Update V8 to version 4.1.0.21

This is a cherry-pick of all commits up to and including the
4.1.0.21 cherry-pick in Chromium.

Original commit message:

Version 4.1.0.21 (cherry-pick)

Merged 206e9136bde0f2b5ae8cb77afbb1e7833e5bd412

Unlink pages from the space page list after evacuation.

BUG=430201
LOG=N
R=jkummerow@chromium.org

Review URL: https://codereview.chromium.org/953813002

Cr-Commit-Position: refs/branch-heads/4.1@{#22}
Cr-Branched-From: 2e08d2a7aa9d65d269d8c57aba82eb38a8cb0a18-refs/heads/candidates@{#25353}

---

FPIIM-449

Change-Id: I8c23c7bbb70772b4858fe8a47b64fa97ee0d1f8c
diff --git a/src/runtime/runtime-api.cc b/src/runtime/runtime-api.cc
new file mode 100644
index 0000000..740832e
--- /dev/null
+++ b/src/runtime/runtime-api.cc
@@ -0,0 +1,127 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/bootstrapper.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_CreateApiFunction) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(FunctionTemplateInfo, data, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+  return *isolate->factory()->CreateApiFunction(data, prototype);
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsTemplate) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, arg, 0);
+  bool result = arg->IsObjectTemplateInfo() || arg->IsFunctionTemplateInfo();
+  return isolate->heap()->ToBoolean(result);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetTemplateField) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(HeapObject, templ, 0);
+  CONVERT_SMI_ARG_CHECKED(index, 1);
+  int offset = index * kPointerSize + HeapObject::kHeaderSize;
+  InstanceType type = templ->map()->instance_type();
+  RUNTIME_ASSERT(type == FUNCTION_TEMPLATE_INFO_TYPE ||
+                 type == OBJECT_TEMPLATE_INFO_TYPE);
+  RUNTIME_ASSERT(offset > 0);
+  if (type == FUNCTION_TEMPLATE_INFO_TYPE) {
+    RUNTIME_ASSERT(offset < FunctionTemplateInfo::kSize);
+  } else {
+    RUNTIME_ASSERT(offset < ObjectTemplateInfo::kSize);
+  }
+  return *HeapObject::RawField(templ, offset);
+}
+
+
+// Transform getter or setter into something DefineAccessor can handle.
+static Handle<Object> InstantiateAccessorComponent(Isolate* isolate,
+                                                   Handle<Object> component) {
+  if (component->IsUndefined()) return isolate->factory()->undefined_value();
+  Handle<FunctionTemplateInfo> info =
+      Handle<FunctionTemplateInfo>::cast(component);
+  return Utils::OpenHandle(*Utils::ToLocal(info)->GetFunction());
+}
+
+
+RUNTIME_FUNCTION(Runtime_DefineApiAccessorProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 5);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
+  CONVERT_SMI_ARG_CHECKED(attribute, 4);
+  RUNTIME_ASSERT(getter->IsUndefined() || getter->IsFunctionTemplateInfo());
+  RUNTIME_ASSERT(setter->IsUndefined() || setter->IsFunctionTemplateInfo());
+  RUNTIME_ASSERT(PropertyDetails::AttributesField::is_valid(
+      static_cast<PropertyAttributes>(attribute)));
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, JSObject::DefineAccessor(
+                   object, name, InstantiateAccessorComponent(isolate, getter),
+                   InstantiateAccessorComponent(isolate, setter),
+                   static_cast<PropertyAttributes>(attribute)));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_AddPropertyForTemplate) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 4);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+  CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
+  RUNTIME_ASSERT(
+      (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+  // Compute attributes.
+  PropertyAttributes attributes =
+      static_cast<PropertyAttributes>(unchecked_attributes);
+
+#ifdef DEBUG
+  bool duplicate;
+  if (key->IsName()) {
+    LookupIterator it(object, Handle<Name>::cast(key),
+                      LookupIterator::OWN_SKIP_INTERCEPTOR);
+    Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+    DCHECK(maybe.has_value);
+    duplicate = it.IsFound();
+  } else {
+    uint32_t index = 0;
+    RUNTIME_ASSERT(key->ToArrayIndex(&index));
+    Maybe<bool> maybe = JSReceiver::HasOwnElement(object, index);
+    if (!maybe.has_value) return isolate->heap()->exception();
+    duplicate = maybe.value;
+  }
+  if (duplicate) {
+    Handle<Object> args[1] = {key};
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate,
+        NewTypeError("duplicate_template_property", HandleVector(args, 1)));
+  }
+#endif
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Runtime::DefineObjectProperty(object, key, value, attributes));
+  return *result;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-array.cc b/src/runtime/runtime-array.cc
new file mode 100644
index 0000000..a017236
--- /dev/null
+++ b/src/runtime/runtime-array.cc
@@ -0,0 +1,1317 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_FinishArrayPrototypeSetup) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, prototype, 0);
+  Object* length = prototype->length();
+  RUNTIME_ASSERT(length->IsSmi() && Smi::cast(length)->value() == 0);
+  RUNTIME_ASSERT(prototype->HasFastSmiOrObjectElements());
+  // This is necessary to enable fast checks for absence of elements
+  // on Array.prototype and below.
+  prototype->set_elements(isolate->heap()->empty_fixed_array());
+  return Smi::FromInt(0);
+}
+
+
+static void InstallBuiltin(Isolate* isolate, Handle<JSObject> holder,
+                           const char* name, Builtins::Name builtin_name) {
+  Handle<String> key = isolate->factory()->InternalizeUtf8String(name);
+  Handle<Code> code(isolate->builtins()->builtin(builtin_name));
+  Handle<JSFunction> optimized =
+      isolate->factory()->NewFunctionWithoutPrototype(key, code);
+  optimized->shared()->DontAdaptArguments();
+  JSObject::AddProperty(holder, key, optimized, NONE);
+}
+
+
+RUNTIME_FUNCTION(Runtime_SpecialArrayFunctions) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  Handle<JSObject> holder =
+      isolate->factory()->NewJSObject(isolate->object_function());
+
+  InstallBuiltin(isolate, holder, "pop", Builtins::kArrayPop);
+  InstallBuiltin(isolate, holder, "push", Builtins::kArrayPush);
+  InstallBuiltin(isolate, holder, "shift", Builtins::kArrayShift);
+  InstallBuiltin(isolate, holder, "unshift", Builtins::kArrayUnshift);
+  InstallBuiltin(isolate, holder, "slice", Builtins::kArraySlice);
+  InstallBuiltin(isolate, holder, "splice", Builtins::kArraySplice);
+  InstallBuiltin(isolate, holder, "concat", Builtins::kArrayConcat);
+
+  return *holder;
+}
+
+
+RUNTIME_FUNCTION(Runtime_TransitionElementsKind) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Map, map, 1);
+  JSObject::TransitionElementsKind(array, map->elements_kind());
+  return *array;
+}
+
+
+// Push an object unto an array of objects if it is not already in the
+// array.  Returns true if the element was pushed on the stack and
+// false otherwise.
+RUNTIME_FUNCTION(Runtime_PushIfAbsent) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, element, 1);
+  RUNTIME_ASSERT(array->HasFastSmiOrObjectElements());
+  int length = Smi::cast(array->length())->value();
+  FixedArray* elements = FixedArray::cast(array->elements());
+  for (int i = 0; i < length; i++) {
+    if (elements->get(i) == *element) return isolate->heap()->false_value();
+  }
+
+  // Strict not needed. Used for cycle detection in Array join implementation.
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, JSObject::SetFastElement(array, length, element, SLOPPY, true));
+  return isolate->heap()->true_value();
+}
+
+
+/**
+ * A simple visitor visits every element of Array's.
+ * The backend storage can be a fixed array for fast elements case,
+ * or a dictionary for sparse array. Since Dictionary is a subtype
+ * of FixedArray, the class can be used by both fast and slow cases.
+ * The second parameter of the constructor, fast_elements, specifies
+ * whether the storage is a FixedArray or Dictionary.
+ *
+ * An index limit is used to deal with the situation that a result array
+ * length overflows 32-bit non-negative integer.
+ */
+class ArrayConcatVisitor {
+ public:
+  ArrayConcatVisitor(Isolate* isolate, Handle<FixedArray> storage,
+                     bool fast_elements)
+      : isolate_(isolate),
+        storage_(Handle<FixedArray>::cast(
+            isolate->global_handles()->Create(*storage))),
+        index_offset_(0u),
+        bit_field_(FastElementsField::encode(fast_elements) |
+                   ExceedsLimitField::encode(false)) {}
+
+  ~ArrayConcatVisitor() { clear_storage(); }
+
+  void visit(uint32_t i, Handle<Object> elm) {
+    if (i > JSObject::kMaxElementCount - index_offset_) {
+      set_exceeds_array_limit(true);
+      return;
+    }
+    uint32_t index = index_offset_ + i;
+
+    if (fast_elements()) {
+      if (index < static_cast<uint32_t>(storage_->length())) {
+        storage_->set(index, *elm);
+        return;
+      }
+      // Our initial estimate of length was foiled, possibly by
+      // getters on the arrays increasing the length of later arrays
+      // during iteration.
+      // This shouldn't happen in anything but pathological cases.
+      SetDictionaryMode();
+      // Fall-through to dictionary mode.
+    }
+    DCHECK(!fast_elements());
+    Handle<SeededNumberDictionary> dict(
+        SeededNumberDictionary::cast(*storage_));
+    Handle<SeededNumberDictionary> result =
+        SeededNumberDictionary::AtNumberPut(dict, index, elm);
+    if (!result.is_identical_to(dict)) {
+      // Dictionary needed to grow.
+      clear_storage();
+      set_storage(*result);
+    }
+  }
+
+  void increase_index_offset(uint32_t delta) {
+    if (JSObject::kMaxElementCount - index_offset_ < delta) {
+      index_offset_ = JSObject::kMaxElementCount;
+    } else {
+      index_offset_ += delta;
+    }
+    // If the initial length estimate was off (see special case in visit()),
+    // but the array blowing the limit didn't contain elements beyond the
+    // provided-for index range, go to dictionary mode now.
+    if (fast_elements() &&
+        index_offset_ >
+            static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) {
+      SetDictionaryMode();
+    }
+  }
+
+  bool exceeds_array_limit() const {
+    return ExceedsLimitField::decode(bit_field_);
+  }
+
+  Handle<JSArray> ToArray() {
+    Handle<JSArray> array = isolate_->factory()->NewJSArray(0);
+    Handle<Object> length =
+        isolate_->factory()->NewNumber(static_cast<double>(index_offset_));
+    Handle<Map> map = JSObject::GetElementsTransitionMap(
+        array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS);
+    array->set_map(*map);
+    array->set_length(*length);
+    array->set_elements(*storage_);
+    return array;
+  }
+
+ private:
+  // Convert storage to dictionary mode.
+  void SetDictionaryMode() {
+    DCHECK(fast_elements());
+    Handle<FixedArray> current_storage(*storage_);
+    Handle<SeededNumberDictionary> slow_storage(
+        SeededNumberDictionary::New(isolate_, current_storage->length()));
+    uint32_t current_length = static_cast<uint32_t>(current_storage->length());
+    for (uint32_t i = 0; i < current_length; i++) {
+      HandleScope loop_scope(isolate_);
+      Handle<Object> element(current_storage->get(i), isolate_);
+      if (!element->IsTheHole()) {
+        Handle<SeededNumberDictionary> new_storage =
+            SeededNumberDictionary::AtNumberPut(slow_storage, i, element);
+        if (!new_storage.is_identical_to(slow_storage)) {
+          slow_storage = loop_scope.CloseAndEscape(new_storage);
+        }
+      }
+    }
+    clear_storage();
+    set_storage(*slow_storage);
+    set_fast_elements(false);
+  }
+
+  inline void clear_storage() {
+    GlobalHandles::Destroy(Handle<Object>::cast(storage_).location());
+  }
+
+  inline void set_storage(FixedArray* storage) {
+    storage_ =
+        Handle<FixedArray>::cast(isolate_->global_handles()->Create(storage));
+  }
+
+  class FastElementsField : public BitField<bool, 0, 1> {};
+  class ExceedsLimitField : public BitField<bool, 1, 1> {};
+
+  bool fast_elements() const { return FastElementsField::decode(bit_field_); }
+  void set_fast_elements(bool fast) {
+    bit_field_ = FastElementsField::update(bit_field_, fast);
+  }
+  void set_exceeds_array_limit(bool exceeds) {
+    bit_field_ = ExceedsLimitField::update(bit_field_, exceeds);
+  }
+
+  Isolate* isolate_;
+  Handle<FixedArray> storage_;  // Always a global handle.
+  // Index after last seen index. Always less than or equal to
+  // JSObject::kMaxElementCount.
+  uint32_t index_offset_;
+  uint32_t bit_field_;
+};
+
+
+static uint32_t EstimateElementCount(Handle<JSArray> array) {
+  uint32_t length = static_cast<uint32_t>(array->length()->Number());
+  int element_count = 0;
+  switch (array->GetElementsKind()) {
+    case FAST_SMI_ELEMENTS:
+    case FAST_HOLEY_SMI_ELEMENTS:
+    case FAST_ELEMENTS:
+    case FAST_HOLEY_ELEMENTS: {
+      // Fast elements can't have lengths that are not representable by
+      // a 32-bit signed integer.
+      DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0);
+      int fast_length = static_cast<int>(length);
+      Handle<FixedArray> elements(FixedArray::cast(array->elements()));
+      for (int i = 0; i < fast_length; i++) {
+        if (!elements->get(i)->IsTheHole()) element_count++;
+      }
+      break;
+    }
+    case FAST_DOUBLE_ELEMENTS:
+    case FAST_HOLEY_DOUBLE_ELEMENTS: {
+      // Fast elements can't have lengths that are not representable by
+      // a 32-bit signed integer.
+      DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0);
+      int fast_length = static_cast<int>(length);
+      if (array->elements()->IsFixedArray()) {
+        DCHECK(FixedArray::cast(array->elements())->length() == 0);
+        break;
+      }
+      Handle<FixedDoubleArray> elements(
+          FixedDoubleArray::cast(array->elements()));
+      for (int i = 0; i < fast_length; i++) {
+        if (!elements->is_the_hole(i)) element_count++;
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      Handle<SeededNumberDictionary> dictionary(
+          SeededNumberDictionary::cast(array->elements()));
+      int capacity = dictionary->Capacity();
+      for (int i = 0; i < capacity; i++) {
+        Handle<Object> key(dictionary->KeyAt(i), array->GetIsolate());
+        if (dictionary->IsKey(*key)) {
+          element_count++;
+        }
+      }
+      break;
+    }
+    case SLOPPY_ARGUMENTS_ELEMENTS:
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
+  case EXTERNAL_##TYPE##_ELEMENTS:                      \
+  case TYPE##_ELEMENTS:
+
+      TYPED_ARRAYS(TYPED_ARRAY_CASE)
+#undef TYPED_ARRAY_CASE
+      // External arrays are always dense.
+      return length;
+  }
+  // As an estimate, we assume that the prototype doesn't contain any
+  // inherited elements.
+  return element_count;
+}
+
+
+template <class ExternalArrayClass, class ElementType>
+static void IterateTypedArrayElements(Isolate* isolate,
+                                      Handle<JSObject> receiver,
+                                      bool elements_are_ints,
+                                      bool elements_are_guaranteed_smis,
+                                      ArrayConcatVisitor* visitor) {
+  Handle<ExternalArrayClass> array(
+      ExternalArrayClass::cast(receiver->elements()));
+  uint32_t len = static_cast<uint32_t>(array->length());
+
+  DCHECK(visitor != NULL);
+  if (elements_are_ints) {
+    if (elements_are_guaranteed_smis) {
+      for (uint32_t j = 0; j < len; j++) {
+        HandleScope loop_scope(isolate);
+        Handle<Smi> e(Smi::FromInt(static_cast<int>(array->get_scalar(j))),
+                      isolate);
+        visitor->visit(j, e);
+      }
+    } else {
+      for (uint32_t j = 0; j < len; j++) {
+        HandleScope loop_scope(isolate);
+        int64_t val = static_cast<int64_t>(array->get_scalar(j));
+        if (Smi::IsValid(static_cast<intptr_t>(val))) {
+          Handle<Smi> e(Smi::FromInt(static_cast<int>(val)), isolate);
+          visitor->visit(j, e);
+        } else {
+          Handle<Object> e =
+              isolate->factory()->NewNumber(static_cast<ElementType>(val));
+          visitor->visit(j, e);
+        }
+      }
+    }
+  } else {
+    for (uint32_t j = 0; j < len; j++) {
+      HandleScope loop_scope(isolate);
+      Handle<Object> e = isolate->factory()->NewNumber(array->get_scalar(j));
+      visitor->visit(j, e);
+    }
+  }
+}
+
+
+// Used for sorting indices in a List<uint32_t>.
+static int compareUInt32(const uint32_t* ap, const uint32_t* bp) {
+  uint32_t a = *ap;
+  uint32_t b = *bp;
+  return (a == b) ? 0 : (a < b) ? -1 : 1;
+}
+
+
+static void CollectElementIndices(Handle<JSObject> object, uint32_t range,
+                                  List<uint32_t>* indices) {
+  Isolate* isolate = object->GetIsolate();
+  ElementsKind kind = object->GetElementsKind();
+  switch (kind) {
+    case FAST_SMI_ELEMENTS:
+    case FAST_ELEMENTS:
+    case FAST_HOLEY_SMI_ELEMENTS:
+    case FAST_HOLEY_ELEMENTS: {
+      Handle<FixedArray> elements(FixedArray::cast(object->elements()));
+      uint32_t length = static_cast<uint32_t>(elements->length());
+      if (range < length) length = range;
+      for (uint32_t i = 0; i < length; i++) {
+        if (!elements->get(i)->IsTheHole()) {
+          indices->Add(i);
+        }
+      }
+      break;
+    }
+    case FAST_HOLEY_DOUBLE_ELEMENTS:
+    case FAST_DOUBLE_ELEMENTS: {
+      if (object->elements()->IsFixedArray()) {
+        DCHECK(object->elements()->length() == 0);
+        break;
+      }
+      Handle<FixedDoubleArray> elements(
+          FixedDoubleArray::cast(object->elements()));
+      uint32_t length = static_cast<uint32_t>(elements->length());
+      if (range < length) length = range;
+      for (uint32_t i = 0; i < length; i++) {
+        if (!elements->is_the_hole(i)) {
+          indices->Add(i);
+        }
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      Handle<SeededNumberDictionary> dict(
+          SeededNumberDictionary::cast(object->elements()));
+      uint32_t capacity = dict->Capacity();
+      for (uint32_t j = 0; j < capacity; j++) {
+        HandleScope loop_scope(isolate);
+        Handle<Object> k(dict->KeyAt(j), isolate);
+        if (dict->IsKey(*k)) {
+          DCHECK(k->IsNumber());
+          uint32_t index = static_cast<uint32_t>(k->Number());
+          if (index < range) {
+            indices->Add(index);
+          }
+        }
+      }
+      break;
+    }
+#define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) \
+  case TYPE##_ELEMENTS:                                 \
+  case EXTERNAL_##TYPE##_ELEMENTS:
+
+      TYPED_ARRAYS(TYPED_ARRAY_CASE)
+#undef TYPED_ARRAY_CASE
+      {
+        uint32_t length = static_cast<uint32_t>(
+            FixedArrayBase::cast(object->elements())->length());
+        if (range <= length) {
+          length = range;
+          // We will add all indices, so we might as well clear it first
+          // and avoid duplicates.
+          indices->Clear();
+        }
+        for (uint32_t i = 0; i < length; i++) {
+          indices->Add(i);
+        }
+        if (length == range) return;  // All indices accounted for already.
+        break;
+      }
+    case SLOPPY_ARGUMENTS_ELEMENTS: {
+      MaybeHandle<Object> length_obj =
+          Object::GetProperty(object, isolate->factory()->length_string());
+      double length_num = length_obj.ToHandleChecked()->Number();
+      uint32_t length = static_cast<uint32_t>(DoubleToInt32(length_num));
+      ElementsAccessor* accessor = object->GetElementsAccessor();
+      for (uint32_t i = 0; i < length; i++) {
+        if (accessor->HasElement(object, object, i)) {
+          indices->Add(i);
+        }
+      }
+      break;
+    }
+  }
+
+  PrototypeIterator iter(isolate, object);
+  if (!iter.IsAtEnd()) {
+    // The prototype will usually have no inherited element indices,
+    // but we have to check.
+    CollectElementIndices(
+        Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)), range,
+        indices);
+  }
+}
+
+
+static bool IterateElementsSlow(Isolate* isolate, Handle<JSObject> receiver,
+                                uint32_t length, ArrayConcatVisitor* visitor) {
+  for (uint32_t i = 0; i < length; ++i) {
+    HandleScope loop_scope(isolate);
+    Maybe<bool> maybe = JSReceiver::HasElement(receiver, i);
+    if (!maybe.has_value) return false;
+    if (maybe.value) {
+      Handle<Object> element_value;
+      ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+          isolate, element_value,
+          Runtime::GetElementOrCharAt(isolate, receiver, i), false);
+      visitor->visit(i, element_value);
+    }
+  }
+  visitor->increase_index_offset(length);
+  return true;
+}
+
+
+/**
+ * A helper function that visits elements of a JSObject in numerical
+ * order.
+ *
+ * The visitor argument called for each existing element in the array
+ * with the element index and the element's value.
+ * Afterwards it increments the base-index of the visitor by the array
+ * length.
+ * Returns false if any access threw an exception, otherwise true.
+ */
+static bool IterateElements(Isolate* isolate, Handle<JSObject> receiver,
+                            ArrayConcatVisitor* visitor) {
+  uint32_t length = 0;
+
+  if (receiver->IsJSArray()) {
+    Handle<JSArray> array(Handle<JSArray>::cast(receiver));
+    length = static_cast<uint32_t>(array->length()->Number());
+  } else {
+    Handle<Object> val;
+    Handle<Object> key(isolate->heap()->length_string(), isolate);
+    ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, val,
+        Runtime::GetObjectProperty(isolate, receiver, key), false);
+    // TODO(caitp): Support larger element indexes (up to 2^53-1).
+    if (!val->ToUint32(&length)) {
+      ASSIGN_RETURN_ON_EXCEPTION_VALUE(isolate, val,
+          Execution::ToLength(isolate, val), false);
+      val->ToUint32(&length);
+    }
+  }
+
+  if (!(receiver->IsJSArray() || receiver->IsJSTypedArray())) {
+    // For classes which are not known to be safe to access via elements alone,
+    // use the slow case.
+    return IterateElementsSlow(isolate, receiver, length, visitor);
+  }
+
+  switch (receiver->GetElementsKind()) {
+    case FAST_SMI_ELEMENTS:
+    case FAST_ELEMENTS:
+    case FAST_HOLEY_SMI_ELEMENTS:
+    case FAST_HOLEY_ELEMENTS: {
+      // Run through the elements FixedArray and use HasElement and GetElement
+      // to check the prototype for missing elements.
+      Handle<FixedArray> elements(FixedArray::cast(receiver->elements()));
+      int fast_length = static_cast<int>(length);
+      DCHECK(fast_length <= elements->length());
+      for (int j = 0; j < fast_length; j++) {
+        HandleScope loop_scope(isolate);
+        Handle<Object> element_value(elements->get(j), isolate);
+        if (!element_value->IsTheHole()) {
+          visitor->visit(j, element_value);
+        } else {
+          Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
+          if (!maybe.has_value) return false;
+          if (maybe.value) {
+            // Call GetElement on receiver, not its prototype, or getters won't
+            // have the correct receiver.
+            ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+                isolate, element_value,
+                Object::GetElement(isolate, receiver, j), false);
+            visitor->visit(j, element_value);
+          }
+        }
+      }
+      break;
+    }
+    case FAST_HOLEY_DOUBLE_ELEMENTS:
+    case FAST_DOUBLE_ELEMENTS: {
+      // Empty array is FixedArray but not FixedDoubleArray.
+      if (length == 0) break;
+      // Run through the elements FixedArray and use HasElement and GetElement
+      // to check the prototype for missing elements.
+      if (receiver->elements()->IsFixedArray()) {
+        DCHECK(receiver->elements()->length() == 0);
+        break;
+      }
+      Handle<FixedDoubleArray> elements(
+          FixedDoubleArray::cast(receiver->elements()));
+      int fast_length = static_cast<int>(length);
+      DCHECK(fast_length <= elements->length());
+      for (int j = 0; j < fast_length; j++) {
+        HandleScope loop_scope(isolate);
+        if (!elements->is_the_hole(j)) {
+          double double_value = elements->get_scalar(j);
+          Handle<Object> element_value =
+              isolate->factory()->NewNumber(double_value);
+          visitor->visit(j, element_value);
+        } else {
+          Maybe<bool> maybe = JSReceiver::HasElement(receiver, j);
+          if (!maybe.has_value) return false;
+          if (maybe.value) {
+            // Call GetElement on receiver, not its prototype, or getters won't
+            // have the correct receiver.
+            Handle<Object> element_value;
+            ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+                isolate, element_value,
+                Object::GetElement(isolate, receiver, j), false);
+            visitor->visit(j, element_value);
+          }
+        }
+      }
+      break;
+    }
+    case DICTIONARY_ELEMENTS: {
+      Handle<SeededNumberDictionary> dict(receiver->element_dictionary());
+      List<uint32_t> indices(dict->Capacity() / 2);
+      // Collect all indices in the object and the prototypes less
+      // than length. This might introduce duplicates in the indices list.
+      CollectElementIndices(receiver, length, &indices);
+      indices.Sort(&compareUInt32);
+      int j = 0;
+      int n = indices.length();
+      while (j < n) {
+        HandleScope loop_scope(isolate);
+        uint32_t index = indices[j];
+        Handle<Object> element;
+        ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+            isolate, element, Object::GetElement(isolate, receiver, index),
+            false);
+        visitor->visit(index, element);
+        // Skip to next different index (i.e., omit duplicates).
+        do {
+          j++;
+        } while (j < n && indices[j] == index);
+      }
+      break;
+    }
+    case EXTERNAL_UINT8_CLAMPED_ELEMENTS: {
+      Handle<ExternalUint8ClampedArray> pixels(
+          ExternalUint8ClampedArray::cast(receiver->elements()));
+      for (uint32_t j = 0; j < length; j++) {
+        Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
+        visitor->visit(j, e);
+      }
+      break;
+    }
+    case UINT8_CLAMPED_ELEMENTS: {
+      Handle<FixedUint8ClampedArray> pixels(
+      FixedUint8ClampedArray::cast(receiver->elements()));
+      for (uint32_t j = 0; j < length; j++) {
+        Handle<Smi> e(Smi::FromInt(pixels->get_scalar(j)), isolate);
+        visitor->visit(j, e);
+      }
+      break;
+    }
+    case EXTERNAL_INT8_ELEMENTS: {
+      IterateTypedArrayElements<ExternalInt8Array, int8_t>(
+          isolate, receiver, true, true, visitor);
+      break;
+    }
+    case INT8_ELEMENTS: {
+      IterateTypedArrayElements<FixedInt8Array, int8_t>(
+      isolate, receiver, true, true, visitor);
+      break;
+    }
+    case EXTERNAL_UINT8_ELEMENTS: {
+      IterateTypedArrayElements<ExternalUint8Array, uint8_t>(
+          isolate, receiver, true, true, visitor);
+      break;
+    }
+    case UINT8_ELEMENTS: {
+      IterateTypedArrayElements<FixedUint8Array, uint8_t>(
+      isolate, receiver, true, true, visitor);
+      break;
+    }
+    case EXTERNAL_INT16_ELEMENTS: {
+      IterateTypedArrayElements<ExternalInt16Array, int16_t>(
+          isolate, receiver, true, true, visitor);
+      break;
+    }
+    case INT16_ELEMENTS: {
+      IterateTypedArrayElements<FixedInt16Array, int16_t>(
+      isolate, receiver, true, true, visitor);
+      break;
+    }
+    case EXTERNAL_UINT16_ELEMENTS: {
+      IterateTypedArrayElements<ExternalUint16Array, uint16_t>(
+          isolate, receiver, true, true, visitor);
+      break;
+    }
+    case UINT16_ELEMENTS: {
+      IterateTypedArrayElements<FixedUint16Array, uint16_t>(
+      isolate, receiver, true, true, visitor);
+      break;
+    }
+    case EXTERNAL_INT32_ELEMENTS: {
+      IterateTypedArrayElements<ExternalInt32Array, int32_t>(
+          isolate, receiver, true, false, visitor);
+      break;
+    }
+    case INT32_ELEMENTS: {
+      IterateTypedArrayElements<FixedInt32Array, int32_t>(
+      isolate, receiver, true, false, visitor);
+      break;
+    }
+    case EXTERNAL_UINT32_ELEMENTS: {
+      IterateTypedArrayElements<ExternalUint32Array, uint32_t>(
+          isolate, receiver, true, false, visitor);
+      break;
+    }
+    case UINT32_ELEMENTS: {
+      IterateTypedArrayElements<FixedUint32Array, uint32_t>(
+      isolate, receiver, true, false, visitor);
+      break;
+    }
+    case EXTERNAL_FLOAT32_ELEMENTS: {
+      IterateTypedArrayElements<ExternalFloat32Array, float>(
+          isolate, receiver, false, false, visitor);
+      break;
+    }
+    case FLOAT32_ELEMENTS: {
+      IterateTypedArrayElements<FixedFloat32Array, float>(
+      isolate, receiver, false, false, visitor);
+      break;
+    }
+    case EXTERNAL_FLOAT64_ELEMENTS: {
+      IterateTypedArrayElements<ExternalFloat64Array, double>(
+          isolate, receiver, false, false, visitor);
+      break;
+    }
+    case FLOAT64_ELEMENTS: {
+      IterateTypedArrayElements<FixedFloat64Array, double>(
+      isolate, receiver, false, false, visitor);
+      break;
+    }
+    case SLOPPY_ARGUMENTS_ELEMENTS: {
+      ElementsAccessor* accessor = receiver->GetElementsAccessor();
+      for (uint32_t index = 0; index < length; index++) {
+        HandleScope loop_scope(isolate);
+        if (accessor->HasElement(receiver, receiver, index)) {
+          Handle<Object> element;
+          ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+              isolate, element, accessor->Get(receiver, receiver, index),
+              false);
+          visitor->visit(index, element);
+        }
+      }
+      break;
+    }
+  }
+  visitor->increase_index_offset(length);
+  return true;
+}
+
+
+static bool IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) {
+  HandleScope handle_scope(isolate);
+  if (!obj->IsSpecObject()) return false;
+  if (obj->IsJSArray()) return true;
+  if (FLAG_harmony_arrays) {
+    Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol());
+    Handle<Object> value;
+    MaybeHandle<Object> maybeValue =
+        i::Runtime::GetObjectProperty(isolate, obj, key);
+    if (maybeValue.ToHandle(&value)) {
+      return value->BooleanValue();
+    }
+  }
+  return false;
+}
+
+
+/**
+ * Array::concat implementation.
+ * See ECMAScript 262, 15.4.4.4.
+ * TODO(581): Fix non-compliance for very large concatenations and update to
+ * following the ECMAScript 5 specification.
+ */
+RUNTIME_FUNCTION(Runtime_ArrayConcat) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, arguments, 0);
+  int argument_count = static_cast<int>(arguments->length()->Number());
+  RUNTIME_ASSERT(arguments->HasFastObjectElements());
+  Handle<FixedArray> elements(FixedArray::cast(arguments->elements()));
+
+  // Pass 1: estimate the length and number of elements of the result.
+  // The actual length can be larger if any of the arguments have getters
+  // that mutate other arguments (but will otherwise be precise).
+  // The number of elements is precise if there are no inherited elements.
+
+  ElementsKind kind = FAST_SMI_ELEMENTS;
+
+  uint32_t estimate_result_length = 0;
+  uint32_t estimate_nof_elements = 0;
+  for (int i = 0; i < argument_count; i++) {
+    HandleScope loop_scope(isolate);
+    Handle<Object> obj(elements->get(i), isolate);
+    uint32_t length_estimate;
+    uint32_t element_estimate;
+    if (obj->IsJSArray()) {
+      Handle<JSArray> array(Handle<JSArray>::cast(obj));
+      length_estimate = static_cast<uint32_t>(array->length()->Number());
+      if (length_estimate != 0) {
+        ElementsKind array_kind =
+            GetPackedElementsKind(array->map()->elements_kind());
+        if (IsMoreGeneralElementsKindTransition(kind, array_kind)) {
+          kind = array_kind;
+        }
+      }
+      element_estimate = EstimateElementCount(array);
+    } else {
+      if (obj->IsHeapObject()) {
+        if (obj->IsNumber()) {
+          if (IsMoreGeneralElementsKindTransition(kind, FAST_DOUBLE_ELEMENTS)) {
+            kind = FAST_DOUBLE_ELEMENTS;
+          }
+        } else if (IsMoreGeneralElementsKindTransition(kind, FAST_ELEMENTS)) {
+          kind = FAST_ELEMENTS;
+        }
+      }
+      length_estimate = 1;
+      element_estimate = 1;
+    }
+    // Avoid overflows by capping at kMaxElementCount.
+    if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) {
+      estimate_result_length = JSObject::kMaxElementCount;
+    } else {
+      estimate_result_length += length_estimate;
+    }
+    if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) {
+      estimate_nof_elements = JSObject::kMaxElementCount;
+    } else {
+      estimate_nof_elements += element_estimate;
+    }
+  }
+
+  // If estimated number of elements is more than half of length, a
+  // fixed array (fast case) is more time and space-efficient than a
+  // dictionary.
+  bool fast_case = (estimate_nof_elements * 2) >= estimate_result_length;
+
+  if (fast_case && kind == FAST_DOUBLE_ELEMENTS) {
+    Handle<FixedArrayBase> storage =
+        isolate->factory()->NewFixedDoubleArray(estimate_result_length);
+    int j = 0;
+    bool failure = false;
+    if (estimate_result_length > 0) {
+      Handle<FixedDoubleArray> double_storage =
+          Handle<FixedDoubleArray>::cast(storage);
+      for (int i = 0; i < argument_count; i++) {
+        Handle<Object> obj(elements->get(i), isolate);
+        if (obj->IsSmi()) {
+          double_storage->set(j, Smi::cast(*obj)->value());
+          j++;
+        } else if (obj->IsNumber()) {
+          double_storage->set(j, obj->Number());
+          j++;
+        } else {
+          JSArray* array = JSArray::cast(*obj);
+          uint32_t length = static_cast<uint32_t>(array->length()->Number());
+          switch (array->map()->elements_kind()) {
+            case FAST_HOLEY_DOUBLE_ELEMENTS:
+            case FAST_DOUBLE_ELEMENTS: {
+              // Empty array is FixedArray but not FixedDoubleArray.
+              if (length == 0) break;
+              FixedDoubleArray* elements =
+                  FixedDoubleArray::cast(array->elements());
+              for (uint32_t i = 0; i < length; i++) {
+                if (elements->is_the_hole(i)) {
+                  // TODO(jkummerow/verwaest): We could be a bit more clever
+                  // here: Check if there are no elements/getters on the
+                  // prototype chain, and if so, allow creation of a holey
+                  // result array.
+                  // Same thing below (holey smi case).
+                  failure = true;
+                  break;
+                }
+                double double_value = elements->get_scalar(i);
+                double_storage->set(j, double_value);
+                j++;
+              }
+              break;
+            }
+            case FAST_HOLEY_SMI_ELEMENTS:
+            case FAST_SMI_ELEMENTS: {
+              FixedArray* elements(FixedArray::cast(array->elements()));
+              for (uint32_t i = 0; i < length; i++) {
+                Object* element = elements->get(i);
+                if (element->IsTheHole()) {
+                  failure = true;
+                  break;
+                }
+                int32_t int_value = Smi::cast(element)->value();
+                double_storage->set(j, int_value);
+                j++;
+              }
+              break;
+            }
+            case FAST_HOLEY_ELEMENTS:
+            case FAST_ELEMENTS:
+              DCHECK_EQ(0, length);
+              break;
+            default:
+              UNREACHABLE();
+          }
+        }
+        if (failure) break;
+      }
+    }
+    if (!failure) {
+      Handle<JSArray> array = isolate->factory()->NewJSArray(0);
+      Smi* length = Smi::FromInt(j);
+      Handle<Map> map;
+      map = JSObject::GetElementsTransitionMap(array, kind);
+      array->set_map(*map);
+      array->set_length(length);
+      array->set_elements(*storage);
+      return *array;
+    }
+    // In case of failure, fall through.
+  }
+
+  Handle<FixedArray> storage;
+  if (fast_case) {
+    // The backing storage array must have non-existing elements to preserve
+    // holes across concat operations.
+    storage =
+        isolate->factory()->NewFixedArrayWithHoles(estimate_result_length);
+  } else {
+    // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate
+    uint32_t at_least_space_for =
+        estimate_nof_elements + (estimate_nof_elements >> 2);
+    storage = Handle<FixedArray>::cast(
+        SeededNumberDictionary::New(isolate, at_least_space_for));
+  }
+
+  ArrayConcatVisitor visitor(isolate, storage, fast_case);
+
+  for (int i = 0; i < argument_count; i++) {
+    Handle<Object> obj(elements->get(i), isolate);
+    bool spreadable = IsConcatSpreadable(isolate, obj);
+    if (isolate->has_pending_exception()) return isolate->heap()->exception();
+    if (spreadable) {
+      Handle<JSObject> object = Handle<JSObject>::cast(obj);
+      if (!IterateElements(isolate, object, &visitor)) {
+        return isolate->heap()->exception();
+      }
+    } else {
+      visitor.visit(0, obj);
+      visitor.increase_index_offset(1);
+    }
+  }
+
+  if (visitor.exceeds_array_limit()) {
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate,
+        NewRangeError("invalid_array_length", HandleVector<Object>(NULL, 0)));
+  }
+  return *visitor.ToArray();
+}
+
+
+// Moves all own elements of an object, that are below a limit, to positions
+// starting at zero. All undefined values are placed after non-undefined values,
+// and are followed by non-existing element. Does not change the length
+// property.
+// Returns the number of non-undefined elements collected.
+// Returns -1 if hole removal is not supported by this method.
+RUNTIME_FUNCTION(Runtime_RemoveArrayHoles) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
+  return *JSObject::PrepareElementsForSort(object, limit);
+}
+
+
+// Move contents of argument 0 (an array) to argument 1 (an array)
+RUNTIME_FUNCTION(Runtime_MoveArrayContents) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, from, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, to, 1);
+  JSObject::ValidateElements(from);
+  JSObject::ValidateElements(to);
+
+  Handle<FixedArrayBase> new_elements(from->elements());
+  ElementsKind from_kind = from->GetElementsKind();
+  Handle<Map> new_map = JSObject::GetElementsTransitionMap(to, from_kind);
+  JSObject::SetMapAndElements(to, new_map, new_elements);
+  to->set_length(from->length());
+
+  JSObject::ResetElements(from);
+  from->set_length(Smi::FromInt(0));
+
+  JSObject::ValidateElements(to);
+  return *to;
+}
+
+
+// How many elements does this object/array have?
