blob: 3e26b5243623094ece76eb98f6927042f01ae13d [file] [log] [blame]
// Copyright 2016 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/code-stub-assembler.h"
#include "src/code-factory.h"
namespace v8 {
namespace internal {
using compiler::Node;
CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
const CallInterfaceDescriptor& descriptor,
Code::Flags flags, const char* name,
size_t result_size)
: compiler::CodeAssembler(isolate, zone, descriptor, flags, name,
result_size) {}
CodeStubAssembler::CodeStubAssembler(Isolate* isolate, Zone* zone,
int parameter_count, Code::Flags flags,
const char* name)
: compiler::CodeAssembler(isolate, zone, parameter_count, flags, name) {}
Node* CodeStubAssembler::BooleanMapConstant() {
return HeapConstant(isolate()->factory()->boolean_map());
}
Node* CodeStubAssembler::EmptyStringConstant() {
return LoadRoot(Heap::kempty_stringRootIndex);
}
Node* CodeStubAssembler::HeapNumberMapConstant() {
return HeapConstant(isolate()->factory()->heap_number_map());
}
Node* CodeStubAssembler::NoContextConstant() {
return SmiConstant(Smi::FromInt(0));
}
Node* CodeStubAssembler::NullConstant() {
return LoadRoot(Heap::kNullValueRootIndex);
}
Node* CodeStubAssembler::UndefinedConstant() {
return LoadRoot(Heap::kUndefinedValueRootIndex);
}
Node* CodeStubAssembler::StaleRegisterConstant() {
return LoadRoot(Heap::kStaleRegisterRootIndex);
}
Node* CodeStubAssembler::Float64Round(Node* x) {
Node* one = Float64Constant(1.0);
Node* one_half = Float64Constant(0.5);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this);
// Round up {x} towards Infinity.
var_x.Bind(Float64Ceil(x));
GotoIf(Float64LessThanOrEqual(Float64Sub(var_x.value(), one_half), x),
&return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::Float64Ceil(Node* x) {
if (IsFloat64RoundUpSupported()) {
return Float64RoundUp(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this), return_minus_x(this);
var_x.Bind(x);
// Check if {x} is greater than zero.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
Bind(&if_xgreaterthanzero);
{
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoUnless(Float64LessThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Add(var_x.value(), one));
Goto(&return_x);
}
Bind(&if_xnotgreaterthanzero);
{
// Just return {x} unless it's in the range ]-2^52,0[
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoUnless(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards Infinity and return the result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_minus_x);
}
Bind(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::Float64Floor(Node* x) {
if (IsFloat64RoundDownSupported()) {
return Float64RoundDown(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this), return_minus_x(this);
var_x.Bind(x);
// Check if {x} is greater than zero.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
Bind(&if_xgreaterthanzero);
{
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards -Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_x);
}
Bind(&if_xnotgreaterthanzero);
{
// Just return {x} unless it's in the range ]-2^52,0[
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoUnless(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards -Infinity and return the result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoUnless(Float64LessThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Add(var_x.value(), one));
Goto(&return_minus_x);
}
Bind(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::Float64Trunc(Node* x) {
if (IsFloat64RoundTruncateSupported()) {
return Float64RoundTruncate(x);
}
Node* one = Float64Constant(1.0);
Node* zero = Float64Constant(0.0);
Node* two_52 = Float64Constant(4503599627370496.0E0);
Node* minus_two_52 = Float64Constant(-4503599627370496.0E0);
Variable var_x(this, MachineRepresentation::kFloat64);
Label return_x(this), return_minus_x(this);
var_x.Bind(x);
// Check if {x} is greater than 0.
Label if_xgreaterthanzero(this), if_xnotgreaterthanzero(this);
Branch(Float64GreaterThan(x, zero), &if_xgreaterthanzero,
&if_xnotgreaterthanzero);
Bind(&if_xgreaterthanzero);
{
if (IsFloat64RoundDownSupported()) {
var_x.Bind(Float64RoundDown(x));
} else {
// Just return {x} unless it's in the range ]0,2^52[.
GotoIf(Float64GreaterThanOrEqual(x, two_52), &return_x);
// Round positive {x} towards -Infinity.
var_x.Bind(Float64Sub(Float64Add(two_52, x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), x), &return_x);
var_x.Bind(Float64Sub(var_x.value(), one));
}
Goto(&return_x);
}
Bind(&if_xnotgreaterthanzero);
{
if (IsFloat64RoundUpSupported()) {
var_x.Bind(Float64RoundUp(x));
Goto(&return_x);
} else {
// Just return {x} unless its in the range ]-2^52,0[.
GotoIf(Float64LessThanOrEqual(x, minus_two_52), &return_x);
GotoUnless(Float64LessThan(x, zero), &return_x);
// Round negated {x} towards -Infinity and return result negated.
Node* minus_x = Float64Neg(x);
var_x.Bind(Float64Sub(Float64Add(two_52, minus_x), two_52));
GotoUnless(Float64GreaterThan(var_x.value(), minus_x), &return_minus_x);
var_x.Bind(Float64Sub(var_x.value(), one));
Goto(&return_minus_x);
}
}
Bind(&return_minus_x);
var_x.Bind(Float64Neg(var_x.value()));
Goto(&return_x);
Bind(&return_x);
return var_x.value();
}
Node* CodeStubAssembler::SmiFromWord32(Node* value) {
value = ChangeInt32ToIntPtr(value);
return WordShl(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiTag(Node* value) {
int32_t constant_value;
if (ToInt32Constant(value, constant_value) && Smi::IsValid(constant_value)) {
return SmiConstant(Smi::FromInt(constant_value));
}
return WordShl(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiUntag(Node* value) {
return WordSar(value, SmiShiftBitsConstant());
}
Node* CodeStubAssembler::SmiToWord32(Node* value) {
Node* result = WordSar(value, SmiShiftBitsConstant());
if (Is64()) {
result = TruncateInt64ToInt32(result);
}
return result;
}
Node* CodeStubAssembler::SmiToFloat64(Node* value) {
return ChangeInt32ToFloat64(SmiToWord32(value));
}
Node* CodeStubAssembler::SmiAdd(Node* a, Node* b) { return IntPtrAdd(a, b); }
Node* CodeStubAssembler::SmiAddWithOverflow(Node* a, Node* b) {
return IntPtrAddWithOverflow(a, b);
}
Node* CodeStubAssembler::SmiSub(Node* a, Node* b) { return IntPtrSub(a, b); }
Node* CodeStubAssembler::SmiSubWithOverflow(Node* a, Node* b) {
return IntPtrSubWithOverflow(a, b);
}
Node* CodeStubAssembler::SmiEqual(Node* a, Node* b) { return WordEqual(a, b); }
Node* CodeStubAssembler::SmiAboveOrEqual(Node* a, Node* b) {
return UintPtrGreaterThanOrEqual(a, b);
}
Node* CodeStubAssembler::SmiLessThan(Node* a, Node* b) {
return IntPtrLessThan(a, b);
}
Node* CodeStubAssembler::SmiLessThanOrEqual(Node* a, Node* b) {
return IntPtrLessThanOrEqual(a, b);
}
Node* CodeStubAssembler::SmiMin(Node* a, Node* b) {
// TODO(bmeurer): Consider using Select once available.
