_);
BasicBlock* dom = block->dominator_;
if (b == 0) {
// All blocks except start should have a dominator.
CHECK_EQ(NULL, dom);
} else {
// Check that the immediate dominator appears somewhere before the block.
CHECK_NE(NULL, dom);
CHECK_LT(dom->rpo_number_, block->rpo_number_);
}
}
// Verify that all blocks reachable from start are in the RPO.
BoolVector marked(count, false, zone);
{
ZoneQueue<BasicBlock*> queue(zone);
queue.push(start);
marked[start->id()] = true;
while (!queue.empty()) {
BasicBlock* block = queue.front();
queue.pop();
for (int s = 0; s < block->SuccessorCount(); s++) {
BasicBlock* succ = block->SuccessorAt(s);
if (!marked[succ->id()]) {
marked[succ->id()] = true;
queue.push(succ);
}
}
}
}
// Verify marked blocks are in the RPO.
for (int i = 0; i < count; i++) {
BasicBlock* block = schedule->GetBlockById(i);
if (marked[i]) {
CHECK_GE(block->rpo_number_, 0);
CHECK_EQ(block, rpo_order->at(block->rpo_number_));
}
}
// Verify RPO blocks are marked.
for (size_t b = 0; b < rpo_order->size(); b++) {
CHECK(marked[rpo_order->at(b)->id()]);
}
{
// Verify the dominance relation.
ZoneList<BitVector*> dominators(count, zone);
dominators.Initialize(count, zone);
dominators.AddBlock(NULL, count, zone);
// Compute a set of all the nodes that dominate a given node by using
// a forward fixpoint. O(n^2).
ZoneQueue<BasicBlock*> queue(zone);
queue.push(start);
dominators[start->id()] = new (zone) BitVector(count, zone);
while (!queue.empty()) {
BasicBlock* block = queue.front();
queue.pop();
BitVector* block_doms = dominators[block->id()];
BasicBlock* idom = block->dominator_;
if (idom != NULL && !block_doms->Contains(idom->id())) {
V8_Fatal(__FILE__, __LINE__, "Block B%d is not dominated by B%d",
block->id(), idom->id());
}
for (int s = 0; s < block->SuccessorCount(); s++) {
BasicBlock* succ = block->SuccessorAt(s);
BitVector* succ_doms = dominators[succ->id()];
if (succ_doms == NULL) {
// First time visiting the node. S.doms = B U B.doms
succ_doms = new (zone) BitVector(count, zone);
succ_doms->CopyFrom(*block_doms);
succ_doms->Add(block->id());
dominators[succ->id()] = succ_doms;
queue.push(succ);
} else {
// Nth time visiting the successor. S.doms = S.doms ^ (B U B.doms)
bool had = succ_doms->Contains(block->id());
if (had) succ_doms->Remove(block->id());
if (succ_doms->IntersectIsChanged(*block_doms)) queue.push(succ);
if (had) succ_doms->Add(block->id());
}
}
}
// Verify the immediateness of dominators.
for (BasicBlockVector::iterator b = rpo_order->begin();
b != rpo_order->end(); ++b) {
BasicBlock* block = *b;
BasicBlock* idom = block->dominator_;
if (idom == NULL) continue;
BitVector* block_doms = dominators[block->id()];
for (BitVector::Iterator it(block_doms); !it.Done(); it.Advance()) {
BasicBlock* dom = schedule->GetBlockById(it.Current());
if (dom != idom && !dominators[idom->id()]->Contains(dom->id())) {
V8_Fatal(__FILE__, __LINE__,
"Block B%d is not immediately dominated by B%d", block->id(),
idom->id());
}
}
}
}
// Verify phis are placed in the block of their control input.
for (BasicBlockVector::iterator b = rpo_order->begin(); b != rpo_order->end();
++b) {
for (BasicBlock::const_iterator i = (*b)->begin(); i != (*b)->end(); ++i) {
Node* phi = *i;
if (phi->opcode() != IrOpcode::kPhi) continue;
// TODO(titzer): Nasty special case. Phis from RawMachineAssembler
// schedules don't have control inputs.
if (phi->InputCount() >
OperatorProperties::GetValueInputCount(phi->op())) {
Node* control = NodeProperties::GetControlInput(phi);
CHECK(control->opcode() == IrOpcode::kMerge ||
control->opcode() == IrOpcode::kLoop);
CHECK_EQ((*b), schedule->block(control));
}
}
}
// Verify that all uses are dominated by their definitions.
for (BasicBlockVector::iterator b = rpo_order->begin(); b != rpo_order->end();
++b) {
BasicBlock* block = *b;
// Check inputs to control for this block.
Node* control = block->control_input_;
if (control != NULL) {
CHECK_EQ(block, schedule->block(control));
CheckInputsDominate(schedule, block, control,
static_cast<int>(block->nodes_.size()) - 1);
}
// Check inputs for all nodes in the block.
for (size_t i = 0; i < block->nodes_.size(); i++) {
Node* node = block->nodes_[i];
CheckInputsDominate(schedule, block, node, static_cast<int>(i) - 1);
}
}
}
}
}
} // namespace v8::internal::compiler