+RUNTIME_FUNCTION(Runtime_EstimateNumberOfElements) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+  Handle<FixedArrayBase> elements(array->elements(), isolate);
+  SealHandleScope shs(isolate);
+  if (elements->IsDictionary()) {
+    int result =
+        Handle<SeededNumberDictionary>::cast(elements)->NumberOfElements();
+    return Smi::FromInt(result);
+  } else {
+    DCHECK(array->length()->IsSmi());
+    // For packed elements, we know the exact number of elements
+    int length = elements->length();
+    ElementsKind kind = array->GetElementsKind();
+    if (IsFastPackedElementsKind(kind)) {
+      return Smi::FromInt(length);
+    }
+    // For holey elements, take samples from the buffer checking for holes
+    // to generate the estimate.
+    const int kNumberOfHoleCheckSamples = 97;
+    int increment = (length < kNumberOfHoleCheckSamples)
+                        ? 1
+                        : static_cast<int>(length / kNumberOfHoleCheckSamples);
+    ElementsAccessor* accessor = array->GetElementsAccessor();
+    int holes = 0;
+    for (int i = 0; i < length; i += increment) {
+      if (!accessor->HasElement(array, array, i, elements)) {
+        ++holes;
+      }
+    }
+    int estimate = static_cast<int>((kNumberOfHoleCheckSamples - holes) /
+                                    kNumberOfHoleCheckSamples * length);
+    return Smi::FromInt(estimate);
+  }
+}
+
+
+// Returns an array that tells you where in the [0, length) interval an array
+// might have elements.  Can either return an array of keys (positive integers
+// or undefined) or a number representing the positive length of an interval
+// starting at index 0.
+// Intervals can span over some keys that are not in the object.
+RUNTIME_FUNCTION(Runtime_GetArrayKeys) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
+  CONVERT_NUMBER_CHECKED(uint32_t, length, Uint32, args[1]);
+  if (array->elements()->IsDictionary()) {
+    Handle<FixedArray> keys = isolate->factory()->empty_fixed_array();
+    for (PrototypeIterator iter(isolate, array,
+                                PrototypeIterator::START_AT_RECEIVER);
+         !iter.IsAtEnd(); iter.Advance()) {
+      if (PrototypeIterator::GetCurrent(iter)->IsJSProxy() ||
+          JSObject::cast(*PrototypeIterator::GetCurrent(iter))
+              ->HasIndexedInterceptor()) {
+        // Bail out if we find a proxy or interceptor, likely not worth
+        // collecting keys in that case.
+        return *isolate->factory()->NewNumberFromUint(length);
+      }
+      Handle<JSObject> current =
+          Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+      Handle<FixedArray> current_keys =
+          isolate->factory()->NewFixedArray(current->NumberOfOwnElements(NONE));
+      current->GetOwnElementKeys(*current_keys, NONE);
+      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+          isolate, keys, FixedArray::UnionOfKeys(keys, current_keys));
+    }
+    // Erase any keys >= length.
+    // TODO(adamk): Remove this step when the contract of %GetArrayKeys
+    // is changed to let this happen on the JS side.
+    for (int i = 0; i < keys->length(); i++) {
+      if (NumberToUint32(keys->get(i)) >= length) keys->set_undefined(i);
+    }
+    return *isolate->factory()->NewJSArrayWithElements(keys);
+  } else {
+    RUNTIME_ASSERT(array->HasFastSmiOrObjectElements() ||
+                   array->HasFastDoubleElements());
+    uint32_t actual_length = static_cast<uint32_t>(array->elements()->length());
+    return *isolate->factory()->NewNumberFromUint(Min(actual_length, length));
+  }
+}
+
+
+static Object* ArrayConstructorCommon(Isolate* isolate,
+                                      Handle<JSFunction> constructor,
+                                      Handle<AllocationSite> site,
+                                      Arguments* caller_args) {
+  Factory* factory = isolate->factory();
+
+  bool holey = false;
+  bool can_use_type_feedback = true;
+  if (caller_args->length() == 1) {
+    Handle<Object> argument_one = caller_args->at<Object>(0);
+    if (argument_one->IsSmi()) {
+      int value = Handle<Smi>::cast(argument_one)->value();
+      if (value < 0 || value >= JSObject::kInitialMaxFastElementArray) {
+        // the array is a dictionary in this case.
+        can_use_type_feedback = false;
+      } else if (value != 0) {
+        holey = true;
+      }
+    } else {
+      // Non-smi length argument produces a dictionary
+      can_use_type_feedback = false;
+    }
+  }
+
+  Handle<JSArray> array;
+  if (!site.is_null() && can_use_type_feedback) {
+    ElementsKind to_kind = site->GetElementsKind();
+    if (holey && !IsFastHoleyElementsKind(to_kind)) {
+      to_kind = GetHoleyElementsKind(to_kind);
+      // Update the allocation site info to reflect the advice alteration.
+      site->SetElementsKind(to_kind);
+    }
+
+    // We should allocate with an initial map that reflects the allocation site
+    // advice. Therefore we use AllocateJSObjectFromMap instead of passing
+    // the constructor.
+    Handle<Map> initial_map(constructor->initial_map(), isolate);
+    if (to_kind != initial_map->elements_kind()) {
+      initial_map = Map::AsElementsKind(initial_map, to_kind);
+    }
+
+    // If we don't care to track arrays of to_kind ElementsKind, then
+    // don't emit a memento for them.
+    Handle<AllocationSite> allocation_site;
+    if (AllocationSite::GetMode(to_kind) == TRACK_ALLOCATION_SITE) {
+      allocation_site = site;
+    }
+
+    array = Handle<JSArray>::cast(factory->NewJSObjectFromMap(
+        initial_map, NOT_TENURED, true, allocation_site));
+  } else {
+    array = Handle<JSArray>::cast(factory->NewJSObject(constructor));
+
+    // We might need to transition to holey
+    ElementsKind kind = constructor->initial_map()->elements_kind();
+    if (holey && !IsFastHoleyElementsKind(kind)) {
+      kind = GetHoleyElementsKind(kind);
+      JSObject::TransitionElementsKind(array, kind);
+    }
+  }
+
+  factory->NewJSArrayStorage(array, 0, 0, DONT_INITIALIZE_ARRAY_ELEMENTS);
+
+  ElementsKind old_kind = array->GetElementsKind();
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, ArrayConstructInitializeElements(array, caller_args));
+  if (!site.is_null() &&
+      (old_kind != array->GetElementsKind() || !can_use_type_feedback)) {
+    // The arguments passed in caused a transition. This kind of complexity
+    // can't be dealt with in the inlined hydrogen array constructor case.
+    // We must mark the allocationsite as un-inlinable.
+    site->SetDoNotInlineCall();
+  }
+  return *array;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ArrayConstructor) {
+  HandleScope scope(isolate);
+  // If we get 2 arguments then they are the stub parameters (constructor, type
+  // info).  If we get 4, then the first one is a pointer to the arguments
+  // passed by the caller, and the last one is the length of the arguments
+  // passed to the caller (redundant, but useful to check on the deoptimizer
+  // with an assert).
+  Arguments empty_args(0, NULL);
+  bool no_caller_args = args.length() == 2;
+  DCHECK(no_caller_args || args.length() == 4);
+  int parameters_start = no_caller_args ? 0 : 1;
+  Arguments* caller_args =
+      no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
+  CONVERT_ARG_HANDLE_CHECKED(Object, type_info, parameters_start + 1);
+#ifdef DEBUG
+  if (!no_caller_args) {
+    CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 2);
+    DCHECK(arg_count == caller_args->length());
+  }
+#endif
+
+  Handle<AllocationSite> site;
+  if (!type_info.is_null() &&
+      *type_info != isolate->heap()->undefined_value()) {
+    site = Handle<AllocationSite>::cast(type_info);
+    DCHECK(!site->SitePointsToLiteral());
+  }
+
+  return ArrayConstructorCommon(isolate, constructor, site, caller_args);
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalArrayConstructor) {
+  HandleScope scope(isolate);
+  Arguments empty_args(0, NULL);
+  bool no_caller_args = args.length() == 1;
+  DCHECK(no_caller_args || args.length() == 3);
+  int parameters_start = no_caller_args ? 0 : 1;
+  Arguments* caller_args =
+      no_caller_args ? &empty_args : reinterpret_cast<Arguments*>(args[0]);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, parameters_start);
+#ifdef DEBUG
+  if (!no_caller_args) {
+    CONVERT_SMI_ARG_CHECKED(arg_count, parameters_start + 1);
+    DCHECK(arg_count == caller_args->length());
+  }
+#endif
+  return ArrayConstructorCommon(isolate, constructor,
+                                Handle<AllocationSite>::null(), caller_args);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NormalizeElements) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
+  RUNTIME_ASSERT(!array->HasExternalArrayElements() &&
+                 !array->HasFixedTypedArrayElements());
+  JSObject::NormalizeElements(array);
+  return *array;
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasComplexElements) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, array, 0);
+  for (PrototypeIterator iter(isolate, array,
+                              PrototypeIterator::START_AT_RECEIVER);
+       !iter.IsAtEnd(); iter.Advance()) {
+    if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
+      return isolate->heap()->true_value();
+    }
+    Handle<JSObject> current =
+        Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+    if (current->HasIndexedInterceptor()) {
+      return isolate->heap()->true_value();
+    }
+    if (!current->HasDictionaryElements()) continue;
+    if (current->element_dictionary()->HasComplexElements()) {
+      return isolate->heap()->true_value();
+    }
+  }
+  return isolate->heap()->false_value();
+}
+
+
+// TODO(dcarney): remove this function when TurboFan supports it.
+// Takes the object to be iterated over and the result of GetPropertyNamesFast
+// Returns pair (cache_array, cache_type).
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInInit) {
+  SealHandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
+  // Not worth creating a macro atm as this function should be removed.
+  if (!args[0]->IsJSReceiver() || !args[1]->IsObject()) {
+    Object* error = isolate->ThrowIllegalOperation();
+    return MakePair(error, isolate->heap()->undefined_value());
+  }
+  Handle<JSReceiver> object = args.at<JSReceiver>(0);
+  Handle<Object> cache_type = args.at<Object>(1);
+  if (cache_type->IsMap()) {
+    // Enum cache case.
+    if (Map::EnumLengthBits::decode(Map::cast(*cache_type)->bit_field3()) ==
+        0) {
+      // 0 length enum.
+      // Can't handle this case in the graph builder,
+      // so transform it into the empty fixed array case.
+      return MakePair(isolate->heap()->empty_fixed_array(), Smi::FromInt(1));
+    }
+    return MakePair(object->map()->instance_descriptors()->GetEnumCache(),
+                    *cache_type);
+  } else {
+    // FixedArray case.
+    Smi* new_cache_type = Smi::FromInt(object->IsJSProxy() ? 0 : 1);
+    return MakePair(*Handle<FixedArray>::cast(cache_type), new_cache_type);
+  }
+}
+
+
+// TODO(dcarney): remove this function when TurboFan supports it.
+RUNTIME_FUNCTION(Runtime_ForInCacheArrayLength) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, cache_type, 0);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, array, 1);
+  int length = 0;
+  if (cache_type->IsMap()) {
+    length = Map::cast(*cache_type)->EnumLength();
+  } else {
+    DCHECK(cache_type->IsSmi());
+    length = array->length();
+  }
+  return Smi::FromInt(length);
+}
+
+
+// TODO(dcarney): remove this function when TurboFan supports it.
+// Takes (the object to be iterated over,
+//        cache_array from ForInInit,
+//        cache_type from ForInInit,
+//        the current index)
+// Returns pair (array[index], needs_filtering).
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ForInNext) {
+  SealHandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  int32_t index;
+  // This simulates CONVERT_ARG_HANDLE_CHECKED for calls returning pairs.
+  // Not worth creating a macro atm as this function should be removed.
+  if (!args[0]->IsJSReceiver() || !args[1]->IsFixedArray() ||
+      !args[2]->IsObject() || !args[3]->ToInt32(&index)) {
+    Object* error = isolate->ThrowIllegalOperation();
+    return MakePair(error, isolate->heap()->undefined_value());
+  }
+  Handle<JSReceiver> object = args.at<JSReceiver>(0);
+  Handle<FixedArray> array = args.at<FixedArray>(1);
+  Handle<Object> cache_type = args.at<Object>(2);
+  // Figure out first if a slow check is needed for this object.
+  bool slow_check_needed = false;
+  if (cache_type->IsMap()) {
+    if (object->map() != Map::cast(*cache_type)) {
+      // Object transitioned.  Need slow check.
+      slow_check_needed = true;
+    }
+  } else {
+    // No slow check needed for proxies.
+    slow_check_needed = Smi::cast(*cache_type)->value() == 1;
+  }
+  return MakePair(array->get(index),
+                  isolate->heap()->ToBoolean(slow_check_needed));
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsArray) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsJSArray());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_HasCachedArrayIndex) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GetCachedArrayIndex) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_FastOneByteArrayJoin) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  return isolate->heap()->undefined_value();
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-classes.cc b/src/runtime/runtime-classes.cc
new file mode 100644
index 0000000..7c827f0
--- /dev/null
+++ b/src/runtime/runtime-classes.cc
@@ -0,0 +1,488 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stdlib.h>
+#include <limits>
+
+#include "src/v8.h"
+
+#include "src/isolate-inl.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+
+namespace v8 {
+namespace internal {
+
+
+RUNTIME_FUNCTION(Runtime_ThrowNonMethodError) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  THROW_NEW_ERROR_RETURN_FAILURE(
+      isolate, NewReferenceError("non_method", HandleVector<Object>(NULL, 0)));
+}
+
+
+static Object* ThrowUnsupportedSuper(Isolate* isolate) {
+  THROW_NEW_ERROR_RETURN_FAILURE(
+      isolate,
+      NewReferenceError("unsupported_super", HandleVector<Object>(NULL, 0)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowUnsupportedSuperError) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  return ThrowUnsupportedSuper(isolate);
+}
+
+
+RUNTIME_FUNCTION(Runtime_ToMethod) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+  Handle<JSFunction> clone = JSFunction::CloneClosure(fun);
+  Handle<Symbol> home_object_symbol(isolate->heap()->home_object_symbol());
+  JSObject::SetOwnPropertyIgnoreAttributes(clone, home_object_symbol,
+                                           home_object, DONT_ENUM).Assert();
+  return *clone;
+}
+
+
+RUNTIME_FUNCTION(Runtime_HomeObjectSymbol) {
+  DCHECK(args.length() == 0);
+  return isolate->heap()->home_object_symbol();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DefineClass) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 6);
+  CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, super_class, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Script, script, 3);
+  CONVERT_SMI_ARG_CHECKED(start_position, 4);
+  CONVERT_SMI_ARG_CHECKED(end_position, 5);
+
+  Handle<Object> prototype_parent;
+  Handle<Object> constructor_parent;
+
+  if (super_class->IsTheHole()) {
+    prototype_parent = isolate->initial_object_prototype();
+  } else {
+    if (super_class->IsNull()) {
+      prototype_parent = isolate->factory()->null_value();
+    } else if (super_class->IsSpecFunction()) {
+      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+          isolate, prototype_parent,
+          Runtime::GetObjectProperty(isolate, super_class,
+                                     isolate->factory()->prototype_string()));
+      if (!prototype_parent->IsNull() && !prototype_parent->IsSpecObject()) {
+        Handle<Object> args[1] = {prototype_parent};
+        THROW_NEW_ERROR_RETURN_FAILURE(
+            isolate, NewTypeError("prototype_parent_not_an_object",
+                                  HandleVector(args, 1)));
+      }
+      constructor_parent = super_class;
+    } else {
+      // TODO(arv): Should be IsConstructor.
+      Handle<Object> args[1] = {super_class};
+      THROW_NEW_ERROR_RETURN_FAILURE(
+          isolate,
+          NewTypeError("extends_value_not_a_function", HandleVector(args, 1)));
+    }
+  }
+
+  Handle<Map> map =
+      isolate->factory()->NewMap(JS_OBJECT_TYPE, JSObject::kHeaderSize);
+  map->SetPrototype(prototype_parent);
+  map->set_constructor(*constructor);
+  Handle<JSObject> prototype = isolate->factory()->NewJSObjectFromMap(map);
+
+  Handle<String> name_string = name->IsString()
+                                   ? Handle<String>::cast(name)
+                                   : isolate->factory()->empty_string();
+  constructor->shared()->set_name(*name_string);
+
+  JSFunction::SetPrototype(constructor, prototype);
+  PropertyAttributes attribs =
+      static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE | READ_ONLY);
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                   constructor, isolate->factory()->prototype_string(),
+                   prototype, attribs));
+
+  // TODO(arv): Only do this conditionally.
+  Handle<Symbol> home_object_symbol(isolate->heap()->home_object_symbol());
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                   constructor, home_object_symbol, prototype, DONT_ENUM));
+
+  if (!constructor_parent.is_null()) {
+    RETURN_FAILURE_ON_EXCEPTION(
+        isolate,
+        JSObject::SetPrototype(constructor, constructor_parent, false));
+  }
+
+  JSObject::AddProperty(prototype, isolate->factory()->constructor_string(),
+                        constructor, DONT_ENUM);
+
+  // Install private properties that are used to construct the FunctionToString.
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, Object::SetProperty(constructor,
+                                   isolate->factory()->class_script_symbol(),
+                                   script, STRICT));
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate,
+      Object::SetProperty(
+          constructor, isolate->factory()->class_start_position_symbol(),
+          handle(Smi::FromInt(start_position), isolate), STRICT));
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, Object::SetProperty(
+                   constructor, isolate->factory()->class_end_position_symbol(),
+                   handle(Smi::FromInt(end_position), isolate), STRICT));
+
+  return *constructor;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DefineClassMethod) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 2);
+
+  uint32_t index;
+  if (key->ToArrayIndex(&index)) {
+    RETURN_FAILURE_ON_EXCEPTION(
+        isolate, JSObject::SetOwnElement(object, index, function, STRICT));
+  }
+
+  Handle<Name> name;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
+                                     Runtime::ToName(isolate, key));
+  if (name->AsArrayIndex(&index)) {
+    RETURN_FAILURE_ON_EXCEPTION(
+        isolate, JSObject::SetOwnElement(object, index, function, STRICT));
+  } else {
+    RETURN_FAILURE_ON_EXCEPTION(
+        isolate,
+        JSObject::SetOwnPropertyIgnoreAttributes(object, name, function, NONE));
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DefineClassGetter) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, getter, 2);
+
+  Handle<Name> name;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
+                                     Runtime::ToName(isolate, key));
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate,
+      JSObject::DefineAccessor(object, name, getter,
+                               isolate->factory()->null_value(), NONE));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DefineClassSetter) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, setter, 2);
+
+  Handle<Name> name;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
+                                     Runtime::ToName(isolate, key));
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate,
+      JSObject::DefineAccessor(object, name, isolate->factory()->null_value(),
+                               setter, NONE));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ClassGetSourceCode) {
+  HandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+
+  Handle<Object> script;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, script,
+      Object::GetProperty(fun, isolate->factory()->class_script_symbol()));
+  if (!script->IsScript()) {
+    return isolate->heap()->undefined_value();
+  }
+
+  Handle<Symbol> start_position_symbol(
+      isolate->heap()->class_start_position_symbol());
+  Handle<Object> start_position;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, start_position, Object::GetProperty(fun, start_position_symbol));
+
+  Handle<Symbol> end_position_symbol(
+      isolate->heap()->class_end_position_symbol());
+  Handle<Object> end_position;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, end_position, Object::GetProperty(fun, end_position_symbol));
+
+  if (!start_position->IsSmi() || !end_position->IsSmi() ||
+      !Handle<Script>::cast(script)->HasValidSource()) {
+    return isolate->ThrowIllegalOperation();
+  }
+
+  Handle<String> source(String::cast(Handle<Script>::cast(script)->source()));
+  return *isolate->factory()->NewSubString(
+      source, Handle<Smi>::cast(start_position)->value(),
+      Handle<Smi>::cast(end_position)->value());
+}
+
+
+static Object* LoadFromSuper(Isolate* isolate, Handle<Object> receiver,
+                             Handle<JSObject> home_object, Handle<Name> name) {
+  if (home_object->IsAccessCheckNeeded() &&
+      !isolate->MayNamedAccess(home_object, name, v8::ACCESS_GET)) {
+    isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_GET);
+    RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+  }
+
+  PrototypeIterator iter(isolate, home_object);
+  Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
+  if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
+
+  LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto));
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, Object::GetProperty(&it));
+  return *result;
+}
+
+
+static Object* LoadElementFromSuper(Isolate* isolate, Handle<Object> receiver,
+                                    Handle<JSObject> home_object,
+                                    uint32_t index) {
+  if (home_object->IsAccessCheckNeeded() &&
+      !isolate->MayIndexedAccess(home_object, index, v8::ACCESS_GET)) {
+    isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_GET);
+    RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+  }
+
+  PrototypeIterator iter(isolate, home_object);
+  Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
+  if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Object::GetElementWithReceiver(isolate, proto, receiver, index));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_LoadFromSuper) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 2);
+
+  return LoadFromSuper(isolate, receiver, home_object, name);
+}
+
+
+RUNTIME_FUNCTION(Runtime_LoadKeyedFromSuper) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 2);
+
+  uint32_t index;
+  if (key->ToArrayIndex(&index)) {
+    return LoadElementFromSuper(isolate, receiver, home_object, index);
+  }
+
+  Handle<Name> name;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
+                                     Runtime::ToName(isolate, key));
+  if (name->AsArrayIndex(&index)) {
+    return LoadElementFromSuper(isolate, receiver, home_object, index);
+  }
+  return LoadFromSuper(isolate, receiver, home_object, name);
+}
+
+
+static Object* StoreToSuper(Isolate* isolate, Handle<JSObject> home_object,
+                            Handle<Object> receiver, Handle<Name> name,
+                            Handle<Object> value, StrictMode strict_mode) {
+  if (home_object->IsAccessCheckNeeded() &&
+      !isolate->MayNamedAccess(home_object, name, v8::ACCESS_SET)) {
+    isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_SET);
+    RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+  }
+
+  PrototypeIterator iter(isolate, home_object);
+  Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
+  if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
+
+  LookupIterator it(receiver, name, Handle<JSReceiver>::cast(proto));
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Object::SetProperty(&it, value, strict_mode,
+                          Object::CERTAINLY_NOT_STORE_FROM_KEYED,
+                          Object::SUPER_PROPERTY));
+  return *result;
+}
+
+
+static Object* StoreElementToSuper(Isolate* isolate,
+                                   Handle<JSObject> home_object,
+                                   Handle<Object> receiver, uint32_t index,
+                                   Handle<Object> value,
+                                   StrictMode strict_mode) {
+  if (home_object->IsAccessCheckNeeded() &&
+      !isolate->MayIndexedAccess(home_object, index, v8::ACCESS_SET)) {
+    isolate->ReportFailedAccessCheck(home_object, v8::ACCESS_SET);
+    RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+  }
+
+  PrototypeIterator iter(isolate, home_object);
+  Handle<Object> proto = PrototypeIterator::GetCurrent(iter);
+  if (!proto->IsJSReceiver()) return isolate->heap()->undefined_value();
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Object::SetElementWithReceiver(isolate, proto, receiver, index, value,
+                                     strict_mode));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreToSuper_Strict) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 3);
+
+  return StoreToSuper(isolate, home_object, receiver, name, value, STRICT);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreToSuper_Sloppy) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 3);
+
+  return StoreToSuper(isolate, home_object, receiver, name, value, SLOPPY);
+}
+
+
+static Object* StoreKeyedToSuper(Isolate* isolate, Handle<JSObject> home_object,
+                                 Handle<Object> receiver, Handle<Object> key,
+                                 Handle<Object> value, StrictMode strict_mode) {
+  uint32_t index;
+
+  if (key->ToArrayIndex(&index)) {
+    return StoreElementToSuper(isolate, home_object, receiver, index, value,
+                               strict_mode);
+  }
+  Handle<Name> name;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, name,
+                                     Runtime::ToName(isolate, key));
+  if (name->AsArrayIndex(&index)) {
+    return StoreElementToSuper(isolate, home_object, receiver, index, value,
+                               strict_mode);
+  }
+  return StoreToSuper(isolate, home_object, receiver, name, value, strict_mode);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreKeyedToSuper_Strict) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 3);
+
+  return StoreKeyedToSuper(isolate, home_object, receiver, key, value, STRICT);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreKeyedToSuper_Sloppy) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, home_object, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 3);
+
+  return StoreKeyedToSuper(isolate, home_object, receiver, key, value, SLOPPY);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DefaultConstructorSuperCall) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+
+  // Compute the frame holding the arguments.
+  JavaScriptFrameIterator it(isolate);
+  it.AdvanceToArgumentsFrame();
+  JavaScriptFrame* frame = it.frame();
+
+  Handle<JSFunction> function(frame->function(), isolate);
+  Handle<Object> receiver(frame->receiver(), isolate);
+
+  Handle<Object> proto_function;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, proto_function,
+                                     Runtime::GetPrototype(isolate, function));
+
+  // Get the actual number of provided arguments.
+  const int argc = frame->ComputeParametersCount();
+
+  // Loose upper bound to allow fuzzing. We'll most likely run out of
+  // stack space before hitting this limit.
+  static int kMaxArgc = 1000000;
+  RUNTIME_ASSERT(argc >= 0 && argc <= kMaxArgc);
+
+  // If there are too many arguments, allocate argv via malloc.
+  const int argv_small_size = 10;
+  Handle<Object> argv_small_buffer[argv_small_size];
+  SmartArrayPointer<Handle<Object> > argv_large_buffer;
+  Handle<Object>* argv = argv_small_buffer;
+  if (argc > argv_small_size) {
+    argv = new Handle<Object>[argc];
+    if (argv == NULL) return isolate->StackOverflow();
+    argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
+  }
+
+  for (int i = 0; i < argc; ++i) {
+    argv[i] = handle(frame->GetParameter(i), isolate);
+  }
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Execution::Call(isolate, proto_function, receiver, argc, argv, false));
+  return *result;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-collections.cc b/src/runtime/runtime-collections.cc
new file mode 100644
index 0000000..abdd056
--- /dev/null
+++ b/src/runtime/runtime-collections.cc
@@ -0,0 +1,427 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/runtime/runtime-utils.h"
+
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_SetInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
+  Handle<OrderedHashSet> table = isolate->factory()->NewOrderedHashSet();
+  holder->set_table(*table);
+  return *holder;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetAdd) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
+  table = OrderedHashSet::Add(table, key);
+  holder->set_table(*table);
+  return *holder;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetHas) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
+  return isolate->heap()->ToBoolean(table->Contains(key));
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetDelete) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
+  bool was_present = false;
+  table = OrderedHashSet::Remove(table, key, &was_present);
+  holder->set_table(*table);
+  return isolate->heap()->ToBoolean(was_present);
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetClear) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
+  Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
+  table = OrderedHashSet::Clear(table);
+  holder->set_table(*table);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetGetSize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSSet, holder, 0);
+  Handle<OrderedHashSet> table(OrderedHashSet::cast(holder->table()));
+  return Smi::FromInt(table->NumberOfElements());
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetIteratorInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSSetIterator, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSSet, set, 1);
+  CONVERT_SMI_ARG_CHECKED(kind, 2)
+  RUNTIME_ASSERT(kind == JSSetIterator::kKindValues ||
+                 kind == JSSetIterator::kKindEntries);
+  Handle<OrderedHashSet> table(OrderedHashSet::cast(set->table()));
+  holder->set_table(*table);
+  holder->set_index(Smi::FromInt(0));
+  holder->set_kind(Smi::FromInt(kind));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetIteratorClone) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSSetIterator, holder, 0);
+
+  Handle<JSSetIterator> result = isolate->factory()->NewJSSetIterator();
+  result->set_table(holder->table());
+  result->set_index(Smi::FromInt(Smi::cast(holder->index())->value()));
+  result->set_kind(Smi::FromInt(Smi::cast(holder->kind())->value()));
+
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetIteratorNext) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(JSSetIterator, holder, 0);
+  CONVERT_ARG_CHECKED(JSArray, value_array, 1);
+  return holder->Next(value_array);
+}
+
+
+// The array returned contains the following information:
+// 0: HasMore flag
+// 1: Iteration index
+// 2: Iteration kind
+RUNTIME_FUNCTION(Runtime_SetIteratorDetails) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSSetIterator, holder, 0);
+  Handle<FixedArray> details = isolate->factory()->NewFixedArray(4);
+  details->set(0, isolate->heap()->ToBoolean(holder->HasMore()));
+  details->set(1, holder->index());
+  details->set(2, holder->kind());
+  return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
+  Handle<OrderedHashMap> table = isolate->factory()->NewOrderedHashMap();
+  holder->set_table(*table);
+  return *holder;
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapGet) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
+  Handle<Object> lookup(table->Lookup(key), isolate);
+  return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapHas) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
+  Handle<Object> lookup(table->Lookup(key), isolate);
+  return isolate->heap()->ToBoolean(!lookup->IsTheHole());
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapDelete) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
+  bool was_present = false;
+  Handle<OrderedHashMap> new_table =
+      OrderedHashMap::Remove(table, key, &was_present);
+  holder->set_table(*new_table);
+  return isolate->heap()->ToBoolean(was_present);
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapClear) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
+  Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
+  table = OrderedHashMap::Clear(table);
+  holder->set_table(*table);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapSet) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+  Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
+  Handle<OrderedHashMap> new_table = OrderedHashMap::Put(table, key, value);
+  holder->set_table(*new_table);
+  return *holder;
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapGetSize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, holder, 0);
+  Handle<OrderedHashMap> table(OrderedHashMap::cast(holder->table()));
+  return Smi::FromInt(table->NumberOfElements());
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapIteratorInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSMapIterator, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSMap, map, 1);
+  CONVERT_SMI_ARG_CHECKED(kind, 2)
+  RUNTIME_ASSERT(kind == JSMapIterator::kKindKeys ||
+                 kind == JSMapIterator::kKindValues ||
+                 kind == JSMapIterator::kKindEntries);
+  Handle<OrderedHashMap> table(OrderedHashMap::cast(map->table()));
+  holder->set_table(*table);
+  holder->set_index(Smi::FromInt(0));
+  holder->set_kind(Smi::FromInt(kind));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapIteratorClone) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSMapIterator, holder, 0);
+
+  Handle<JSMapIterator> result = isolate->factory()->NewJSMapIterator();
+  result->set_table(holder->table());
+  result->set_index(Smi::FromInt(Smi::cast(holder->index())->value()));
+  result->set_kind(Smi::FromInt(Smi::cast(holder->kind())->value()));
+
+  return *result;
+}
+
+
+// The array returned contains the following information:
+// 0: HasMore flag
+// 1: Iteration index
+// 2: Iteration kind
+RUNTIME_FUNCTION(Runtime_MapIteratorDetails) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSMapIterator, holder, 0);
+  Handle<FixedArray> details = isolate->factory()->NewFixedArray(4);
+  details->set(0, isolate->heap()->ToBoolean(holder->HasMore()));
+  details->set(1, holder->index());
+  details->set(2, holder->kind());
+  return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetWeakMapEntries) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
+  CONVERT_NUMBER_CHECKED(int, max_entries, Int32, args[1]);
+  RUNTIME_ASSERT(max_entries >= 0);
+
+  Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
+  if (max_entries == 0 || max_entries > table->NumberOfElements()) {
+    max_entries = table->NumberOfElements();
+  }
+  Handle<FixedArray> entries =
+      isolate->factory()->NewFixedArray(max_entries * 2);
+  {
+    DisallowHeapAllocation no_gc;
+    int count = 0;
+    for (int i = 0; count / 2 < max_entries && i < table->Capacity(); i++) {
+      Handle<Object> key(table->KeyAt(i), isolate);
+      if (table->IsKey(*key)) {
+        entries->set(count++, *key);
+        Object* value = table->Lookup(key);
+        entries->set(count++, value);
+      }
+    }
+    DCHECK_EQ(max_entries * 2, count);
+  }
+  return *isolate->factory()->NewJSArrayWithElements(entries);
+}
+
+
+RUNTIME_FUNCTION(Runtime_MapIteratorNext) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(JSMapIterator, holder, 0);
+  CONVERT_ARG_CHECKED(JSArray, value_array, 1);
+  return holder->Next(value_array);
+}
+
+
+static Handle<JSWeakCollection> WeakCollectionInitialize(
+    Isolate* isolate, Handle<JSWeakCollection> weak_collection) {
+  DCHECK(weak_collection->map()->inobject_properties() == 0);
+  Handle<ObjectHashTable> table = ObjectHashTable::New(isolate, 0);
+  weak_collection->set_table(*table);
+  return weak_collection;
+}
+
+
+RUNTIME_FUNCTION(Runtime_WeakCollectionInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
+  return *WeakCollectionInitialize(isolate, weak_collection);
+}
+
+
+RUNTIME_FUNCTION(Runtime_WeakCollectionGet) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
+  Handle<ObjectHashTable> table(
+      ObjectHashTable::cast(weak_collection->table()));
+  RUNTIME_ASSERT(table->IsKey(*key));
+  Handle<Object> lookup(table->Lookup(key), isolate);
+  return lookup->IsTheHole() ? isolate->heap()->undefined_value() : *lookup;
+}
+
+
+RUNTIME_FUNCTION(Runtime_WeakCollectionHas) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
+  Handle<ObjectHashTable> table(
+      ObjectHashTable::cast(weak_collection->table()));
+  RUNTIME_ASSERT(table->IsKey(*key));
+  Handle<Object> lookup(table->Lookup(key), isolate);
+  return isolate->heap()->ToBoolean(!lookup->IsTheHole());
+}
+
+
+RUNTIME_FUNCTION(Runtime_WeakCollectionDelete) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
+  Handle<ObjectHashTable> table(
+      ObjectHashTable::cast(weak_collection->table()));
+  RUNTIME_ASSERT(table->IsKey(*key));
+  bool was_present = false;
+  Handle<ObjectHashTable> new_table =
+      ObjectHashTable::Remove(table, key, &was_present);
+  weak_collection->set_table(*new_table);
+  if (*table != *new_table) {
+    // Zap the old table since we didn't record slots for its elements.
+    table->FillWithHoles(0, table->length());
+  }
+  return isolate->heap()->ToBoolean(was_present);
+}
+
+
+RUNTIME_FUNCTION(Runtime_WeakCollectionSet) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, weak_collection, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  RUNTIME_ASSERT(key->IsJSReceiver() || key->IsSymbol());
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+  Handle<ObjectHashTable> table(
+      ObjectHashTable::cast(weak_collection->table()));
+  RUNTIME_ASSERT(table->IsKey(*key));
+  Handle<ObjectHashTable> new_table = ObjectHashTable::Put(table, key, value);
+  weak_collection->set_table(*new_table);
+  if (*table != *new_table) {
+    // Zap the old table since we didn't record slots for its elements.
+    table->FillWithHoles(0, table->length());
+  }
+  return *weak_collection;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetWeakSetValues) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSWeakCollection, holder, 0);
+  CONVERT_NUMBER_CHECKED(int, max_values, Int32, args[1]);
+  RUNTIME_ASSERT(max_values >= 0);
+
+  Handle<ObjectHashTable> table(ObjectHashTable::cast(holder->table()));
+  if (max_values == 0 || max_values > table->NumberOfElements()) {
+    max_values = table->NumberOfElements();
+  }
+  Handle<FixedArray> values = isolate->factory()->NewFixedArray(max_values);
+  // Recompute max_values because GC could have removed elements from the table.
+  if (max_values > table->NumberOfElements()) {
+    max_values = table->NumberOfElements();
+  }
+  {
+    DisallowHeapAllocation no_gc;
+    int count = 0;
+    for (int i = 0; count < max_values && i < table->Capacity(); i++) {
+      Handle<Object> key(table->KeyAt(i), isolate);
+      if (table->IsKey(*key)) values->set(count++, *key);
+    }
+    DCHECK_EQ(max_values, count);
+  }
+  return *isolate->factory()->NewJSArrayWithElements(values);
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObservationWeakMapCreate) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  // TODO(adamk): Currently this runtime function is only called three times per
+  // isolate. If it's called more often, the map should be moved into the
+  // strong root list.
+  Handle<Map> map =
+      isolate->factory()->NewMap(JS_WEAK_MAP_TYPE, JSWeakMap::kSize);
+  Handle<JSWeakMap> weakmap =
+      Handle<JSWeakMap>::cast(isolate->factory()->NewJSObjectFromMap(map));
+  return *WeakCollectionInitialize(isolate, weakmap);
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-compiler.cc b/src/runtime/runtime-compiler.cc
new file mode 100644
index 0000000..ebd0c13
--- /dev/null
+++ b/src/runtime/runtime-compiler.cc
@@ -0,0 +1,451 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/compiler.h"
+#include "src/deoptimizer.h"
+#include "src/frames.h"
+#include "src/full-codegen.h"
+#include "src/isolate-inl.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/v8threads.h"
+#include "src/vm-state-inl.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_CompileLazy) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+#ifdef DEBUG
+  if (FLAG_trace_lazy && !function->shared()->is_compiled()) {
+    PrintF("[unoptimized: ");
+    function->PrintName();
+    PrintF("]\n");
+  }
+#endif
+
+  // Compile the target function.
+  DCHECK(function->shared()->allows_lazy_compilation());
+
+  Handle<Code> code;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, code,
+                                     Compiler::GetLazyCode(function));
+  DCHECK(code->kind() == Code::FUNCTION ||
+         code->kind() == Code::OPTIMIZED_FUNCTION);
+  function->ReplaceCode(*code);
+  return *code;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CompileOptimized) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  CONVERT_BOOLEAN_ARG_CHECKED(concurrent, 1);
+  DCHECK(isolate->use_crankshaft());
+
+  Handle<Code> unoptimized(function->shared()->code());
+  if (function->shared()->optimization_disabled() ||
+      isolate->DebuggerHasBreakPoints()) {
+    // If the function is not optimizable or debugger is active continue
+    // using the code from the full compiler.
+    if (FLAG_trace_opt) {
+      PrintF("[failed to optimize ");
+      function->PrintName();
+      PrintF(": is code optimizable: %s, is debugger enabled: %s]\n",
+             function->shared()->optimization_disabled() ? "F" : "T",
+             isolate->DebuggerHasBreakPoints() ? "T" : "F");
+    }
+    function->ReplaceCode(*unoptimized);
+    return function->code();
+  }
+
+  Compiler::ConcurrencyMode mode =
+      concurrent ? Compiler::CONCURRENT : Compiler::NOT_CONCURRENT;
+  Handle<Code> code;
+  if (Compiler::GetOptimizedCode(function, unoptimized, mode).ToHandle(&code)) {
+    function->ReplaceCode(*code);
+  } else {
+    function->ReplaceCode(function->shared()->code());
+  }
+
+  DCHECK(function->code()->kind() == Code::FUNCTION ||
+         function->code()->kind() == Code::OPTIMIZED_FUNCTION ||
+         function->IsInOptimizationQueue());
+  return function->code();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NotifyStubFailure) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
+  DCHECK(AllowHeapAllocation::IsAllowed());
+  delete deoptimizer;
+  return isolate->heap()->undefined_value();
+}
+
+
+class ActivationsFinder : public ThreadVisitor {
+ public:
+  Code* code_;
+  bool has_code_activations_;
+
+  explicit ActivationsFinder(Code* code)
+      : code_(code), has_code_activations_(false) {}
+
+  void VisitThread(Isolate* isolate, ThreadLocalTop* top) {
+    JavaScriptFrameIterator it(isolate, top);
+    VisitFrames(&it);
+  }
+
+  void VisitFrames(JavaScriptFrameIterator* it) {
+    for (; !it->done(); it->Advance()) {
+      JavaScriptFrame* frame = it->frame();
+      if (code_->contains(frame->pc())) has_code_activations_ = true;
+    }
+  }
+};
+
+
+RUNTIME_FUNCTION(Runtime_NotifyDeoptimized) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_SMI_ARG_CHECKED(type_arg, 0);
+  Deoptimizer::BailoutType type =
+      static_cast<Deoptimizer::BailoutType>(type_arg);
+  Deoptimizer* deoptimizer = Deoptimizer::Grab(isolate);
+  DCHECK(AllowHeapAllocation::IsAllowed());
+
+  Handle<JSFunction> function = deoptimizer->function();
+  Handle<Code> optimized_code = deoptimizer->compiled_code();
+
+  DCHECK(optimized_code->kind() == Code::OPTIMIZED_FUNCTION);
+  DCHECK(type == deoptimizer->bailout_type());
+
+  // Make sure to materialize objects before causing any allocation.