Variable min(this, MachineRepresentation::kTagged);
Label if_a(this), if_b(this), join(this);
BranchIfSmiLessThan(a, b, &if_a, &if_b);
Bind(&if_a);
min.Bind(a);
Goto(&join);
Bind(&if_b);
min.Bind(b);
Goto(&join);
Bind(&join);
return min.value();
}
Node* CodeStubAssembler::WordIsSmi(Node* a) {
return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask)), IntPtrConstant(0));
}
Node* CodeStubAssembler::WordIsPositiveSmi(Node* a) {
return WordEqual(WordAnd(a, IntPtrConstant(kSmiTagMask | kSmiSignMask)),
IntPtrConstant(0));
}
Node* CodeStubAssembler::AllocateRawUnaligned(Node* size_in_bytes,
AllocationFlags flags,
Node* top_address,
Node* limit_address) {
Node* top = Load(MachineType::Pointer(), top_address);
Node* limit = Load(MachineType::Pointer(), limit_address);
// If there's not enough space, call the runtime.
Variable result(this, MachineRepresentation::kTagged);
Label runtime_call(this, Label::kDeferred), no_runtime_call(this);
Label merge_runtime(this, &result);
Node* new_top = IntPtrAdd(top, size_in_bytes);
Branch(UintPtrGreaterThanOrEqual(new_top, limit), &runtime_call,
&no_runtime_call);
Bind(&runtime_call);
// AllocateInTargetSpace does not use the context.
Node* context = SmiConstant(Smi::FromInt(0));
Node* runtime_result;
if (flags & kPretenured) {
Node* runtime_flags = SmiConstant(
Smi::FromInt(AllocateDoubleAlignFlag::encode(false) |
AllocateTargetSpace::encode(AllocationSpace::OLD_SPACE)));
runtime_result = CallRuntime(Runtime::kAllocateInTargetSpace, context,
SmiTag(size_in_bytes), runtime_flags);
} else {
runtime_result = CallRuntime(Runtime::kAllocateInNewSpace, context,
SmiTag(size_in_bytes));
}
result.Bind(runtime_result);
Goto(&merge_runtime);
// When there is enough space, return `top' and bump it up.
Bind(&no_runtime_call);
Node* no_runtime_result = top;
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
new_top);
no_runtime_result = BitcastWordToTagged(
IntPtrAdd(no_runtime_result, IntPtrConstant(kHeapObjectTag)));
result.Bind(no_runtime_result);
Goto(&merge_runtime);
Bind(&merge_runtime);
return result.value();
}
Node* CodeStubAssembler::AllocateRawAligned(Node* size_in_bytes,
AllocationFlags flags,
Node* top_address,
Node* limit_address) {
Node* top = Load(MachineType::Pointer(), top_address);
Node* limit = Load(MachineType::Pointer(), limit_address);
Variable adjusted_size(this, MachineType::PointerRepresentation());
adjusted_size.Bind(size_in_bytes);
if (flags & kDoubleAlignment) {
// TODO(epertoso): Simd128 alignment.
Label aligned(this), not_aligned(this), merge(this, &adjusted_size);
Branch(WordAnd(top, IntPtrConstant(kDoubleAlignmentMask)), &not_aligned,
&aligned);
Bind(&not_aligned);
Node* not_aligned_size =
IntPtrAdd(size_in_bytes, IntPtrConstant(kPointerSize));
adjusted_size.Bind(not_aligned_size);
Goto(&merge);
Bind(&aligned);
Goto(&merge);
Bind(&merge);
}
Variable address(this, MachineRepresentation::kTagged);
address.Bind(AllocateRawUnaligned(adjusted_size.value(), kNone, top, limit));
Label needs_filler(this), doesnt_need_filler(this),
merge_address(this, &address);
Branch(IntPtrEqual(adjusted_size.value(), size_in_bytes), &doesnt_need_filler,
&needs_filler);
Bind(&needs_filler);
// Store a filler and increase the address by kPointerSize.
// TODO(epertoso): this code assumes that we only align to kDoubleSize. Change
// it when Simd128 alignment is supported.
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top,
LoadRoot(Heap::kOnePointerFillerMapRootIndex));
address.Bind(BitcastWordToTagged(
IntPtrAdd(address.value(), IntPtrConstant(kPointerSize))));
Goto(&merge_address);
Bind(&doesnt_need_filler);
Goto(&merge_address);
Bind(&merge_address);
// Update the top.