+  JavaScriptFrameIterator it(isolate);
+  deoptimizer->MaterializeHeapObjects(&it);
+  delete deoptimizer;
+
+  JavaScriptFrame* frame = it.frame();
+  RUNTIME_ASSERT(frame->function()->IsJSFunction());
+  DCHECK(frame->function() == *function);
+
+  // Avoid doing too much work when running with --always-opt and keep
+  // the optimized code around.
+  if (FLAG_always_opt || type == Deoptimizer::LAZY) {
+    return isolate->heap()->undefined_value();
+  }
+
+  // Search for other activations of the same function and code.
+  ActivationsFinder activations_finder(*optimized_code);
+  activations_finder.VisitFrames(&it);
+  isolate->thread_manager()->IterateArchivedThreads(&activations_finder);
+
+  if (!activations_finder.has_code_activations_) {
+    if (function->code() == *optimized_code) {
+      if (FLAG_trace_deopt) {
+        PrintF("[removing optimized code for: ");
+        function->PrintName();
+        PrintF("]\n");
+      }
+      function->ReplaceCode(function->shared()->code());
+      // Evict optimized code for this function from the cache so that it
+      // doesn't get used for new closures.
+      function->shared()->EvictFromOptimizedCodeMap(*optimized_code,
+                                                    "notify deoptimized");
+    }
+  } else {
+    // TODO(titzer): we should probably do DeoptimizeCodeList(code)
+    // unconditionally if the code is not already marked for deoptimization.
+    // If there is an index by shared function info, all the better.
+    Deoptimizer::DeoptimizeFunction(*function);
+  }
+
+  return isolate->heap()->undefined_value();
+}
+
+
+static bool IsSuitableForOnStackReplacement(Isolate* isolate,
+                                            Handle<JSFunction> function,
+                                            Handle<Code> current_code) {
+  // Keep track of whether we've succeeded in optimizing.
+  if (!current_code->optimizable()) return false;
+  // If we are trying to do OSR when there are already optimized
+  // activations of the function, it means (a) the function is directly or
+  // indirectly recursive and (b) an optimized invocation has been
+  // deoptimized so that we are currently in an unoptimized activation.
+  // Check for optimized activations of this function.
+  for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) {
+    JavaScriptFrame* frame = it.frame();
+    if (frame->is_optimized() && frame->function() == *function) return false;
+  }
+
+  return true;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CompileForOnStackReplacement) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  Handle<Code> caller_code(function->shared()->code());
+
+  // We're not prepared to handle a function with arguments object.
+  DCHECK(!function->shared()->uses_arguments());
+
+  RUNTIME_ASSERT(FLAG_use_osr);
+
+  // Passing the PC in the javascript frame from the caller directly is
+  // not GC safe, so we walk the stack to get it.
+  JavaScriptFrameIterator it(isolate);
+  JavaScriptFrame* frame = it.frame();
+  if (!caller_code->contains(frame->pc())) {
+    // Code on the stack may not be the code object referenced by the shared
+    // function info.  It may have been replaced to include deoptimization data.
+    caller_code = Handle<Code>(frame->LookupCode());
+  }
+
+  uint32_t pc_offset =
+      static_cast<uint32_t>(frame->pc() - caller_code->instruction_start());
+
+#ifdef DEBUG
+  DCHECK_EQ(frame->function(), *function);
+  DCHECK_EQ(frame->LookupCode(), *caller_code);
+  DCHECK(caller_code->contains(frame->pc()));
+#endif  // DEBUG
+
+
+  BailoutId ast_id = caller_code->TranslatePcOffsetToAstId(pc_offset);
+  DCHECK(!ast_id.IsNone());
+
+  Compiler::ConcurrencyMode mode =
+      isolate->concurrent_osr_enabled() &&
+              (function->shared()->ast_node_count() > 512)
+          ? Compiler::CONCURRENT
+          : Compiler::NOT_CONCURRENT;
+  Handle<Code> result = Handle<Code>::null();
+
+  OptimizedCompileJob* job = NULL;
+  if (mode == Compiler::CONCURRENT) {
+    // Gate the OSR entry with a stack check.
+    BackEdgeTable::AddStackCheck(caller_code, pc_offset);
+    // Poll already queued compilation jobs.
+    OptimizingCompilerThread* thread = isolate->optimizing_compiler_thread();
+    if (thread->IsQueuedForOSR(function, ast_id)) {
+      if (FLAG_trace_osr) {
+        PrintF("[OSR - Still waiting for queued: ");
+        function->PrintName();
+        PrintF(" at AST id %d]\n", ast_id.ToInt());
+      }
+      return NULL;
+    }
+
+    job = thread->FindReadyOSRCandidate(function, ast_id);
+  }
+
+  if (job != NULL) {
+    if (FLAG_trace_osr) {
+      PrintF("[OSR - Found ready: ");
+      function->PrintName();
+      PrintF(" at AST id %d]\n", ast_id.ToInt());
+    }
+    result = Compiler::GetConcurrentlyOptimizedCode(job);
+  } else if (IsSuitableForOnStackReplacement(isolate, function, caller_code)) {
+    if (FLAG_trace_osr) {
+      PrintF("[OSR - Compiling: ");
+      function->PrintName();
+      PrintF(" at AST id %d]\n", ast_id.ToInt());
+    }
+    MaybeHandle<Code> maybe_result =
+        Compiler::GetOptimizedCode(function, caller_code, mode, ast_id);
+    if (maybe_result.ToHandle(&result) &&
+        result.is_identical_to(isolate->builtins()->InOptimizationQueue())) {
+      // Optimization is queued.  Return to check later.
+      return NULL;
+    }
+  }
+
+  // Revert the patched back edge table, regardless of whether OSR succeeds.
+  BackEdgeTable::Revert(isolate, *caller_code);
+
+  // Check whether we ended up with usable optimized code.
+  if (!result.is_null() && result->kind() == Code::OPTIMIZED_FUNCTION) {
+    DeoptimizationInputData* data =
+        DeoptimizationInputData::cast(result->deoptimization_data());
+
+    if (data->OsrPcOffset()->value() >= 0) {
+      DCHECK(BailoutId(data->OsrAstId()->value()) == ast_id);
+      if (FLAG_trace_osr) {
+        PrintF("[OSR - Entry at AST id %d, offset %d in optimized code]\n",
+               ast_id.ToInt(), data->OsrPcOffset()->value());
+      }
+      // TODO(titzer): this is a massive hack to make the deopt counts
+      // match. Fix heuristics for reenabling optimizations!
+      function->shared()->increment_deopt_count();
+
+      // TODO(titzer): Do not install code into the function.
+      function->ReplaceCode(*result);
+      return *result;
+    }
+  }
+
+  // Failed.
+  if (FLAG_trace_osr) {
+    PrintF("[OSR - Failed: ");
+    function->PrintName();
+    PrintF(" at AST id %d]\n", ast_id.ToInt());
+  }
+
+  if (!function->IsOptimized()) {
+    function->ReplaceCode(function->shared()->code());
+  }
+  return NULL;
+}
+
+
+RUNTIME_FUNCTION(Runtime_TryInstallOptimizedCode) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+
+  // First check if this is a real stack overflow.
+  StackLimitCheck check(isolate);
+  if (check.JsHasOverflowed()) {
+    SealHandleScope shs(isolate);
+    return isolate->StackOverflow();
+  }
+
+  isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
+  return (function->IsOptimized()) ? function->code()
+                                   : function->shared()->code();
+}
+
+
+bool CodeGenerationFromStringsAllowed(Isolate* isolate,
+                                      Handle<Context> context) {
+  DCHECK(context->allow_code_gen_from_strings()->IsFalse());
+  // Check with callback if set.
+  AllowCodeGenerationFromStringsCallback callback =
+      isolate->allow_code_gen_callback();
+  if (callback == NULL) {
+    // No callback set and code generation disallowed.
+    return false;
+  } else {
+    // Callback set. Let it decide if code generation is allowed.
+    VMState<EXTERNAL> state(isolate);
+    return callback(v8::Utils::ToLocal(context));
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_CompileString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
+  CONVERT_BOOLEAN_ARG_CHECKED(function_literal_only, 1);
+  CONVERT_SMI_ARG_CHECKED(source_offset, 2);
+
+  // Extract native context.
+  Handle<Context> context(isolate->native_context());
+
+  // Check if native context allows code generation from
+  // strings. Throw an exception if it doesn't.
+  if (context->allow_code_gen_from_strings()->IsFalse() &&
+      !CodeGenerationFromStringsAllowed(isolate, context)) {
+    Handle<Object> error_message =
+        context->ErrorMessageForCodeGenerationFromStrings();
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewEvalError("code_gen_from_strings",
+                              HandleVector<Object>(&error_message, 1)));
+  }
+
+  // Compile source string in the native context.
+  ParseRestriction restriction = function_literal_only
+                                     ? ONLY_SINGLE_FUNCTION_LITERAL
+                                     : NO_PARSE_RESTRICTION;
+  Handle<SharedFunctionInfo> outer_info(context->closure()->shared(), isolate);
+  Handle<JSFunction> fun;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, fun,
+      Compiler::GetFunctionFromEval(source, outer_info, context, SLOPPY,
+                                    restriction, RelocInfo::kNoPosition));
+  if (function_literal_only) {
+    // The actual body is wrapped, which shifts line numbers.
+    Handle<Script> script(Script::cast(fun->shared()->script()), isolate);
+    if (script->line_offset() == 0) {
+      int line_num = Script::GetLineNumber(script, source_offset);
+      script->set_line_offset(Smi::FromInt(-line_num));
+    }
+  }
+  return *fun;
+}
+
+
+static ObjectPair CompileGlobalEval(Isolate* isolate, Handle<String> source,
+                                    Handle<SharedFunctionInfo> outer_info,
+                                    Handle<Object> receiver,
+                                    StrictMode strict_mode,
+                                    int scope_position) {
+  Handle<Context> context = Handle<Context>(isolate->context());
+  Handle<Context> native_context = Handle<Context>(context->native_context());
+
+  // Check if native context allows code generation from
+  // strings. Throw an exception if it doesn't.
+  if (native_context->allow_code_gen_from_strings()->IsFalse() &&
+      !CodeGenerationFromStringsAllowed(isolate, native_context)) {
+    Handle<Object> error_message =
+        native_context->ErrorMessageForCodeGenerationFromStrings();
+    Handle<Object> error;
+    MaybeHandle<Object> maybe_error = isolate->factory()->NewEvalError(
+        "code_gen_from_strings", HandleVector<Object>(&error_message, 1));
+    if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
+    return MakePair(isolate->heap()->exception(), NULL);
+  }
+
+  // Deal with a normal eval call with a string argument. Compile it
+  // and return the compiled function bound in the local context.
+  static const ParseRestriction restriction = NO_PARSE_RESTRICTION;
+  Handle<JSFunction> compiled;
+  ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+      isolate, compiled,
+      Compiler::GetFunctionFromEval(source, outer_info, context, strict_mode,
+                                    restriction, scope_position),
+      MakePair(isolate->heap()->exception(), NULL));
+  return MakePair(*compiled, *receiver);
+}
+
+
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_ResolvePossiblyDirectEval) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 6);
+
+  Handle<Object> callee = args.at<Object>(0);
+
+  // If "eval" didn't refer to the original GlobalEval, it's not a
+  // direct call to eval.
+  // (And even if it is, but the first argument isn't a string, just let
+  // execution default to an indirect call to eval, which will also return
+  // the first argument without doing anything).
+  if (*callee != isolate->native_context()->global_eval_fun() ||
+      !args[1]->IsString()) {
+    return MakePair(*callee, isolate->heap()->undefined_value());
+  }
+
+  DCHECK(args[4]->IsSmi());
+  DCHECK(args.smi_at(4) == SLOPPY || args.smi_at(4) == STRICT);
+  StrictMode strict_mode = static_cast<StrictMode>(args.smi_at(4));
+  DCHECK(args[5]->IsSmi());
+  Handle<SharedFunctionInfo> outer_info(args.at<JSFunction>(2)->shared(),
+                                        isolate);
+  return CompileGlobalEval(isolate, args.at<String>(1), outer_info,
+                           args.at<Object>(3), strict_mode, args.smi_at(5));
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-date.cc b/src/runtime/runtime-date.cc
new file mode 100644
index 0000000..65d8fc6
--- /dev/null
+++ b/src/runtime/runtime-date.cc
@@ -0,0 +1,189 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/date.h"
+#include "src/dateparser-inl.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_DateMakeDay) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_SMI_ARG_CHECKED(year, 0);
+  CONVERT_SMI_ARG_CHECKED(month, 1);
+
+  int days = isolate->date_cache()->DaysFromYearMonth(year, month);
+  RUNTIME_ASSERT(Smi::IsValid(days));
+  return Smi::FromInt(days);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateSetValue) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(time, 1);
+  CONVERT_SMI_ARG_CHECKED(is_utc, 2);
+
+  DateCache* date_cache = isolate->date_cache();
+
+  Handle<Object> value;
+  ;
+  bool is_value_nan = false;
+  if (std::isnan(time)) {
+    value = isolate->factory()->nan_value();
+    is_value_nan = true;
+  } else if (!is_utc && (time < -DateCache::kMaxTimeBeforeUTCInMs ||
+                         time > DateCache::kMaxTimeBeforeUTCInMs)) {
+    value = isolate->factory()->nan_value();
+    is_value_nan = true;
+  } else {
+    time = is_utc ? time : date_cache->ToUTC(static_cast<int64_t>(time));
+    if (time < -DateCache::kMaxTimeInMs || time > DateCache::kMaxTimeInMs) {
+      value = isolate->factory()->nan_value();
+      is_value_nan = true;
+    } else {
+      value = isolate->factory()->NewNumber(DoubleToInteger(time));
+    }
+  }
+  date->SetValue(*value, is_value_nan);
+  return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowNotDateError) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  THROW_NEW_ERROR_RETURN_FAILURE(
+      isolate, NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateCurrentTime) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  if (FLAG_log_timer_events) LOG(isolate, CurrentTimeEvent());
+
+  // According to ECMA-262, section 15.9.1, page 117, the precision of
+  // the number in a Date object representing a particular instant in
+  // time is milliseconds. Therefore, we floor the result of getting
+  // the OS time.
+  double millis;
+  if (FLAG_verify_predictable) {
+    millis = 1388534400000.0;  // Jan 1 2014 00:00:00 GMT+0000
+    millis += Floor(isolate->heap()->synthetic_time());
+  } else {
+    millis = Floor(base::OS::TimeCurrentMillis());
+  }
+  return *isolate->factory()->NewNumber(millis);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateParseString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, output, 1);
+
+  RUNTIME_ASSERT(output->HasFastElements());
+  JSObject::EnsureCanContainHeapObjectElements(output);
+  RUNTIME_ASSERT(output->HasFastObjectElements());
+  Handle<FixedArray> output_array(FixedArray::cast(output->elements()));
+  RUNTIME_ASSERT(output_array->length() >= DateParser::OUTPUT_SIZE);
+
+  str = String::Flatten(str);
+  DisallowHeapAllocation no_gc;
+
+  bool result;
+  String::FlatContent str_content = str->GetFlatContent();
+  if (str_content.IsOneByte()) {
+    result = DateParser::Parse(str_content.ToOneByteVector(), *output_array,
+                               isolate->unicode_cache());
+  } else {
+    DCHECK(str_content.IsTwoByte());
+    result = DateParser::Parse(str_content.ToUC16Vector(), *output_array,
+                               isolate->unicode_cache());
+  }
+
+  if (result) {
+    return *output;
+  } else {
+    return isolate->heap()->null_value();
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateLocalTimezone) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
+                 x <= DateCache::kMaxTimeBeforeUTCInMs);
+  const char* zone =
+      isolate->date_cache()->LocalTimezone(static_cast<int64_t>(x));
+  Handle<String> result =
+      isolate->factory()->NewStringFromUtf8(CStrVector(zone)).ToHandleChecked();
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateToUTC) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  RUNTIME_ASSERT(x >= -DateCache::kMaxTimeBeforeUTCInMs &&
+                 x <= DateCache::kMaxTimeBeforeUTCInMs);
+  int64_t time = isolate->date_cache()->ToUTC(static_cast<int64_t>(x));
+
+  return *isolate->factory()->NewNumber(static_cast<double>(time));
+}
+
+
+RUNTIME_FUNCTION(Runtime_DateCacheVersion) {
+  HandleScope hs(isolate);
+  DCHECK(args.length() == 0);
+  if (!isolate->eternal_handles()->Exists(EternalHandles::DATE_CACHE_VERSION)) {
+    Handle<FixedArray> date_cache_version =
+        isolate->factory()->NewFixedArray(1, TENURED);
+    date_cache_version->set(0, Smi::FromInt(0));
+    isolate->eternal_handles()->CreateSingleton(
+        isolate, *date_cache_version, EternalHandles::DATE_CACHE_VERSION);
+  }
+  Handle<FixedArray> date_cache_version =
+      Handle<FixedArray>::cast(isolate->eternal_handles()->GetSingleton(
+          EternalHandles::DATE_CACHE_VERSION));
+  // Return result as a JS array.
+  Handle<JSObject> result =
+      isolate->factory()->NewJSObject(isolate->array_function());
+  JSArray::SetContent(Handle<JSArray>::cast(result), date_cache_version);
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_DateField) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  CONVERT_SMI_ARG_CHECKED(index, 1);
+  if (!obj->IsJSDate()) {
+    HandleScope scope(isolate);
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate,
+        NewTypeError("not_date_object", HandleVector<Object>(NULL, 0)));
+  }
+  JSDate* date = JSDate::cast(obj);
+  if (index == 0) return date->value();
+  return JSDate::GetField(date, Smi::FromInt(index));
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-debug.cc b/src/runtime/runtime-debug.cc
new file mode 100644
index 0000000..9b71a4f
--- /dev/null
+++ b/src/runtime/runtime-debug.cc
@@ -0,0 +1,2819 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/accessors.h"
+#include "src/arguments.h"
+#include "src/debug.h"
+#include "src/deoptimizer.h"
+#include "src/isolate-inl.h"
+#include "src/parser.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_DebugBreak) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  isolate->debug()->HandleDebugBreak();
+  return isolate->heap()->undefined_value();
+}
+
+
+// Helper functions for wrapping and unwrapping stack frame ids.
+static Smi* WrapFrameId(StackFrame::Id id) {
+  DCHECK(IsAligned(OffsetFrom(id), static_cast<intptr_t>(4)));
+  return Smi::FromInt(id >> 2);
+}
+
+
+static StackFrame::Id UnwrapFrameId(int wrapped) {
+  return static_cast<StackFrame::Id>(wrapped << 2);
+}
+
+
+// Adds a JavaScript function as a debug event listener.
+// args[0]: debug event listener function to set or null or undefined for
+//          clearing the event listener function
+// args[1]: object supplied during callback
+RUNTIME_FUNCTION(Runtime_SetDebugEventListener) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  RUNTIME_ASSERT(args[0]->IsJSFunction() || args[0]->IsUndefined() ||
+                 args[0]->IsNull());
+  CONVERT_ARG_HANDLE_CHECKED(Object, callback, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, data, 1);
+  isolate->debug()->SetEventListener(callback, data);
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Break) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  isolate->stack_guard()->RequestDebugBreak();
+  return isolate->heap()->undefined_value();
+}
+
+
+static Handle<Object> DebugGetProperty(LookupIterator* it,
+                                       bool* has_caught = NULL) {
+  for (; it->IsFound(); it->Next()) {
+    switch (it->state()) {
+      case LookupIterator::NOT_FOUND:
+      case LookupIterator::TRANSITION:
+        UNREACHABLE();
+      case LookupIterator::ACCESS_CHECK:
+        // Ignore access checks.
+        break;
+      case LookupIterator::INTERCEPTOR:
+      case LookupIterator::JSPROXY:
+        return it->isolate()->factory()->undefined_value();
+      case LookupIterator::ACCESSOR: {
+        Handle<Object> accessors = it->GetAccessors();
+        if (!accessors->IsAccessorInfo()) {
+          return it->isolate()->factory()->undefined_value();
+        }
+        MaybeHandle<Object> maybe_result = JSObject::GetPropertyWithAccessor(
+            it->GetReceiver(), it->name(), it->GetHolder<JSObject>(),
+            accessors);
+        Handle<Object> result;
+        if (!maybe_result.ToHandle(&result)) {
+          result = handle(it->isolate()->pending_exception(), it->isolate());
+          it->isolate()->clear_pending_exception();
+          if (has_caught != NULL) *has_caught = true;
+        }
+        return result;
+      }
+
+      case LookupIterator::DATA:
+        return it->GetDataValue();
+    }
+  }
+
+  return it->isolate()->factory()->undefined_value();
+}
+
+
+// Get debugger related details for an object property, in the following format:
+// 0: Property value
+// 1: Property details
+// 2: Property value is exception
+// 3: Getter function if defined
+// 4: Setter function if defined
+// Items 2-4 are only filled if the property has either a getter or a setter.
+RUNTIME_FUNCTION(Runtime_DebugGetPropertyDetails) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+
+  // Make sure to set the current context to the context before the debugger was
+  // entered (if the debugger is entered). The reason for switching context here
+  // is that for some property lookups (accessors and interceptors) callbacks
+  // into the embedding application can occour, and the embedding application
+  // could have the assumption that its own native context is the current
+  // context and not some internal debugger context.
+  SaveContext save(isolate);
+  if (isolate->debug()->in_debug_scope()) {
+    isolate->set_context(*isolate->debug()->debugger_entry()->GetContext());
+  }
+
+  // Check if the name is trivially convertible to an index and get the element
+  // if so.
+  uint32_t index;
+  if (name->AsArrayIndex(&index)) {
+    Handle<FixedArray> details = isolate->factory()->NewFixedArray(2);
+    Handle<Object> element_or_char;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, element_or_char,
+        Runtime::GetElementOrCharAt(isolate, obj, index));
+    details->set(0, *element_or_char);
+    details->set(1, PropertyDetails(NONE, FIELD, 0).AsSmi());
+    return *isolate->factory()->NewJSArrayWithElements(details);
+  }
+
+  LookupIterator it(obj, name, LookupIterator::HIDDEN);
+  bool has_caught = false;
+  Handle<Object> value = DebugGetProperty(&it, &has_caught);
+  if (!it.IsFound()) return isolate->heap()->undefined_value();
+
+  Handle<Object> maybe_pair;
+  if (it.state() == LookupIterator::ACCESSOR) {
+    maybe_pair = it.GetAccessors();
+  }
+
+  // If the callback object is a fixed array then it contains JavaScript
+  // getter and/or setter.
+  bool has_js_accessors = !maybe_pair.is_null() && maybe_pair->IsAccessorPair();
+  Handle<FixedArray> details =
+      isolate->factory()->NewFixedArray(has_js_accessors ? 6 : 3);
+  details->set(0, *value);
+  // TODO(verwaest): Get rid of this random way of handling interceptors.
+  PropertyDetails d = it.state() == LookupIterator::INTERCEPTOR
+                          ? PropertyDetails(NONE, FIELD, 0)
+                          : it.property_details();
+  details->set(1, d.AsSmi());
+  details->set(
+      2, isolate->heap()->ToBoolean(it.state() == LookupIterator::INTERCEPTOR));
+  if (has_js_accessors) {
+    AccessorPair* accessors = AccessorPair::cast(*maybe_pair);
+    details->set(3, isolate->heap()->ToBoolean(has_caught));
+    details->set(4, accessors->GetComponent(ACCESSOR_GETTER));
+    details->set(5, accessors->GetComponent(ACCESSOR_SETTER));
+  }
+
+  return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugGetProperty) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+
+  LookupIterator it(obj, name);
+  return *DebugGetProperty(&it);
+}
+
+
+// Return the property type calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(Runtime_DebugPropertyTypeFromDetails) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
+  return Smi::FromInt(static_cast<int>(details.type()));
+}
+
+
+// Return the property attribute calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(Runtime_DebugPropertyAttributesFromDetails) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
+  return Smi::FromInt(static_cast<int>(details.attributes()));
+}
+
+
+// Return the property insertion index calculated from the property details.
+// args[0]: smi with property details.
+RUNTIME_FUNCTION(Runtime_DebugPropertyIndexFromDetails) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_PROPERTY_DETAILS_CHECKED(details, 0);
+  // TODO(verwaest): Works only for dictionary mode holders.
+  return Smi::FromInt(details.dictionary_index());
+}
+
+
+// Return property value from named interceptor.
+// args[0]: object
+// args[1]: property name
+RUNTIME_FUNCTION(Runtime_DebugNamedInterceptorPropertyValue) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  RUNTIME_ASSERT(obj->HasNamedInterceptor());
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+                                     JSObject::GetProperty(obj, name));
+  return *result;
+}
+
+
+// Return element value from indexed interceptor.
+// args[0]: object
+// args[1]: index
+RUNTIME_FUNCTION(Runtime_DebugIndexedInterceptorElementValue) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  RUNTIME_ASSERT(obj->HasIndexedInterceptor());
+  CONVERT_NUMBER_CHECKED(uint32_t, index, Uint32, args[1]);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      JSObject::GetElementWithInterceptor(obj, obj, index, true));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CheckExecutionState) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+  return isolate->heap()->true_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFrameCount) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  // Count all frames which are relevant to debugging stack trace.
+  int n = 0;
+  StackFrame::Id id = isolate->debug()->break_frame_id();
+  if (id == StackFrame::NO_ID) {
+    // If there is no JavaScript stack frame count is 0.
+    return Smi::FromInt(0);
+  }
+
+  for (JavaScriptFrameIterator it(isolate, id); !it.done(); it.Advance()) {
+    List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
+    it.frame()->Summarize(&frames);
+    for (int i = frames.length() - 1; i >= 0; i--) {
+      // Omit functions from native scripts.
+      if (!frames[i].function()->IsFromNativeScript()) n++;
+    }
+  }
+  return Smi::FromInt(n);
+}
+
+
+class FrameInspector {
+ public:
+  FrameInspector(JavaScriptFrame* frame, int inlined_jsframe_index,
+                 Isolate* isolate)
+      : frame_(frame), deoptimized_frame_(NULL), isolate_(isolate) {
+    // Calculate the deoptimized frame.
+    if (frame->is_optimized()) {
+      deoptimized_frame_ = Deoptimizer::DebuggerInspectableFrame(
+          frame, inlined_jsframe_index, isolate);
+    }
+    has_adapted_arguments_ = frame_->has_adapted_arguments();
+    is_bottommost_ = inlined_jsframe_index == 0;
+    is_optimized_ = frame_->is_optimized();
+  }
+
+  ~FrameInspector() {
+    // Get rid of the calculated deoptimized frame if any.
+    if (deoptimized_frame_ != NULL) {
+      Deoptimizer::DeleteDebuggerInspectableFrame(deoptimized_frame_, isolate_);
+    }
+  }
+
+  int GetParametersCount() {
+    return is_optimized_ ? deoptimized_frame_->parameters_count()
+                         : frame_->ComputeParametersCount();
+  }
+  int expression_count() { return deoptimized_frame_->expression_count(); }
+  Object* GetFunction() {
+    return is_optimized_ ? deoptimized_frame_->GetFunction()
+                         : frame_->function();
+  }
+  Object* GetParameter(int index) {
+    return is_optimized_ ? deoptimized_frame_->GetParameter(index)
+                         : frame_->GetParameter(index);
+  }
+  Object* GetExpression(int index) {
+    return is_optimized_ ? deoptimized_frame_->GetExpression(index)
+                         : frame_->GetExpression(index);
+  }
+  int GetSourcePosition() {
+    return is_optimized_ ? deoptimized_frame_->GetSourcePosition()
+                         : frame_->LookupCode()->SourcePosition(frame_->pc());
+  }
+  bool IsConstructor() {
+    return is_optimized_ && !is_bottommost_
+               ? deoptimized_frame_->HasConstructStub()
+               : frame_->IsConstructor();
+  }
+  Object* GetContext() {
+    return is_optimized_ ? deoptimized_frame_->GetContext() : frame_->context();
+  }
+
+  // To inspect all the provided arguments the frame might need to be
+  // replaced with the arguments frame.
+  void SetArgumentsFrame(JavaScriptFrame* frame) {
+    DCHECK(has_adapted_arguments_);
+    frame_ = frame;
+    is_optimized_ = frame_->is_optimized();
+    DCHECK(!is_optimized_);
+  }
+
+ private:
+  JavaScriptFrame* frame_;
+  DeoptimizedFrameInfo* deoptimized_frame_;
+  Isolate* isolate_;
+  bool is_optimized_;
+  bool is_bottommost_;
+  bool has_adapted_arguments_;
+
+  DISALLOW_COPY_AND_ASSIGN(FrameInspector);
+};
+
+
+static const int kFrameDetailsFrameIdIndex = 0;
+static const int kFrameDetailsReceiverIndex = 1;
+static const int kFrameDetailsFunctionIndex = 2;
+static const int kFrameDetailsArgumentCountIndex = 3;
+static const int kFrameDetailsLocalCountIndex = 4;
+static const int kFrameDetailsSourcePositionIndex = 5;
+static const int kFrameDetailsConstructCallIndex = 6;
+static const int kFrameDetailsAtReturnIndex = 7;
+static const int kFrameDetailsFlagsIndex = 8;
+static const int kFrameDetailsFirstDynamicIndex = 9;
+
+
+static SaveContext* FindSavedContextForFrame(Isolate* isolate,
+                                             JavaScriptFrame* frame) {
+  SaveContext* save = isolate->save_context();
+  while (save != NULL && !save->IsBelowFrame(frame)) {
+    save = save->prev();
+  }
+  DCHECK(save != NULL);
+  return save;
+}
+
+
+// Advances the iterator to the frame that matches the index and returns the
+// inlined frame index, or -1 if not found.  Skips native JS functions.
+int Runtime::FindIndexedNonNativeFrame(JavaScriptFrameIterator* it, int index) {
+  int count = -1;
+  for (; !it->done(); it->Advance()) {
+    List<FrameSummary> frames(FLAG_max_inlining_levels + 1);
+    it->frame()->Summarize(&frames);
+    for (int i = frames.length() - 1; i >= 0; i--) {
+      // Omit functions from native scripts.
+      if (frames[i].function()->IsFromNativeScript()) continue;
+      if (++count == index) return i;
+    }
+  }
+  return -1;
+}
+
+
+// Return an array with frame details
+// args[0]: number: break id
+// args[1]: number: frame index
+//
+// The array returned contains the following information:
+// 0: Frame id
+// 1: Receiver
+// 2: Function
+// 3: Argument count
+// 4: Local count
+// 5: Source position
+// 6: Constructor call
+// 7: Is at return
+// 8: Flags
+// Arguments name, value
+// Locals name, value
+// Return value if any
+RUNTIME_FUNCTION(Runtime_GetFrameDetails) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+  Heap* heap = isolate->heap();
+
+  // Find the relevant frame with the requested index.
+  StackFrame::Id id = isolate->debug()->break_frame_id();
+  if (id == StackFrame::NO_ID) {
+    // If there are no JavaScript stack frames return undefined.
+    return heap->undefined_value();
+  }
+
+  JavaScriptFrameIterator it(isolate, id);
+  // Inlined frame index in optimized frame, starting from outer function.
+  int inlined_jsframe_index = Runtime::FindIndexedNonNativeFrame(&it, index);
+  if (inlined_jsframe_index == -1) return heap->undefined_value();
+
+  FrameInspector frame_inspector(it.frame(), inlined_jsframe_index, isolate);
+  bool is_optimized = it.frame()->is_optimized();
+
+  // Traverse the saved contexts chain to find the active context for the
+  // selected frame.
+  SaveContext* save = FindSavedContextForFrame(isolate, it.frame());
+
+  // Get the frame id.
+  Handle<Object> frame_id(WrapFrameId(it.frame()->id()), isolate);
+
+  // Find source position in unoptimized code.
+  int position = frame_inspector.GetSourcePosition();
+
+  // Check for constructor frame.
+  bool constructor = frame_inspector.IsConstructor();
+
+  // Get scope info and read from it for local variable information.
+  Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
+  Handle<SharedFunctionInfo> shared(function->shared());
+  Handle<ScopeInfo> scope_info(shared->scope_info());
+  DCHECK(*scope_info != ScopeInfo::Empty(isolate));
+
+  // Get the locals names and values into a temporary array.
+  int local_count = scope_info->LocalCount();
+  for (int slot = 0; slot < scope_info->LocalCount(); ++slot) {
+    // Hide compiler-introduced temporary variables, whether on the stack or on
+    // the context.
+    if (scope_info->LocalIsSynthetic(slot)) local_count--;
+  }
+
+  Handle<FixedArray> locals =
+      isolate->factory()->NewFixedArray(local_count * 2);
+
+  // Fill in the values of the locals.
+  int local = 0;
+  int i = 0;
+  for (; i < scope_info->StackLocalCount(); ++i) {
+    // Use the value from the stack.
+    if (scope_info->LocalIsSynthetic(i)) continue;
+    locals->set(local * 2, scope_info->LocalName(i));
+    locals->set(local * 2 + 1, frame_inspector.GetExpression(i));
+    local++;
+  }
+  if (local < local_count) {
+    // Get the context containing declarations.
+    Handle<Context> context(
+        Context::cast(frame_inspector.GetContext())->declaration_context());
+    for (; i < scope_info->LocalCount(); ++i) {
+      if (scope_info->LocalIsSynthetic(i)) continue;
+      Handle<String> name(scope_info->LocalName(i));
+      VariableMode mode;
+      InitializationFlag init_flag;
+      MaybeAssignedFlag maybe_assigned_flag;
+      locals->set(local * 2, *name);
+      int context_slot_index = ScopeInfo::ContextSlotIndex(
+          scope_info, name, &mode, &init_flag, &maybe_assigned_flag);
+      Object* value = context->get(context_slot_index);
+      locals->set(local * 2 + 1, value);
+      local++;
+    }
+  }
+
+  // Check whether this frame is positioned at return. If not top
+  // frame or if the frame is optimized it cannot be at a return.
+  bool at_return = false;
+  if (!is_optimized && index == 0) {
+    at_return = isolate->debug()->IsBreakAtReturn(it.frame());
+  }
+
+  // If positioned just before return find the value to be returned and add it
+  // to the frame information.
+  Handle<Object> return_value = isolate->factory()->undefined_value();
+  if (at_return) {
+    StackFrameIterator it2(isolate);
+    Address internal_frame_sp = NULL;
+    while (!it2.done()) {
+      if (it2.frame()->is_internal()) {
+        internal_frame_sp = it2.frame()->sp();
+      } else {
+        if (it2.frame()->is_java_script()) {
+          if (it2.frame()->id() == it.frame()->id()) {
+            // The internal frame just before the JavaScript frame contains the
+            // value to return on top. A debug break at return will create an
+            // internal frame to store the return value (eax/rax/r0) before
+            // entering the debug break exit frame.
+            if (internal_frame_sp != NULL) {
+              return_value =
+                  Handle<Object>(Memory::Object_at(internal_frame_sp), isolate);
+              break;
+            }
+          }
+        }
+
+        // Indicate that the previous frame was not an internal frame.
+        internal_frame_sp = NULL;
+      }
+      it2.Advance();
+    }
+  }
+
+  // Now advance to the arguments adapter frame (if any). It contains all
+  // the provided parameters whereas the function frame always have the number
+  // of arguments matching the functions parameters. The rest of the
+  // information (except for what is collected above) is the same.
+  if ((inlined_jsframe_index == 0) && it.frame()->has_adapted_arguments()) {
+    it.AdvanceToArgumentsFrame();
+    frame_inspector.SetArgumentsFrame(it.frame());
+  }
+
+  // Find the number of arguments to fill. At least fill the number of
+  // parameters for the function and fill more if more parameters are provided.
+  int argument_count = scope_info->ParameterCount();
+  if (argument_count < frame_inspector.GetParametersCount()) {
+    argument_count = frame_inspector.GetParametersCount();
+  }
+
+  // Calculate the size of the result.
+  int details_size = kFrameDetailsFirstDynamicIndex +
+                     2 * (argument_count + local_count) + (at_return ? 1 : 0);
+  Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
+
+  // Add the frame id.
+  details->set(kFrameDetailsFrameIdIndex, *frame_id);
+
+  // Add the function (same as in function frame).
+  details->set(kFrameDetailsFunctionIndex, frame_inspector.GetFunction());
+
+  // Add the arguments count.
+  details->set(kFrameDetailsArgumentCountIndex, Smi::FromInt(argument_count));
+
+  // Add the locals count
+  details->set(kFrameDetailsLocalCountIndex, Smi::FromInt(local_count));
+
+  // Add the source position.
+  if (position != RelocInfo::kNoPosition) {
+    details->set(kFrameDetailsSourcePositionIndex, Smi::FromInt(position));
+  } else {
+    details->set(kFrameDetailsSourcePositionIndex, heap->undefined_value());
+  }
+
+  // Add the constructor information.
+  details->set(kFrameDetailsConstructCallIndex, heap->ToBoolean(constructor));
+
+  // Add the at return information.
+  details->set(kFrameDetailsAtReturnIndex, heap->ToBoolean(at_return));
+
+  // Add flags to indicate information on whether this frame is
+  //   bit 0: invoked in the debugger context.
+  //   bit 1: optimized frame.
+  //   bit 2: inlined in optimized frame
+  int flags = 0;
+  if (*save->context() == *isolate->debug()->debug_context()) {
+    flags |= 1 << 0;
+  }
+  if (is_optimized) {
+    flags |= 1 << 1;
+    flags |= inlined_jsframe_index << 2;
+  }
+  details->set(kFrameDetailsFlagsIndex, Smi::FromInt(flags));
+
+  // Fill the dynamic part.
+  int details_index = kFrameDetailsFirstDynamicIndex;
+
+  // Add arguments name and value.
+  for (int i = 0; i < argument_count; i++) {
+    // Name of the argument.
+    if (i < scope_info->ParameterCount()) {
+      details->set(details_index++, scope_info->ParameterName(i));
+    } else {
+      details->set(details_index++, heap->undefined_value());
+    }
+
+    // Parameter value.
+    if (i < frame_inspector.GetParametersCount()) {
+      // Get the value from the stack.
+      details->set(details_index++, frame_inspector.GetParameter(i));
+    } else {
+      details->set(details_index++, heap->undefined_value());
+    }
+  }
+
+  // Add locals name and value from the temporary copy from the function frame.
+  for (int i = 0; i < local_count * 2; i++) {
+    details->set(details_index++, locals->get(i));
+  }
+
+  // Add the value being returned.