StoreNoWriteBarrier(MachineType::PointerRepresentation(), top_address,
IntPtrAdd(top, adjusted_size.value()));
return address.value();
}
Node* CodeStubAssembler::Allocate(Node* size_in_bytes, AllocationFlags flags) {
bool const new_space = !(flags & kPretenured);
Node* top_address = ExternalConstant(
new_space
? ExternalReference::new_space_allocation_top_address(isolate())
: ExternalReference::old_space_allocation_top_address(isolate()));
Node* limit_address = ExternalConstant(
new_space
? ExternalReference::new_space_allocation_limit_address(isolate())
: ExternalReference::old_space_allocation_limit_address(isolate()));
#ifdef V8_HOST_ARCH_32_BIT
if (flags & kDoubleAlignment) {
return AllocateRawAligned(size_in_bytes, flags, top_address, limit_address);
}
#endif
return AllocateRawUnaligned(size_in_bytes, flags, top_address, limit_address);
}
Node* CodeStubAssembler::Allocate(int size_in_bytes, AllocationFlags flags) {
return CodeStubAssembler::Allocate(IntPtrConstant(size_in_bytes), flags);
}
Node* CodeStubAssembler::InnerAllocate(Node* previous, Node* offset) {
return BitcastWordToTagged(IntPtrAdd(previous, offset));
}
Node* CodeStubAssembler::InnerAllocate(Node* previous, int offset) {
return InnerAllocate(previous, IntPtrConstant(offset));
}
Node* CodeStubAssembler::LoadBufferObject(Node* buffer, int offset,
MachineType rep) {
return Load(rep, buffer, IntPtrConstant(offset));
}
Node* CodeStubAssembler::LoadObjectField(Node* object, int offset,
MachineType rep) {
return Load(rep, object, IntPtrConstant(offset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadHeapNumberValue(Node* object) {
return Load(MachineType::Float64(), object,
IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadMap(Node* object) {
return LoadObjectField(object, HeapObject::kMapOffset);
}
Node* CodeStubAssembler::LoadInstanceType(Node* object) {
return LoadMapInstanceType(LoadMap(object));
}
Node* CodeStubAssembler::LoadElements(Node* object) {
return LoadObjectField(object, JSObject::kElementsOffset);
}
Node* CodeStubAssembler::LoadFixedArrayBaseLength(Node* array) {
return LoadObjectField(array, FixedArrayBase::kLengthOffset);
}
Node* CodeStubAssembler::LoadMapBitField(Node* map) {
return Load(MachineType::Uint8(), map,
IntPtrConstant(Map::kBitFieldOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadMapBitField2(Node* map) {
return Load(MachineType::Uint8(), map,
IntPtrConstant(Map::kBitField2Offset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadMapBitField3(Node* map) {
return Load(MachineType::Uint32(), map,
IntPtrConstant(Map::kBitField3Offset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadMapInstanceType(Node* map) {
return Load(MachineType::Uint8(), map,
IntPtrConstant(Map::kInstanceTypeOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadMapDescriptors(Node* map) {
return LoadObjectField(map, Map::kDescriptorsOffset);
}
Node* CodeStubAssembler::LoadMapPrototype(Node* map) {
return LoadObjectField(map, Map::kPrototypeOffset);
}
Node* CodeStubAssembler::LoadNameHash(Node* name) {
return Load(MachineType::Uint32(), name,
IntPtrConstant(Name::kHashFieldOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::AllocateUninitializedFixedArray(Node* length) {
Node* header_size = IntPtrConstant(FixedArray::kHeaderSize);
Node* data_size = WordShl(length, IntPtrConstant(kPointerSizeLog2));
Node* total_size = IntPtrAdd(data_size, header_size);
Node* result = Allocate(total_size, kNone);
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kFixedArrayMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, FixedArray::kLengthOffset,
SmiTag(length));
return result;
}
Node* CodeStubAssembler::LoadFixedArrayElement(Node* object, Node* index_node,
int additional_offset,
ParameterMode parameter_mode) {
int32_t header_size =
FixedArray::kHeaderSize + additional_offset - kHeapObjectTag;
Node* offset = ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS,
parameter_mode, header_size);
return Load(MachineType::AnyTagged(), object, offset);
}
Node* CodeStubAssembler::LoadMapInstanceSize(Node* map) {
return Load(MachineType::Uint8(), map,
IntPtrConstant(Map::kInstanceSizeOffset - kHeapObjectTag));
}
Node* CodeStubAssembler::LoadNativeContext(Node* context) {
return LoadFixedArrayElement(context,
Int32Constant(Context::NATIVE_CONTEXT_INDEX));
}
Node* CodeStubAssembler::LoadJSArrayElementsMap(ElementsKind kind,
Node* native_context) {
return LoadFixedArrayElement(native_context,
Int32Constant(Context::ArrayMapIndex(kind)));
}
Node* CodeStubAssembler::StoreHeapNumberValue(Node* object, Node* value) {
return StoreNoWriteBarrier(
MachineRepresentation::kFloat64, object,
IntPtrConstant(HeapNumber::kValueOffset - kHeapObjectTag), value);
}
Node* CodeStubAssembler::StoreObjectField(
Node* object, int offset, Node* value) {
return Store(MachineRepresentation::kTagged, object,
IntPtrConstant(offset - kHeapObjectTag), value);
}
Node* CodeStubAssembler::StoreObjectFieldNoWriteBarrier(
Node* object, int offset, Node* value, MachineRepresentation rep) {
return StoreNoWriteBarrier(rep, object,
IntPtrConstant(offset - kHeapObjectTag), value);
}
Node* CodeStubAssembler::StoreMapNoWriteBarrier(Node* object, Node* map) {
return StoreNoWriteBarrier(
MachineRepresentation::kTagged, object,
IntPtrConstant(HeapNumber::kMapOffset - kHeapObjectTag), map);
}
Node* CodeStubAssembler::StoreFixedArrayElement(Node* object, Node* index_node,
Node* value,
WriteBarrierMode barrier_mode,
ParameterMode parameter_mode) {
DCHECK(barrier_mode == SKIP_WRITE_BARRIER ||
barrier_mode == UPDATE_WRITE_BARRIER);
Node* offset =
ElementOffsetFromIndex(index_node, FAST_HOLEY_ELEMENTS, parameter_mode,
FixedArray::kHeaderSize - kHeapObjectTag);
MachineRepresentation rep = MachineRepresentation::kTagged;
if (barrier_mode == SKIP_WRITE_BARRIER) {
return StoreNoWriteBarrier(rep, object, offset, value);
} else {
return Store(rep, object, offset, value);
}
}
Node* CodeStubAssembler::StoreFixedDoubleArrayElement(
Node* object, Node* index_node, Node* value, ParameterMode parameter_mode) {
Node* offset =
ElementOffsetFromIndex(index_node, FAST_DOUBLE_ELEMENTS, parameter_mode,
FixedArray::kHeaderSize - kHeapObjectTag);
MachineRepresentation rep = MachineRepresentation::kFloat64;
return StoreNoWriteBarrier(rep, object, offset, value);
}
Node* CodeStubAssembler::AllocateHeapNumber() {
Node* result = Allocate(HeapNumber::kSize, kNone);
StoreMapNoWriteBarrier(result, HeapNumberMapConstant());
return result;
}
Node* CodeStubAssembler::AllocateHeapNumberWithValue(Node* value) {
Node* result = AllocateHeapNumber();
StoreHeapNumberValue(result, value);
return result;
}
Node* CodeStubAssembler::AllocateSeqOneByteString(int length) {
Node* result = Allocate(SeqOneByteString::SizeFor(length));
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kOneByteStringMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kLengthOffset,
SmiConstant(Smi::FromInt(length)));
StoreObjectFieldNoWriteBarrier(result, SeqOneByteString::kHashFieldSlot,
IntPtrConstant(String::kEmptyHashField));
return result;
}
Node* CodeStubAssembler::AllocateSeqTwoByteString(int length) {
Node* result = Allocate(SeqTwoByteString::SizeFor(length));
StoreMapNoWriteBarrier(result, LoadRoot(Heap::kStringMapRootIndex));
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kLengthOffset,
SmiConstant(Smi::FromInt(length)));
StoreObjectFieldNoWriteBarrier(result, SeqTwoByteString::kHashFieldSlot,
IntPtrConstant(String::kEmptyHashField));
return result;
}
Node* CodeStubAssembler::AllocateJSArray(ElementsKind kind, Node* array_map,
Node* capacity_node, Node* length_node,
compiler::Node* allocation_site,
ParameterMode mode) {
bool is_double = IsFastDoubleElementsKind(kind);
int base_size = JSArray::kSize + FixedArray::kHeaderSize;
int elements_offset = JSArray::kSize;
if (allocation_site != nullptr) {
base_size += AllocationMemento::kSize;
elements_offset += AllocationMemento::kSize;
}
int32_t capacity;
bool constant_capacity = ToInt32Constant(capacity_node, capacity);
Node* total_size =
ElementOffsetFromIndex(capacity_node, kind, mode, base_size);
// Allocate both array and elements object, and initialize the JSArray.