+  if (at_return) {
+    details->set(details_index++, *return_value);
+  }
+
+  // Add the receiver (same as in function frame).
+  // THIS MUST BE DONE LAST SINCE WE MIGHT ADVANCE
+  // THE FRAME ITERATOR TO WRAP THE RECEIVER.
+  Handle<Object> receiver(it.frame()->receiver(), isolate);
+  if (!receiver->IsJSObject() && shared->strict_mode() == SLOPPY &&
+      !function->IsBuiltin()) {
+    // If the receiver is not a JSObject and the function is not a
+    // builtin or strict-mode we have hit an optimization where a
+    // value object is not converted into a wrapped JS objects. To
+    // hide this optimization from the debugger, we wrap the receiver
+    // by creating correct wrapper object based on the calling frame's
+    // native context.
+    it.Advance();
+    if (receiver->IsUndefined()) {
+      receiver = handle(function->global_proxy());
+    } else {
+      Context* context = Context::cast(it.frame()->context());
+      Handle<Context> native_context(Context::cast(context->native_context()));
+      if (!Object::ToObject(isolate, receiver, native_context)
+               .ToHandle(&receiver)) {
+        // This only happens if the receiver is forcibly set in %_CallFunction.
+        return heap->undefined_value();
+      }
+    }
+  }
+  details->set(kFrameDetailsReceiverIndex, *receiver);
+
+  DCHECK_EQ(details_size, details_index);
+  return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+static bool ParameterIsShadowedByContextLocal(Handle<ScopeInfo> info,
+                                              Handle<String> parameter_name) {
+  VariableMode mode;
+  InitializationFlag init_flag;
+  MaybeAssignedFlag maybe_assigned_flag;
+  return ScopeInfo::ContextSlotIndex(info, parameter_name, &mode, &init_flag,
+                                     &maybe_assigned_flag) != -1;
+}
+
+
+// Create a plain JSObject which materializes the local scope for the specified
+// frame.
+MUST_USE_RESULT
+static MaybeHandle<JSObject> MaterializeStackLocalsWithFrameInspector(
+    Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function,
+    FrameInspector* frame_inspector) {
+  Handle<SharedFunctionInfo> shared(function->shared());
+  Handle<ScopeInfo> scope_info(shared->scope_info());
+
+  // First fill all parameters.
+  for (int i = 0; i < scope_info->ParameterCount(); ++i) {
+    // Do not materialize the parameter if it is shadowed by a context local.
+    Handle<String> name(scope_info->ParameterName(i));
+    if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
+
+    HandleScope scope(isolate);
+    Handle<Object> value(i < frame_inspector->GetParametersCount()
+                             ? frame_inspector->GetParameter(i)
+                             : isolate->heap()->undefined_value(),
+                         isolate);
+    DCHECK(!value->IsTheHole());
+
+    RETURN_ON_EXCEPTION(isolate, Runtime::SetObjectProperty(
+                                     isolate, target, name, value, SLOPPY),
+                        JSObject);
+  }
+
+  // Second fill all stack locals.
+  for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
+    if (scope_info->LocalIsSynthetic(i)) continue;
+    Handle<String> name(scope_info->StackLocalName(i));
+    Handle<Object> value(frame_inspector->GetExpression(i), isolate);
+    if (value->IsTheHole()) continue;
+
+    RETURN_ON_EXCEPTION(isolate, Runtime::SetObjectProperty(
+                                     isolate, target, name, value, SLOPPY),
+                        JSObject);
+  }
+
+  return target;
+}
+
+
+static void UpdateStackLocalsFromMaterializedObject(Isolate* isolate,
+                                                    Handle<JSObject> target,
+                                                    Handle<JSFunction> function,
+                                                    JavaScriptFrame* frame,
+                                                    int inlined_jsframe_index) {
+  if (inlined_jsframe_index != 0 || frame->is_optimized()) {
+    // Optimized frames are not supported.
+    // TODO(yangguo): make sure all code deoptimized when debugger is active
+    //                and assert that this cannot happen.
+    return;
+  }
+
+  Handle<SharedFunctionInfo> shared(function->shared());
+  Handle<ScopeInfo> scope_info(shared->scope_info());
+
+  // Parameters.
+  for (int i = 0; i < scope_info->ParameterCount(); ++i) {
+    // Shadowed parameters were not materialized.
+    Handle<String> name(scope_info->ParameterName(i));
+    if (ParameterIsShadowedByContextLocal(scope_info, name)) continue;
+
+    DCHECK(!frame->GetParameter(i)->IsTheHole());
+    HandleScope scope(isolate);
+    Handle<Object> value =
+        Object::GetPropertyOrElement(target, name).ToHandleChecked();
+    frame->SetParameterValue(i, *value);
+  }
+
+  // Stack locals.
+  for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
+    if (scope_info->LocalIsSynthetic(i)) continue;
+    if (frame->GetExpression(i)->IsTheHole()) continue;
+    HandleScope scope(isolate);
+    Handle<Object> value = Object::GetPropertyOrElement(
+                               target, handle(scope_info->StackLocalName(i),
+                                              isolate)).ToHandleChecked();
+    frame->SetExpression(i, *value);
+  }
+}
+
+
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalContext(
+    Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function,
+    JavaScriptFrame* frame) {
+  HandleScope scope(isolate);
+  Handle<SharedFunctionInfo> shared(function->shared());
+  Handle<ScopeInfo> scope_info(shared->scope_info());
+
+  if (!scope_info->HasContext()) return target;
+
+  // Third fill all context locals.
+  Handle<Context> frame_context(Context::cast(frame->context()));
+  Handle<Context> function_context(frame_context->declaration_context());
+  if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, function_context,
+                                                 target)) {
+    return MaybeHandle<JSObject>();
+  }
+
+  // Finally copy any properties from the function context extension.
+  // These will be variables introduced by eval.
+  if (function_context->closure() == *function) {
+    if (function_context->has_extension() &&
+        !function_context->IsNativeContext()) {
+      Handle<JSObject> ext(JSObject::cast(function_context->extension()));
+      Handle<FixedArray> keys;
+      ASSIGN_RETURN_ON_EXCEPTION(
+          isolate, keys, JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS),
+          JSObject);
+
+      for (int i = 0; i < keys->length(); i++) {
+        // Names of variables introduced by eval are strings.
+        DCHECK(keys->get(i)->IsString());
+        Handle<String> key(String::cast(keys->get(i)));
+        Handle<Object> value;
+        ASSIGN_RETURN_ON_EXCEPTION(
+            isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
+        RETURN_ON_EXCEPTION(isolate, Runtime::SetObjectProperty(
+                                         isolate, target, key, value, SLOPPY),
+                            JSObject);
+      }
+    }
+  }
+
+  return target;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeScriptScope(
+    Handle<GlobalObject> global) {
+  Isolate* isolate = global->GetIsolate();
+  Handle<ScriptContextTable> script_contexts(
+      global->native_context()->script_context_table());
+
+  Handle<JSObject> script_scope =
+      isolate->factory()->NewJSObject(isolate->object_function());
+
+  for (int context_index = 0; context_index < script_contexts->used();
+       context_index++) {
+    Handle<Context> context =
+        ScriptContextTable::GetContext(script_contexts, context_index);
+    Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
+    if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, context,
+                                                   script_scope)) {
+      return MaybeHandle<JSObject>();
+    }
+  }
+  return script_scope;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeLocalScope(
+    Isolate* isolate, JavaScriptFrame* frame, int inlined_jsframe_index) {
+  FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
+  Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
+
+  Handle<JSObject> local_scope =
+      isolate->factory()->NewJSObject(isolate->object_function());
+  ASSIGN_RETURN_ON_EXCEPTION(
+      isolate, local_scope,
+      MaterializeStackLocalsWithFrameInspector(isolate, local_scope, function,
+                                               &frame_inspector),
+      JSObject);
+
+  return MaterializeLocalContext(isolate, local_scope, function, frame);
+}
+
+
+// Set the context local variable value.
+static bool SetContextLocalValue(Isolate* isolate, Handle<ScopeInfo> scope_info,
+                                 Handle<Context> context,
+                                 Handle<String> variable_name,
+                                 Handle<Object> new_value) {
+  for (int i = 0; i < scope_info->ContextLocalCount(); i++) {
+    Handle<String> next_name(scope_info->ContextLocalName(i));
+    if (String::Equals(variable_name, next_name)) {
+      VariableMode mode;
+      InitializationFlag init_flag;
+      MaybeAssignedFlag maybe_assigned_flag;
+      int context_index = ScopeInfo::ContextSlotIndex(
+          scope_info, next_name, &mode, &init_flag, &maybe_assigned_flag);
+      context->set(context_index, *new_value);
+      return true;
+    }
+  }
+
+  return false;
+}
+
+
+static bool SetLocalVariableValue(Isolate* isolate, JavaScriptFrame* frame,
+                                  int inlined_jsframe_index,
+                                  Handle<String> variable_name,
+                                  Handle<Object> new_value) {
+  if (inlined_jsframe_index != 0 || frame->is_optimized()) {
+    // Optimized frames are not supported.
+    return false;
+  }
+
+  Handle<JSFunction> function(frame->function());
+  Handle<SharedFunctionInfo> shared(function->shared());
+  Handle<ScopeInfo> scope_info(shared->scope_info());
+
+  bool default_result = false;
+
+  // Parameters.
+  for (int i = 0; i < scope_info->ParameterCount(); ++i) {
+    HandleScope scope(isolate);
+    if (String::Equals(handle(scope_info->ParameterName(i)), variable_name)) {
+      frame->SetParameterValue(i, *new_value);
+      // Argument might be shadowed in heap context, don't stop here.
+      default_result = true;
+    }
+  }
+
+  // Stack locals.
+  for (int i = 0; i < scope_info->StackLocalCount(); ++i) {
+    HandleScope scope(isolate);
+    if (String::Equals(handle(scope_info->StackLocalName(i)), variable_name)) {
+      frame->SetExpression(i, *new_value);
+      return true;
+    }
+  }
+
+  if (scope_info->HasContext()) {
+    // Context locals.
+    Handle<Context> frame_context(Context::cast(frame->context()));
+    Handle<Context> function_context(frame_context->declaration_context());
+    if (SetContextLocalValue(isolate, scope_info, function_context,
+                             variable_name, new_value)) {
+      return true;
+    }
+
+    // Function context extension. These are variables introduced by eval.
+    if (function_context->closure() == *function) {
+      if (function_context->has_extension() &&
+          !function_context->IsNativeContext()) {
+        Handle<JSObject> ext(JSObject::cast(function_context->extension()));
+
+        Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
+        DCHECK(maybe.has_value);
+        if (maybe.value) {
+          // We don't expect this to do anything except replacing
+          // property value.
+          Runtime::SetObjectProperty(isolate, ext, variable_name, new_value,
+                                     SLOPPY).Assert();
+          return true;
+        }
+      }
+    }
+  }
+
+  return default_result;
+}
+
+
+// Create a plain JSObject which materializes the closure content for the
+// context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeClosure(
+    Isolate* isolate, Handle<Context> context) {
+  DCHECK(context->IsFunctionContext());
+
+  Handle<SharedFunctionInfo> shared(context->closure()->shared());
+  Handle<ScopeInfo> scope_info(shared->scope_info());
+
+  // Allocate and initialize a JSObject with all the content of this function
+  // closure.
+  Handle<JSObject> closure_scope =
+      isolate->factory()->NewJSObject(isolate->object_function());
+
+  // Fill all context locals to the context extension.
+  if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, context,
+                                                 closure_scope)) {
+    return MaybeHandle<JSObject>();
+  }
+
+  // Finally copy any properties from the function context extension. This will
+  // be variables introduced by eval.
+  if (context->has_extension()) {
+    Handle<JSObject> ext(JSObject::cast(context->extension()));
+    Handle<FixedArray> keys;
+    ASSIGN_RETURN_ON_EXCEPTION(
+        isolate, keys, JSReceiver::GetKeys(ext, JSReceiver::INCLUDE_PROTOS),
+        JSObject);
+
+    for (int i = 0; i < keys->length(); i++) {
+      HandleScope scope(isolate);
+      // Names of variables introduced by eval are strings.
+      DCHECK(keys->get(i)->IsString());
+      Handle<String> key(String::cast(keys->get(i)));
+      Handle<Object> value;
+      ASSIGN_RETURN_ON_EXCEPTION(
+          isolate, value, Object::GetPropertyOrElement(ext, key), JSObject);
+      RETURN_ON_EXCEPTION(isolate, Runtime::DefineObjectProperty(
+                                       closure_scope, key, value, NONE),
+                          JSObject);
+    }
+  }
+
+  return closure_scope;
+}
+
+
+// This method copies structure of MaterializeClosure method above.
+static bool SetClosureVariableValue(Isolate* isolate, Handle<Context> context,
+                                    Handle<String> variable_name,
+                                    Handle<Object> new_value) {
+  DCHECK(context->IsFunctionContext());
+
+  Handle<SharedFunctionInfo> shared(context->closure()->shared());
+  Handle<ScopeInfo> scope_info(shared->scope_info());
+
+  // Context locals to the context extension.
+  if (SetContextLocalValue(isolate, scope_info, context, variable_name,
+                           new_value)) {
+    return true;
+  }
+
+  // Properties from the function context extension. This will
+  // be variables introduced by eval.
+  if (context->has_extension()) {
+    Handle<JSObject> ext(JSObject::cast(context->extension()));
+    Maybe<bool> maybe = JSReceiver::HasProperty(ext, variable_name);
+    DCHECK(maybe.has_value);
+    if (maybe.value) {
+      // We don't expect this to do anything except replacing property value.
+      Runtime::DefineObjectProperty(ext, variable_name, new_value, NONE)
+          .Assert();
+      return true;
+    }
+  }
+
+  return false;
+}
+
+
+static bool SetBlockContextVariableValue(Handle<Context> block_context,
+                                         Handle<String> variable_name,
+                                         Handle<Object> new_value) {
+  DCHECK(block_context->IsBlockContext());
+  Handle<ScopeInfo> scope_info(ScopeInfo::cast(block_context->extension()));
+
+  return SetContextLocalValue(block_context->GetIsolate(), scope_info,
+                              block_context, variable_name, new_value);
+}
+
+
+static bool SetScriptVariableValue(Handle<Context> context,
+                                   Handle<String> variable_name,
+                                   Handle<Object> new_value) {
+  Handle<ScriptContextTable> script_contexts(
+      context->global_object()->native_context()->script_context_table());
+  ScriptContextTable::LookupResult lookup_result;
+  if (ScriptContextTable::Lookup(script_contexts, variable_name,
+                                 &lookup_result)) {
+    Handle<Context> script_context = ScriptContextTable::GetContext(
+        script_contexts, lookup_result.context_index);
+    script_context->set(lookup_result.slot_index, *new_value);
+    return true;
+  }
+
+  return false;
+}
+
+
+// Create a plain JSObject which materializes the scope for the specified
+// catch context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeCatchScope(
+    Isolate* isolate, Handle<Context> context) {
+  DCHECK(context->IsCatchContext());
+  Handle<String> name(String::cast(context->extension()));
+  Handle<Object> thrown_object(context->get(Context::THROWN_OBJECT_INDEX),
+                               isolate);
+  Handle<JSObject> catch_scope =
+      isolate->factory()->NewJSObject(isolate->object_function());
+  RETURN_ON_EXCEPTION(isolate, Runtime::DefineObjectProperty(
+                                   catch_scope, name, thrown_object, NONE),
+                      JSObject);
+  return catch_scope;
+}
+
+
+static bool SetCatchVariableValue(Isolate* isolate, Handle<Context> context,
+                                  Handle<String> variable_name,
+                                  Handle<Object> new_value) {
+  DCHECK(context->IsCatchContext());
+  Handle<String> name(String::cast(context->extension()));
+  if (!String::Equals(name, variable_name)) {
+    return false;
+  }
+  context->set(Context::THROWN_OBJECT_INDEX, *new_value);
+  return true;
+}
+
+
+// Create a plain JSObject which materializes the block scope for the specified
+// block context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeBlockScope(
+    Isolate* isolate, Handle<Context> context) {
+  DCHECK(context->IsBlockContext());
+  Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
+
+  // Allocate and initialize a JSObject with all the arguments, stack locals
+  // heap locals and extension properties of the debugged function.
+  Handle<JSObject> block_scope =
+      isolate->factory()->NewJSObject(isolate->object_function());
+
+  // Fill all context locals.
+  if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, context,
+                                                 block_scope)) {
+    return MaybeHandle<JSObject>();
+  }
+
+  return block_scope;
+}
+
+
+// Create a plain JSObject which materializes the module scope for the specified
+// module context.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeModuleScope(
+    Isolate* isolate, Handle<Context> context) {
+  DCHECK(context->IsModuleContext());
+  Handle<ScopeInfo> scope_info(ScopeInfo::cast(context->extension()));
+
+  // Allocate and initialize a JSObject with all the members of the debugged
+  // module.
+  Handle<JSObject> module_scope =
+      isolate->factory()->NewJSObject(isolate->object_function());
+
+  // Fill all context locals.
+  if (!ScopeInfo::CopyContextLocalsToScopeObject(scope_info, context,
+                                                 module_scope)) {
+    return MaybeHandle<JSObject>();
+  }
+
+  return module_scope;
+}
+
+
+// Iterate over the actual scopes visible from a stack frame or from a closure.
+// The iteration proceeds from the innermost visible nested scope outwards.
+// All scopes are backed by an actual context except the local scope,
+// which is inserted "artificially" in the context chain.
+class ScopeIterator {
+ public:
+  enum ScopeType {
+    ScopeTypeGlobal = 0,
+    ScopeTypeLocal,
+    ScopeTypeWith,
+    ScopeTypeClosure,
+    ScopeTypeCatch,
+    ScopeTypeBlock,
+    ScopeTypeScript,
+    ScopeTypeModule
+  };
+
+  ScopeIterator(Isolate* isolate, JavaScriptFrame* frame,
+                int inlined_jsframe_index, bool ignore_nested_scopes = false)
+      : isolate_(isolate),
+        frame_(frame),
+        inlined_jsframe_index_(inlined_jsframe_index),
+        function_(frame->function()),
+        context_(Context::cast(frame->context())),
+        nested_scope_chain_(4),
+        seen_script_scope_(false),
+        failed_(false) {
+    // Catch the case when the debugger stops in an internal function.
+    Handle<SharedFunctionInfo> shared_info(function_->shared());
+    Handle<ScopeInfo> scope_info(shared_info->scope_info());
+    if (shared_info->script() == isolate->heap()->undefined_value()) {
+      while (context_->closure() == *function_) {
+        context_ = Handle<Context>(context_->previous(), isolate_);
+      }
+      return;
+    }
+
+    // Get the debug info (create it if it does not exist).
+    if (!isolate->debug()->EnsureDebugInfo(shared_info, function_)) {
+      // Return if ensuring debug info failed.
+      return;
+    }
+
+    // Currently it takes too much time to find nested scopes due to script
+    // parsing. Sometimes we want to run the ScopeIterator as fast as possible
+    // (for example, while collecting async call stacks on every
+    // addEventListener call), even if we drop some nested scopes.
+    // Later we may optimize getting the nested scopes (cache the result?)
+    // and include nested scopes into the "fast" iteration case as well.
+    if (!ignore_nested_scopes) {
+      Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared_info);
+
+      // Find the break point where execution has stopped.
+      BreakLocationIterator break_location_iterator(debug_info,
+                                                    ALL_BREAK_LOCATIONS);
+      // pc points to the instruction after the current one, possibly a break
+      // location as well. So the "- 1" to exclude it from the search.
+      break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
+
+      // Within the return sequence at the moment it is not possible to
+      // get a source position which is consistent with the current scope chain.
+      // Thus all nested with, catch and block contexts are skipped and we only
+      // provide the function scope.
+      ignore_nested_scopes = break_location_iterator.IsExit();
+    }
+
+    if (ignore_nested_scopes) {
+      if (scope_info->HasContext()) {
+        context_ = Handle<Context>(context_->declaration_context(), isolate_);
+      } else {
+        while (context_->closure() == *function_) {
+          context_ = Handle<Context>(context_->previous(), isolate_);
+        }
+      }
+      if (scope_info->scope_type() == FUNCTION_SCOPE ||
+          scope_info->scope_type() == ARROW_SCOPE) {
+        nested_scope_chain_.Add(scope_info);
+      }
+    } else {
+      // Reparse the code and analyze the scopes.
+      Handle<Script> script(Script::cast(shared_info->script()));
+      Scope* scope = NULL;
+
+      // Check whether we are in global, eval or function code.
+      Handle<ScopeInfo> scope_info(shared_info->scope_info());
+      if (scope_info->scope_type() != FUNCTION_SCOPE &&
+          scope_info->scope_type() != ARROW_SCOPE) {
+        // Global or eval code.
+        CompilationInfoWithZone info(script);
+        if (scope_info->scope_type() == SCRIPT_SCOPE) {
+          info.MarkAsGlobal();
+        } else {
+          DCHECK(scope_info->scope_type() == EVAL_SCOPE);
+          info.MarkAsEval();
+          info.SetContext(Handle<Context>(function_->context()));
+        }
+        if (Parser::Parse(&info) && Scope::Analyze(&info)) {
+          scope = info.function()->scope();
+        }
+        RetrieveScopeChain(scope, shared_info);
+      } else {
+        // Function code
+        CompilationInfoWithZone info(shared_info);
+        if (Parser::Parse(&info) && Scope::Analyze(&info)) {
+          scope = info.function()->scope();
+        }
+        RetrieveScopeChain(scope, shared_info);
+      }
+    }
+  }
+
+  ScopeIterator(Isolate* isolate, Handle<JSFunction> function)
+      : isolate_(isolate),
+        frame_(NULL),
+        inlined_jsframe_index_(0),
+        function_(function),
+        context_(function->context()),
+        seen_script_scope_(false),
+        failed_(false) {
+    if (function->IsBuiltin()) {
+      context_ = Handle<Context>();
+    }
+  }
+
+  // More scopes?
+  bool Done() {
+    DCHECK(!failed_);
+    return context_.is_null();
+  }
+
+  bool Failed() { return failed_; }
+
+  // Move to the next scope.
+  void Next() {
+    DCHECK(!failed_);
+    ScopeType scope_type = Type();
+    if (scope_type == ScopeTypeGlobal) {
+      // The global scope is always the last in the chain.
+      DCHECK(context_->IsNativeContext());
+      context_ = Handle<Context>();
+      return;
+    }
+    if (scope_type == ScopeTypeScript) seen_script_scope_ = true;
+    if (nested_scope_chain_.is_empty()) {
+      if (scope_type == ScopeTypeScript) {
+        if (context_->IsScriptContext()) {
+          context_ = Handle<Context>(context_->previous(), isolate_);
+        }
+        CHECK(context_->IsNativeContext());
+      } else {
+        context_ = Handle<Context>(context_->previous(), isolate_);
+      }
+    } else {
+      if (nested_scope_chain_.last()->HasContext()) {
+        DCHECK(context_->previous() != NULL);
+        context_ = Handle<Context>(context_->previous(), isolate_);
+      }
+      nested_scope_chain_.RemoveLast();
+    }
+  }
+
+  // Return the type of the current scope.
+  ScopeType Type() {
+    DCHECK(!failed_);
+    if (!nested_scope_chain_.is_empty()) {
+      Handle<ScopeInfo> scope_info = nested_scope_chain_.last();
+      switch (scope_info->scope_type()) {
+        case FUNCTION_SCOPE:
+        case ARROW_SCOPE:
+          DCHECK(context_->IsFunctionContext() || !scope_info->HasContext());
+          return ScopeTypeLocal;
+        case MODULE_SCOPE:
+          DCHECK(context_->IsModuleContext());
+          return ScopeTypeModule;
+        case SCRIPT_SCOPE:
+          DCHECK(context_->IsScriptContext() || context_->IsNativeContext());
+          return ScopeTypeScript;
+        case WITH_SCOPE:
+          DCHECK(context_->IsWithContext());
+          return ScopeTypeWith;
+        case CATCH_SCOPE:
+          DCHECK(context_->IsCatchContext());
+          return ScopeTypeCatch;
+        case BLOCK_SCOPE:
+          DCHECK(!scope_info->HasContext() || context_->IsBlockContext());
+          return ScopeTypeBlock;
+        case EVAL_SCOPE:
+          UNREACHABLE();
+      }
+    }
+    if (context_->IsNativeContext()) {
+      DCHECK(context_->global_object()->IsGlobalObject());
+      // If we are at the native context and have not yet seen script scope,
+      // fake it.
+      return seen_script_scope_ ? ScopeTypeGlobal : ScopeTypeScript;
+    }
+    if (context_->IsFunctionContext()) {
+      return ScopeTypeClosure;
+    }
+    if (context_->IsCatchContext()) {
+      return ScopeTypeCatch;
+    }
+    if (context_->IsBlockContext()) {
+      return ScopeTypeBlock;
+    }
+    if (context_->IsModuleContext()) {
+      return ScopeTypeModule;
+    }
+    if (context_->IsScriptContext()) {
+      return ScopeTypeScript;
+    }
+    DCHECK(context_->IsWithContext());
+    return ScopeTypeWith;
+  }
+
+  // Return the JavaScript object with the content of the current scope.
+  MaybeHandle<JSObject> ScopeObject() {
+    DCHECK(!failed_);
+    switch (Type()) {
+      case ScopeIterator::ScopeTypeGlobal:
+        return Handle<JSObject>(CurrentContext()->global_object());
+      case ScopeIterator::ScopeTypeScript:
+        return MaterializeScriptScope(
+            Handle<GlobalObject>(CurrentContext()->global_object()));
+      case ScopeIterator::ScopeTypeLocal:
+        // Materialize the content of the local scope into a JSObject.
+        DCHECK(nested_scope_chain_.length() == 1);
+        return MaterializeLocalScope(isolate_, frame_, inlined_jsframe_index_);
+      case ScopeIterator::ScopeTypeWith:
+        // Return the with object.
+        return Handle<JSObject>(JSObject::cast(CurrentContext()->extension()));
+      case ScopeIterator::ScopeTypeCatch:
+        return MaterializeCatchScope(isolate_, CurrentContext());
+      case ScopeIterator::ScopeTypeClosure:
+        // Materialize the content of the closure scope into a JSObject.
+        return MaterializeClosure(isolate_, CurrentContext());
+      case ScopeIterator::ScopeTypeBlock:
+        return MaterializeBlockScope(isolate_, CurrentContext());
+      case ScopeIterator::ScopeTypeModule:
+        return MaterializeModuleScope(isolate_, CurrentContext());
+    }
+    UNREACHABLE();
+    return Handle<JSObject>();
+  }
+
+  bool SetVariableValue(Handle<String> variable_name,
+                        Handle<Object> new_value) {
+    DCHECK(!failed_);
+    switch (Type()) {
+      case ScopeIterator::ScopeTypeGlobal:
+        break;
+      case ScopeIterator::ScopeTypeLocal:
+        return SetLocalVariableValue(isolate_, frame_, inlined_jsframe_index_,
+                                     variable_name, new_value);
+      case ScopeIterator::ScopeTypeWith:
+        break;
+      case ScopeIterator::ScopeTypeCatch:
+        return SetCatchVariableValue(isolate_, CurrentContext(), variable_name,
+                                     new_value);
+      case ScopeIterator::ScopeTypeClosure:
+        return SetClosureVariableValue(isolate_, CurrentContext(),
+                                       variable_name, new_value);
+      case ScopeIterator::ScopeTypeScript:
+        return SetScriptVariableValue(CurrentContext(), variable_name,
+                                      new_value);
+      case ScopeIterator::ScopeTypeBlock:
+        return SetBlockContextVariableValue(CurrentContext(), variable_name,
+                                            new_value);
+      case ScopeIterator::ScopeTypeModule:
+        // TODO(2399): should we implement it?
+        break;
+    }
+    return false;
+  }
+
+  Handle<ScopeInfo> CurrentScopeInfo() {
+    DCHECK(!failed_);
+    if (!nested_scope_chain_.is_empty()) {
+      return nested_scope_chain_.last();
+    } else if (context_->IsBlockContext()) {
+      return Handle<ScopeInfo>(ScopeInfo::cast(context_->extension()));
+    } else if (context_->IsFunctionContext()) {
+      return Handle<ScopeInfo>(context_->closure()->shared()->scope_info());
+    }
+    return Handle<ScopeInfo>::null();
+  }
+
+  // Return the context for this scope. For the local context there might not
+  // be an actual context.
+  Handle<Context> CurrentContext() {
+    DCHECK(!failed_);
+    if (Type() == ScopeTypeGlobal || Type() == ScopeTypeScript ||
+        nested_scope_chain_.is_empty()) {
+      return context_;
+    } else if (nested_scope_chain_.last()->HasContext()) {
+      return context_;
+    } else {
+      return Handle<Context>();
+    }
+  }
+
+#ifdef DEBUG
+  // Debug print of the content of the current scope.
+  void DebugPrint() {
+    OFStream os(stdout);
+    DCHECK(!failed_);
+    switch (Type()) {
+      case ScopeIterator::ScopeTypeGlobal:
+        os << "Global:\n";
+        CurrentContext()->Print(os);
+        break;
+
+      case ScopeIterator::ScopeTypeLocal: {
+        os << "Local:\n";
+        function_->shared()->scope_info()->Print();
+        if (!CurrentContext().is_null()) {
+          CurrentContext()->Print(os);
+          if (CurrentContext()->has_extension()) {
+            Handle<Object> extension(CurrentContext()->extension(), isolate_);
+            if (extension->IsJSContextExtensionObject()) {
+              extension->Print(os);
+            }
+          }
+        }
+        break;
+      }
+
+      case ScopeIterator::ScopeTypeWith:
+        os << "With:\n";
+        CurrentContext()->extension()->Print(os);
+        break;
+
+      case ScopeIterator::ScopeTypeCatch:
+        os << "Catch:\n";
+        CurrentContext()->extension()->Print(os);
+        CurrentContext()->get(Context::THROWN_OBJECT_INDEX)->Print(os);
+        break;
+
+      case ScopeIterator::ScopeTypeClosure:
+        os << "Closure:\n";
+        CurrentContext()->Print(os);
+        if (CurrentContext()->has_extension()) {
+          Handle<Object> extension(CurrentContext()->extension(), isolate_);
+          if (extension->IsJSContextExtensionObject()) {
+            extension->Print(os);
+          }
+        }
+        break;
+
+      case ScopeIterator::ScopeTypeScript:
+        os << "Script:\n";
+        CurrentContext()
+            ->global_object()
+            ->native_context()
+            ->script_context_table()
+            ->Print(os);
+        break;
+
+      default:
+        UNREACHABLE();
+    }
+    PrintF("\n");
+  }
+#endif
+
+ private:
+  Isolate* isolate_;
+  JavaScriptFrame* frame_;
+  int inlined_jsframe_index_;
+  Handle<JSFunction> function_;
+  Handle<Context> context_;
+  List<Handle<ScopeInfo> > nested_scope_chain_;
+  bool seen_script_scope_;
+  bool failed_;
+
+  void RetrieveScopeChain(Scope* scope,
+                          Handle<SharedFunctionInfo> shared_info) {
+    if (scope != NULL) {
+      int source_position = shared_info->code()->SourcePosition(frame_->pc());
+      scope->GetNestedScopeChain(&nested_scope_chain_, source_position);
+    } else {
+      // A failed reparse indicates that the preparser has diverged from the
+      // parser or that the preparse data given to the initial parse has been
+      // faulty. We fail in debug mode but in release mode we only provide the
+      // information we get from the context chain but nothing about
+      // completely stack allocated scopes or stack allocated locals.
+      // Or it could be due to stack overflow.
+      DCHECK(isolate_->has_pending_exception());
+      failed_ = true;
+    }
+  }
+
+  DISALLOW_IMPLICIT_CONSTRUCTORS(ScopeIterator);
+};
+
+
+RUNTIME_FUNCTION(Runtime_GetScopeCount) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+
+  // Get the frame where the debugging is performed.
+  StackFrame::Id id = UnwrapFrameId(wrapped_id);
+  JavaScriptFrameIterator it(isolate, id);
+  JavaScriptFrame* frame = it.frame();
+
+  // Count the visible scopes.
+  int n = 0;
+  for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) {
+    n++;
+  }
+
+  return Smi::FromInt(n);
+}
+
+
+// Returns the list of step-in positions (text offset) in a function of the
+// stack frame in a range from the current debug break position to the end
+// of the corresponding statement.
+RUNTIME_FUNCTION(Runtime_GetStepInPositions) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+
+  // Get the frame where the debugging is performed.
+  StackFrame::Id id = UnwrapFrameId(wrapped_id);
+  JavaScriptFrameIterator frame_it(isolate, id);
+  RUNTIME_ASSERT(!frame_it.done());
+
+  JavaScriptFrame* frame = frame_it.frame();
+
+  Handle<JSFunction> fun = Handle<JSFunction>(frame->function());
+  Handle<SharedFunctionInfo> shared = Handle<SharedFunctionInfo>(fun->shared());
+
+  if (!isolate->debug()->EnsureDebugInfo(shared, fun)) {
+    return isolate->heap()->undefined_value();
+  }
+
+  Handle<DebugInfo> debug_info = Debug::GetDebugInfo(shared);
+
+  int len = 0;
+  Handle<JSArray> array(isolate->factory()->NewJSArray(10));
+  // Find the break point where execution has stopped.
+  BreakLocationIterator break_location_iterator(debug_info,
+                                                ALL_BREAK_LOCATIONS);
+
+  break_location_iterator.FindBreakLocationFromAddress(frame->pc() - 1);
+  int current_statement_pos = break_location_iterator.statement_position();
+
+  while (!break_location_iterator.Done()) {
+    bool accept;
+    if (break_location_iterator.pc() > frame->pc()) {
+      accept = true;
+    } else {
+      StackFrame::Id break_frame_id = isolate->debug()->break_frame_id();
+      // The break point is near our pc. Could be a step-in possibility,
+      // that is currently taken by active debugger call.
+      if (break_frame_id == StackFrame::NO_ID) {
+        // We are not stepping.
+        accept = false;
+      } else {
+        JavaScriptFrameIterator additional_frame_it(isolate, break_frame_id);
+        // If our frame is a top frame and we are stepping, we can do step-in
+        // at this place.
+        accept = additional_frame_it.frame()->id() == id;
+      }
+    }
+    if (accept) {
+      if (break_location_iterator.IsStepInLocation(isolate)) {
+        Smi* position_value = Smi::FromInt(break_location_iterator.position());
+        RETURN_FAILURE_ON_EXCEPTION(
+            isolate, JSObject::SetElement(
+                         array, len, Handle<Object>(position_value, isolate),
+                         NONE, SLOPPY));
+        len++;
+      }
+    }
+    // Advance iterator.
+    break_location_iterator.Next();
+    if (current_statement_pos != break_location_iterator.statement_position()) {
+      break;
+    }
+  }
+  return *array;
+}
+
+
+static const int kScopeDetailsTypeIndex = 0;
+static const int kScopeDetailsObjectIndex = 1;
+static const int kScopeDetailsSize = 2;
+
+
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeScopeDetails(
+    Isolate* isolate, ScopeIterator* it) {
+  // Calculate the size of the result.
+  int details_size = kScopeDetailsSize;
+  Handle<FixedArray> details = isolate->factory()->NewFixedArray(details_size);
+
+  // Fill in scope details.
+  details->set(kScopeDetailsTypeIndex, Smi::FromInt(it->Type()));
+  Handle<JSObject> scope_object;
+  ASSIGN_RETURN_ON_EXCEPTION(isolate, scope_object, it->ScopeObject(),
+                             JSObject);
+  details->set(kScopeDetailsObjectIndex, *scope_object);
+
+  return isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+// Return an array with scope details
+// args[0]: number: break id
+// args[1]: number: frame index
+// args[2]: number: inlined frame index
+// args[3]: number: scope index
+//
+// The array returned contains the following information:
+// 0: Scope type
+// 1: Scope object
+RUNTIME_FUNCTION(Runtime_GetScopeDetails) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+  CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+  CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
+
+  // Get the frame where the debugging is performed.
+  StackFrame::Id id = UnwrapFrameId(wrapped_id);
+  JavaScriptFrameIterator frame_it(isolate, id);
+  JavaScriptFrame* frame = frame_it.frame();
+
+  // Find the requested scope.
+  int n = 0;
+  ScopeIterator it(isolate, frame, inlined_jsframe_index);
+  for (; !it.Done() && n < index; it.Next()) {
+    n++;
+  }
+  if (it.Done()) {
+    return isolate->heap()->undefined_value();
+  }
+  Handle<JSObject> details;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, details,
+                                     MaterializeScopeDetails(isolate, &it));
+  return *details;
+}
+
+
+// Return an array of scope details
+// args[0]: number: break id
+// args[1]: number: frame index
+// args[2]: number: inlined frame index
+// args[3]: boolean: ignore nested scopes
+//
+// The array returned contains arrays with the following information:
+// 0: Scope type
+// 1: Scope object
+RUNTIME_FUNCTION(Runtime_GetAllScopesDetails) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3 || args.length() == 4);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+  CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+
+  bool ignore_nested_scopes = false;
+  if (args.length() == 4) {
+    CONVERT_BOOLEAN_ARG_CHECKED(flag, 3);
+    ignore_nested_scopes = flag;
+  }
+
+  // Get the frame where the debugging is performed.
+  StackFrame::Id id = UnwrapFrameId(wrapped_id);
+  JavaScriptFrameIterator frame_it(isolate, id);
+  JavaScriptFrame* frame = frame_it.frame();
+
+  List<Handle<JSObject> > result(4);
+  ScopeIterator it(isolate, frame, inlined_jsframe_index, ignore_nested_scopes);
+  for (; !it.Done(); it.Next()) {
+    Handle<JSObject> details;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, details,
+                                       MaterializeScopeDetails(isolate, &it));
+    result.Add(details);
+  }
+
+  Handle<FixedArray> array = isolate->factory()->NewFixedArray(result.length());
+  for (int i = 0; i < result.length(); ++i) {
+    array->set(i, *result[i]);
+  }
+  return *isolate->factory()->NewJSArrayWithElements(array);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFunctionScopeCount) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  // Check arguments.
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+
+  // Count the visible scopes.
+  int n = 0;
+  for (ScopeIterator it(isolate, fun); !it.Done(); it.Next()) {
+    n++;
+  }
+
+  return Smi::FromInt(n);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFunctionScopeDetails) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  // Check arguments.
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+  CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+
+  // Find the requested scope.
+  int n = 0;
+  ScopeIterator it(isolate, fun);
+  for (; !it.Done() && n < index; it.Next()) {
+    n++;
+  }
+  if (it.Done()) {
+    return isolate->heap()->undefined_value();
+  }
+
+  Handle<JSObject> details;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, details,
+                                     MaterializeScopeDetails(isolate, &it));
+  return *details;
+}
+
+
+static bool SetScopeVariableValue(ScopeIterator* it, int index,
+                                  Handle<String> variable_name,
+                                  Handle<Object> new_value) {
+  for (int n = 0; !it->Done() && n < index; it->Next()) {
+    n++;
+  }
+  if (it->Done()) {
+    return false;
+  }
+  return it->SetVariableValue(variable_name, new_value);
+}
+
+
+// Change variable value in closure or local scope
+// args[0]: number or JsFunction: break id or function
+// args[1]: number: frame index (when arg[0] is break id)
+// args[2]: number: inlined frame index (when arg[0] is break id)
+// args[3]: number: scope index
+// args[4]: string: variable name
+// args[5]: object: new value
+//
+// Return true if success and false otherwise
+RUNTIME_FUNCTION(Runtime_SetScopeVariableValue) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 6);
+
+  // Check arguments.
+  CONVERT_NUMBER_CHECKED(int, index, Int32, args[3]);
+  CONVERT_ARG_HANDLE_CHECKED(String, variable_name, 4);
+  CONVERT_ARG_HANDLE_CHECKED(Object, new_value, 5);
+
+  bool res;
+  if (args[0]->IsNumber()) {
+    CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+    RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+    CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+    CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+
+    // Get the frame where the debugging is performed.
+    StackFrame::Id id = UnwrapFrameId(wrapped_id);
+    JavaScriptFrameIterator frame_it(isolate, id);
+    JavaScriptFrame* frame = frame_it.frame();
+
+    ScopeIterator it(isolate, frame, inlined_jsframe_index);
+    res = SetScopeVariableValue(&it, index, variable_name, new_value);
+  } else {
+    CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+    ScopeIterator it(isolate, fun);
+    res = SetScopeVariableValue(&it, index, variable_name, new_value);
+  }
+
+  return isolate->heap()->ToBoolean(res);
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPrintScopes) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+
+#ifdef DEBUG
+  // Print the scopes for the top frame.
+  StackFrameLocator locator(isolate);
+  JavaScriptFrame* frame = locator.FindJavaScriptFrame(0);
+  for (ScopeIterator it(isolate, frame, 0); !it.Done(); it.Next()) {
+    it.DebugPrint();
+  }
+#endif
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetThreadCount) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  // Count all archived V8 threads.
+  int n = 0;
+  for (ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse();
+       thread != NULL; thread = thread->Next()) {
+    n++;
+  }
+
+  // Total number of threads is current thread and archived threads.
+  return Smi::FromInt(n + 1);
+}
+
+
+static const int kThreadDetailsCurrentThreadIndex = 0;
+static const int kThreadDetailsThreadIdIndex = 1;
+static const int kThreadDetailsSize = 2;
+
+// Return an array with thread details
+// args[0]: number: break id
+// args[1]: number: thread index
+//
+// The array returned contains the following information:
+// 0: Is current thread?
+// 1: Thread id
+RUNTIME_FUNCTION(Runtime_GetThreadDetails) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+
+  // Allocate array for result.
+  Handle<FixedArray> details =
+      isolate->factory()->NewFixedArray(kThreadDetailsSize);
+
+  // Thread index 0 is current thread.
+  if (index == 0) {
+    // Fill the details.
+    details->set(kThreadDetailsCurrentThreadIndex,
+                 isolate->heap()->true_value());
+    details->set(kThreadDetailsThreadIdIndex,
+                 Smi::FromInt(ThreadId::Current().ToInteger()));
+  } else {
+    // Find the thread with the requested index.
+    int n = 1;
+    ThreadState* thread = isolate->thread_manager()->FirstThreadStateInUse();
+    while (index != n && thread != NULL) {
+      thread = thread->Next();
+      n++;
+    }
+    if (thread == NULL) {
+      return isolate->heap()->undefined_value();
+    }
+
+    // Fill the details.
+    details->set(kThreadDetailsCurrentThreadIndex,
+                 isolate->heap()->false_value());
+    details->set(kThreadDetailsThreadIdIndex,
+                 Smi::FromInt(thread->id().ToInteger()));
+  }
+
+  // Convert to JS array and return.
+  return *isolate->factory()->NewJSArrayWithElements(details);
+}
+
+
+// Sets the disable break state
+// args[0]: disable break state
+RUNTIME_FUNCTION(Runtime_SetDisableBreak) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 0);
+  isolate->debug()->set_disable_break(disable_break);
+  return isolate->heap()->undefined_value();
+}
+
+
+static bool IsPositionAlignmentCodeCorrect(int alignment) {
+  return alignment == STATEMENT_ALIGNED || alignment == BREAK_POSITION_ALIGNED;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetBreakLocations) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+  CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[1]);
+
+  if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
+    return isolate->ThrowIllegalOperation();
+  }
+  BreakPositionAlignment alignment =
+      static_cast<BreakPositionAlignment>(statement_aligned_code);
+
+  Handle<SharedFunctionInfo> shared(fun->shared());
+  // Find the number of break points
+  Handle<Object> break_locations =
+      Debug::GetSourceBreakLocations(shared, alignment);
+  if (break_locations->IsUndefined()) return isolate->heap()->undefined_value();
+  // Return array as JS array
+  return *isolate->factory()->NewJSArrayWithElements(
+      Handle<FixedArray>::cast(break_locations));
+}
+
+
+// Set a break point in a function.
+// args[0]: function
+// args[1]: number: break source position (within the function source)
+// args[2]: number: break point object
+RUNTIME_FUNCTION(Runtime_SetFunctionBreakPoint) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+  RUNTIME_ASSERT(source_position >= function->shared()->start_position() &&
+                 source_position <= function->shared()->end_position());
+  CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 2);
+
+  // Set break point.
+  RUNTIME_ASSERT(isolate->debug()->SetBreakPoint(
+      function, break_point_object_arg, &source_position));
+
+  return Smi::FromInt(source_position);
+}
+
+
+// Changes the state of a break point in a script and returns source position
+// where break point was set. NOTE: Regarding performance see the NOTE for
+// GetScriptFromScriptData.
+// args[0]: script to set break point in
+// args[1]: number: break source position (within the script source)
+// args[2]: number, breakpoint position alignment
+// args[3]: number: break point object
+RUNTIME_FUNCTION(Runtime_SetScriptBreakPoint) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(JSValue, wrapper, 0);
+  CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+  RUNTIME_ASSERT(source_position >= 0);
+  CONVERT_NUMBER_CHECKED(int32_t, statement_aligned_code, Int32, args[2]);
+  CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 3);
+
+  if (!IsPositionAlignmentCodeCorrect(statement_aligned_code)) {
+    return isolate->ThrowIllegalOperation();
+  }
+  BreakPositionAlignment alignment =
+      static_cast<BreakPositionAlignment>(statement_aligned_code);
+
+  // Get the script from the script wrapper.
+  RUNTIME_ASSERT(wrapper->value()->IsScript());
+  Handle<Script> script(Script::cast(wrapper->value()));
+
+  // Set break point.
+  if (!isolate->debug()->SetBreakPointForScript(script, break_point_object_arg,
+                                                &source_position, alignment)) {
+    return isolate->heap()->undefined_value();
+  }
+
+  return Smi::FromInt(source_position);
+}
+
+
+// Clear a break point
+// args[0]: number: break point object
+RUNTIME_FUNCTION(Runtime_ClearBreakPoint) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, break_point_object_arg, 0);
+
+  // Clear break point.
+  isolate->debug()->ClearBreakPoint(break_point_object_arg);
+
+  return isolate->heap()->undefined_value();
+}
+
+
+// Change the state of break on exceptions.
+// args[0]: Enum value indicating whether to affect caught/uncaught exceptions.
+// args[1]: Boolean indicating on/off.
+RUNTIME_FUNCTION(Runtime_ChangeBreakOnException) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
+  CONVERT_BOOLEAN_ARG_CHECKED(enable, 1);
+
+  // If the number doesn't match an enum value, the ChangeBreakOnException
+  // function will default to affecting caught exceptions.
+  ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
+  // Update break point state.
+  isolate->debug()->ChangeBreakOnException(type, enable);
+  return isolate->heap()->undefined_value();
+}
+
+
+// Returns the state of break on exceptions
+// args[0]: boolean indicating uncaught exceptions
+RUNTIME_FUNCTION(Runtime_IsBreakOnException) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_NUMBER_CHECKED(uint32_t, type_arg, Uint32, args[0]);
+
+  ExceptionBreakType type = static_cast<ExceptionBreakType>(type_arg);
+  bool result = isolate->debug()->IsBreakOnException(type);
+  return Smi::FromInt(result);
+}
+
+
+// Prepare for stepping
+// args[0]: break id for checking execution state
+// args[1]: step action from the enumeration StepAction
+// args[2]: number of times to perform the step, for step out it is the number
+//          of frames to step down.
+RUNTIME_FUNCTION(Runtime_PrepareStep) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  if (!args[1]->IsNumber() || !args[2]->IsNumber()) {
+    return isolate->Throw(isolate->heap()->illegal_argument_string());
+  }
+
+  CONVERT_NUMBER_CHECKED(int, wrapped_frame_id, Int32, args[3]);
+
+  StackFrame::Id frame_id;
+  if (wrapped_frame_id == 0) {
+    frame_id = StackFrame::NO_ID;
+  } else {
+    frame_id = UnwrapFrameId(wrapped_frame_id);
+  }
+
+  // Get the step action and check validity.
+  StepAction step_action = static_cast<StepAction>(NumberToInt32(args[1]));
+  if (step_action != StepIn && step_action != StepNext &&
+      step_action != StepOut && step_action != StepInMin &&
+      step_action != StepMin && step_action != StepFrame) {
+    return isolate->Throw(isolate->heap()->illegal_argument_string());
+  }
+
+  if (frame_id != StackFrame::NO_ID && step_action != StepNext &&
+      step_action != StepMin && step_action != StepOut) {
+    return isolate->ThrowIllegalOperation();
+  }
+
+  // Get the number of steps.
+  int step_count = NumberToInt32(args[2]);
+  if (step_count < 1) {
+    return isolate->Throw(isolate->heap()->illegal_argument_string());
+  }
+
+  // Clear all current stepping setup.
+  isolate->debug()->ClearStepping();
+
+  // Prepare step.
+  isolate->debug()->PrepareStep(static_cast<StepAction>(step_action),
+                                step_count, frame_id);
+  return isolate->heap()->undefined_value();
+}
+
+
+// Clear all stepping set by PrepareStep.
+RUNTIME_FUNCTION(Runtime_ClearStepping) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  isolate->debug()->ClearStepping();
+  return isolate->heap()->undefined_value();
+}
+
+
+// Helper function to find or create the arguments object for
+// Runtime_DebugEvaluate.
+MUST_USE_RESULT static MaybeHandle<JSObject> MaterializeArgumentsObject(
+    Isolate* isolate, Handle<JSObject> target, Handle<JSFunction> function) {
+  // Do not materialize the arguments object for eval or top-level code.
+  // Skip if "arguments" is already taken.
+  if (!function->shared()->is_function()) return target;
+  Maybe<bool> maybe = JSReceiver::HasOwnProperty(
+      target, isolate->factory()->arguments_string());
+  if (!maybe.has_value) return MaybeHandle<JSObject>();
+  if (maybe.value) return target;
+
+  // FunctionGetArguments can't throw an exception.
+  Handle<JSObject> arguments =
+      Handle<JSObject>::cast(Accessors::FunctionGetArguments(function));
+  Handle<String> arguments_str = isolate->factory()->arguments_string();
+  RETURN_ON_EXCEPTION(isolate, Runtime::DefineObjectProperty(
+                                   target, arguments_str, arguments, NONE),
+                      JSObject);
+  return target;
+}
+
+
+// Compile and evaluate source for the given context.
+static MaybeHandle<Object> DebugEvaluate(Isolate* isolate,
+                                         Handle<SharedFunctionInfo> outer_info,
+                                         Handle<Context> context,
+                                         Handle<Object> context_extension,
+                                         Handle<Object> receiver,
+                                         Handle<String> source) {
+  if (context_extension->IsJSObject()) {
+    Handle<JSObject> extension = Handle<JSObject>::cast(context_extension);
+    Handle<JSFunction> closure(context->closure(), isolate);
+    context = isolate->factory()->NewWithContext(closure, context, extension);
+  }
+
+  Handle<JSFunction> eval_fun;
+  ASSIGN_RETURN_ON_EXCEPTION(isolate, eval_fun,
+                             Compiler::GetFunctionFromEval(
+                                 source, outer_info, context, SLOPPY,
+                                 NO_PARSE_RESTRICTION, RelocInfo::kNoPosition),
+                             Object);
+
+  Handle<Object> result;
+  ASSIGN_RETURN_ON_EXCEPTION(
+      isolate, result, Execution::Call(isolate, eval_fun, receiver, 0, NULL),
+      Object);
+
+  // Skip the global proxy as it has no properties and always delegates to the
+  // real global object.
+  if (result->IsJSGlobalProxy()) {
+    PrototypeIterator iter(isolate, result);
+    // TODO(verwaest): This will crash when the global proxy is detached.
+    result = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+  }
+
+  // Clear the oneshot breakpoints so that the debugger does not step further.
+  isolate->debug()->ClearStepping();
+  return result;
+}
+
+
+static Handle<JSObject> NewJSObjectWithNullProto(Isolate* isolate) {
+  Handle<JSObject> result =
+      isolate->factory()->NewJSObject(isolate->object_function());
+  Handle<Map> new_map =
+      Map::Copy(Handle<Map>(result->map()), "ObjectWithNullProto");
+  new_map->SetPrototype(isolate->factory()->null_value());
+  JSObject::MigrateToMap(result, new_map);
+  return result;
+}
+
+
+// Evaluate a piece of JavaScript in the context of a stack frame for
+// debugging.  Things that need special attention are:
+// - Parameters and stack-allocated locals need to be materialized.  Altered
+//   values need to be written back to the stack afterwards.
+// - The arguments object needs to materialized.
+RUNTIME_FUNCTION(Runtime_DebugEvaluate) {
+  HandleScope scope(isolate);
+
+  // Check the execution state and decode arguments frame and source to be
+  // evaluated.
+  DCHECK(args.length() == 6);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_SMI_ARG_CHECKED(wrapped_id, 1);
+  CONVERT_NUMBER_CHECKED(int, inlined_jsframe_index, Int32, args[2]);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 3);
+  CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 4);
+  CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 5);
+
+  // Handle the processing of break.
+  DisableBreak disable_break_scope(isolate->debug(), disable_break);
+
+  // Get the frame where the debugging is performed.
+  StackFrame::Id id = UnwrapFrameId(wrapped_id);
+  JavaScriptFrameIterator it(isolate, id);
+  JavaScriptFrame* frame = it.frame();
+  FrameInspector frame_inspector(frame, inlined_jsframe_index, isolate);
+  Handle<JSFunction> function(JSFunction::cast(frame_inspector.GetFunction()));
+  Handle<SharedFunctionInfo> outer_info(function->shared());
+
+  // Traverse the saved contexts chain to find the active context for the
+  // selected frame.
+  SaveContext* save = FindSavedContextForFrame(isolate, frame);
+
+  SaveContext savex(isolate);
+  isolate->set_context(*(save->context()));
+
+  // Materialize stack locals and the arguments object.
+  Handle<JSObject> materialized = NewJSObjectWithNullProto(isolate);
+
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, materialized,
+      MaterializeStackLocalsWithFrameInspector(isolate, materialized, function,
+                                               &frame_inspector));
+
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, materialized,
+      MaterializeArgumentsObject(isolate, materialized, function));
+
+  // At this point, the lookup chain may look like this:
+  // [inner context] -> [function stack]+[function context] -> [outer context]
+  // The function stack is not an actual context, it complements the function
+  // context. In order to have the same lookup chain when debug-evaluating,
+  // we materialize the stack and insert it into the context chain as a
+  // with-context before the function context.
+  // [inner context] -> [with context] -> [function context] -> [outer context]
+  // Ordering the with-context before the function context forces a dynamic
+  // lookup instead of a static lookup that could fail as the scope info is
+  // outdated and may expect variables to still be stack-allocated.
+  // Afterwards, we write changes to the with-context back to the stack
+  // and remove it from the context chain.
+  // This could cause lookup failures if debug-evaluate creates a closure that
+  // uses this temporary context chain.
+
+  Handle<Context> eval_context(Context::cast(frame_inspector.GetContext()));
+  DCHECK(!eval_context.is_null());
+  Handle<Context> function_context = eval_context;
+  Handle<Context> outer_context(function->context(), isolate);
+  Handle<Context> inner_context;
+  // We iterate to find the function's context. If the function has no
+  // context-allocated variables, we iterate until we hit the outer context.
+  while (!function_context->IsFunctionContext() &&
+         !function_context->IsScriptContext() &&
+         !function_context.is_identical_to(outer_context)) {
+    inner_context = function_context;
+    function_context = Handle<Context>(function_context->previous(), isolate);
+  }
+
+  Handle<Context> materialized_context = isolate->factory()->NewWithContext(
+      function, function_context, materialized);
+
+  if (inner_context.is_null()) {
+    // No inner context. The with-context is now inner-most.
+    eval_context = materialized_context;
+  } else {
+    inner_context->set_previous(*materialized_context);
+  }
+
+  Handle<Object> receiver(frame->receiver(), isolate);
+  MaybeHandle<Object> maybe_result = DebugEvaluate(
+      isolate, outer_info, eval_context, context_extension, receiver, source);
+
+  // Remove with-context if it was inserted in between.
+  if (!inner_context.is_null()) inner_context->set_previous(*function_context);
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result);
+
+  // Write back potential changes to materialized stack locals to the stack.
+  UpdateStackLocalsFromMaterializedObject(isolate, materialized, function,
+                                          frame, inlined_jsframe_index);
+
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugEvaluateGlobal) {
+  HandleScope scope(isolate);
+
+  // Check the execution state and decode arguments frame and source to be
+  // evaluated.
+  DCHECK(args.length() == 4);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
+  CONVERT_BOOLEAN_ARG_CHECKED(disable_break, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, context_extension, 3);
+
+  // Handle the processing of break.
+  DisableBreak disable_break_scope(isolate->debug(), disable_break);
+
+  // Enter the top context from before the debugger was invoked.
+  SaveContext save(isolate);
+  SaveContext* top = &save;
+  while (top != NULL && *top->context() == *isolate->debug()->debug_context()) {
+    top = top->prev();
+  }
+  if (top != NULL) {
+    isolate->set_context(*top->context());
+  }
+
+  // Get the native context now set to the top context from before the
+  // debugger was invoked.
+  Handle<Context> context = isolate->native_context();
+  Handle<JSObject> receiver(context->global_proxy());
+  Handle<SharedFunctionInfo> outer_info(context->closure()->shared(), isolate);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, DebugEvaluate(isolate, outer_info, context,
+                                     context_extension, receiver, source));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugGetLoadedScripts) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+
+  // Fill the script objects.
+  Handle<FixedArray> instances = isolate->debug()->GetLoadedScripts();
+
+  // Convert the script objects to proper JS objects.
+  for (int i = 0; i < instances->length(); i++) {
+    Handle<Script> script = Handle<Script>(Script::cast(instances->get(i)));
+    // Get the script wrapper in a local handle before calling GetScriptWrapper,
+    // because using
+    //   instances->set(i, *GetScriptWrapper(script))
+    // is unsafe as GetScriptWrapper might call GC and the C++ compiler might
+    // already have dereferenced the instances handle.
+    Handle<JSObject> wrapper = Script::GetWrapper(script);
+    instances->set(i, *wrapper);
+  }
+
+  // Return result as a JS array.
+  Handle<JSObject> result =
+      isolate->factory()->NewJSObject(isolate->array_function());
+  JSArray::SetContent(Handle<JSArray>::cast(result), instances);
+  return *result;
+}
+
+
+// Helper function used by Runtime_DebugReferencedBy below.
+static int DebugReferencedBy(HeapIterator* iterator, JSObject* target,
+                             Object* instance_filter, int max_references,
+                             FixedArray* instances, int instances_size,
+                             JSFunction* arguments_function) {
+  Isolate* isolate = target->GetIsolate();
+  SealHandleScope shs(isolate);
+  DisallowHeapAllocation no_allocation;
+
+  // Iterate the heap.
+  int count = 0;
+  JSObject* last = NULL;
+  HeapObject* heap_obj = NULL;
+  while (((heap_obj = iterator->next()) != NULL) &&
+         (max_references == 0 || count < max_references)) {
+    // Only look at all JSObjects.
+    if (heap_obj->IsJSObject()) {
+      // Skip context extension objects and argument arrays as these are
+      // checked in the context of functions using them.
+      JSObject* obj = JSObject::cast(heap_obj);
+      if (obj->IsJSContextExtensionObject() ||
+          obj->map()->constructor() == arguments_function) {
+        continue;
+      }
+
+      // Check if the JS object has a reference to the object looked for.
+      if (obj->ReferencesObject(target)) {
+        // Check instance filter if supplied. This is normally used to avoid
+        // references from mirror objects (see Runtime_IsInPrototypeChain).
+        if (!instance_filter->IsUndefined()) {
+          for (PrototypeIterator iter(isolate, obj); !iter.IsAtEnd();
+               iter.Advance()) {
+            if (iter.GetCurrent() == instance_filter) {
+              obj = NULL;  // Don't add this object.
+              break;
+            }
+          }
+        }
+
+        if (obj != NULL) {
+          // Valid reference found add to instance array if supplied an update
+          // count.
+          if (instances != NULL && count < instances_size) {
+            instances->set(count, obj);
+          }
+          last = obj;
+          count++;
+        }
+      }
+    }
+  }
+
+  // Check for circular reference only. This can happen when the object is only
+  // referenced from mirrors and has a circular reference in which case the
+  // object is not really alive and would have been garbage collected if not
+  // referenced from the mirror.
+  if (count == 1 && last == target) {
+    count = 0;
+  }
+
+  // Return the number of referencing objects found.
+  return count;
+}
+
+
+// Scan the heap for objects with direct references to an object
+// args[0]: the object to find references to
+// args[1]: constructor function for instances to exclude (Mirror)
+// args[2]: the the maximum number of objects to return
+RUNTIME_FUNCTION(Runtime_DebugReferencedBy) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+
+  // Check parameters.
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, target, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, instance_filter, 1);
+  RUNTIME_ASSERT(instance_filter->IsUndefined() ||
+                 instance_filter->IsJSObject());
+  CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[2]);
+  RUNTIME_ASSERT(max_references >= 0);
+
+
+  // Get the constructor function for context extension and arguments array.
+  Handle<JSFunction> arguments_function(
+      JSFunction::cast(isolate->sloppy_arguments_map()->constructor()));
+
+  // Get the number of referencing objects.
+  int count;
+  // First perform a full GC in order to avoid dead objects and to make the heap
+  // iterable.
+  Heap* heap = isolate->heap();
+  heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
+  {
+    HeapIterator heap_iterator(heap);
+    count = DebugReferencedBy(&heap_iterator, *target, *instance_filter,
+                              max_references, NULL, 0, *arguments_function);
+  }
+
+  // Allocate an array to hold the result.
+  Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
+
+  // Fill the referencing objects.
+  {
+    HeapIterator heap_iterator(heap);
+    count = DebugReferencedBy(&heap_iterator, *target, *instance_filter,
+                              max_references, *instances, count,
+                              *arguments_function);
+  }
+
+  // Return result as JS array.
+  Handle<JSFunction> constructor = isolate->array_function();
+
+  Handle<JSObject> result = isolate->factory()->NewJSObject(constructor);
+  JSArray::SetContent(Handle<JSArray>::cast(result), instances);
+  return *result;
+}
+
+
+// Helper function used by Runtime_DebugConstructedBy below.
+static int DebugConstructedBy(HeapIterator* iterator, JSFunction* constructor,
+                              int max_references, FixedArray* instances,
+                              int instances_size) {
+  DisallowHeapAllocation no_allocation;
+
+  // Iterate the heap.
+  int count = 0;
+  HeapObject* heap_obj = NULL;
+  while (((heap_obj = iterator->next()) != NULL) &&
+         (max_references == 0 || count < max_references)) {
+    // Only look at all JSObjects.
+    if (heap_obj->IsJSObject()) {
+      JSObject* obj = JSObject::cast(heap_obj);
+      if (obj->map()->constructor() == constructor) {
+        // Valid reference found add to instance array if supplied an update
+        // count.
+        if (instances != NULL && count < instances_size) {
+          instances->set(count, obj);
+        }
+        count++;
+      }
+    }
+  }
+
+  // Return the number of referencing objects found.
+  return count;
+}
+
+
+// Scan the heap for objects constructed by a specific function.
+// args[0]: the constructor to find instances of
+// args[1]: the the maximum number of objects to return
+RUNTIME_FUNCTION(Runtime_DebugConstructedBy) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+
+  // Check parameters.
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, constructor, 0);
+  CONVERT_NUMBER_CHECKED(int32_t, max_references, Int32, args[1]);
+  RUNTIME_ASSERT(max_references >= 0);
+
+  // Get the number of referencing objects.
+  int count;
+  // First perform a full GC in order to avoid dead objects and to make the heap
+  // iterable.
+  Heap* heap = isolate->heap();
+  heap->CollectAllGarbage(Heap::kMakeHeapIterableMask, "%DebugConstructedBy");
+  {
+    HeapIterator heap_iterator(heap);
+    count = DebugConstructedBy(&heap_iterator, *constructor, max_references,
+                               NULL, 0);
+  }
+
+  // Allocate an array to hold the result.
+  Handle<FixedArray> instances = isolate->factory()->NewFixedArray(count);
+
+  // Fill the referencing objects.
+  {
+    HeapIterator heap_iterator2(heap);
+    count = DebugConstructedBy(&heap_iterator2, *constructor, max_references,
+                               *instances, count);
+  }
+
+  // Return result as JS array.
+  Handle<JSFunction> array_function = isolate->array_function();
+  Handle<JSObject> result = isolate->factory()->NewJSObject(array_function);
+  JSArray::SetContent(Handle<JSArray>::cast(result), instances);
+  return *result;
+}
+
+
+// Find the effective prototype object as returned by __proto__.
+// args[0]: the object to find the prototype for.
+RUNTIME_FUNCTION(Runtime_DebugGetPrototype) {
+  HandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  return *Object::GetPrototypeSkipHiddenPrototypes(isolate, obj);
+}
+
+
+// Patches script source (should be called upon BeforeCompile event).
+RUNTIME_FUNCTION(Runtime_DebugSetScriptSource) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSValue, script_wrapper, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
+
+  RUNTIME_ASSERT(script_wrapper->value()->IsScript());
+  Handle<Script> script(Script::cast(script_wrapper->value()));
+
+  int compilation_state = script->compilation_state();
+  RUNTIME_ASSERT(compilation_state == Script::COMPILATION_STATE_INITIAL);
+  script->set_source(*source);
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugDisassembleFunction) {
+  HandleScope scope(isolate);
+#ifdef DEBUG
+  DCHECK(args.length() == 1);
+  // Get the function and make sure it is compiled.
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
+  if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
+    return isolate->heap()->exception();
+  }
+  OFStream os(stdout);
+  func->code()->Print(os);
+  os << std::endl;
+#endif  // DEBUG
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugDisassembleConstructor) {
+  HandleScope scope(isolate);
+#ifdef DEBUG
+  DCHECK(args.length() == 1);
+  // Get the function and make sure it is compiled.
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, func, 0);
+  if (!Compiler::EnsureCompiled(func, KEEP_EXCEPTION)) {
+    return isolate->heap()->exception();
+  }
+  OFStream os(stdout);
+  func->shared()->construct_stub()->Print(os);
+  os << std::endl;
+#endif  // DEBUG
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetInferredName) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return f->shared()->inferred_name();
+}
+
+
+// A testing entry. Returns statement position which is the closest to
+// source_position.
+RUNTIME_FUNCTION(Runtime_GetFunctionCodePositionFromSource) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  CONVERT_NUMBER_CHECKED(int32_t, source_position, Int32, args[1]);
+
+  Handle<Code> code(function->code(), isolate);
+
+  if (code->kind() != Code::FUNCTION &&
+      code->kind() != Code::OPTIMIZED_FUNCTION) {
+    return isolate->heap()->undefined_value();
+  }
+
+  RelocIterator it(*code, RelocInfo::ModeMask(RelocInfo::STATEMENT_POSITION));
+  int closest_pc = 0;
+  int distance = kMaxInt;
+  while (!it.done()) {
+    int statement_position = static_cast<int>(it.rinfo()->data());
+    // Check if this break point is closer that what was previously found.
+    if (source_position <= statement_position &&
+        statement_position - source_position < distance) {
+      closest_pc =
+          static_cast<int>(it.rinfo()->pc() - code->instruction_start());
+      distance = statement_position - source_position;
+      // Check whether we can't get any closer.
+      if (distance == 0) break;
+    }
+    it.next();
+  }
+
+  return Smi::FromInt(closest_pc);
+}
+
+
+// Calls specified function with or without entering the debugger.
+// This is used in unit tests to run code as if debugger is entered or simply
+// to have a stack with C++ frame in the middle.
+RUNTIME_FUNCTION(Runtime_ExecuteInDebugContext) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  CONVERT_BOOLEAN_ARG_CHECKED(without_debugger, 1);
+
+  MaybeHandle<Object> maybe_result;
+  if (without_debugger) {
+    maybe_result = Execution::Call(isolate, function,
+                                   handle(function->global_proxy()), 0, NULL);
+  } else {
+    DebugScope debug_scope(isolate->debug());
+    maybe_result = Execution::Call(isolate, function,
+                                   handle(function->global_proxy()), 0, NULL);
+  }
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, maybe_result);
+  return *result;
+}
+
+
+// Performs a GC.
+// Presently, it only does a full GC.
+RUNTIME_FUNCTION(Runtime_CollectGarbage) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  isolate->heap()->CollectAllGarbage(Heap::kNoGCFlags, "%CollectGarbage");
+  return isolate->heap()->undefined_value();
+}
+
+
+// Gets the current heap usage.
+RUNTIME_FUNCTION(Runtime_GetHeapUsage) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  int usage = static_cast<int>(isolate->heap()->SizeOfObjects());
+  if (!Smi::IsValid(usage)) {
+    return *isolate->factory()->NewNumberFromInt(usage);
+  }
+  return Smi::FromInt(usage);
+}
+
+
+// Finds the script object from the script data. NOTE: This operation uses
+// heap traversal to find the function generated for the source position
+// for the requested break point. For lazily compiled functions several heap
+// traversals might be required rendering this operation as a rather slow
+// operation. However for setting break points which is normally done through
+// some kind of user interaction the performance is not crucial.
+RUNTIME_FUNCTION(Runtime_GetScript) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, script_name, 0);
+
+  Handle<Script> found;
+  Heap* heap = isolate->heap();
+  {
+    HeapIterator iterator(heap);
+    HeapObject* obj = NULL;
+    while ((obj = iterator.next()) != NULL) {
+      if (!obj->IsScript()) continue;
+      Script* script = Script::cast(obj);
+      if (!script->name()->IsString()) continue;
+      String* name = String::cast(script->name());
+      if (name->Equals(*script_name)) {
+        found = Handle<Script>(script, isolate);
+        break;
+      }
+    }
+  }
+
+  if (found.is_null()) return heap->undefined_value();
+  return *Script::GetWrapper(found);
+}
+
+
+// Check whether debugger and is about to step into the callback that is passed
+// to a built-in function such as Array.forEach.
+RUNTIME_FUNCTION(Runtime_DebugCallbackSupportsStepping) {
+  DCHECK(args.length() == 1);
+  Debug* debug = isolate->debug();
+  if (!debug->is_active() || !debug->IsStepping() ||
+      debug->last_step_action() != StepIn) {
+    return isolate->heap()->false_value();
+  }
+  CONVERT_ARG_CHECKED(Object, callback, 0);
+  // We do not step into the callback if it's a builtin or not even a function.
+  return isolate->heap()->ToBoolean(callback->IsJSFunction() &&
+                                    !JSFunction::cast(callback)->IsBuiltin());
+}
+
+
+// Set one shot breakpoints for the callback function that is passed to a
+// built-in function such as Array.forEach to enable stepping into the callback.
+RUNTIME_FUNCTION(Runtime_DebugPrepareStepInIfStepping) {
+  DCHECK(args.length() == 1);
+  Debug* debug = isolate->debug();
+  if (!debug->IsStepping()) return isolate->heap()->undefined_value();
+
+  HandleScope scope(isolate);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  RUNTIME_ASSERT(object->IsJSFunction() || object->IsJSGeneratorObject());
+  Handle<JSFunction> fun;
+  if (object->IsJSFunction()) {
+    fun = Handle<JSFunction>::cast(object);
+  } else {
+    fun = Handle<JSFunction>(
+        Handle<JSGeneratorObject>::cast(object)->function(), isolate);
+  }
+  // When leaving the function, step out has been activated, but not performed
+  // if we do not leave the builtin.  To be able to step into the function
+  // again, we need to clear the step out at this point.
+  debug->ClearStepOut();
+  debug->FloodWithOneShot(fun);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPushPromise) {
+  DCHECK(args.length() == 1);
+  HandleScope scope(isolate);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
+  isolate->PushPromise(promise);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPopPromise) {
+  DCHECK(args.length() == 0);
+  SealHandleScope shs(isolate);
+  isolate->PopPromise();
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPromiseEvent) {
+  DCHECK(args.length() == 1);
+  HandleScope scope(isolate);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
+  isolate->debug()->OnPromiseEvent(data);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugAsyncTaskEvent) {
+  DCHECK(args.length() == 1);
+  HandleScope scope(isolate);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, data, 0);
+  isolate->debug()->OnAsyncTaskEvent(data);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_DebugIsActive) {
+  SealHandleScope shs(isolate);
+  return Smi::FromInt(isolate->debug()->is_active());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_DebugBreakInOptimizedCode) {
+  UNIMPLEMENTED();
+  return NULL;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-function.cc b/src/runtime/runtime-function.cc
new file mode 100644
index 0000000..e25b659
--- /dev/null
+++ b/src/runtime/runtime-function.cc
@@ -0,0 +1,625 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/accessors.h"
+#include "src/arguments.h"
+#include "src/compiler.h"
+#include "src/deoptimizer.h"
+#include "src/frames.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_IsSloppyModeFunction) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
+  if (!callable->IsJSFunction()) {
+    HandleScope scope(isolate);
+    Handle<Object> delegate;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, delegate, Execution::TryGetFunctionDelegate(
+                               isolate, Handle<JSReceiver>(callable)));
+    callable = JSFunction::cast(*delegate);
+  }
+  JSFunction* function = JSFunction::cast(callable);
+  SharedFunctionInfo* shared = function->shared();
+  return isolate->heap()->ToBoolean(shared->strict_mode() == SLOPPY);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetDefaultReceiver) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSReceiver, callable, 0);
+
+  if (!callable->IsJSFunction()) {
+    HandleScope scope(isolate);
+    Handle<Object> delegate;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, delegate, Execution::TryGetFunctionDelegate(
+                               isolate, Handle<JSReceiver>(callable)));
+    callable = JSFunction::cast(*delegate);
+  }
+  JSFunction* function = JSFunction::cast(callable);
+
+  SharedFunctionInfo* shared = function->shared();
+  if (shared->native() || shared->strict_mode() == STRICT) {
+    return isolate->heap()->undefined_value();
+  }
+  // Returns undefined for strict or native functions, or
+  // the associated global receiver for "normal" functions.
+
+  return function->global_proxy();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetName) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return f->shared()->name();
+}
+
+
+static Handle<String> NameToFunctionName(Handle<Name> name) {
+  Handle<String> stringName(name->GetHeap()->empty_string());
+
+  // TODO(caitp): Follow proper rules in section 9.2.11 (SetFunctionName)
+  if (name->IsSymbol()) {
+    Handle<Object> description(Handle<Symbol>::cast(name)->name(),
+                               name->GetIsolate());
+    if (description->IsString()) {
+      stringName = Handle<String>::cast(description);
+    }
+  } else {
+    stringName = Handle<String>::cast(name);
+  }
+
+  return stringName;
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetName) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+
+  f->shared()->set_name(*NameToFunctionName(name));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionNameShouldPrintAsAnonymous) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return isolate->heap()->ToBoolean(
+      f->shared()->name_should_print_as_anonymous());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionMarkNameShouldPrintAsAnonymous) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  f->shared()->set_name_should_print_as_anonymous(true);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsArrow) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return isolate->heap()->ToBoolean(f->shared()->is_arrow());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsConciseMethod) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return isolate->heap()->ToBoolean(f->shared()->is_concise_method());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionRemovePrototype) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  RUNTIME_ASSERT(f->RemovePrototype());
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetScript) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+  Handle<Object> script = Handle<Object>(fun->shared()->script(), isolate);
+  if (!script->IsScript()) return isolate->heap()->undefined_value();
+
+  return *Script::GetWrapper(Handle<Script>::cast(script));
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetSourceCode) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, f, 0);
+  Handle<SharedFunctionInfo> shared(f->shared());
+  return *shared->GetSourceCode();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetScriptSourcePosition) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+  int pos = fun->shared()->start_position();
+  return Smi::FromInt(pos);
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionGetPositionForOffset) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_CHECKED(Code, code, 0);
+  CONVERT_NUMBER_CHECKED(int, offset, Int32, args[1]);
+
+  RUNTIME_ASSERT(0 <= offset && offset < code->Size());
+
+  Address pc = code->address() + offset;
+  return Smi::FromInt(code->SourcePosition(pc));
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetInstanceClassName) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+  CONVERT_ARG_CHECKED(String, name, 1);
+  fun->SetInstanceClassName(name);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetLength) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_CHECKED(JSFunction, fun, 0);
+  CONVERT_SMI_ARG_CHECKED(length, 1);
+  RUNTIME_ASSERT((length & 0xC0000000) == 0xC0000000 ||
+                 (length & 0xC0000000) == 0x0);
+  fun->shared()->set_length(length);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionSetPrototype) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, fun, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
+  RUNTIME_ASSERT(fun->should_have_prototype());
+  RETURN_FAILURE_ON_EXCEPTION(isolate,
+                              Accessors::FunctionSetPrototype(fun, value));
+  return args[0];  // return TOS
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsAPIFunction) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return isolate->heap()->ToBoolean(f->shared()->IsApiFunction());
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsBuiltin) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return isolate->heap()->ToBoolean(f->IsBuiltin());
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetCode) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, source, 1);
+
+  Handle<SharedFunctionInfo> target_shared(target->shared());
+  Handle<SharedFunctionInfo> source_shared(source->shared());
+  RUNTIME_ASSERT(!source_shared->bound());
+
+  if (!Compiler::EnsureCompiled(source, KEEP_EXCEPTION)) {
+    return isolate->heap()->exception();
+  }
+
+  // Mark both, the source and the target, as un-flushable because the
+  // shared unoptimized code makes them impossible to enqueue in a list.
+  DCHECK(target_shared->code()->gc_metadata() == NULL);
+  DCHECK(source_shared->code()->gc_metadata() == NULL);
+  target_shared->set_dont_flush(true);
+  source_shared->set_dont_flush(true);
+
+  // Set the code, scope info, formal parameter count, and the length
+  // of the target shared function info.
+  target_shared->ReplaceCode(source_shared->code());
+  target_shared->set_scope_info(source_shared->scope_info());
+  target_shared->set_length(source_shared->length());
+  target_shared->set_feedback_vector(source_shared->feedback_vector());
+  target_shared->set_formal_parameter_count(
+      source_shared->formal_parameter_count());
+  target_shared->set_script(source_shared->script());
+  target_shared->set_start_position_and_type(
+      source_shared->start_position_and_type());
+  target_shared->set_end_position(source_shared->end_position());
+  bool was_native = target_shared->native();
+  target_shared->set_compiler_hints(source_shared->compiler_hints());
+  target_shared->set_native(was_native);
+  target_shared->set_profiler_ticks(source_shared->profiler_ticks());
+
+  // Set the code of the target function.