Heap* heap = isolate()->heap();
Node* array = Allocate(total_size);
StoreMapNoWriteBarrier(array, array_map);
Node* empty_properties =
HeapConstant(Handle<HeapObject>(heap->empty_fixed_array()));
StoreObjectFieldNoWriteBarrier(array, JSArray::kPropertiesOffset,
empty_properties);
StoreObjectFieldNoWriteBarrier(
array, JSArray::kLengthOffset,
mode == SMI_PARAMETERS ? length_node : SmiTag(length_node));
if (allocation_site != nullptr) {
InitializeAllocationMemento(array, JSArray::kSize, allocation_site);
}
// Setup elements object.
Node* elements = InnerAllocate(array, elements_offset);
StoreObjectFieldNoWriteBarrier(array, JSArray::kElementsOffset, elements);
Handle<Map> elements_map(is_double ? heap->fixed_double_array_map()
: heap->fixed_array_map());
StoreMapNoWriteBarrier(elements, HeapConstant(elements_map));
StoreObjectFieldNoWriteBarrier(
elements, FixedArray::kLengthOffset,
mode == SMI_PARAMETERS ? capacity_node : SmiTag(capacity_node));
int const first_element_offset = FixedArray::kHeaderSize - kHeapObjectTag;
Node* hole = HeapConstant(Handle<HeapObject>(heap->the_hole_value()));
Node* double_hole =
Is64() ? Int64Constant(kHoleNanInt64) : Int32Constant(kHoleNanLower32);
DCHECK_EQ(kHoleNanLower32, kHoleNanUpper32);
if (constant_capacity && capacity <= kElementLoopUnrollThreshold) {
for (int i = 0; i < capacity; ++i) {
if (is_double) {
Node* offset = ElementOffsetFromIndex(Int32Constant(i), kind, mode,
first_element_offset);
// Don't use doubles to store the hole double, since manipulating the
// signaling NaN used for the hole in C++, e.g. with bit_cast, will
// change its value on ia32 (the x87 stack is used to return values
// and stores to the stack silently clear the signalling bit).
//
// TODO(danno): When we have a Float32/Float64 wrapper class that
// preserves double bits during manipulation, remove this code/change
// this to an indexed Float64 store.
if (Is64()) {
StoreNoWriteBarrier(MachineRepresentation::kWord64, elements, offset,
double_hole);
} else {
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset,
double_hole);
offset = ElementOffsetFromIndex(Int32Constant(i), kind, mode,
first_element_offset + kPointerSize);
StoreNoWriteBarrier(MachineRepresentation::kWord32, elements, offset,
double_hole);
}
} else {
StoreFixedArrayElement(elements, Int32Constant(i), hole,
SKIP_WRITE_BARRIER);
}
}
} else {
// TODO(danno): Add a loop for initialization
UNIMPLEMENTED();
}
return array;
}
void CodeStubAssembler::InitializeAllocationMemento(
compiler::Node* base_allocation, int base_allocation_size,
compiler::Node* allocation_site) {
StoreObjectFieldNoWriteBarrier(
base_allocation, AllocationMemento::kMapOffset + base_allocation_size,
HeapConstant(Handle<Map>(isolate()->heap()->allocation_memento_map())));
StoreObjectFieldNoWriteBarrier(
base_allocation,
AllocationMemento::kAllocationSiteOffset + base_allocation_size,
allocation_site);
if (FLAG_allocation_site_pretenuring) {
Node* count = LoadObjectField(allocation_site,
AllocationSite::kPretenureCreateCountOffset);
Node* incremented_count = IntPtrAdd(count, SmiConstant(Smi::FromInt(1)));
StoreObjectFieldNoWriteBarrier(allocation_site,
AllocationSite::kPretenureCreateCountOffset,
incremented_count);
}
}
Node* CodeStubAssembler::TruncateTaggedToFloat64(Node* context, Node* value) {
// We might need to loop once due to ToNumber conversion.
Variable var_value(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kFloat64);
Label loop(this, &var_value), done_loop(this, &var_result);
var_value.Bind(value);
Goto(&loop);
Bind(&loop);
{
// Load the current {value}.
value = var_value.value();
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this), if_valueisnotsmi(this);
Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
Bind(&if_valueissmi);
{
// Convert the Smi {value}.
var_result.Bind(SmiToFloat64(value));
Goto(&done_loop);
}
Bind(&if_valueisnotsmi);
{
// Check if {value} is a HeapNumber.
Label if_valueisheapnumber(this),
if_valueisnotheapnumber(this, Label::kDeferred);
Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
&if_valueisheapnumber, &if_valueisnotheapnumber);
Bind(&if_valueisheapnumber);
{
// Load the floating point value.
var_result.Bind(LoadHeapNumberValue(value));
Goto(&done_loop);
}
Bind(&if_valueisnotheapnumber);
{
// Convert the {value} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&loop);
}
}
}
Bind(&done_loop);
return var_result.value();
}
Node* CodeStubAssembler::TruncateTaggedToWord32(Node* context, Node* value) {
// We might need to loop once due to ToNumber conversion.
Variable var_value(this, MachineRepresentation::kTagged),
var_result(this, MachineRepresentation::kWord32);
Label loop(this, &var_value), done_loop(this, &var_result);
var_value.Bind(value);
Goto(&loop);
Bind(&loop);
{
// Load the current {value}.
value = var_value.value();
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this), if_valueisnotsmi(this);
Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
Bind(&if_valueissmi);
{
// Convert the Smi {value}.
var_result.Bind(SmiToWord32(value));
Goto(&done_loop);
}
Bind(&if_valueisnotsmi);
{
// Check if {value} is a HeapNumber.