+  target->ReplaceCode(source_shared->code());
+  DCHECK(target->next_function_link()->IsUndefined());
+
+  // Make sure we get a fresh copy of the literal vector to avoid cross
+  // context contamination.
+  Handle<Context> context(source->context());
+  int number_of_literals = source->NumberOfLiterals();
+  Handle<FixedArray> literals =
+      isolate->factory()->NewFixedArray(number_of_literals, TENURED);
+  if (number_of_literals > 0) {
+    literals->set(JSFunction::kLiteralNativeContextIndex,
+                  context->native_context());
+  }
+  target->set_context(*context);
+  target->set_literals(*literals);
+
+  if (isolate->logger()->is_logging_code_events() ||
+      isolate->cpu_profiler()->is_profiling()) {
+    isolate->logger()->LogExistingFunction(source_shared,
+                                           Handle<Code>(source_shared->code()));
+  }
+
+  return *target;
+}
+
+
+// Set the native flag on the function.
+// This is used to decide if we should transform null and undefined
+// into the global object when doing call and apply.
+RUNTIME_FUNCTION(Runtime_SetNativeFlag) {
+  SealHandleScope shs(isolate);
+  RUNTIME_ASSERT(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(Object, object, 0);
+
+  if (object->IsJSFunction()) {
+    JSFunction* func = JSFunction::cast(object);
+    func->shared()->set_native(true);
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetInlineBuiltinFlag) {
+  SealHandleScope shs(isolate);
+  RUNTIME_ASSERT(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+
+  if (object->IsJSFunction()) {
+    JSFunction* func = JSFunction::cast(*object);
+    func->shared()->set_inline_builtin(true);
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+// Find the arguments of the JavaScript function invocation that called
+// into C++ code. Collect these in a newly allocated array of handles (possibly
+// prefixed by a number of empty handles).
+static SmartArrayPointer<Handle<Object> > GetCallerArguments(Isolate* isolate,
+                                                             int prefix_argc,
+                                                             int* total_argc) {
+  // Find frame containing arguments passed to the caller.
+  JavaScriptFrameIterator it(isolate);
+  JavaScriptFrame* frame = it.frame();
+  List<JSFunction*> functions(2);
+  frame->GetFunctions(&functions);
+  if (functions.length() > 1) {
+    int inlined_jsframe_index = functions.length() - 1;
+    JSFunction* inlined_function = functions[inlined_jsframe_index];
+    SlotRefValueBuilder slot_refs(
+        frame, inlined_jsframe_index,
+        inlined_function->shared()->formal_parameter_count());
+
+    int args_count = slot_refs.args_length();
+
+    *total_argc = prefix_argc + args_count;
+    SmartArrayPointer<Handle<Object> > param_data(
+        NewArray<Handle<Object> >(*total_argc));
+    slot_refs.Prepare(isolate);
+    for (int i = 0; i < args_count; i++) {
+      Handle<Object> val = slot_refs.GetNext(isolate, 0);
+      param_data[prefix_argc + i] = val;
+    }
+    slot_refs.Finish(isolate);
+
+    return param_data;
+  } else {
+    it.AdvanceToArgumentsFrame();
+    frame = it.frame();
+    int args_count = frame->ComputeParametersCount();
+
+    *total_argc = prefix_argc + args_count;
+    SmartArrayPointer<Handle<Object> > param_data(
+        NewArray<Handle<Object> >(*total_argc));
+    for (int i = 0; i < args_count; i++) {
+      Handle<Object> val = Handle<Object>(frame->GetParameter(i), isolate);
+      param_data[prefix_argc + i] = val;
+    }
+    return param_data;
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionBindArguments) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, bound_function, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, bindee, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, this_object, 2);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(new_length, 3);
+
+  // TODO(lrn): Create bound function in C++ code from premade shared info.
+  bound_function->shared()->set_bound(true);
+  // Get all arguments of calling function (Function.prototype.bind).
+  int argc = 0;
+  SmartArrayPointer<Handle<Object> > arguments =
+      GetCallerArguments(isolate, 0, &argc);
+  // Don't count the this-arg.
+  if (argc > 0) {
+    RUNTIME_ASSERT(arguments[0].is_identical_to(this_object));
+    argc--;
+  } else {
+    RUNTIME_ASSERT(this_object->IsUndefined());
+  }
+  // Initialize array of bindings (function, this, and any existing arguments
+  // if the function was already bound).
+  Handle<FixedArray> new_bindings;
+  int i;
+  if (bindee->IsJSFunction() && JSFunction::cast(*bindee)->shared()->bound()) {
+    Handle<FixedArray> old_bindings(
+        JSFunction::cast(*bindee)->function_bindings());
+    RUNTIME_ASSERT(old_bindings->length() > JSFunction::kBoundFunctionIndex);
+    new_bindings =
+        isolate->factory()->NewFixedArray(old_bindings->length() + argc);
+    bindee = Handle<Object>(old_bindings->get(JSFunction::kBoundFunctionIndex),
+                            isolate);
+    i = 0;
+    for (int n = old_bindings->length(); i < n; i++) {
+      new_bindings->set(i, old_bindings->get(i));
+    }
+  } else {
+    int array_size = JSFunction::kBoundArgumentsStartIndex + argc;
+    new_bindings = isolate->factory()->NewFixedArray(array_size);
+    new_bindings->set(JSFunction::kBoundFunctionIndex, *bindee);
+    new_bindings->set(JSFunction::kBoundThisIndex, *this_object);
+    i = 2;
+  }
+  // Copy arguments, skipping the first which is "this_arg".
+  for (int j = 0; j < argc; j++, i++) {
+    new_bindings->set(i, *arguments[j + 1]);
+  }
+  new_bindings->set_map_no_write_barrier(
+      isolate->heap()->fixed_cow_array_map());
+  bound_function->set_function_bindings(*new_bindings);
+
+  // Update length. Have to remove the prototype first so that map migration
+  // is happy about the number of fields.
+  RUNTIME_ASSERT(bound_function->RemovePrototype());
+  Handle<Map> bound_function_map(
+      isolate->native_context()->bound_function_map());
+  JSObject::MigrateToMap(bound_function, bound_function_map);
+  Handle<String> length_string = isolate->factory()->length_string();
+  PropertyAttributes attr =
+      static_cast<PropertyAttributes>(DONT_DELETE | DONT_ENUM | READ_ONLY);
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                   bound_function, length_string, new_length, attr));
+  return *bound_function;
+}
+
+
+RUNTIME_FUNCTION(Runtime_BoundFunctionGetBindings) {
+  HandleScope handles(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, callable, 0);
+  if (callable->IsJSFunction()) {
+    Handle<JSFunction> function = Handle<JSFunction>::cast(callable);
+    if (function->shared()->bound()) {
+      Handle<FixedArray> bindings(function->function_bindings());
+      RUNTIME_ASSERT(bindings->map() == isolate->heap()->fixed_cow_array_map());
+      return *isolate->factory()->NewJSArrayWithElements(bindings);
+    }
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewObjectFromBound) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  // First argument is a function to use as a constructor.
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  RUNTIME_ASSERT(function->shared()->bound());
+
+  // The argument is a bound function. Extract its bound arguments
+  // and callable.
+  Handle<FixedArray> bound_args =
+      Handle<FixedArray>(FixedArray::cast(function->function_bindings()));
+  int bound_argc = bound_args->length() - JSFunction::kBoundArgumentsStartIndex;
+  Handle<Object> bound_function(
+      JSReceiver::cast(bound_args->get(JSFunction::kBoundFunctionIndex)),
+      isolate);
+  DCHECK(!bound_function->IsJSFunction() ||
+         !Handle<JSFunction>::cast(bound_function)->shared()->bound());
+
+  int total_argc = 0;
+  SmartArrayPointer<Handle<Object> > param_data =
+      GetCallerArguments(isolate, bound_argc, &total_argc);
+  for (int i = 0; i < bound_argc; i++) {
+    param_data[i] = Handle<Object>(
+        bound_args->get(JSFunction::kBoundArgumentsStartIndex + i), isolate);
+  }
+
+  if (!bound_function->IsJSFunction()) {
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, bound_function,
+        Execution::TryGetConstructorDelegate(isolate, bound_function));
+  }
+  DCHECK(bound_function->IsJSFunction());
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, Execution::New(Handle<JSFunction>::cast(bound_function),
+                                      total_argc, param_data.get()));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_Call) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() >= 2);
+  int argc = args.length() - 2;
+  CONVERT_ARG_CHECKED(JSReceiver, fun, argc + 1);
+  Object* receiver = args[0];
+
+  // If there are too many arguments, allocate argv via malloc.
+  const int argv_small_size = 10;
+  Handle<Object> argv_small_buffer[argv_small_size];
+  SmartArrayPointer<Handle<Object> > argv_large_buffer;
+  Handle<Object>* argv = argv_small_buffer;
+  if (argc > argv_small_size) {
+    argv = new Handle<Object>[argc];
+    if (argv == NULL) return isolate->StackOverflow();
+    argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
+  }
+
+  for (int i = 0; i < argc; ++i) {
+    argv[i] = Handle<Object>(args[1 + i], isolate);
+  }
+
+  Handle<JSReceiver> hfun(fun);
+  Handle<Object> hreceiver(receiver, isolate);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Execution::Call(isolate, hfun, hreceiver, argc, argv, true));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_Apply) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 5);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, fun, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, arguments, 2);
+  CONVERT_INT32_ARG_CHECKED(offset, 3);
+  CONVERT_INT32_ARG_CHECKED(argc, 4);
+  RUNTIME_ASSERT(offset >= 0);
+  // Loose upper bound to allow fuzzing. We'll most likely run out of
+  // stack space before hitting this limit.
+  static int kMaxArgc = 1000000;
+  RUNTIME_ASSERT(argc >= 0 && argc <= kMaxArgc);
+
+  // If there are too many arguments, allocate argv via malloc.
+  const int argv_small_size = 10;
+  Handle<Object> argv_small_buffer[argv_small_size];
+  SmartArrayPointer<Handle<Object> > argv_large_buffer;
+  Handle<Object>* argv = argv_small_buffer;
+  if (argc > argv_small_size) {
+    argv = new Handle<Object>[argc];
+    if (argv == NULL) return isolate->StackOverflow();
+    argv_large_buffer = SmartArrayPointer<Handle<Object> >(argv);
+  }
+
+  for (int i = 0; i < argc; ++i) {
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, argv[i], Object::GetElement(isolate, arguments, offset + i));
+  }
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Execution::Call(isolate, fun, receiver, argc, argv, true));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFunctionDelegate) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  RUNTIME_ASSERT(!object->IsJSFunction());
+  return *Execution::GetFunctionDelegate(isolate, object);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetConstructorDelegate) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  RUNTIME_ASSERT(!object->IsJSFunction());
+  return *Execution::GetConstructorDelegate(isolate, object);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_CallFunction) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_Call(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsConstructCall) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  JavaScriptFrameIterator it(isolate);
+  JavaScriptFrame* frame = it.frame();
+  return isolate->heap()->ToBoolean(frame->IsConstructor());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsFunction) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsJSFunction());
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-generator.cc b/src/runtime/runtime-generator.cc
new file mode 100644
index 0000000..ff07acd
--- /dev/null
+++ b/src/runtime/runtime-generator.cc
@@ -0,0 +1,227 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/frames-inl.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_CreateJSGeneratorObject) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+
+  JavaScriptFrameIterator it(isolate);
+  JavaScriptFrame* frame = it.frame();
+  Handle<JSFunction> function(frame->function());
+  RUNTIME_ASSERT(function->shared()->is_generator());
+
+  Handle<JSGeneratorObject> generator;
+  if (frame->IsConstructor()) {
+    generator = handle(JSGeneratorObject::cast(frame->receiver()));
+  } else {
+    generator = isolate->factory()->NewJSGeneratorObject(function);
+  }
+  generator->set_function(*function);
+  generator->set_context(Context::cast(frame->context()));
+  generator->set_receiver(frame->receiver());
+  generator->set_continuation(0);
+  generator->set_operand_stack(isolate->heap()->empty_fixed_array());
+  generator->set_stack_handler_index(-1);
+
+  return *generator;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SuspendJSGeneratorObject) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator_object, 0);
+
+  JavaScriptFrameIterator stack_iterator(isolate);
+  JavaScriptFrame* frame = stack_iterator.frame();
+  RUNTIME_ASSERT(frame->function()->shared()->is_generator());
+  DCHECK_EQ(frame->function(), generator_object->function());
+
+  // The caller should have saved the context and continuation already.
+  DCHECK_EQ(generator_object->context(), Context::cast(frame->context()));
+  DCHECK_LT(0, generator_object->continuation());
+
+  // We expect there to be at least two values on the operand stack: the return
+  // value of the yield expression, and the argument to this runtime call.
+  // Neither of those should be saved.
+  int operands_count = frame->ComputeOperandsCount();
+  DCHECK_GE(operands_count, 2);
+  operands_count -= 2;
+
+  if (operands_count == 0) {
+    // Although it's semantically harmless to call this function with an
+    // operands_count of zero, it is also unnecessary.
+    DCHECK_EQ(generator_object->operand_stack(),
+              isolate->heap()->empty_fixed_array());
+    DCHECK_EQ(generator_object->stack_handler_index(), -1);
+    // If there are no operands on the stack, there shouldn't be a handler
+    // active either.
+    DCHECK(!frame->HasHandler());
+  } else {
+    int stack_handler_index = -1;
+    Handle<FixedArray> operand_stack =
+        isolate->factory()->NewFixedArray(operands_count);
+    frame->SaveOperandStack(*operand_stack, &stack_handler_index);
+    generator_object->set_operand_stack(*operand_stack);
+    generator_object->set_stack_handler_index(stack_handler_index);
+  }
+
+  return isolate->heap()->undefined_value();
+}
+
+
+// Note that this function is the slow path for resuming generators.  It is only
+// called if the suspended activation had operands on the stack, stack handlers
+// needing rewinding, or if the resume should throw an exception.  The fast path
+// is handled directly in FullCodeGenerator::EmitGeneratorResume(), which is
+// inlined into GeneratorNext and GeneratorThrow.  EmitGeneratorResumeResume is
+// called in any case, as it needs to reconstruct the stack frame and make space
+// for arguments and operands.
+RUNTIME_FUNCTION(Runtime_ResumeJSGeneratorObject) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_CHECKED(JSGeneratorObject, generator_object, 0);
+  CONVERT_ARG_CHECKED(Object, value, 1);
+  CONVERT_SMI_ARG_CHECKED(resume_mode_int, 2);
+  JavaScriptFrameIterator stack_iterator(isolate);
+  JavaScriptFrame* frame = stack_iterator.frame();
+
+  DCHECK_EQ(frame->function(), generator_object->function());
+  DCHECK(frame->function()->is_compiled());
+
+  STATIC_ASSERT(JSGeneratorObject::kGeneratorExecuting < 0);
+  STATIC_ASSERT(JSGeneratorObject::kGeneratorClosed == 0);
+
+  Address pc = generator_object->function()->code()->instruction_start();
+  int offset = generator_object->continuation();
+  DCHECK(offset > 0);
+  frame->set_pc(pc + offset);
+  if (FLAG_enable_ool_constant_pool) {
+    frame->set_constant_pool(
+        generator_object->function()->code()->constant_pool());
+  }
+  generator_object->set_continuation(JSGeneratorObject::kGeneratorExecuting);
+
+  FixedArray* operand_stack = generator_object->operand_stack();
+  int operands_count = operand_stack->length();
+  if (operands_count != 0) {
+    frame->RestoreOperandStack(operand_stack,
+                               generator_object->stack_handler_index());
+    generator_object->set_operand_stack(isolate->heap()->empty_fixed_array());
+    generator_object->set_stack_handler_index(-1);
+  }
+
+  JSGeneratorObject::ResumeMode resume_mode =
+      static_cast<JSGeneratorObject::ResumeMode>(resume_mode_int);
+  switch (resume_mode) {
+    case JSGeneratorObject::NEXT:
+      return value;
+    case JSGeneratorObject::THROW:
+      return isolate->Throw(value);
+  }
+
+  UNREACHABLE();
+  return isolate->ThrowIllegalOperation();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GeneratorClose) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+  generator->set_continuation(JSGeneratorObject::kGeneratorClosed);
+
+  return isolate->heap()->undefined_value();
+}
+
+
+// Returns function of generator activation.
+RUNTIME_FUNCTION(Runtime_GeneratorGetFunction) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+  return generator->function();
+}
+
+
+// Returns context of generator activation.
+RUNTIME_FUNCTION(Runtime_GeneratorGetContext) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+  return generator->context();
+}
+
+
+// Returns receiver of generator activation.
+RUNTIME_FUNCTION(Runtime_GeneratorGetReceiver) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+  return generator->receiver();
+}
+
+
+// Returns generator continuation as a PC offset, or the magic -1 or 0 values.
+RUNTIME_FUNCTION(Runtime_GeneratorGetContinuation) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+  return Smi::FromInt(generator->continuation());
+}
+
+
+RUNTIME_FUNCTION(Runtime_GeneratorGetSourcePosition) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSGeneratorObject, generator, 0);
+
+  if (generator->is_suspended()) {
+    Handle<Code> code(generator->function()->code(), isolate);
+    int offset = generator->continuation();
+
+    RUNTIME_ASSERT(0 <= offset && offset < code->Size());
+    Address pc = code->address() + offset;
+
+    return Smi::FromInt(code->SourcePosition(pc));
+  }
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_FunctionIsGenerator) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunction, f, 0);
+  return isolate->heap()->ToBoolean(f->shared()->is_generator());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GeneratorNext) {
+  UNREACHABLE();  // Optimization disabled in SetUpGenerators().
+  return NULL;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GeneratorThrow) {
+  UNREACHABLE();  // Optimization disabled in SetUpGenerators().
+  return NULL;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-i18n.cc b/src/runtime/runtime-i18n.cc
new file mode 100644
index 0000000..94d9f42
--- /dev/null
+++ b/src/runtime/runtime-i18n.cc
@@ -0,0 +1,751 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+
+#ifdef V8_I18N_SUPPORT
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/i18n.h"
+#include "src/runtime/runtime-utils.h"
+
+#include "unicode/brkiter.h"
+#include "unicode/calendar.h"
+#include "unicode/coll.h"
+#include "unicode/curramt.h"
+#include "unicode/datefmt.h"
+#include "unicode/dcfmtsym.h"
+#include "unicode/decimfmt.h"
+#include "unicode/dtfmtsym.h"
+#include "unicode/dtptngen.h"
+#include "unicode/locid.h"
+#include "unicode/numfmt.h"
+#include "unicode/numsys.h"
+#include "unicode/rbbi.h"
+#include "unicode/smpdtfmt.h"
+#include "unicode/timezone.h"
+#include "unicode/uchar.h"
+#include "unicode/ucol.h"
+#include "unicode/ucurr.h"
+#include "unicode/uloc.h"
+#include "unicode/unum.h"
+#include "unicode/uversion.h"
+
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_CanonicalizeLanguageTag) {
+  HandleScope scope(isolate);
+  Factory* factory = isolate->factory();
+
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, locale_id_str, 0);
+
+  v8::String::Utf8Value locale_id(v8::Utils::ToLocal(locale_id_str));
+
+  // Return value which denotes invalid language tag.
+  const char* const kInvalidTag = "invalid-tag";
+
+  UErrorCode error = U_ZERO_ERROR;
+  char icu_result[ULOC_FULLNAME_CAPACITY];
+  int icu_length = 0;
+
+  uloc_forLanguageTag(*locale_id, icu_result, ULOC_FULLNAME_CAPACITY,
+                      &icu_length, &error);
+  if (U_FAILURE(error) || icu_length == 0) {
+    return *factory->NewStringFromAsciiChecked(kInvalidTag);
+  }
+
+  char result[ULOC_FULLNAME_CAPACITY];
+
+  // Force strict BCP47 rules.
+  uloc_toLanguageTag(icu_result, result, ULOC_FULLNAME_CAPACITY, TRUE, &error);
+
+  if (U_FAILURE(error)) {
+    return *factory->NewStringFromAsciiChecked(kInvalidTag);
+  }
+
+  return *factory->NewStringFromAsciiChecked(result);
+}
+
+
+RUNTIME_FUNCTION(Runtime_AvailableLocalesOf) {
+  HandleScope scope(isolate);
+  Factory* factory = isolate->factory();
+
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, service, 0);
+
+  const icu::Locale* available_locales = NULL;
+  int32_t count = 0;
+
+  if (service->IsUtf8EqualTo(CStrVector("collator"))) {
+    available_locales = icu::Collator::getAvailableLocales(count);
+  } else if (service->IsUtf8EqualTo(CStrVector("numberformat"))) {
+    available_locales = icu::NumberFormat::getAvailableLocales(count);
+  } else if (service->IsUtf8EqualTo(CStrVector("dateformat"))) {
+    available_locales = icu::DateFormat::getAvailableLocales(count);
+  } else if (service->IsUtf8EqualTo(CStrVector("breakiterator"))) {
+    available_locales = icu::BreakIterator::getAvailableLocales(count);
+  }
+
+  UErrorCode error = U_ZERO_ERROR;
+  char result[ULOC_FULLNAME_CAPACITY];
+  Handle<JSObject> locales = factory->NewJSObject(isolate->object_function());
+
+  for (int32_t i = 0; i < count; ++i) {
+    const char* icu_name = available_locales[i].getName();
+
+    error = U_ZERO_ERROR;
+    // No need to force strict BCP47 rules.
+    uloc_toLanguageTag(icu_name, result, ULOC_FULLNAME_CAPACITY, FALSE, &error);
+    if (U_FAILURE(error)) {
+      // This shouldn't happen, but lets not break the user.
+      continue;
+    }
+
+    RETURN_FAILURE_ON_EXCEPTION(
+        isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                     locales, factory->NewStringFromAsciiChecked(result),
+                     factory->NewNumber(i), NONE));
+  }
+
+  return *locales;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetDefaultICULocale) {
+  HandleScope scope(isolate);
+  Factory* factory = isolate->factory();
+
+  DCHECK(args.length() == 0);
+
+  icu::Locale default_locale;
+
+  // Set the locale
+  char result[ULOC_FULLNAME_CAPACITY];
+  UErrorCode status = U_ZERO_ERROR;
+  uloc_toLanguageTag(default_locale.getName(), result, ULOC_FULLNAME_CAPACITY,
+                     FALSE, &status);
+  if (U_SUCCESS(status)) {
+    return *factory->NewStringFromAsciiChecked(result);
+  }
+
+  return *factory->NewStringFromStaticChars("und");
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetLanguageTagVariants) {
+  HandleScope scope(isolate);
+  Factory* factory = isolate->factory();
+
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, input, 0);
+
+  uint32_t length = static_cast<uint32_t>(input->length()->Number());
+  // Set some limit to prevent fuzz tests from going OOM.
+  // Can be bumped when callers' requirements change.
+  RUNTIME_ASSERT(length < 100);
+  Handle<FixedArray> output = factory->NewFixedArray(length);
+  Handle<Name> maximized = factory->NewStringFromStaticChars("maximized");
+  Handle<Name> base = factory->NewStringFromStaticChars("base");
+  for (unsigned int i = 0; i < length; ++i) {
+    Handle<Object> locale_id;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, locale_id,
+                                       Object::GetElement(isolate, input, i));
+    if (!locale_id->IsString()) {
+      return isolate->Throw(*factory->illegal_argument_string());
+    }
+
+    v8::String::Utf8Value utf8_locale_id(
+        v8::Utils::ToLocal(Handle<String>::cast(locale_id)));
+
+    UErrorCode error = U_ZERO_ERROR;
+
+    // Convert from BCP47 to ICU format.
+    // de-DE-u-co-phonebk -> de_DE@collation=phonebook
+    char icu_locale[ULOC_FULLNAME_CAPACITY];
+    int icu_locale_length = 0;
+    uloc_forLanguageTag(*utf8_locale_id, icu_locale, ULOC_FULLNAME_CAPACITY,
+                        &icu_locale_length, &error);
+    if (U_FAILURE(error) || icu_locale_length == 0) {
+      return isolate->Throw(*factory->illegal_argument_string());
+    }
+
+    // Maximize the locale.
+    // de_DE@collation=phonebook -> de_Latn_DE@collation=phonebook
+    char icu_max_locale[ULOC_FULLNAME_CAPACITY];
+    uloc_addLikelySubtags(icu_locale, icu_max_locale, ULOC_FULLNAME_CAPACITY,
+                          &error);
+
+    // Remove extensions from maximized locale.
+    // de_Latn_DE@collation=phonebook -> de_Latn_DE
+    char icu_base_max_locale[ULOC_FULLNAME_CAPACITY];
+    uloc_getBaseName(icu_max_locale, icu_base_max_locale,
+                     ULOC_FULLNAME_CAPACITY, &error);
+
+    // Get original name without extensions.
+    // de_DE@collation=phonebook -> de_DE
+    char icu_base_locale[ULOC_FULLNAME_CAPACITY];
+    uloc_getBaseName(icu_locale, icu_base_locale, ULOC_FULLNAME_CAPACITY,
+                     &error);
+
+    // Convert from ICU locale format to BCP47 format.
+    // de_Latn_DE -> de-Latn-DE
+    char base_max_locale[ULOC_FULLNAME_CAPACITY];
+    uloc_toLanguageTag(icu_base_max_locale, base_max_locale,
+                       ULOC_FULLNAME_CAPACITY, FALSE, &error);
+
+    // de_DE -> de-DE
+    char base_locale[ULOC_FULLNAME_CAPACITY];
+    uloc_toLanguageTag(icu_base_locale, base_locale, ULOC_FULLNAME_CAPACITY,
+                       FALSE, &error);
+
+    if (U_FAILURE(error)) {
+      return isolate->Throw(*factory->illegal_argument_string());
+    }
+
+    Handle<JSObject> result = factory->NewJSObject(isolate->object_function());
+    Handle<String> value = factory->NewStringFromAsciiChecked(base_max_locale);
+    JSObject::AddProperty(result, maximized, value, NONE);
+    value = factory->NewStringFromAsciiChecked(base_locale);
+    JSObject::AddProperty(result, base, value, NONE);
+    output->set(i, *result);
+  }
+
+  Handle<JSArray> result = factory->NewJSArrayWithElements(output);
+  result->set_length(Smi::FromInt(length));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsInitializedIntlObject) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
+
+  if (!input->IsJSObject()) return isolate->heap()->false_value();
+  Handle<JSObject> obj = Handle<JSObject>::cast(input);
+
+  Handle<Symbol> marker = isolate->factory()->intl_initialized_marker_symbol();
+  Handle<Object> tag = JSObject::GetDataProperty(obj, marker);
+  return isolate->heap()->ToBoolean(!tag->IsUndefined());
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsInitializedIntlObjectOfType) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, expected_type, 1);
+
+  if (!input->IsJSObject()) return isolate->heap()->false_value();
+  Handle<JSObject> obj = Handle<JSObject>::cast(input);
+
+  Handle<Symbol> marker = isolate->factory()->intl_initialized_marker_symbol();
+  Handle<Object> tag = JSObject::GetDataProperty(obj, marker);
+  return isolate->heap()->ToBoolean(tag->IsString() &&
+                                    String::cast(*tag)->Equals(*expected_type));
+}
+
+
+RUNTIME_FUNCTION(Runtime_MarkAsInitializedIntlObjectOfType) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, input, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, impl, 2);
+
+  Handle<Symbol> marker = isolate->factory()->intl_initialized_marker_symbol();
+  JSObject::SetProperty(input, marker, type, STRICT).Assert();
+
+  marker = isolate->factory()->intl_impl_object_symbol();
+  JSObject::SetProperty(input, marker, impl, STRICT).Assert();
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetImplFromInitializedIntlObject) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, input, 0);
+
+  if (!input->IsJSObject()) {
+    Vector<Handle<Object> > arguments = HandleVector(&input, 1);
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+                                   NewTypeError("not_intl_object", arguments));
+  }
+
+  Handle<JSObject> obj = Handle<JSObject>::cast(input);
+
+  Handle<Symbol> marker = isolate->factory()->intl_impl_object_symbol();
+
+  Handle<Object> impl = JSObject::GetDataProperty(obj, marker);
+  if (impl->IsTheHole()) {
+    Vector<Handle<Object> > arguments = HandleVector(&obj, 1);
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+                                   NewTypeError("not_intl_object", arguments));
+  }
+  return *impl;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateDateTimeFormat) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
+
+  Handle<ObjectTemplateInfo> date_format_template = I18N::GetTemplate(isolate);
+
+  // Create an empty object wrapper.
+  Handle<JSObject> local_object;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, local_object,
+      Execution::InstantiateObject(date_format_template));
+
+  // Set date time formatter as internal field of the resulting JS object.
+  icu::SimpleDateFormat* date_format =
+      DateFormat::InitializeDateTimeFormat(isolate, locale, options, resolved);
+
+  if (!date_format) return isolate->ThrowIllegalOperation();
+
+  local_object->SetInternalField(0, reinterpret_cast<Smi*>(date_format));
+
+  Factory* factory = isolate->factory();
+  Handle<String> key = factory->NewStringFromStaticChars("dateFormat");
+  Handle<String> value = factory->NewStringFromStaticChars("valid");
+  JSObject::AddProperty(local_object, key, value, NONE);
+
+  // Make object handle weak so we can delete the data format once GC kicks in.
+  Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
+  GlobalHandles::MakeWeak(wrapper.location(),
+                          reinterpret_cast<void*>(wrapper.location()),
+                          DateFormat::DeleteDateFormat);
+  return *local_object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalDateFormat) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSDate, date, 1);
+
+  Handle<Object> value;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value,
+                                     Execution::ToNumber(isolate, date));
+
+  icu::SimpleDateFormat* date_format =
+      DateFormat::UnpackDateFormat(isolate, date_format_holder);
+  if (!date_format) return isolate->ThrowIllegalOperation();
+
+  icu::UnicodeString result;
+  date_format->format(value->Number(), result);
+
+  Handle<String> result_str;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result_str,
+      isolate->factory()->NewStringFromTwoByte(Vector<const uint16_t>(
+          reinterpret_cast<const uint16_t*>(result.getBuffer()),
+          result.length())));
+  return *result_str;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalDateParse) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, date_format_holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, date_string, 1);
+
+  v8::String::Utf8Value utf8_date(v8::Utils::ToLocal(date_string));
+  icu::UnicodeString u_date(icu::UnicodeString::fromUTF8(*utf8_date));
+  icu::SimpleDateFormat* date_format =
+      DateFormat::UnpackDateFormat(isolate, date_format_holder);
+  if (!date_format) return isolate->ThrowIllegalOperation();
+
+  UErrorCode status = U_ZERO_ERROR;
+  UDate date = date_format->parse(u_date, status);
+  if (U_FAILURE(status)) return isolate->heap()->undefined_value();
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, Execution::NewDate(isolate, static_cast<double>(date)));
+  DCHECK(result->IsJSDate());
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateNumberFormat) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
+
+  Handle<ObjectTemplateInfo> number_format_template =
+      I18N::GetTemplate(isolate);
+
+  // Create an empty object wrapper.
+  Handle<JSObject> local_object;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, local_object,
+      Execution::InstantiateObject(number_format_template));
+
+  // Set number formatter as internal field of the resulting JS object.
+  icu::DecimalFormat* number_format =
+      NumberFormat::InitializeNumberFormat(isolate, locale, options, resolved);
+
+  if (!number_format) return isolate->ThrowIllegalOperation();
+
+  local_object->SetInternalField(0, reinterpret_cast<Smi*>(number_format));
+
+  Factory* factory = isolate->factory();
+  Handle<String> key = factory->NewStringFromStaticChars("numberFormat");
+  Handle<String> value = factory->NewStringFromStaticChars("valid");
+  JSObject::AddProperty(local_object, key, value, NONE);
+
+  Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
+  GlobalHandles::MakeWeak(wrapper.location(),
+                          reinterpret_cast<void*>(wrapper.location()),
+                          NumberFormat::DeleteNumberFormat);
+  return *local_object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalNumberFormat) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, number, 1);
+
+  Handle<Object> value;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, value,
+                                     Execution::ToNumber(isolate, number));
+
+  icu::DecimalFormat* number_format =
+      NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
+  if (!number_format) return isolate->ThrowIllegalOperation();
+
+  icu::UnicodeString result;
+  number_format->format(value->Number(), result);
+
+  Handle<String> result_str;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result_str,
+      isolate->factory()->NewStringFromTwoByte(Vector<const uint16_t>(
+          reinterpret_cast<const uint16_t*>(result.getBuffer()),
+          result.length())));
+  return *result_str;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalNumberParse) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, number_format_holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, number_string, 1);
+
+  v8::String::Utf8Value utf8_number(v8::Utils::ToLocal(number_string));
+  icu::UnicodeString u_number(icu::UnicodeString::fromUTF8(*utf8_number));
+  icu::DecimalFormat* number_format =
+      NumberFormat::UnpackNumberFormat(isolate, number_format_holder);
+  if (!number_format) return isolate->ThrowIllegalOperation();
+
+  UErrorCode status = U_ZERO_ERROR;
+  icu::Formattable result;
+  // ICU 4.6 doesn't support parseCurrency call. We need to wait for ICU49
+  // to be part of Chrome.
+  // TODO(cira): Include currency parsing code using parseCurrency call.
+  // We need to check if the formatter parses all currencies or only the
+  // one it was constructed with (it will impact the API - how to return ISO
+  // code and the value).
+  number_format->parse(u_number, result, status);
+  if (U_FAILURE(status)) return isolate->heap()->undefined_value();
+
+  switch (result.getType()) {
+    case icu::Formattable::kDouble:
+      return *isolate->factory()->NewNumber(result.getDouble());
+    case icu::Formattable::kLong:
+      return *isolate->factory()->NewNumberFromInt(result.getLong());
+    case icu::Formattable::kInt64:
+      return *isolate->factory()->NewNumber(
+          static_cast<double>(result.getInt64()));
+    default:
+      return isolate->heap()->undefined_value();
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateCollator) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
+
+  Handle<ObjectTemplateInfo> collator_template = I18N::GetTemplate(isolate);
+
+  // Create an empty object wrapper.
+  Handle<JSObject> local_object;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, local_object, Execution::InstantiateObject(collator_template));
+
+  // Set collator as internal field of the resulting JS object.
+  icu::Collator* collator =
+      Collator::InitializeCollator(isolate, locale, options, resolved);
+
+  if (!collator) return isolate->ThrowIllegalOperation();
+
+  local_object->SetInternalField(0, reinterpret_cast<Smi*>(collator));
+
+  Factory* factory = isolate->factory();
+  Handle<String> key = factory->NewStringFromStaticChars("collator");
+  Handle<String> value = factory->NewStringFromStaticChars("valid");
+  JSObject::AddProperty(local_object, key, value, NONE);
+
+  Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
+  GlobalHandles::MakeWeak(wrapper.location(),
+                          reinterpret_cast<void*>(wrapper.location()),
+                          Collator::DeleteCollator);
+  return *local_object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalCompare) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, collator_holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, string1, 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, string2, 2);
+
+  icu::Collator* collator = Collator::UnpackCollator(isolate, collator_holder);
+  if (!collator) return isolate->ThrowIllegalOperation();
+
+  v8::String::Value string_value1(v8::Utils::ToLocal(string1));
+  v8::String::Value string_value2(v8::Utils::ToLocal(string2));
+  const UChar* u_string1 = reinterpret_cast<const UChar*>(*string_value1);
+  const UChar* u_string2 = reinterpret_cast<const UChar*>(*string_value2);
+  UErrorCode status = U_ZERO_ERROR;
+  UCollationResult result =
+      collator->compare(u_string1, string_value1.length(), u_string2,
+                        string_value2.length(), status);
+  if (U_FAILURE(status)) return isolate->ThrowIllegalOperation();
+
+  return *isolate->factory()->NewNumberFromInt(result);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringNormalize) {
+  HandleScope scope(isolate);
+  static const UNormalizationMode normalizationForms[] = {
+      UNORM_NFC, UNORM_NFD, UNORM_NFKC, UNORM_NFKD};
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, stringValue, 0);
+  CONVERT_NUMBER_CHECKED(int, form_id, Int32, args[1]);
+  RUNTIME_ASSERT(form_id >= 0 &&
+                 static_cast<size_t>(form_id) < arraysize(normalizationForms));
+
+  v8::String::Value string_value(v8::Utils::ToLocal(stringValue));
+  const UChar* u_value = reinterpret_cast<const UChar*>(*string_value);
+
+  // TODO(mnita): check Normalizer2 (not available in ICU 46)
+  UErrorCode status = U_ZERO_ERROR;
+  icu::UnicodeString result;
+  icu::Normalizer::normalize(u_value, normalizationForms[form_id], 0, result,
+                             status);
+  if (U_FAILURE(status)) {
+    return isolate->heap()->undefined_value();
+  }
+
+  Handle<String> result_str;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result_str,
+      isolate->factory()->NewStringFromTwoByte(Vector<const uint16_t>(
+          reinterpret_cast<const uint16_t*>(result.getBuffer()),
+          result.length())));
+  return *result_str;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateBreakIterator) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, locale, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, options, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, resolved, 2);
+
+  Handle<ObjectTemplateInfo> break_iterator_template =
+      I18N::GetTemplate2(isolate);
+
+  // Create an empty object wrapper.
+  Handle<JSObject> local_object;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, local_object,
+      Execution::InstantiateObject(break_iterator_template));
+
+  // Set break iterator as internal field of the resulting JS object.
+  icu::BreakIterator* break_iterator = BreakIterator::InitializeBreakIterator(
+      isolate, locale, options, resolved);
+
+  if (!break_iterator) return isolate->ThrowIllegalOperation();
+
+  local_object->SetInternalField(0, reinterpret_cast<Smi*>(break_iterator));
+  // Make sure that the pointer to adopted text is NULL.
+  local_object->SetInternalField(1, reinterpret_cast<Smi*>(NULL));
+
+  Factory* factory = isolate->factory();
+  Handle<String> key = factory->NewStringFromStaticChars("breakIterator");
+  Handle<String> value = factory->NewStringFromStaticChars("valid");
+  JSObject::AddProperty(local_object, key, value, NONE);
+
+  // Make object handle weak so we can delete the break iterator once GC kicks
+  // in.
+  Handle<Object> wrapper = isolate->global_handles()->Create(*local_object);
+  GlobalHandles::MakeWeak(wrapper.location(),
+                          reinterpret_cast<void*>(wrapper.location()),
+                          BreakIterator::DeleteBreakIterator);
+  return *local_object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_BreakIteratorAdoptText) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, text, 1);
+
+  icu::BreakIterator* break_iterator =
+      BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
+  if (!break_iterator) return isolate->ThrowIllegalOperation();
+
+  icu::UnicodeString* u_text = reinterpret_cast<icu::UnicodeString*>(
+      break_iterator_holder->GetInternalField(1));
+  delete u_text;
+
+  v8::String::Value text_value(v8::Utils::ToLocal(text));
+  u_text = new icu::UnicodeString(reinterpret_cast<const UChar*>(*text_value),
+                                  text_value.length());
+  break_iterator_holder->SetInternalField(1, reinterpret_cast<Smi*>(u_text));
+
+  break_iterator->setText(*u_text);
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_BreakIteratorFirst) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
+
+  icu::BreakIterator* break_iterator =
+      BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
+  if (!break_iterator) return isolate->ThrowIllegalOperation();
+
+  return *isolate->factory()->NewNumberFromInt(break_iterator->first());
+}
+
+
+RUNTIME_FUNCTION(Runtime_BreakIteratorNext) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
+
+  icu::BreakIterator* break_iterator =
+      BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
+  if (!break_iterator) return isolate->ThrowIllegalOperation();
+
+  return *isolate->factory()->NewNumberFromInt(break_iterator->next());
+}
+
+
+RUNTIME_FUNCTION(Runtime_BreakIteratorCurrent) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
+
+  icu::BreakIterator* break_iterator =
+      BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
+  if (!break_iterator) return isolate->ThrowIllegalOperation();
+
+  return *isolate->factory()->NewNumberFromInt(break_iterator->current());
+}
+
+
+RUNTIME_FUNCTION(Runtime_BreakIteratorBreakType) {
+  HandleScope scope(isolate);
+
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, break_iterator_holder, 0);
+
+  icu::BreakIterator* break_iterator =
+      BreakIterator::UnpackBreakIterator(isolate, break_iterator_holder);
+  if (!break_iterator) return isolate->ThrowIllegalOperation();
+
+  // TODO(cira): Remove cast once ICU fixes base BreakIterator class.
+  icu::RuleBasedBreakIterator* rule_based_iterator =
+      static_cast<icu::RuleBasedBreakIterator*>(break_iterator);
+  int32_t status = rule_based_iterator->getRuleStatus();
+  // Keep return values in sync with JavaScript BreakType enum.
+  if (status >= UBRK_WORD_NONE && status < UBRK_WORD_NONE_LIMIT) {
+    return *isolate->factory()->NewStringFromStaticChars("none");
+  } else if (status >= UBRK_WORD_NUMBER && status < UBRK_WORD_NUMBER_LIMIT) {
+    return *isolate->factory()->number_string();
+  } else if (status >= UBRK_WORD_LETTER && status < UBRK_WORD_LETTER_LIMIT) {
+    return *isolate->factory()->NewStringFromStaticChars("letter");
+  } else if (status >= UBRK_WORD_KANA && status < UBRK_WORD_KANA_LIMIT) {
+    return *isolate->factory()->NewStringFromStaticChars("kana");
+  } else if (status >= UBRK_WORD_IDEO && status < UBRK_WORD_IDEO_LIMIT) {
+    return *isolate->factory()->NewStringFromStaticChars("ideo");
+  } else {
+    return *isolate->factory()->NewStringFromStaticChars("unknown");
+  }
+}
+}
+}  // namespace v8::internal
+
+#endif  // V8_I18N_SUPPORT
diff --git a/src/runtime/runtime-internal.cc b/src/runtime/runtime-internal.cc
new file mode 100644
index 0000000..79dface
--- /dev/null
+++ b/src/runtime/runtime-internal.cc
@@ -0,0 +1,282 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/bootstrapper.h"
+#include "src/debug.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_CheckIsBootstrapping) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Throw) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  return isolate->Throw(args[0]);
+}
+
+
+RUNTIME_FUNCTION(Runtime_ReThrow) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  return isolate->ReThrow(args[0]);
+}
+
+
+RUNTIME_FUNCTION(Runtime_PromoteScheduledException) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  return isolate->PromoteScheduledException();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowReferenceError) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+  THROW_NEW_ERROR_RETURN_FAILURE(
+      isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_PromiseRejectEvent) {
+  DCHECK(args.length() == 3);
+  HandleScope scope(isolate);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
+  CONVERT_BOOLEAN_ARG_CHECKED(debug_event, 2);
+  if (debug_event) isolate->debug()->OnPromiseReject(promise, value);
+  Handle<Symbol> key = isolate->factory()->promise_has_handler_symbol();
+  // Do not report if we actually have a handler.
+  if (JSObject::GetDataProperty(promise, key)->IsUndefined()) {
+    isolate->ReportPromiseReject(promise, value,
+                                 v8::kPromiseRejectWithNoHandler);
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_PromiseRevokeReject) {
+  DCHECK(args.length() == 1);
+  HandleScope scope(isolate);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, promise, 0);
+  Handle<Symbol> key = isolate->factory()->promise_has_handler_symbol();
+  // At this point, no revocation has been issued before
+  RUNTIME_ASSERT(JSObject::GetDataProperty(promise, key)->IsUndefined());
+  isolate->ReportPromiseReject(promise, Handle<Object>(),
+                               v8::kPromiseHandlerAddedAfterReject);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_PromiseHasHandlerSymbol) {
+  DCHECK(args.length() == 0);
+  return isolate->heap()->promise_has_handler_symbol();
+}
+
+
+RUNTIME_FUNCTION(Runtime_StackGuard) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+
+  // First check if this is a real stack overflow.
+  StackLimitCheck check(isolate);
+  if (check.JsHasOverflowed()) {
+    return isolate->StackOverflow();
+  }
+
+  return isolate->stack_guard()->HandleInterrupts();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Interrupt) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  return isolate->stack_guard()->HandleInterrupts();
+}
+
+
+RUNTIME_FUNCTION(Runtime_AllocateInNewSpace) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_SMI_ARG_CHECKED(size, 0);
+  RUNTIME_ASSERT(IsAligned(size, kPointerSize));
+  RUNTIME_ASSERT(size > 0);
+  RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
+  return *isolate->factory()->NewFillerObject(size, false, NEW_SPACE);
+}
+
+
+RUNTIME_FUNCTION(Runtime_AllocateInTargetSpace) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_SMI_ARG_CHECKED(size, 0);
+  CONVERT_SMI_ARG_CHECKED(flags, 1);
+  RUNTIME_ASSERT(IsAligned(size, kPointerSize));
+  RUNTIME_ASSERT(size > 0);
+  RUNTIME_ASSERT(size <= Page::kMaxRegularHeapObjectSize);
+  bool double_align = AllocateDoubleAlignFlag::decode(flags);
+  AllocationSpace space = AllocateTargetSpace::decode(flags);
+  return *isolate->factory()->NewFillerObject(size, double_align, space);
+}
+
+
+// Collect the raw data for a stack trace.  Returns an array of 4
+// element segments each containing a receiver, function, code and
+// native code offset.
+RUNTIME_FUNCTION(Runtime_CollectStackTrace) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, error_object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, caller, 1);
+
+  if (!isolate->bootstrapper()->IsActive()) {
+    // Optionally capture a more detailed stack trace for the message.
+    isolate->CaptureAndSetDetailedStackTrace(error_object);
+    // Capture a simple stack trace for the stack property.
+    isolate->CaptureAndSetSimpleStackTrace(error_object, caller);
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetFromCache) {
+  SealHandleScope shs(isolate);
+  // This is only called from codegen, so checks might be more lax.
+  CONVERT_ARG_CHECKED(JSFunctionResultCache, cache, 0);
+  CONVERT_ARG_CHECKED(Object, key, 1);
+
+  {
+    DisallowHeapAllocation no_alloc;
+
+    int finger_index = cache->finger_index();
+    Object* o = cache->get(finger_index);
+    if (o == key) {
+      // The fastest case: hit the same place again.
+      return cache->get(finger_index + 1);
+    }
+
+    for (int i = finger_index - 2; i >= JSFunctionResultCache::kEntriesIndex;
+         i -= 2) {
+      o = cache->get(i);
+      if (o == key) {
+        cache->set_finger_index(i);
+        return cache->get(i + 1);
+      }
+    }
+
+    int size = cache->size();
+    DCHECK(size <= cache->length());
+
+    for (int i = size - 2; i > finger_index; i -= 2) {
+      o = cache->get(i);
+      if (o == key) {
+        cache->set_finger_index(i);
+        return cache->get(i + 1);
+      }
+    }
+  }
+
+  // There is no value in the cache.  Invoke the function and cache result.
+  HandleScope scope(isolate);
+
+  Handle<JSFunctionResultCache> cache_handle(cache);
+  Handle<Object> key_handle(key, isolate);
+  Handle<Object> value;
+  {
+    Handle<JSFunction> factory(JSFunction::cast(
+        cache_handle->get(JSFunctionResultCache::kFactoryIndex)));
+    // TODO(antonm): consider passing a receiver when constructing a cache.
+    Handle<JSObject> receiver(isolate->global_proxy());
+    // This handle is nor shared, nor used later, so it's safe.
+    Handle<Object> argv[] = {key_handle};
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, value,
+        Execution::Call(isolate, factory, receiver, arraysize(argv), argv));
+  }
+
+#ifdef VERIFY_HEAP
+  if (FLAG_verify_heap) {
+    cache_handle->JSFunctionResultCacheVerify();
+  }
+#endif
+
+  // Function invocation may have cleared the cache.  Reread all the data.
+  int finger_index = cache_handle->finger_index();
+  int size = cache_handle->size();
+
+  // If we have spare room, put new data into it, otherwise evict post finger
+  // entry which is likely to be the least recently used.
+  int index = -1;
+  if (size < cache_handle->length()) {
+    cache_handle->set_size(size + JSFunctionResultCache::kEntrySize);
+    index = size;
+  } else {
+    index = finger_index + JSFunctionResultCache::kEntrySize;
+    if (index == cache_handle->length()) {
+      index = JSFunctionResultCache::kEntriesIndex;
+    }
+  }
+
+  DCHECK(index % 2 == 0);
+  DCHECK(index >= JSFunctionResultCache::kEntriesIndex);
+  DCHECK(index < cache_handle->length());
+
+  cache_handle->set(index, *key_handle);
+  cache_handle->set(index + 1, *value);
+  cache_handle->set_finger_index(index);
+
+#ifdef VERIFY_HEAP
+  if (FLAG_verify_heap) {
+    cache_handle->JSFunctionResultCacheVerify();
+  }
+#endif
+
+  return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_MessageGetStartPosition) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
+  return Smi::FromInt(message->start_position());
+}
+
+
+RUNTIME_FUNCTION(Runtime_MessageGetScript) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSMessageObject, message, 0);
+  return message->script();
+}
+
+
+RUNTIME_FUNCTION(Runtime_IS_VAR) {
+  UNREACHABLE();  // implemented as macro in the parser
+  return NULL;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_GetFromCache) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_SMI_ARG_CHECKED(id, 0);
+  args[0] = isolate->native_context()->jsfunction_result_caches()->get(id);
+  return __RT_impl_Runtime_GetFromCache(args, isolate);
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-json.cc b/src/runtime/runtime-json.cc
new file mode 100644
index 0000000..647f48b
--- /dev/null
+++ b/src/runtime/runtime-json.cc
@@ -0,0 +1,53 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/json-parser.h"
+#include "src/json-stringifier.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_QuoteJSONString) {
+  HandleScope scope(isolate);
+  CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
+  DCHECK(args.length() == 1);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, BasicJsonStringifier::StringifyString(isolate, string));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_BasicJSONStringify) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  BasicJsonStringifier stringifier(isolate);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+                                     stringifier.Stringify(object));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ParseJson) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
+
+  source = String::Flatten(source);
+  // Optimized fast case where we only have Latin1 characters.
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+                                     source->IsSeqOneByteString()
+                                         ? JsonParser<true>::Parse(source)
+                                         : JsonParser<false>::Parse(source));
+  return *result;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-literals.cc b/src/runtime/runtime-literals.cc
new file mode 100644
index 0000000..8bbe0ee
--- /dev/null
+++ b/src/runtime/runtime-literals.cc
@@ -0,0 +1,435 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/allocation-site-scopes.h"
+#include "src/arguments.h"
+#include "src/ast.h"
+#include "src/parser.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+static Handle<Map> ComputeObjectLiteralMap(
+    Handle<Context> context, Handle<FixedArray> constant_properties,
+    bool* is_result_from_cache) {
+  int properties_length = constant_properties->length();
+  int number_of_properties = properties_length / 2;
+
+  for (int p = 0; p != properties_length; p += 2) {
+    Object* key = constant_properties->get(p);
+    uint32_t element_index = 0;
+    if (key->ToArrayIndex(&element_index)) {
+      // An index key does not require space in the property backing store.
+      number_of_properties--;
+    }
+  }
+  Isolate* isolate = context->GetIsolate();
+  return isolate->factory()->ObjectLiteralMapFromCache(
+      context, number_of_properties, is_result_from_cache);
+}
+
+MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
+    Isolate* isolate, Handle<FixedArray> literals,
+    Handle<FixedArray> constant_properties);
+
+
+MUST_USE_RESULT static MaybeHandle<Object> CreateObjectLiteralBoilerplate(
+    Isolate* isolate, Handle<FixedArray> literals,
+    Handle<FixedArray> constant_properties, bool should_have_fast_elements,
+    bool has_function_literal) {
+  // Get the native context from the literals array.  This is the
+  // context in which the function was created and we use the object
+  // function from this context to create the object literal.  We do
+  // not use the object function from the current native context
+  // because this might be the object function from another context
+  // which we should not have access to.
+  Handle<Context> context =
+      Handle<Context>(JSFunction::NativeContextFromLiterals(*literals));
+
+  // In case we have function literals, we want the object to be in
+  // slow properties mode for now. We don't go in the map cache because
+  // maps with constant functions can't be shared if the functions are
+  // not the same (which is the common case).
+  bool is_result_from_cache = false;
+  Handle<Map> map = has_function_literal
+                        ? Handle<Map>(context->object_function()->initial_map())
+                        : ComputeObjectLiteralMap(context, constant_properties,
+                                                  &is_result_from_cache);
+
+  PretenureFlag pretenure_flag =
+      isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
+
+  Handle<JSObject> boilerplate =
+      isolate->factory()->NewJSObjectFromMap(map, pretenure_flag);
+
+  // Normalize the elements of the boilerplate to save space if needed.
+  if (!should_have_fast_elements) JSObject::NormalizeElements(boilerplate);
+
+  // Add the constant properties to the boilerplate.
+  int length = constant_properties->length();
+  bool should_transform =
+      !is_result_from_cache && boilerplate->HasFastProperties();
+  bool should_normalize = should_transform || has_function_literal;
+  if (should_normalize) {
+    // TODO(verwaest): We might not want to ever normalize here.
+    JSObject::NormalizeProperties(boilerplate, KEEP_INOBJECT_PROPERTIES,
+                                  length / 2, "Boilerplate");
+  }
+  // TODO(verwaest): Support tracking representations in the boilerplate.
+  for (int index = 0; index < length; index += 2) {
+    Handle<Object> key(constant_properties->get(index + 0), isolate);
+    Handle<Object> value(constant_properties->get(index + 1), isolate);
+    if (value->IsFixedArray()) {
+      // The value contains the constant_properties of a
+      // simple object or array literal.
+      Handle<FixedArray> array = Handle<FixedArray>::cast(value);
+      ASSIGN_RETURN_ON_EXCEPTION(
+          isolate, value, CreateLiteralBoilerplate(isolate, literals, array),
+          Object);
+    }
+    MaybeHandle<Object> maybe_result;
+    uint32_t element_index = 0;
+    if (key->IsInternalizedString()) {
+      if (Handle<String>::cast(key)->AsArrayIndex(&element_index)) {
+        // Array index as string (uint32).
+        if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
+        maybe_result =
+            JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
+      } else {
+        Handle<String> name(String::cast(*key));
+        DCHECK(!name->AsArrayIndex(&element_index));
+        maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(
+            boilerplate, name, value, NONE);
+      }
+    } else if (key->ToArrayIndex(&element_index)) {
+      // Array index (uint32).
+      if (value->IsUninitialized()) value = handle(Smi::FromInt(0), isolate);
+      maybe_result =
+          JSObject::SetOwnElement(boilerplate, element_index, value, SLOPPY);
+    } else {
+      // Non-uint32 number.
+      DCHECK(key->IsNumber());
+      double num = key->Number();
+      char arr[100];
+      Vector<char> buffer(arr, arraysize(arr));
+      const char* str = DoubleToCString(num, buffer);
+      Handle<String> name = isolate->factory()->NewStringFromAsciiChecked(str);
+      maybe_result = JSObject::SetOwnPropertyIgnoreAttributes(boilerplate, name,
+                                                              value, NONE);
+    }
+    // If setting the property on the boilerplate throws an
+    // exception, the exception is converted to an empty handle in
+    // the handle based operations.  In that case, we need to
+    // convert back to an exception.
+    RETURN_ON_EXCEPTION(isolate, maybe_result, Object);
+  }
+
+  // Transform to fast properties if necessary. For object literals with
+  // containing function literals we defer this operation until after all
+  // computed properties have been assigned so that we can generate
+  // constant function properties.
+  if (should_transform && !has_function_literal) {
+    JSObject::MigrateSlowToFast(boilerplate,
+                                boilerplate->map()->unused_property_fields(),
+                                "FastLiteral");
+  }
+  return boilerplate;
+}
+
+
+MaybeHandle<Object> Runtime::CreateArrayLiteralBoilerplate(
+    Isolate* isolate, Handle<FixedArray> literals,
+    Handle<FixedArray> elements) {
+  // Create the JSArray.
+  Handle<JSFunction> constructor(
+      JSFunction::NativeContextFromLiterals(*literals)->array_function());
+
+  PretenureFlag pretenure_flag =
+      isolate->heap()->InNewSpace(*literals) ? NOT_TENURED : TENURED;
+
+  Handle<JSArray> object = Handle<JSArray>::cast(
+      isolate->factory()->NewJSObject(constructor, pretenure_flag));
+
+  ElementsKind constant_elements_kind =
+      static_cast<ElementsKind>(Smi::cast(elements->get(0))->value());
+  Handle<FixedArrayBase> constant_elements_values(
+      FixedArrayBase::cast(elements->get(1)));
+
+  {
+    DisallowHeapAllocation no_gc;
+    DCHECK(IsFastElementsKind(constant_elements_kind));
+    Context* native_context = isolate->context()->native_context();
+    Object* maps_array = native_context->js_array_maps();
+    DCHECK(!maps_array->IsUndefined());
+    Object* map = FixedArray::cast(maps_array)->get(constant_elements_kind);
+    object->set_map(Map::cast(map));
+  }
+
+  Handle<FixedArrayBase> copied_elements_values;
+  if (IsFastDoubleElementsKind(constant_elements_kind)) {
+    copied_elements_values = isolate->factory()->CopyFixedDoubleArray(
+        Handle<FixedDoubleArray>::cast(constant_elements_values));
+  } else {
+    DCHECK(IsFastSmiOrObjectElementsKind(constant_elements_kind));
+    const bool is_cow = (constant_elements_values->map() ==
+                         isolate->heap()->fixed_cow_array_map());
+    if (is_cow) {
+      copied_elements_values = constant_elements_values;
+#if DEBUG
+      Handle<FixedArray> fixed_array_values =
+          Handle<FixedArray>::cast(copied_elements_values);
+      for (int i = 0; i < fixed_array_values->length(); i++) {
+        DCHECK(!fixed_array_values->get(i)->IsFixedArray());
+      }
+#endif
+    } else {
+      Handle<FixedArray> fixed_array_values =
+          Handle<FixedArray>::cast(constant_elements_values);
+      Handle<FixedArray> fixed_array_values_copy =
+          isolate->factory()->CopyFixedArray(fixed_array_values);
+      copied_elements_values = fixed_array_values_copy;
+      for (int i = 0; i < fixed_array_values->length(); i++) {
+        if (fixed_array_values->get(i)->IsFixedArray()) {
+          // The value contains the constant_properties of a
+          // simple object or array literal.
+          Handle<FixedArray> fa(FixedArray::cast(fixed_array_values->get(i)));
+          Handle<Object> result;
+          ASSIGN_RETURN_ON_EXCEPTION(
+              isolate, result, CreateLiteralBoilerplate(isolate, literals, fa),
+              Object);
+          fixed_array_values_copy->set(i, *result);
+        }
+      }
+    }
+  }
+  object->set_elements(*copied_elements_values);
+  object->set_length(Smi::FromInt(copied_elements_values->length()));
+
+  JSObject::ValidateElements(object);
+  return object;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<Object> CreateLiteralBoilerplate(
+    Isolate* isolate, Handle<FixedArray> literals, Handle<FixedArray> array) {
+  Handle<FixedArray> elements = CompileTimeValue::GetElements(array);
+  const bool kHasNoFunctionLiteral = false;
+  switch (CompileTimeValue::GetLiteralType(array)) {
+    case CompileTimeValue::OBJECT_LITERAL_FAST_ELEMENTS:
+      return CreateObjectLiteralBoilerplate(isolate, literals, elements, true,
+                                            kHasNoFunctionLiteral);
+    case CompileTimeValue::OBJECT_LITERAL_SLOW_ELEMENTS:
+      return CreateObjectLiteralBoilerplate(isolate, literals, elements, false,
+                                            kHasNoFunctionLiteral);
+    case CompileTimeValue::ARRAY_LITERAL:
+      return Runtime::CreateArrayLiteralBoilerplate(isolate, literals,
+                                                    elements);
+    default:
+      UNREACHABLE();
+      return MaybeHandle<Object>();
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateObjectLiteral) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
+  CONVERT_SMI_ARG_CHECKED(literals_index, 1);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, constant_properties, 2);
+  CONVERT_SMI_ARG_CHECKED(flags, 3);
+  bool should_have_fast_elements = (flags & ObjectLiteral::kFastElements) != 0;
+  bool has_function_literal = (flags & ObjectLiteral::kHasFunction) != 0;
+
+  RUNTIME_ASSERT(literals_index >= 0 && literals_index < literals->length());
+
+  // Check if boilerplate exists. If not, create it first.
+  Handle<Object> literal_site(literals->get(literals_index), isolate);
+  Handle<AllocationSite> site;
+  Handle<JSObject> boilerplate;
+  if (*literal_site == isolate->heap()->undefined_value()) {
+    Handle<Object> raw_boilerplate;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, raw_boilerplate,
+        CreateObjectLiteralBoilerplate(isolate, literals, constant_properties,
+                                       should_have_fast_elements,
+                                       has_function_literal));
+    boilerplate = Handle<JSObject>::cast(raw_boilerplate);
+
+    AllocationSiteCreationContext creation_context(isolate);
+    site = creation_context.EnterNewScope();
+    RETURN_FAILURE_ON_EXCEPTION(
+        isolate, JSObject::DeepWalk(boilerplate, &creation_context));
+    creation_context.ExitScope(site, boilerplate);
+
+    // Update the functions literal and return the boilerplate.
+    literals->set(literals_index, *site);
+  } else {
+    site = Handle<AllocationSite>::cast(literal_site);
+    boilerplate =
+        Handle<JSObject>(JSObject::cast(site->transition_info()), isolate);
+  }
+
+  AllocationSiteUsageContext usage_context(isolate, site, true);
+  usage_context.EnterNewScope();
+  MaybeHandle<Object> maybe_copy =
+      JSObject::DeepCopy(boilerplate, &usage_context);
+  usage_context.ExitScope(site, boilerplate);
+  Handle<Object> copy;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, copy, maybe_copy);
+  return *copy;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<AllocationSite> GetLiteralAllocationSite(
+    Isolate* isolate, Handle<FixedArray> literals, int literals_index,
+    Handle<FixedArray> elements) {
+  // Check if boilerplate exists. If not, create it first.
+  Handle<Object> literal_site(literals->get(literals_index), isolate);
+  Handle<AllocationSite> site;
+  if (*literal_site == isolate->heap()->undefined_value()) {
+    DCHECK(*elements != isolate->heap()->empty_fixed_array());
+    Handle<Object> boilerplate;
+    ASSIGN_RETURN_ON_EXCEPTION(
+        isolate, boilerplate,
+        Runtime::CreateArrayLiteralBoilerplate(isolate, literals, elements),
+        AllocationSite);
+
+    AllocationSiteCreationContext creation_context(isolate);
+    site = creation_context.EnterNewScope();
+    if (JSObject::DeepWalk(Handle<JSObject>::cast(boilerplate),
+                           &creation_context).is_null()) {
+      return Handle<AllocationSite>::null();
+    }
+    creation_context.ExitScope(site, Handle<JSObject>::cast(boilerplate));
+
+    literals->set(literals_index, *site);
+  } else {
+    site = Handle<AllocationSite>::cast(literal_site);
+  }
+
+  return site;
+}
+
+
+static MaybeHandle<JSObject> CreateArrayLiteralImpl(Isolate* isolate,
+                                                    Handle<FixedArray> literals,
+                                                    int literals_index,
+                                                    Handle<FixedArray> elements,
+                                                    int flags) {
+  RUNTIME_ASSERT_HANDLIFIED(
+      literals_index >= 0 && literals_index < literals->length(), JSObject);
+  Handle<AllocationSite> site;
+  ASSIGN_RETURN_ON_EXCEPTION(
+      isolate, site,
+      GetLiteralAllocationSite(isolate, literals, literals_index, elements),
+      JSObject);
+
+  bool enable_mementos = (flags & ArrayLiteral::kDisableMementos) == 0;
+  Handle<JSObject> boilerplate(JSObject::cast(site->transition_info()));
+  AllocationSiteUsageContext usage_context(isolate, site, enable_mementos);
+  usage_context.EnterNewScope();
+  JSObject::DeepCopyHints hints = (flags & ArrayLiteral::kShallowElements) == 0
+                                      ? JSObject::kNoHints
+                                      : JSObject::kObjectIsShallow;
+  MaybeHandle<JSObject> copy =
+      JSObject::DeepCopy(boilerplate, &usage_context, hints);
+  usage_context.ExitScope(site, boilerplate);
+  return copy;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateArrayLiteral) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
+  CONVERT_SMI_ARG_CHECKED(literals_index, 1);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
+  CONVERT_SMI_ARG_CHECKED(flags, 3);
+
+  Handle<JSObject> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, CreateArrayLiteralImpl(isolate, literals, literals_index,
+                                              elements, flags));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateArrayLiteralStubBailout) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
+  CONVERT_SMI_ARG_CHECKED(literals_index, 1);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, elements, 2);
+
+  Handle<JSObject> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      CreateArrayLiteralImpl(isolate, literals, literals_index, elements,
+                             ArrayLiteral::kShallowElements));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreArrayLiteralElement) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 5);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_SMI_ARG_CHECKED(store_index, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 3);
+  CONVERT_SMI_ARG_CHECKED(literal_index, 4);
+
+  Object* raw_literal_cell = literals->get(literal_index);
+  JSArray* boilerplate = NULL;
+  if (raw_literal_cell->IsAllocationSite()) {
+    AllocationSite* site = AllocationSite::cast(raw_literal_cell);
+    boilerplate = JSArray::cast(site->transition_info());
+  } else {
+    boilerplate = JSArray::cast(raw_literal_cell);
+  }
+  Handle<JSArray> boilerplate_object(boilerplate);
+  ElementsKind elements_kind = object->GetElementsKind();
+  DCHECK(IsFastElementsKind(elements_kind));
+  // Smis should never trigger transitions.
+  DCHECK(!value->IsSmi());
+
+  if (value->IsNumber()) {
+    DCHECK(IsFastSmiElementsKind(elements_kind));
+    ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
+                                         ? FAST_HOLEY_DOUBLE_ELEMENTS
+                                         : FAST_DOUBLE_ELEMENTS;
+    if (IsMoreGeneralElementsKindTransition(
+            boilerplate_object->GetElementsKind(), transitioned_kind)) {
+      JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
+    }
+    JSObject::TransitionElementsKind(object, transitioned_kind);
+    DCHECK(IsFastDoubleElementsKind(object->GetElementsKind()));
+    FixedDoubleArray* double_array = FixedDoubleArray::cast(object->elements());
+    HeapNumber* number = HeapNumber::cast(*value);
+    double_array->set(store_index, number->Number());
+  } else {
+    if (!IsFastObjectElementsKind(elements_kind)) {
+      ElementsKind transitioned_kind = IsFastHoleyElementsKind(elements_kind)
+                                           ? FAST_HOLEY_ELEMENTS
+                                           : FAST_ELEMENTS;
+      JSObject::TransitionElementsKind(object, transitioned_kind);
+      ElementsKind boilerplate_elements_kind =
+          boilerplate_object->GetElementsKind();
+      if (IsMoreGeneralElementsKindTransition(boilerplate_elements_kind,
+                                              transitioned_kind)) {
+        JSObject::TransitionElementsKind(boilerplate_object, transitioned_kind);
+      }
+    }
+    FixedArray* object_array = FixedArray::cast(object->elements());
+    object_array->set(store_index, *value);
+  }
+  return *object;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-liveedit.cc b/src/runtime/runtime-liveedit.cc
new file mode 100644
index 0000000..b453d15
--- /dev/null
+++ b/src/runtime/runtime-liveedit.cc
@@ -0,0 +1,293 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/debug.h"
+#include "src/liveedit.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+
+static int FindSharedFunctionInfosForScript(HeapIterator* iterator,
+                                            Script* script,
+                                            FixedArray* buffer) {
+  DisallowHeapAllocation no_allocation;
+  int counter = 0;
+  int buffer_size = buffer->length();
+  for (HeapObject* obj = iterator->next(); obj != NULL;
+       obj = iterator->next()) {
+    DCHECK(obj != NULL);
+    if (!obj->IsSharedFunctionInfo()) {
+      continue;
+    }
+    SharedFunctionInfo* shared = SharedFunctionInfo::cast(obj);
+    if (shared->script() != script) {
+      continue;
+    }
+    if (counter < buffer_size) {
+      buffer->set(counter, shared);
+    }
+    counter++;
+  }
+  return counter;
+}
+
+
+// For a script finds all SharedFunctionInfo's in the heap that points
+// to this script. Returns JSArray of SharedFunctionInfo wrapped
+// in OpaqueReferences.
+RUNTIME_FUNCTION(Runtime_LiveEditFindSharedFunctionInfosForScript) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSValue, script_value, 0);
+
+  RUNTIME_ASSERT(script_value->value()->IsScript());
+  Handle<Script> script = Handle<Script>(Script::cast(script_value->value()));
+
+  const int kBufferSize = 32;
+
+  Handle<FixedArray> array;
+  array = isolate->factory()->NewFixedArray(kBufferSize);
+  int number;
+  Heap* heap = isolate->heap();
+  {
+    HeapIterator heap_iterator(heap);
+    Script* scr = *script;
+    FixedArray* arr = *array;
+    number = FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
+  }
+  if (number > kBufferSize) {
+    array = isolate->factory()->NewFixedArray(number);
+    HeapIterator heap_iterator(heap);
+    Script* scr = *script;
+    FixedArray* arr = *array;
+    FindSharedFunctionInfosForScript(&heap_iterator, scr, arr);
+  }
+
+  Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(array);
+  result->set_length(Smi::FromInt(number));
+
+  LiveEdit::WrapSharedFunctionInfos(result);
+
+  return *result;
+}
+
+
+// For a script calculates compilation information about all its functions.
+// The script source is explicitly specified by the second argument.
+// The source of the actual script is not used, however it is important that
+// all generated code keeps references to this particular instance of script.
+// Returns a JSArray of compilation infos. The array is ordered so that
+// each function with all its descendant is always stored in a continues range
+// with the function itself going first. The root function is a script function.
+RUNTIME_FUNCTION(Runtime_LiveEditGatherCompileInfo) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(JSValue, script, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
+
+  RUNTIME_ASSERT(script->value()->IsScript());
+  Handle<Script> script_handle = Handle<Script>(Script::cast(script->value()));
+
+  Handle<JSArray> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, LiveEdit::GatherCompileInfo(script_handle, source));
+  return *result;
+}
+
+
+// Changes the source of the script to a new_source.
+// If old_script_name is provided (i.e. is a String), also creates a copy of
+// the script with its original source and sends notification to debugger.
+RUNTIME_FUNCTION(Runtime_LiveEditReplaceScript) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_CHECKED(JSValue, original_script_value, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, new_source, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, old_script_name, 2);
+
+  RUNTIME_ASSERT(original_script_value->value()->IsScript());
+  Handle<Script> original_script(Script::cast(original_script_value->value()));
+
+  Handle<Object> old_script = LiveEdit::ChangeScriptSource(
+      original_script, new_source, old_script_name);
+
+  if (old_script->IsScript()) {
+    Handle<Script> script_handle = Handle<Script>::cast(old_script);
+    return *Script::GetWrapper(script_handle);
+  } else {
+    return isolate->heap()->null_value();
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_LiveEditFunctionSourceUpdated) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 0);
+  RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
+
+  LiveEdit::FunctionSourceUpdated(shared_info);
+  return isolate->heap()->undefined_value();
+}
+
+
+// Replaces code of SharedFunctionInfo with a new one.
+RUNTIME_FUNCTION(Runtime_LiveEditReplaceFunctionCode) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, new_compile_info, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_info, 1);
+  RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_info));
+
+  LiveEdit::ReplaceFunctionCode(new_compile_info, shared_info);
+  return isolate->heap()->undefined_value();
+}
+
+
+// Connects SharedFunctionInfo to another script.
+RUNTIME_FUNCTION(Runtime_LiveEditFunctionSetScript) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, function_object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, script_object, 1);
+
+  if (function_object->IsJSValue()) {
+    Handle<JSValue> function_wrapper = Handle<JSValue>::cast(function_object);
+    if (script_object->IsJSValue()) {
+      RUNTIME_ASSERT(JSValue::cast(*script_object)->value()->IsScript());
+      Script* script = Script::cast(JSValue::cast(*script_object)->value());
+      script_object = Handle<Object>(script, isolate);
+    }
+    RUNTIME_ASSERT(function_wrapper->value()->IsSharedFunctionInfo());
+    LiveEdit::SetFunctionScript(function_wrapper, script_object);
+  } else {
+    // Just ignore this. We may not have a SharedFunctionInfo for some functions
+    // and we check it in this function.
+  }
+
+  return isolate->heap()->undefined_value();
+}
+
+
+// In a code of a parent function replaces original function as embedded object
+// with a substitution one.
+RUNTIME_FUNCTION(Runtime_LiveEditReplaceRefToNestedFunction) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSValue, parent_wrapper, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSValue, orig_wrapper, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSValue, subst_wrapper, 2);
+  RUNTIME_ASSERT(parent_wrapper->value()->IsSharedFunctionInfo());
+  RUNTIME_ASSERT(orig_wrapper->value()->IsSharedFunctionInfo());
+  RUNTIME_ASSERT(subst_wrapper->value()->IsSharedFunctionInfo());
+
+  LiveEdit::ReplaceRefToNestedFunction(parent_wrapper, orig_wrapper,
+                                       subst_wrapper);
+  return isolate->heap()->undefined_value();
+}
+
+
+// Updates positions of a shared function info (first parameter) according
+// to script source change. Text change is described in second parameter as
+// array of groups of 3 numbers:
+// (change_begin, change_end, change_end_new_position).
+// Each group describes a change in text; groups are sorted by change_begin.
+RUNTIME_FUNCTION(Runtime_LiveEditPatchFunctionPositions) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, position_change_array, 1);
+  RUNTIME_ASSERT(SharedInfoWrapper::IsInstance(shared_array))
+
+  LiveEdit::PatchFunctionPositions(shared_array, position_change_array);
+  return isolate->heap()->undefined_value();
+}
+
+
+// For array of SharedFunctionInfo's (each wrapped in JSValue)
+// checks that none of them have activations on stacks (of any thread).
+// Returns array of the same length with corresponding results of
+// LiveEdit::FunctionPatchabilityStatus type.
+RUNTIME_FUNCTION(Runtime_LiveEditCheckAndDropActivations) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, shared_array, 0);
+  CONVERT_BOOLEAN_ARG_CHECKED(do_drop, 1);
+  RUNTIME_ASSERT(shared_array->length()->IsSmi());
+  RUNTIME_ASSERT(shared_array->HasFastElements())
+  int array_length = Smi::cast(shared_array->length())->value();
+  for (int i = 0; i < array_length; i++) {
+    Handle<Object> element =
+        Object::GetElement(isolate, shared_array, i).ToHandleChecked();
+    RUNTIME_ASSERT(
+        element->IsJSValue() &&
+        Handle<JSValue>::cast(element)->value()->IsSharedFunctionInfo());
+  }
+
+  return *LiveEdit::CheckAndDropActivations(shared_array, do_drop);
+}
+
+
+// Compares 2 strings line-by-line, then token-wise and returns diff in form
+// of JSArray of triplets (pos1, pos1_end, pos2_end) describing list
+// of diff chunks.
+RUNTIME_FUNCTION(Runtime_LiveEditCompareStrings) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(String, s1, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, s2, 1);
+
+  return *LiveEdit::CompareStrings(s1, s2);
+}
+
+
+// Restarts a call frame and completely drops all frames above.
+// Returns true if successful. Otherwise returns undefined or an error message.
+RUNTIME_FUNCTION(Runtime_LiveEditRestartFrame) {
+  HandleScope scope(isolate);
+  CHECK(isolate->debug()->live_edit_enabled());
+  DCHECK(args.length() == 2);
+  CONVERT_NUMBER_CHECKED(int, break_id, Int32, args[0]);
+  RUNTIME_ASSERT(isolate->debug()->CheckExecutionState(break_id));
+
+  CONVERT_NUMBER_CHECKED(int, index, Int32, args[1]);
+  Heap* heap = isolate->heap();
+
+  // Find the relevant frame with the requested index.
+  StackFrame::Id id = isolate->debug()->break_frame_id();
+  if (id == StackFrame::NO_ID) {
+    // If there are no JavaScript stack frames return undefined.
+    return heap->undefined_value();
+  }
+
+  JavaScriptFrameIterator it(isolate, id);
+  int inlined_jsframe_index = Runtime::FindIndexedNonNativeFrame(&it, index);
+  if (inlined_jsframe_index == -1) return heap->undefined_value();
+  // We don't really care what the inlined frame index is, since we are
+  // throwing away the entire frame anyways.
+  const char* error_message = LiveEdit::RestartFrame(it.frame());
+  if (error_message) {
+    return *(isolate->factory()->InternalizeUtf8String(error_message));
+  }
+  return heap->true_value();
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-maths.cc b/src/runtime/runtime-maths.cc
new file mode 100644
index 0000000..6397ad1
--- /dev/null
+++ b/src/runtime/runtime-maths.cc
@@ -0,0 +1,246 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/assembler.h"
+#include "src/codegen.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/third_party/fdlibm/fdlibm.h"
+
+
+namespace v8 {
+namespace internal {
+
+#define RUNTIME_UNARY_MATH(Name, name)                       \
+  RUNTIME_FUNCTION(Runtime_Math##Name) {                     \
+    HandleScope scope(isolate);                              \
+    DCHECK(args.length() == 1);                              \
+    isolate->counters()->math_##name()->Increment();         \
+    CONVERT_DOUBLE_ARG_CHECKED(x, 0);                        \
+    return *isolate->factory()->NewHeapNumber(std::name(x)); \
+  }
+
+RUNTIME_UNARY_MATH(Acos, acos)
+RUNTIME_UNARY_MATH(Asin, asin)
+RUNTIME_UNARY_MATH(Atan, atan)
+RUNTIME_UNARY_MATH(LogRT, log)
+#undef RUNTIME_UNARY_MATH
+
+
+RUNTIME_FUNCTION(Runtime_DoubleHi) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  uint64_t integer = double_to_uint64(x);
+  integer = (integer >> 32) & 0xFFFFFFFFu;
+  return *isolate->factory()->NewNumber(static_cast<int32_t>(integer));
+}
+
+
+RUNTIME_FUNCTION(Runtime_DoubleLo) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  return *isolate->factory()->NewNumber(
+      static_cast<int32_t>(double_to_uint64(x) & 0xFFFFFFFFu));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ConstructDouble) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_NUMBER_CHECKED(uint32_t, hi, Uint32, args[0]);
+  CONVERT_NUMBER_CHECKED(uint32_t, lo, Uint32, args[1]);
+  uint64_t result = (static_cast<uint64_t>(hi) << 32) | lo;
+  return *isolate->factory()->NewNumber(uint64_to_double(result));
+}
+
+
+RUNTIME_FUNCTION(Runtime_RemPiO2) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  Factory* factory = isolate->factory();
+  double y[2] = {0.0, 0.0};
+  int n = fdlibm::rempio2(x, y);
+  Handle<FixedArray> array = factory->NewFixedArray(3);
+  Handle<HeapNumber> y0 = factory->NewHeapNumber(y[0]);
+  Handle<HeapNumber> y1 = factory->NewHeapNumber(y[1]);
+  array->set(0, Smi::FromInt(n));
+  array->set(1, *y0);
+  array->set(2, *y1);
+  return *factory->NewJSArrayWithElements(array);
+}
+
+
+static const double kPiDividedBy4 = 0.78539816339744830962;
+
+
+RUNTIME_FUNCTION(Runtime_MathAtan2) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  isolate->counters()->math_atan2()->Increment();
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  double result;
+  if (std::isinf(x) && std::isinf(y)) {
+    // Make sure that the result in case of two infinite arguments
+    // is a multiple of Pi / 4. The sign of the result is determined
+    // by the first argument (x) and the sign of the second argument
+    // determines the multiplier: one or three.