Label if_valueisheapnumber(this),
if_valueisnotheapnumber(this, Label::kDeferred);
Branch(WordEqual(LoadMap(value), HeapNumberMapConstant()),
&if_valueisheapnumber, &if_valueisnotheapnumber);
Bind(&if_valueisheapnumber);
{
// Truncate the floating point value.
var_result.Bind(TruncateHeapNumberValueToWord32(value));
Goto(&done_loop);
}
Bind(&if_valueisnotheapnumber);
{
// Convert the {value} to a Number first.
Callable callable = CodeFactory::NonNumberToNumber(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&loop);
}
}
}
Bind(&done_loop);
return var_result.value();
}
Node* CodeStubAssembler::TruncateHeapNumberValueToWord32(Node* object) {
Node* value = LoadHeapNumberValue(object);
return TruncateFloat64ToWord32(value);
}
Node* CodeStubAssembler::ChangeFloat64ToTagged(Node* value) {
Node* value32 = RoundFloat64ToInt32(value);
Node* value64 = ChangeInt32ToFloat64(value32);
Label if_valueisint32(this), if_valueisheapnumber(this), if_join(this);
Label if_valueisequal(this), if_valueisnotequal(this);
Branch(Float64Equal(value, value64), &if_valueisequal, &if_valueisnotequal);
Bind(&if_valueisequal);
{
GotoUnless(Word32Equal(value32, Int32Constant(0)), &if_valueisint32);
BranchIfInt32LessThan(Float64ExtractHighWord32(value), Int32Constant(0),
&if_valueisheapnumber, &if_valueisint32);
}
Bind(&if_valueisnotequal);
Goto(&if_valueisheapnumber);
Variable var_result(this, MachineRepresentation::kTagged);
Bind(&if_valueisint32);
{
if (Is64()) {
Node* result = SmiTag(ChangeInt32ToInt64(value32));
var_result.Bind(result);
Goto(&if_join);
} else {
Node* pair = Int32AddWithOverflow(value32, value32);
Node* overflow = Projection(1, pair);
Label if_overflow(this, Label::kDeferred), if_notoverflow(this);
Branch(overflow, &if_overflow, &if_notoverflow);
Bind(&if_overflow);
Goto(&if_valueisheapnumber);
Bind(&if_notoverflow);
{
Node* result = Projection(0, pair);
var_result.Bind(result);
Goto(&if_join);
}
}
}
Bind(&if_valueisheapnumber);
{
Node* result = AllocateHeapNumberWithValue(value);
var_result.Bind(result);
Goto(&if_join);
}
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::ChangeInt32ToTagged(Node* value) {
if (Is64()) {
return SmiTag(ChangeInt32ToInt64(value));
}
Variable var_result(this, MachineRepresentation::kTagged);
Node* pair = Int32AddWithOverflow(value, value);
Node* overflow = Projection(1, pair);
Label if_overflow(this, Label::kDeferred), if_notoverflow(this),
if_join(this);
Branch(overflow, &if_overflow, &if_notoverflow);
Bind(&if_overflow);
{
Node* value64 = ChangeInt32ToFloat64(value);
Node* result = AllocateHeapNumberWithValue(value64);
var_result.Bind(result);
}
Goto(&if_join);
Bind(&if_notoverflow);
{
Node* result = Projection(0, pair);
var_result.Bind(result);
}
Goto(&if_join);
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::ChangeUint32ToTagged(Node* value) {
Label if_overflow(this, Label::kDeferred), if_not_overflow(this),
if_join(this);
Variable var_result(this, MachineRepresentation::kTagged);
// If {value} > 2^31 - 1, we need to store it in a HeapNumber.
Branch(Int32LessThan(value, Int32Constant(0)), &if_overflow,
&if_not_overflow);
Bind(&if_not_overflow);
{
if (Is64()) {
var_result.Bind(SmiTag(ChangeUint32ToUint64(value)));
} else {
// If tagging {value} results in an overflow, we need to use a HeapNumber
// to represent it.
Node* pair = Int32AddWithOverflow(value, value);
Node* overflow = Projection(1, pair);
GotoIf(overflow, &if_overflow);
Node* result = Projection(0, pair);
var_result.Bind(result);
}
}
Goto(&if_join);
Bind(&if_overflow);
{
Node* float64_value = ChangeUint32ToFloat64(value);
var_result.Bind(AllocateHeapNumberWithValue(float64_value));
}
Goto(&if_join);
Bind(&if_join);
return var_result.value();
}
Node* CodeStubAssembler::ToThisString(Node* context, Node* value,
char const* method_name) {
Variable var_value(this, MachineRepresentation::kTagged);
var_value.Bind(value);
// Check if the {value} is a Smi or a HeapObject.
Label if_valueissmi(this, Label::kDeferred), if_valueisnotsmi(this),
if_valueisstring(this);
Branch(WordIsSmi(value), &if_valueissmi, &if_valueisnotsmi);
Bind(&if_valueisnotsmi);
{
// Load the instance type of the {value}.
Node* value_instance_type = LoadInstanceType(value);
// Check if the {value} is already String.
Label if_valueisnotstring(this, Label::kDeferred);
Branch(
Int32LessThan(value_instance_type, Int32Constant(FIRST_NONSTRING_TYPE)),
&if_valueisstring, &if_valueisnotstring);
Bind(&if_valueisnotstring);
{
// Check if the {value} is null.
Label if_valueisnullorundefined(this, Label::kDeferred),
if_valueisnotnullorundefined(this, Label::kDeferred),
if_valueisnotnull(this, Label::kDeferred);
Branch(WordEqual(value, NullConstant()), &if_valueisnullorundefined,
&if_valueisnotnull);
Bind(&if_valueisnotnull);
{
// Check if the {value} is undefined.
Branch(WordEqual(value, UndefinedConstant()),
&if_valueisnullorundefined, &if_valueisnotnullorundefined);
Bind(&if_valueisnotnullorundefined);
{
// Convert the {value} to a String.
Callable callable = CodeFactory::ToString(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&if_valueisstring);
}
}
Bind(&if_valueisnullorundefined);
{
// The {value} is either null or undefined.
CallRuntime(Runtime::kThrowCalledOnNullOrUndefined, context,
HeapConstant(factory()->NewStringFromAsciiChecked(
method_name, TENURED)));
Goto(&if_valueisstring); // Never reached.
}
}
}
Bind(&if_valueissmi);
{
// The {value} is a Smi, convert it to a String.
Callable callable = CodeFactory::NumberToString(isolate());
var_value.Bind(CallStub(callable, context, value));
Goto(&if_valueisstring);
}
Bind(&if_valueisstring);
return var_value.value();
}
Node* CodeStubAssembler::StringCharCodeAt(Node* string, Node* index) {
// Translate the {index} into a Word.
index = SmiToWord(index);
// We may need to loop in case of cons or sliced strings.
Variable var_index(this, MachineType::PointerRepresentation());
Variable var_result(this, MachineRepresentation::kWord32);
Variable var_string(this, MachineRepresentation::kTagged);
Variable* loop_vars[] = {&var_index, &var_string};
Label done_loop(this, &var_result), loop(this, 2, loop_vars);
var_string.Bind(string);
var_index.Bind(index);
Goto(&loop);
Bind(&loop);
{
// Load the current {index}.
index = var_index.value();
// Load the current {string}.
string = var_string.value();
// Load the instance type of the {string}.
Node* string_instance_type = LoadInstanceType(string);
// Check if the {string} is a SeqString.
Label if_stringissequential(this), if_stringisnotsequential(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringRepresentationMask)),
Int32Constant(kSeqStringTag)),
&if_stringissequential, &if_stringisnotsequential);
Bind(&if_stringissequential);
{
// Check if the {string} is a TwoByteSeqString or a OneByteSeqString.
Label if_stringistwobyte(this), if_stringisonebyte(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringEncodingMask)),
Int32Constant(kTwoByteStringTag)),
&if_stringistwobyte, &if_stringisonebyte);
Bind(&if_stringisonebyte);
{
var_result.Bind(
Load(MachineType::Uint8(), string,
IntPtrAdd(index, IntPtrConstant(SeqOneByteString::kHeaderSize -
kHeapObjectTag))));
Goto(&done_loop);
}
Bind(&if_stringistwobyte);
{
var_result.Bind(
Load(MachineType::Uint16(), string,
IntPtrAdd(WordShl(index, IntPtrConstant(1)),
IntPtrConstant(SeqTwoByteString::kHeaderSize -
kHeapObjectTag))));
Goto(&done_loop);
}
}
Bind(&if_stringisnotsequential);
{
// Check if the {string} is a ConsString.
Label if_stringiscons(this), if_stringisnotcons(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringRepresentationMask)),
Int32Constant(kConsStringTag)),
&if_stringiscons, &if_stringisnotcons);
Bind(&if_stringiscons);
{
// Check whether the right hand side is the empty string (i.e. if
// this is really a flat string in a cons string). If that is not
// the case we flatten the string first.
Label if_rhsisempty(this), if_rhsisnotempty(this, Label::kDeferred);
Node* rhs = LoadObjectField(string, ConsString::kSecondOffset);
Branch(WordEqual(rhs, EmptyStringConstant()), &if_rhsisempty,
&if_rhsisnotempty);
Bind(&if_rhsisempty);
{
// Just operate on the left hand side of the {string}.
var_string.Bind(LoadObjectField(string, ConsString::kFirstOffset));
Goto(&loop);
}
Bind(&if_rhsisnotempty);
{
// Flatten the {string} and lookup in the resulting string.
var_string.Bind(CallRuntime(Runtime::kFlattenString,
NoContextConstant(), string));
Goto(&loop);
}
}
Bind(&if_stringisnotcons);
{
// Check if the {string} is an ExternalString.
Label if_stringisexternal(this), if_stringisnotexternal(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringRepresentationMask)),
Int32Constant(kExternalStringTag)),
&if_stringisexternal, &if_stringisnotexternal);
Bind(&if_stringisexternal);
{
// Check if the {string} is a short external string.
Label if_stringisshort(this),
if_stringisnotshort(this, Label::kDeferred);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kShortExternalStringMask)),
Int32Constant(0)),
&if_stringisshort, &if_stringisnotshort);
Bind(&if_stringisshort);
{
// Load the actual resource data from the {string}.
Node* string_resource_data =
LoadObjectField(string, ExternalString::kResourceDataOffset,
MachineType::Pointer());
// Check if the {string} is a TwoByteExternalString or a
// OneByteExternalString.
Label if_stringistwobyte(this), if_stringisonebyte(this);
Branch(Word32Equal(Word32And(string_instance_type,
Int32Constant(kStringEncodingMask)),
Int32Constant(kTwoByteStringTag)),
&if_stringistwobyte, &if_stringisonebyte);
Bind(&if_stringisonebyte);
{
var_result.Bind(
Load(MachineType::Uint8(), string_resource_data, index));
Goto(&done_loop);
}
Bind(&if_stringistwobyte);
{
var_result.Bind(Load(MachineType::Uint16(), string_resource_data,
WordShl(index, IntPtrConstant(1))));
Goto(&done_loop);
}
}
Bind(&if_stringisnotshort);
{
// The {string} might be compressed, call the runtime.
var_result.Bind(SmiToWord32(
CallRuntime(Runtime::kExternalStringGetChar,
NoContextConstant(), string, SmiTag(index))));
Goto(&done_loop);
}
}
Bind(&if_stringisnotexternal);
{
// The {string} is a SlicedString, continue with its parent.
Node* string_offset =
SmiToWord(LoadObjectField(string, SlicedString::kOffsetOffset));
Node* string_parent =
LoadObjectField(string, SlicedString::kParentOffset);
var_index.Bind(IntPtrAdd(index, string_offset));
var_string.Bind(string_parent);
Goto(&loop);
}
}
}
}
Bind(&done_loop);
return var_result.value();
}
Node* CodeStubAssembler::StringFromCharCode(Node* code) {
Variable var_result(this, MachineRepresentation::kTagged);
// Check if the {code} is a one-byte char code.
Label if_codeisonebyte(this), if_codeistwobyte(this, Label::kDeferred),
if_done(this);
Branch(Int32LessThanOrEqual(code, Int32Constant(String::kMaxOneByteCharCode)),
&if_codeisonebyte, &if_codeistwobyte);
Bind(&if_codeisonebyte);
{
// Load the isolate wide single character string cache.
Node* cache = LoadRoot(Heap::kSingleCharacterStringCacheRootIndex);
// Check if we have an entry for the {code} in the single character string
// cache already.
Label if_entryisundefined(this, Label::kDeferred),
if_entryisnotundefined(this);
Node* entry = LoadFixedArrayElement(cache, code);
Branch(WordEqual(entry, UndefinedConstant()), &if_entryisundefined,
&if_entryisnotundefined);
Bind(&if_entryisundefined);
{
// Allocate a new SeqOneByteString for {code} and store it in the {cache}.
Node* result = AllocateSeqOneByteString(1);
StoreNoWriteBarrier(
MachineRepresentation::kWord8, result,
IntPtrConstant(SeqOneByteString::kHeaderSize - kHeapObjectTag), code);
StoreFixedArrayElement(cache, code, result);
var_result.Bind(result);
Goto(&if_done);
}
Bind(&if_entryisnotundefined);
{
// Return the entry from the {cache}.
var_result.Bind(entry);
Goto(&if_done);
}
}
Bind(&if_codeistwobyte);
{
// Allocate a new SeqTwoByteString for {code}.
Node* result = AllocateSeqTwoByteString(1);
StoreNoWriteBarrier(
MachineRepresentation::kWord16, result,
IntPtrConstant(SeqTwoByteString::kHeaderSize - kHeapObjectTag), code);
var_result.Bind(result);
Goto(&if_done);
}
Bind(&if_done);
return var_result.value();
}
Node* CodeStubAssembler::BitFieldDecode(Node* word32, uint32_t shift,
uint32_t mask) {
return Word32Shr(Word32And(word32, Int32Constant(mask)),
Int32Constant(shift));
}
void CodeStubAssembler::TryToName(Node* key, Label* if_keyisindex,
Variable* var_index, Label* if_keyisunique,
Label* call_runtime) {
DCHECK_EQ(MachineRepresentation::kWord32, var_index->rep());
Label if_keyissmi(this), if_keyisnotsmi(this);
Branch(WordIsSmi(key), &if_keyissmi, &if_keyisnotsmi);
Bind(&if_keyissmi);
{
// Negative smi keys are named properties. Handle in the runtime.
Label if_keyispositive(this);
Branch(WordIsPositiveSmi(key), &if_keyispositive, call_runtime);
Bind(&if_keyispositive);
var_index->Bind(SmiToWord32(key));
Goto(if_keyisindex);
}
Bind(&if_keyisnotsmi);
Node* key_instance_type = LoadInstanceType(key);
Label if_keyisnotsymbol(this);
Branch(Word32Equal(key_instance_type, Int32Constant(SYMBOL_TYPE)),
if_keyisunique, &if_keyisnotsymbol);
Bind(&if_keyisnotsymbol);
{
Label if_keyisinternalized(this);
Node* bits =
WordAnd(key_instance_type,
Int32Constant(kIsNotStringMask | kIsNotInternalizedMask));
Branch(Word32Equal(bits, Int32Constant(kStringTag | kInternalizedTag)),
&if_keyisinternalized, call_runtime);
Bind(&if_keyisinternalized);
// Check whether the key is an array index passed in as string. Handle
// uniform with smi keys if so.
// TODO(verwaest): Also support non-internalized strings.
Node* hash = LoadNameHash(key);
Node* bit =
Word32And(hash, Int32Constant(internal::Name::kIsNotArrayIndexMask));
Label if_isarrayindex(this);
Branch(Word32Equal(bit, Int32Constant(0)), &if_isarrayindex,
if_keyisunique);
Bind(&if_isarrayindex);
var_index->Bind(BitFieldDecode<internal::Name::ArrayIndexValueBits>(hash));
Goto(if_keyisindex);
}
}
void CodeStubAssembler::TryLookupProperty(Node* object, Node* map,
Node* instance_type, Node* name,
Label* if_found, Label* if_not_found,
Label* call_runtime) {
{
Label if_objectissimple(this);
Branch(Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_SPECIAL_RECEIVER_TYPE)),
call_runtime, &if_objectissimple);
Bind(&if_objectissimple);
}
// TODO(verwaest): Perform a dictonary lookup on slow-mode receivers.
Node* bit_field3 = LoadMapBitField3(map);
Node* bit = BitFieldDecode<Map::DictionaryMap>(bit_field3);
Label if_isfastmap(this);
Branch(Word32Equal(bit, Int32Constant(0)), &if_isfastmap, call_runtime);
Bind(&if_isfastmap);
Node* nof = BitFieldDecode<Map::NumberOfOwnDescriptorsBits>(bit_field3);
// Bail out to the runtime for large numbers of own descriptors. The stub only
// does linear search, which becomes too expensive in that case.
{
static const int32_t kMaxLinear = 210;
Label above_max(this), below_max(this);
Branch(Int32LessThanOrEqual(nof, Int32Constant(kMaxLinear)), &below_max,
call_runtime);
Bind(&below_max);
}
Node* descriptors = LoadMapDescriptors(map);
Variable var_descriptor(this, MachineRepresentation::kWord32);
Label loop(this, &var_descriptor);
var_descriptor.Bind(Int32Constant(0));
Goto(&loop);
Bind(&loop);
{
Node* index = var_descriptor.value();
Node* offset = Int32Constant(DescriptorArray::ToKeyIndex(0));
Node* factor = Int32Constant(DescriptorArray::kDescriptorSize);
Label if_notdone(this);
Branch(Word32Equal(index, nof), if_not_found, &if_notdone);
Bind(&if_notdone);
{
Node* array_index = Int32Add(offset, Int32Mul(index, factor));
Node* current = LoadFixedArrayElement(descriptors, array_index);
Label if_unequal(this);
Branch(WordEqual(current, name), if_found, &if_unequal);
Bind(&if_unequal);
var_descriptor.Bind(Int32Add(index, Int32Constant(1)));
Goto(&loop);
}
}
}
void CodeStubAssembler::TryLookupElement(Node* object, Node* map,
Node* instance_type, Node* index,
Label* if_found, Label* if_not_found,
Label* call_runtime) {
{
Label if_objectissimple(this);
Branch(Int32LessThanOrEqual(instance_type,
Int32Constant(LAST_CUSTOM_ELEMENTS_RECEIVER)),
call_runtime, &if_objectissimple);
Bind(&if_objectissimple);
}
Node* bit_field2 = LoadMapBitField2(map);
Node* elements_kind = BitFieldDecode<Map::ElementsKindBits>(bit_field2);
// TODO(verwaest): Support other elements kinds as well.
Label if_isobjectorsmi(this);
Branch(
Int32LessThanOrEqual(elements_kind, Int32Constant(FAST_HOLEY_ELEMENTS)),
&if_isobjectorsmi, call_runtime);
Bind(&if_isobjectorsmi);
{
Node* elements = LoadElements(object);
Node* length = LoadFixedArrayBaseLength(elements);
Label if_iskeyinrange(this);
Branch(Int32LessThan(index, SmiToWord32(length)), &if_iskeyinrange,
if_not_found);
Bind(&if_iskeyinrange);
Node* element = LoadFixedArrayElement(elements, index);
Node* the_hole = LoadRoot(Heap::kTheHoleValueRootIndex);
Branch(WordEqual(element, the_hole), if_not_found, if_found);
}
}
Node* CodeStubAssembler::OrdinaryHasInstance(Node* context, Node* callable,
Node* object) {
Variable var_result(this, MachineRepresentation::kTagged);
Label return_false(this), return_true(this),
return_runtime(this, Label::kDeferred), return_result(this);
// Goto runtime if {object} is a Smi.
GotoIf(WordIsSmi(object), &return_runtime);
// Load map of {object}.
Node* object_map = LoadMap(object);
// Lookup the {callable} and {object} map in the global instanceof cache.
// Note: This is safe because we clear the global instanceof cache whenever
// we change the prototype of any object.
Node* instanceof_cache_function =
LoadRoot(Heap::kInstanceofCacheFunctionRootIndex);
Node* instanceof_cache_map = LoadRoot(Heap::kInstanceofCacheMapRootIndex);
{
Label instanceof_cache_miss(this);
GotoUnless(WordEqual(instanceof_cache_function, callable),
&instanceof_cache_miss);
GotoUnless(WordEqual(instanceof_cache_map, object_map),
&instanceof_cache_miss);
var_result.Bind(LoadRoot(Heap::kInstanceofCacheAnswerRootIndex));
Goto(&return_result);
Bind(&instanceof_cache_miss);
}
// Goto runtime if {callable} is a Smi.
GotoIf(WordIsSmi(callable), &return_runtime);
// Load map of {callable}.
Node* callable_map = LoadMap(callable);
// Goto runtime if {callable} is not a JSFunction.
Node* callable_instance_type = LoadMapInstanceType(callable_map);
GotoUnless(
Word32Equal(callable_instance_type, Int32Constant(JS_FUNCTION_TYPE)),
&return_runtime);
// Goto runtime if {callable} is not a constructor or has
// a non-instance "prototype".
Node* callable_bitfield = LoadMapBitField(callable_map);
GotoUnless(
Word32Equal(Word32And(callable_bitfield,
Int32Constant((1 << Map::kHasNonInstancePrototype) |
(1 << Map::kIsConstructor))),
Int32Constant(1 << Map::kIsConstructor)),
&return_runtime);
// Get the "prototype" (or initial map) of the {callable}.
Node* callable_prototype =
LoadObjectField(callable, JSFunction::kPrototypeOrInitialMapOffset);
{
Variable var_callable_prototype(this, MachineRepresentation::kTagged);
Label callable_prototype_valid(this);
var_callable_prototype.Bind(callable_prototype);
// Resolve the "prototype" if the {callable} has an initial map. Afterwards
// the {callable_prototype} will be either the JSReceiver prototype object
// or the hole value, which means that no instances of the {callable} were
// created so far and hence we should return false.
Node* callable_prototype_instance_type =
LoadInstanceType(callable_prototype);
GotoUnless(
Word32Equal(callable_prototype_instance_type, Int32Constant(MAP_TYPE)),
&callable_prototype_valid);
var_callable_prototype.Bind(
LoadObjectField(callable_prototype, Map::kPrototypeOffset));
Goto(&callable_prototype_valid);
Bind(&callable_prototype_valid);
callable_prototype = var_callable_prototype.value();
}
// Update the global instanceof cache with the current {object} map and
// {callable}. The cached answer will be set when it is known below.
StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, callable);
StoreRoot(Heap::kInstanceofCacheMapRootIndex, object_map);
// Loop through the prototype chain looking for the {callable} prototype.
Variable var_object_map(this, MachineRepresentation::kTagged);
var_object_map.Bind(object_map);
Label loop(this, &var_object_map);
Goto(&loop);
Bind(&loop);
{
Node* object_map = var_object_map.value();
// Check if the current {object} needs to be access checked.
Node* object_bitfield = LoadMapBitField(object_map);
GotoUnless(
Word32Equal(Word32And(object_bitfield,
Int32Constant(1 << Map::kIsAccessCheckNeeded)),
Int32Constant(0)),
&return_runtime);
// Check if the current {object} is a proxy.
Node* object_instance_type = LoadMapInstanceType(object_map);
GotoIf(Word32Equal(object_instance_type, Int32Constant(JS_PROXY_TYPE)),
&return_runtime);
// Check the current {object} prototype.
Node* object_prototype = LoadMapPrototype(object_map);
GotoIf(WordEqual(object_prototype, callable_prototype), &return_true);
GotoIf(WordEqual(object_prototype, NullConstant()), &return_false);
// Continue with the prototype.
var_object_map.Bind(LoadMap(object_prototype));
Goto(&loop);
}
Bind(&return_true);
StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(true));
var_result.Bind(BooleanConstant(true));
Goto(&return_result);
Bind(&return_false);
StoreRoot(Heap::kInstanceofCacheAnswerRootIndex, BooleanConstant(false));
var_result.Bind(BooleanConstant(false));
Goto(&return_result);
Bind(&return_runtime);
{
// Invalidate the global instanceof cache.
StoreRoot(Heap::kInstanceofCacheFunctionRootIndex, SmiConstant(0));
// Fallback to the runtime implementation.
var_result.Bind(
CallRuntime(Runtime::kOrdinaryHasInstance, context, callable, object));
}
Goto(&return_result);
Bind(&return_result);
return var_result.value();
}
compiler::Node* CodeStubAssembler::ElementOffsetFromIndex(Node* index_node,
ElementsKind kind,
ParameterMode mode,
int base_size) {
bool is_double = IsFastDoubleElementsKind(kind);
int element_size_shift = is_double ? kDoubleSizeLog2 : kPointerSizeLog2;
int element_size = 1 << element_size_shift;
int const kSmiShiftBits = kSmiShiftSize + kSmiTagSize;
int32_t index = 0;
bool constant_index = false;
if (mode == SMI_PARAMETERS) {
element_size_shift -= kSmiShiftBits;
intptr_t temp = 0;
constant_index = ToIntPtrConstant(index_node, temp);
index = temp >> kSmiShiftBits;
} else {
constant_index = ToInt32Constant(index_node, index);
}
if (constant_index) {
return IntPtrConstant(base_size + element_size * index);
}
if (Is64() && mode == INTEGER_PARAMETERS) {
index_node = ChangeInt32ToInt64(index_node);
}
if (base_size == 0) {
return (element_size_shift >= 0)
? WordShl(index_node, IntPtrConstant(element_size_shift))
: WordShr(index_node, IntPtrConstant(-element_size_shift));
}
return IntPtrAdd(
IntPtrConstant(base_size),
(element_size_shift >= 0)
? WordShl(index_node, IntPtrConstant(element_size_shift))
: WordShr(index_node, IntPtrConstant(-element_size_shift)));
}
} // namespace internal
} // namespace v8