+    int multiplier = (x < 0) ? -1 : 1;
+    if (y < 0) multiplier *= 3;
+    result = multiplier * kPiDividedBy4;
+  } else {
+    result = std::atan2(x, y);
+  }
+  return *isolate->factory()->NewNumber(result);
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathExpRT) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  isolate->counters()->math_exp()->Increment();
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  lazily_initialize_fast_exp();
+  return *isolate->factory()->NewNumber(fast_exp(x));
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathFloorRT) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  isolate->counters()->math_floor()->Increment();
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  return *isolate->factory()->NewNumber(Floor(x));
+}
+
+
+// Slow version of Math.pow.  We check for fast paths for special cases.
+// Used if VFP3 is not available.
+RUNTIME_FUNCTION(Runtime_MathPowSlow) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  isolate->counters()->math_pow()->Increment();
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+
+  // If the second argument is a smi, it is much faster to call the
+  // custom powi() function than the generic pow().
+  if (args[1]->IsSmi()) {
+    int y = args.smi_at(1);
+    return *isolate->factory()->NewNumber(power_double_int(x, y));
+  }
+
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  double result = power_helper(x, y);
+  if (std::isnan(result)) return isolate->heap()->nan_value();
+  return *isolate->factory()->NewNumber(result);
+}
+
+
+// Fast version of Math.pow if we know that y is not an integer and y is not
+// -0.5 or 0.5.  Used as slow case from full codegen.
+RUNTIME_FUNCTION(Runtime_MathPowRT) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  isolate->counters()->math_pow()->Increment();
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  if (y == 0) {
+    return Smi::FromInt(1);
+  } else {
+    double result = power_double_double(x, y);
+    if (std::isnan(result)) return isolate->heap()->nan_value();
+    return *isolate->factory()->NewNumber(result);
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_RoundNumber) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(input, 0);
+  isolate->counters()->math_round()->Increment();
+
+  if (!input->IsHeapNumber()) {
+    DCHECK(input->IsSmi());
+    return *input;
+  }
+
+  Handle<HeapNumber> number = Handle<HeapNumber>::cast(input);
+
+  double value = number->value();
+  int exponent = number->get_exponent();
+  int sign = number->get_sign();
+
+  if (exponent < -1) {
+    // Number in range ]-0.5..0.5[. These always round to +/-zero.
+    if (sign) return isolate->heap()->minus_zero_value();
+    return Smi::FromInt(0);
+  }
+
+  // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and
+  // should be rounded to 2^30, which is not smi (for 31-bit smis, similar
+  // argument holds for 32-bit smis).
+  if (!sign && exponent < kSmiValueSize - 2) {
+    return Smi::FromInt(static_cast<int>(value + 0.5));
+  }
+
+  // If the magnitude is big enough, there's no place for fraction part. If we
+  // try to add 0.5 to this number, 1.0 will be added instead.
+  if (exponent >= 52) {
+    return *number;
+  }
+
+  if (sign && value >= -0.5) return isolate->heap()->minus_zero_value();
+
+  // Do not call NumberFromDouble() to avoid extra checks.
+  return *isolate->factory()->NewNumber(Floor(value + 0.5));
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathSqrtRT) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  isolate->counters()->math_sqrt()->Increment();
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  return *isolate->factory()->NewNumber(fast_sqrt(x));
+}
+
+
+RUNTIME_FUNCTION(Runtime_MathFround) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  float xf = DoubleToFloat32(x);
+  return *isolate->factory()->NewNumber(xf);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_MathPow) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_MathPowSlow(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsMinusZero) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  if (!obj->IsHeapNumber()) return isolate->heap()->false_value();
+  HeapNumber* number = HeapNumber::cast(obj);
+  return isolate->heap()->ToBoolean(IsMinusZero(number->value()));
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-numbers.cc b/src/runtime/runtime-numbers.cc
new file mode 100644
index 0000000..bc0bb36
--- /dev/null
+++ b/src/runtime/runtime-numbers.cc
@@ -0,0 +1,596 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/base/bits.h"
+#include "src/bootstrapper.h"
+#include "src/codegen.h"
+#include "src/runtime/runtime-utils.h"
+
+
+#ifndef _STLP_VENDOR_CSTD
+// STLPort doesn't import fpclassify and isless into the std namespace.
+using std::fpclassify;
+using std::isless;
+#endif
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_SMI_ARG_CHECKED(radix, 1);
+  RUNTIME_ASSERT(2 <= radix && radix <= 36);
+
+  // Fast case where the result is a one character string.
+  if (args[0]->IsSmi()) {
+    int value = args.smi_at(0);
+    if (value >= 0 && value < radix) {
+      // Character array used for conversion.
+      static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
+      return *isolate->factory()->LookupSingleCharacterStringFromCode(
+          kCharTable[value]);
+    }
+  }
+
+  // Slow case.
+  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+  if (std::isnan(value)) {
+    return isolate->heap()->nan_string();
+  }
+  if (std::isinf(value)) {
+    if (value < 0) {
+      return isolate->heap()->minus_infinity_string();
+    }
+    return isolate->heap()->infinity_string();
+  }
+  char* str = DoubleToRadixCString(value, radix);
+  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+  DeleteArray(str);
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToFixed) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
+  int f = FastD2IChecked(f_number);
+  // See DoubleToFixedCString for these constants:
+  RUNTIME_ASSERT(f >= 0 && f <= 20);
+  RUNTIME_ASSERT(!Double(value).IsSpecial());
+  char* str = DoubleToFixedCString(value, f);
+  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+  DeleteArray(str);
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToExponential) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
+  int f = FastD2IChecked(f_number);
+  RUNTIME_ASSERT(f >= -1 && f <= 20);
+  RUNTIME_ASSERT(!Double(value).IsSpecial());
+  char* str = DoubleToExponentialCString(value, f);
+  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+  DeleteArray(str);
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
+  int f = FastD2IChecked(f_number);
+  RUNTIME_ASSERT(f >= 1 && f <= 21);
+  RUNTIME_ASSERT(!Double(value).IsSpecial());
+  char* str = DoubleToPrecisionCString(value, f);
+  Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+  DeleteArray(str);
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsValidSmi) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
+  return isolate->heap()->ToBoolean(Smi::IsValid(number));
+}
+
+
+static bool AreDigits(const uint8_t* s, int from, int to) {
+  for (int i = from; i < to; i++) {
+    if (s[i] < '0' || s[i] > '9') return false;
+  }
+
+  return true;
+}
+
+
+static int ParseDecimalInteger(const uint8_t* s, int from, int to) {
+  DCHECK(to - from < 10);  // Overflow is not possible.
+  DCHECK(from < to);
+  int d = s[from] - '0';
+
+  for (int i = from + 1; i < to; i++) {
+    d = 10 * d + (s[i] - '0');
+  }
+
+  return d;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringToNumber) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+  subject = String::Flatten(subject);
+
+  // Fast case: short integer or some sorts of junk values.
+  if (subject->IsSeqOneByteString()) {
+    int len = subject->length();
+    if (len == 0) return Smi::FromInt(0);
+
+    DisallowHeapAllocation no_gc;
+    uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
+    bool minus = (data[0] == '-');
+    int start_pos = (minus ? 1 : 0);
+
+    if (start_pos == len) {
+      return isolate->heap()->nan_value();
+    } else if (data[start_pos] > '9') {
+      // Fast check for a junk value. A valid string may start from a
+      // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
+      // or the 'I' character ('Infinity'). All of that have codes not greater
+      // than '9' except 'I' and &nbsp;.
+      if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
+        return isolate->heap()->nan_value();
+      }
+    } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
+      // The maximal/minimal smi has 10 digits. If the string has less digits
+      // we know it will fit into the smi-data type.
+      int d = ParseDecimalInteger(data, start_pos, len);
+      if (minus) {
+        if (d == 0) return isolate->heap()->minus_zero_value();
+        d = -d;
+      } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
+                 (len == 1 || data[0] != '0')) {
+        // String hash is not calculated yet but all the data are present.
+        // Update the hash field to speed up sequential convertions.
+        uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
+#ifdef DEBUG
+        subject->Hash();  // Force hash calculation.
+        DCHECK_EQ(static_cast<int>(subject->hash_field()),
+                  static_cast<int>(hash));
+#endif
+        subject->set_hash_field(hash);
+      }
+      return Smi::FromInt(d);
+    }
+  }
+
+  // Slower case.
+  int flags = ALLOW_HEX;
+  if (FLAG_harmony_numeric_literals) {
+    // The current spec draft has not updated "ToNumber Applied to the String
+    // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584
+    flags |= ALLOW_OCTAL | ALLOW_BINARY;
+  }
+
+  return *isolate->factory()->NewNumber(
+      StringToDouble(isolate->unicode_cache(), subject, flags));
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringParseInt) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+  CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
+  RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
+
+  subject = String::Flatten(subject);
+  double value;
+
+  {
+    DisallowHeapAllocation no_gc;
+    String::FlatContent flat = subject->GetFlatContent();
+
+    // ECMA-262 section 15.1.2.3, empty string is NaN
+    if (flat.IsOneByte()) {
+      value =
+          StringToInt(isolate->unicode_cache(), flat.ToOneByteVector(), radix);
+    } else {
+      value = StringToInt(isolate->unicode_cache(), flat.ToUC16Vector(), radix);
+    }
+  }
+
+  return *isolate->factory()->NewNumber(value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringParseFloat) {
+  HandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+
+  double value = StringToDouble(isolate->unicode_cache(), subject,
+                                ALLOW_TRAILING_JUNK, base::OS::nan_value());
+
+  return *isolate->factory()->NewNumber(value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
+
+  return *isolate->factory()->NumberToString(number);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
+
+  return *isolate->factory()->NumberToString(number, false);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToInteger) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_DOUBLE_ARG_CHECKED(number, 0);
+  return *isolate->factory()->NewNumber(DoubleToInteger(number));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_DOUBLE_ARG_CHECKED(number, 0);
+  double double_value = DoubleToInteger(number);
+  // Map both -0 and +0 to +0.
+  if (double_value == 0) double_value = 0;
+
+  return *isolate->factory()->NewNumber(double_value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
+  return *isolate->factory()->NewNumberFromUint(number);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_DOUBLE_ARG_CHECKED(number, 0);
+  return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
+}
+
+
+// Converts a Number to a Smi, if possible. Returns NaN if the number is not
+// a small integer.
+RUNTIME_FUNCTION(Runtime_NumberToSmi) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  if (obj->IsSmi()) {
+    return obj;
+  }
+  if (obj->IsHeapNumber()) {
+    double value = HeapNumber::cast(obj)->value();
+    int int_value = FastD2I(value);
+    if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
+      return Smi::FromInt(int_value);
+    }
+  }
+  return isolate->heap()->nan_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberAdd) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  return *isolate->factory()->NewNumber(x + y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberSub) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  return *isolate->factory()->NewNumber(x - y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberMul) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  return *isolate->factory()->NewNumber(x * y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  return *isolate->factory()->NewNumber(-x);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberDiv) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  return *isolate->factory()->NewNumber(x / y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberMod) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  return *isolate->factory()->NewNumber(modulo(x, y));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberImul) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  // We rely on implementation-defined behavior below, but at least not on
+  // undefined behavior.
+  CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
+  CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
+  int32_t product = static_cast<int32_t>(x * y);
+  return *isolate->factory()->NewNumberFromInt(product);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberOr) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+  return *isolate->factory()->NewNumberFromInt(x | y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberAnd) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+  return *isolate->factory()->NewNumberFromInt(x & y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberXor) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+  return *isolate->factory()->NewNumberFromInt(x ^ y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberShl) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+  return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberShr) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
+  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+  return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberSar) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+  CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+  return *isolate->factory()->NewNumberFromInt(
+      ArithmeticShiftRight(x, y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberEquals) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
+  if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
+  if (x == y) return Smi::FromInt(EQUAL);
+  Object* result;
+  if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
+    result = Smi::FromInt(EQUAL);
+  } else {
+    result = Smi::FromInt(NOT_EQUAL);
+  }
+  return result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberCompare) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+  CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
+  if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
+  if (x == y) return Smi::FromInt(EQUAL);
+  if (isless(x, y)) return Smi::FromInt(LESS);
+  return Smi::FromInt(GREATER);
+}
+
+
+// Compare two Smis as if they were converted to strings and then
+// compared lexicographically.
+RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_SMI_ARG_CHECKED(x_value, 0);
+  CONVERT_SMI_ARG_CHECKED(y_value, 1);
+
+  // If the integers are equal so are the string representations.
+  if (x_value == y_value) return Smi::FromInt(EQUAL);
+
+  // If one of the integers is zero the normal integer order is the
+  // same as the lexicographic order of the string representations.
+  if (x_value == 0 || y_value == 0)
+    return Smi::FromInt(x_value < y_value ? LESS : GREATER);
+
+  // If only one of the integers is negative the negative number is
+  // smallest because the char code of '-' is less than the char code
+  // of any digit.  Otherwise, we make both values positive.
+
+  // Use unsigned values otherwise the logic is incorrect for -MIN_INT on
+  // architectures using 32-bit Smis.
+  uint32_t x_scaled = x_value;
+  uint32_t y_scaled = y_value;
+  if (x_value < 0 || y_value < 0) {
+    if (y_value >= 0) return Smi::FromInt(LESS);
+    if (x_value >= 0) return Smi::FromInt(GREATER);
+    x_scaled = -x_value;
+    y_scaled = -y_value;
+  }
+
+  static const uint32_t kPowersOf10[] = {
+      1,                 10,                100,         1000,
+      10 * 1000,         100 * 1000,        1000 * 1000, 10 * 1000 * 1000,
+      100 * 1000 * 1000, 1000 * 1000 * 1000};
+
+  // If the integers have the same number of decimal digits they can be
+  // compared directly as the numeric order is the same as the
+  // lexicographic order.  If one integer has fewer digits, it is scaled
+  // by some power of 10 to have the same number of digits as the longer
+  // integer.  If the scaled integers are equal it means the shorter
+  // integer comes first in the lexicographic order.
+
+  // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
+  int x_log2 = 31 - base::bits::CountLeadingZeros32(x_scaled);
+  int x_log10 = ((x_log2 + 1) * 1233) >> 12;
+  x_log10 -= x_scaled < kPowersOf10[x_log10];
+
+  int y_log2 = 31 - base::bits::CountLeadingZeros32(y_scaled);
+  int y_log10 = ((y_log2 + 1) * 1233) >> 12;
+  y_log10 -= y_scaled < kPowersOf10[y_log10];
+
+  int tie = EQUAL;
+
+  if (x_log10 < y_log10) {
+    // X has fewer digits.  We would like to simply scale up X but that
+    // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
+    // be scaled up to 9_000_000_000. So we scale up by the next
+    // smallest power and scale down Y to drop one digit. It is OK to
+    // drop one digit from the longer integer since the final digit is
+    // past the length of the shorter integer.
+    x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
+    y_scaled /= 10;
+    tie = LESS;
+  } else if (y_log10 < x_log10) {
+    y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
+    x_scaled /= 10;
+    tie = GREATER;
+  }
+
+  if (x_scaled < y_scaled) return Smi::FromInt(LESS);
+  if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
+  return Smi::FromInt(tie);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetRootNaN) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
+  return isolate->heap()->nan_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_MaxSmi) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  return Smi::FromInt(Smi::kMaxValue);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_NumberToString) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_NumberToStringRT(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsSmi) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsSmi());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsSmi() &&
+                                    Smi::cast(obj)->value() >= 0);
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-object.cc b/src/runtime/runtime-object.cc
new file mode 100644
index 0000000..407f237
--- /dev/null
+++ b/src/runtime/runtime-object.cc
@@ -0,0 +1,1610 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/bootstrapper.h"
+#include "src/debug.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+// Returns a single character string where first character equals
+// string->Get(index).
+static Handle<Object> GetCharAt(Handle<String> string, uint32_t index) {
+  if (index < static_cast<uint32_t>(string->length())) {
+    Factory* factory = string->GetIsolate()->factory();
+    return factory->LookupSingleCharacterStringFromCode(
+        String::Flatten(string)->Get(index));
+  }
+  return Execution::CharAt(string, index);
+}
+
+
+MaybeHandle<Object> Runtime::GetElementOrCharAt(Isolate* isolate,
+                                                Handle<Object> object,
+                                                uint32_t index) {
+  // Handle [] indexing on Strings
+  if (object->IsString()) {
+    Handle<Object> result = GetCharAt(Handle<String>::cast(object), index);
+    if (!result->IsUndefined()) return result;
+  }
+
+  // Handle [] indexing on String objects
+  if (object->IsStringObjectWithCharacterAt(index)) {
+    Handle<JSValue> js_value = Handle<JSValue>::cast(object);
+    Handle<Object> result =
+        GetCharAt(Handle<String>(String::cast(js_value->value())), index);
+    if (!result->IsUndefined()) return result;
+  }
+
+  Handle<Object> result;
+  if (object->IsString() || object->IsNumber() || object->IsBoolean()) {
+    PrototypeIterator iter(isolate, object);
+    return Object::GetElement(isolate, PrototypeIterator::GetCurrent(iter),
+                              index);
+  } else {
+    return Object::GetElement(isolate, object, index);
+  }
+}
+
+
+MaybeHandle<Name> Runtime::ToName(Isolate* isolate, Handle<Object> key) {
+  if (key->IsName()) {
+    return Handle<Name>::cast(key);
+  } else {
+    Handle<Object> converted;
+    ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
+                               Execution::ToString(isolate, key), Name);
+    return Handle<Name>::cast(converted);
+  }
+}
+
+
+MaybeHandle<Object> Runtime::GetObjectProperty(Isolate* isolate,
+                                               Handle<Object> object,
+                                               Handle<Object> key) {
+  if (object->IsUndefined() || object->IsNull()) {
+    Handle<Object> args[2] = {key, object};
+    THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_load",
+                                          HandleVector(args, 2)),
+                    Object);
+  }
+
+  // Check if the given key is an array index.
+  uint32_t index;
+  if (key->ToArrayIndex(&index)) {
+    return GetElementOrCharAt(isolate, object, index);
+  }
+
+  // Convert the key to a name - possibly by calling back into JavaScript.
+  Handle<Name> name;
+  ASSIGN_RETURN_ON_EXCEPTION(isolate, name, ToName(isolate, key), Object);
+
+  // Check if the name is trivially convertible to an index and get
+  // the element if so.
+  if (name->AsArrayIndex(&index)) {
+    return GetElementOrCharAt(isolate, object, index);
+  } else {
+    return Object::GetProperty(object, name);
+  }
+}
+
+
+MaybeHandle<Object> Runtime::SetObjectProperty(Isolate* isolate,
+                                               Handle<Object> object,
+                                               Handle<Object> key,
+                                               Handle<Object> value,
+                                               StrictMode strict_mode) {
+  if (object->IsUndefined() || object->IsNull()) {
+    Handle<Object> args[2] = {key, object};
+    THROW_NEW_ERROR(isolate, NewTypeError("non_object_property_store",
+                                          HandleVector(args, 2)),
+                    Object);
+  }
+
+  if (object->IsJSProxy()) {
+    Handle<Object> name_object;
+    if (key->IsSymbol()) {
+      name_object = key;
+    } else {
+      ASSIGN_RETURN_ON_EXCEPTION(isolate, name_object,
+                                 Execution::ToString(isolate, key), Object);
+    }
+    Handle<Name> name = Handle<Name>::cast(name_object);
+    return Object::SetProperty(Handle<JSProxy>::cast(object), name, value,
+                               strict_mode);
+  }
+
+  // Check if the given key is an array index.
+  uint32_t index;
+  if (key->ToArrayIndex(&index)) {
+    // TODO(verwaest): Support non-JSObject receivers.
+    if (!object->IsJSObject()) return value;
+    Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+
+    // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
+    // of a string using [] notation.  We need to support this too in
+    // JavaScript.
+    // In the case of a String object we just need to redirect the assignment to
+    // the underlying string if the index is in range.  Since the underlying
+    // string does nothing with the assignment then we can ignore such
+    // assignments.
+    if (js_object->IsStringObjectWithCharacterAt(index)) {
+      return value;
+    }
+
+    JSObject::ValidateElements(js_object);
+    if (js_object->HasExternalArrayElements() ||
+        js_object->HasFixedTypedArrayElements()) {
+      if (!value->IsNumber() && !value->IsUndefined()) {
+        ASSIGN_RETURN_ON_EXCEPTION(isolate, value,
+                                   Execution::ToNumber(isolate, value), Object);
+      }
+    }
+
+    MaybeHandle<Object> result = JSObject::SetElement(
+        js_object, index, value, NONE, strict_mode, true, SET_PROPERTY);
+    JSObject::ValidateElements(js_object);
+
+    return result.is_null() ? result : value;
+  }
+
+  if (key->IsName()) {
+    Handle<Name> name = Handle<Name>::cast(key);
+    if (name->AsArrayIndex(&index)) {
+      // TODO(verwaest): Support non-JSObject receivers.
+      if (!object->IsJSObject()) return value;
+      Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+      if (js_object->HasExternalArrayElements()) {
+        if (!value->IsNumber() && !value->IsUndefined()) {
+          ASSIGN_RETURN_ON_EXCEPTION(
+              isolate, value, Execution::ToNumber(isolate, value), Object);
+        }
+      }
+      return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
+                                  true, SET_PROPERTY);
+    } else {
+      if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
+      return Object::SetProperty(object, name, value, strict_mode);
+    }
+  }
+
+  // Call-back into JavaScript to convert the key to a string.
+  Handle<Object> converted;
+  ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
+                             Execution::ToString(isolate, key), Object);
+  Handle<String> name = Handle<String>::cast(converted);
+
+  if (name->AsArrayIndex(&index)) {
+    // TODO(verwaest): Support non-JSObject receivers.
+    if (!object->IsJSObject()) return value;
+    Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+    return JSObject::SetElement(js_object, index, value, NONE, strict_mode,
+                                true, SET_PROPERTY);
+  }
+  return Object::SetProperty(object, name, value, strict_mode);
+}
+
+
+MaybeHandle<Object> Runtime::DefineObjectProperty(Handle<JSObject> js_object,
+                                                  Handle<Object> key,
+                                                  Handle<Object> value,
+                                                  PropertyAttributes attr) {
+  Isolate* isolate = js_object->GetIsolate();
+  // Check if the given key is an array index.
+  uint32_t index;
+  if (key->ToArrayIndex(&index)) {
+    // In Firefox/SpiderMonkey, Safari and Opera you can access the characters
+    // of a string using [] notation.  We need to support this too in
+    // JavaScript.
+    // In the case of a String object we just need to redirect the assignment to
+    // the underlying string if the index is in range.  Since the underlying
+    // string does nothing with the assignment then we can ignore such
+    // assignments.
+    if (js_object->IsStringObjectWithCharacterAt(index)) {
+      return value;
+    }
+
+    return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
+                                DEFINE_PROPERTY);
+  }
+
+  if (key->IsName()) {
+    Handle<Name> name = Handle<Name>::cast(key);
+    if (name->AsArrayIndex(&index)) {
+      return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
+                                  DEFINE_PROPERTY);
+    } else {
+      if (name->IsString()) name = String::Flatten(Handle<String>::cast(name));
+      return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
+                                                      attr);
+    }
+  }
+
+  // Call-back into JavaScript to convert the key to a string.
+  Handle<Object> converted;
+  ASSIGN_RETURN_ON_EXCEPTION(isolate, converted,
+                             Execution::ToString(isolate, key), Object);
+  Handle<String> name = Handle<String>::cast(converted);
+
+  if (name->AsArrayIndex(&index)) {
+    return JSObject::SetElement(js_object, index, value, attr, SLOPPY, false,
+                                DEFINE_PROPERTY);
+  } else {
+    return JSObject::SetOwnPropertyIgnoreAttributes(js_object, name, value,
+                                                    attr);
+  }
+}
+
+
+MaybeHandle<Object> Runtime::GetPrototype(Isolate* isolate,
+                                          Handle<Object> obj) {
+  // We don't expect access checks to be needed on JSProxy objects.
+  DCHECK(!obj->IsAccessCheckNeeded() || obj->IsJSObject());
+  PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
+  do {
+    if (PrototypeIterator::GetCurrent(iter)->IsAccessCheckNeeded() &&
+        !isolate->MayNamedAccess(
+            Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
+            isolate->factory()->proto_string(), v8::ACCESS_GET)) {
+      isolate->ReportFailedAccessCheck(
+          Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
+          v8::ACCESS_GET);
+      RETURN_EXCEPTION_IF_SCHEDULED_EXCEPTION(isolate, Object);
+      return isolate->factory()->undefined_value();
+    }
+    iter.AdvanceIgnoringProxies();
+    if (PrototypeIterator::GetCurrent(iter)->IsJSProxy()) {
+      return PrototypeIterator::GetCurrent(iter);
+    }
+  } while (!iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN));
+  return PrototypeIterator::GetCurrent(iter);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetPrototype) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+                                     Runtime::GetPrototype(isolate, obj));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalSetPrototype) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+  DCHECK(!obj->IsAccessCheckNeeded());
+  DCHECK(!obj->map()->is_observed());
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, JSObject::SetPrototype(obj, prototype, false));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetPrototype) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+  if (obj->IsAccessCheckNeeded() &&
+      !isolate->MayNamedAccess(obj, isolate->factory()->proto_string(),
+                               v8::ACCESS_SET)) {
+    isolate->ReportFailedAccessCheck(obj, v8::ACCESS_SET);
+    RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+    return isolate->heap()->undefined_value();
+  }
+  if (obj->map()->is_observed()) {
+    Handle<Object> old_value =
+        Object::GetPrototypeSkipHiddenPrototypes(isolate, obj);
+    Handle<Object> result;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, result, JSObject::SetPrototype(obj, prototype, true));
+
+    Handle<Object> new_value =
+        Object::GetPrototypeSkipHiddenPrototypes(isolate, obj);
+    if (!new_value->SameValue(*old_value)) {
+      RETURN_FAILURE_ON_EXCEPTION(
+          isolate, JSObject::EnqueueChangeRecord(
+                       obj, "setPrototype", isolate->factory()->proto_string(),
+                       old_value));
+    }
+    return *result;
+  }
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, JSObject::SetPrototype(obj, prototype, true));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsInPrototypeChain) {
+  HandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  // See ECMA-262, section 15.3.5.3, page 88 (steps 5 - 8).
+  CONVERT_ARG_HANDLE_CHECKED(Object, O, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, V, 1);
+  PrototypeIterator iter(isolate, V, PrototypeIterator::START_AT_RECEIVER);
+  while (true) {
+    iter.AdvanceIgnoringProxies();
+    if (iter.IsAtEnd()) return isolate->heap()->false_value();
+    if (iter.IsAtEnd(O)) return isolate->heap()->true_value();
+  }
+}
+
+
+// Enumerator used as indices into the array returned from GetOwnProperty
+enum PropertyDescriptorIndices {
+  IS_ACCESSOR_INDEX,
+  VALUE_INDEX,
+  GETTER_INDEX,
+  SETTER_INDEX,
+  WRITABLE_INDEX,
+  ENUMERABLE_INDEX,
+  CONFIGURABLE_INDEX,
+  DESCRIPTOR_SIZE
+};
+
+
+MUST_USE_RESULT static MaybeHandle<Object> GetOwnProperty(Isolate* isolate,
+                                                          Handle<JSObject> obj,
+                                                          Handle<Name> name) {
+  Heap* heap = isolate->heap();
+  Factory* factory = isolate->factory();
+
+  PropertyAttributes attrs;
+  uint32_t index = 0;
+  Handle<Object> value;
+  MaybeHandle<AccessorPair> maybe_accessors;
+  // TODO(verwaest): Unify once indexed properties can be handled by the
+  // LookupIterator.
+  if (name->AsArrayIndex(&index)) {
+    // Get attributes.
+    Maybe<PropertyAttributes> maybe =
+        JSReceiver::GetOwnElementAttribute(obj, index);
+    if (!maybe.has_value) return MaybeHandle<Object>();
+    attrs = maybe.value;
+    if (attrs == ABSENT) return factory->undefined_value();
+
+    // Get AccessorPair if present.
+    maybe_accessors = JSObject::GetOwnElementAccessorPair(obj, index);
+
+    // Get value if not an AccessorPair.
+    if (maybe_accessors.is_null()) {
+      ASSIGN_RETURN_ON_EXCEPTION(
+          isolate, value, Runtime::GetElementOrCharAt(isolate, obj, index),
+          Object);
+    }
+  } else {
+    // Get attributes.
+    LookupIterator it(obj, name, LookupIterator::HIDDEN);
+    Maybe<PropertyAttributes> maybe = JSObject::GetPropertyAttributes(&it);
+    if (!maybe.has_value) return MaybeHandle<Object>();
+    attrs = maybe.value;
+    if (attrs == ABSENT) return factory->undefined_value();
+
+    // Get AccessorPair if present.
+    if (it.state() == LookupIterator::ACCESSOR &&
+        it.GetAccessors()->IsAccessorPair()) {
+      maybe_accessors = Handle<AccessorPair>::cast(it.GetAccessors());
+    }
+
+    // Get value if not an AccessorPair.
+    if (maybe_accessors.is_null()) {
+      ASSIGN_RETURN_ON_EXCEPTION(isolate, value, Object::GetProperty(&it),
+                                 Object);
+    }
+  }
+  DCHECK(!isolate->has_pending_exception());
+  Handle<FixedArray> elms = factory->NewFixedArray(DESCRIPTOR_SIZE);
+  elms->set(ENUMERABLE_INDEX, heap->ToBoolean((attrs & DONT_ENUM) == 0));
+  elms->set(CONFIGURABLE_INDEX, heap->ToBoolean((attrs & DONT_DELETE) == 0));
+  elms->set(IS_ACCESSOR_INDEX, heap->ToBoolean(!maybe_accessors.is_null()));
+
+  Handle<AccessorPair> accessors;
+  if (maybe_accessors.ToHandle(&accessors)) {
+    Handle<Object> getter(accessors->GetComponent(ACCESSOR_GETTER), isolate);
+    Handle<Object> setter(accessors->GetComponent(ACCESSOR_SETTER), isolate);
+    elms->set(GETTER_INDEX, *getter);
+    elms->set(SETTER_INDEX, *setter);
+  } else {
+    elms->set(WRITABLE_INDEX, heap->ToBoolean((attrs & READ_ONLY) == 0));
+    elms->set(VALUE_INDEX, *value);
+  }
+
+  return factory->NewJSArrayWithElements(elms);
+}
+
+
+// Returns an array with the property description:
+//  if args[1] is not a property on args[0]
+//          returns undefined
+//  if args[1] is a data property on args[0]
+//         [false, value, Writeable, Enumerable, Configurable]
+//  if args[1] is an accessor on args[0]
+//         [true, GetFunction, SetFunction, Enumerable, Configurable]
+RUNTIME_FUNCTION(Runtime_GetOwnProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+                                     GetOwnProperty(isolate, obj, name));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_PreventExtensions) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+                                     JSObject::PreventExtensions(obj));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsExtensible) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSObject, obj, 0);
+  if (obj->IsJSGlobalProxy()) {
+    PrototypeIterator iter(isolate, obj);
+    if (iter.IsAtEnd()) return isolate->heap()->false_value();
+    DCHECK(iter.GetCurrent()->IsJSGlobalObject());
+    obj = JSObject::cast(iter.GetCurrent());
+  }
+  return isolate->heap()->ToBoolean(obj->map()->is_extensible());
+}
+
+
+RUNTIME_FUNCTION(Runtime_DisableAccessChecks) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(HeapObject, object, 0);
+  Handle<Map> old_map(object->map());
+  bool needs_access_checks = old_map->is_access_check_needed();
+  if (needs_access_checks) {
+    // Copy map so it won't interfere constructor's initial map.
+    Handle<Map> new_map = Map::Copy(old_map, "DisableAccessChecks");
+    new_map->set_is_access_check_needed(false);
+    JSObject::MigrateToMap(Handle<JSObject>::cast(object), new_map);
+  }
+  return isolate->heap()->ToBoolean(needs_access_checks);
+}
+
+
+RUNTIME_FUNCTION(Runtime_EnableAccessChecks) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  Handle<Map> old_map(object->map());
+  RUNTIME_ASSERT(!old_map->is_access_check_needed());
+  // Copy map so it won't interfere constructor's initial map.
+  Handle<Map> new_map = Map::Copy(old_map, "EnableAccessChecks");
+  new_map->set_is_access_check_needed(true);
+  JSObject::MigrateToMap(object, new_map);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_OptimizeObjectForAddingMultipleProperties) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_SMI_ARG_CHECKED(properties, 1);
+  // Conservative upper limit to prevent fuzz tests from going OOM.
+  RUNTIME_ASSERT(properties <= 100000);
+  if (object->HasFastProperties() && !object->IsJSGlobalProxy()) {
+    JSObject::NormalizeProperties(object, KEEP_INOBJECT_PROPERTIES, properties,
+                                  "OptimizeForAdding");
+  }
+  return *object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObjectFreeze) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+  // %ObjectFreeze is a fast path and these cases are handled elsewhere.
+  RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() &&
+                 !object->map()->is_observed() && !object->IsJSProxy());
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Freeze(object));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObjectSeal) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+  // %ObjectSeal is a fast path and these cases are handled elsewhere.
+  RUNTIME_ASSERT(!object->HasSloppyArgumentsElements() &&
+                 !object->map()->is_observed() && !object->IsJSProxy());
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, JSObject::Seal(object));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, Runtime::GetObjectProperty(isolate, object, key));
+  return *result;
+}
+
+
+MUST_USE_RESULT static MaybeHandle<Object> TransitionElements(
+    Handle<Object> object, ElementsKind to_kind, Isolate* isolate) {
+  HandleScope scope(isolate);
+  if (!object->IsJSObject()) {
+    isolate->ThrowIllegalOperation();
+    return MaybeHandle<Object>();
+  }
+  ElementsKind from_kind =
+      Handle<JSObject>::cast(object)->map()->elements_kind();
+  if (Map::IsValidElementsTransition(from_kind, to_kind)) {
+    JSObject::TransitionElementsKind(Handle<JSObject>::cast(object), to_kind);
+    return object;
+  }
+  isolate->ThrowIllegalOperation();
+  return MaybeHandle<Object>();
+}
+
+
+// KeyedGetProperty is called from KeyedLoadIC::GenerateGeneric.
+RUNTIME_FUNCTION(Runtime_KeyedGetProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, receiver_obj, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key_obj, 1);
+
+  // Fast cases for getting named properties of the receiver JSObject
+  // itself.
+  //
+  // The global proxy objects has to be excluded since LookupOwn on
+  // the global proxy object can return a valid result even though the
+  // global proxy object never has properties.  This is the case
+  // because the global proxy object forwards everything to its hidden
+  // prototype including own lookups.
+  //
+  // Additionally, we need to make sure that we do not cache results
+  // for objects that require access checks.
+  if (receiver_obj->IsJSObject()) {
+    if (!receiver_obj->IsJSGlobalProxy() &&
+        !receiver_obj->IsAccessCheckNeeded() && key_obj->IsName()) {
+      DisallowHeapAllocation no_allocation;
+      Handle<JSObject> receiver = Handle<JSObject>::cast(receiver_obj);
+      Handle<Name> key = Handle<Name>::cast(key_obj);
+      if (receiver->HasFastProperties()) {
+        // Attempt to use lookup cache.
+        Handle<Map> receiver_map(receiver->map(), isolate);
+        KeyedLookupCache* keyed_lookup_cache = isolate->keyed_lookup_cache();
+        int index = keyed_lookup_cache->Lookup(receiver_map, key);
+        if (index != -1) {
+          // Doubles are not cached, so raw read the value.
+          return receiver->RawFastPropertyAt(
+              FieldIndex::ForKeyedLookupCacheIndex(*receiver_map, index));
+        }
+        // Lookup cache miss.  Perform lookup and update the cache if
+        // appropriate.
+        LookupIterator it(receiver, key, LookupIterator::OWN);
+        if (it.state() == LookupIterator::DATA &&
+            it.property_details().type() == FIELD) {
+          FieldIndex field_index = it.GetFieldIndex();
+          // Do not track double fields in the keyed lookup cache. Reading
+          // double values requires boxing.
+          if (!it.representation().IsDouble()) {
+            keyed_lookup_cache->Update(receiver_map, key,
+                                       field_index.GetKeyedLookupCacheIndex());
+          }
+          AllowHeapAllocation allow_allocation;
+          return *JSObject::FastPropertyAt(receiver, it.representation(),
+                                           field_index);
+        }
+      } else {
+        // Attempt dictionary lookup.
+        NameDictionary* dictionary = receiver->property_dictionary();
+        int entry = dictionary->FindEntry(key);
+        if ((entry != NameDictionary::kNotFound) &&
+            (dictionary->DetailsAt(entry).type() == FIELD)) {
+          Object* value = dictionary->ValueAt(entry);
+          if (!receiver->IsGlobalObject()) return value;
+          value = PropertyCell::cast(value)->value();
+          if (!value->IsTheHole()) return value;
+          // If value is the hole (meaning, absent) do the general lookup.
+        }
+      }
+    } else if (key_obj->IsSmi()) {
+      // JSObject without a name key. If the key is a Smi, check for a
+      // definite out-of-bounds access to elements, which is a strong indicator
+      // that subsequent accesses will also call the runtime. Proactively
+      // transition elements to FAST_*_ELEMENTS to avoid excessive boxing of
+      // doubles for those future calls in the case that the elements would
+      // become FAST_DOUBLE_ELEMENTS.
+      Handle<JSObject> js_object = Handle<JSObject>::cast(receiver_obj);
+      ElementsKind elements_kind = js_object->GetElementsKind();
+      if (IsFastDoubleElementsKind(elements_kind)) {
+        Handle<Smi> key = Handle<Smi>::cast(key_obj);
+        if (key->value() >= js_object->elements()->length()) {
+          if (IsFastHoleyElementsKind(elements_kind)) {
+            elements_kind = FAST_HOLEY_ELEMENTS;
+          } else {
+            elements_kind = FAST_ELEMENTS;
+          }
+          RETURN_FAILURE_ON_EXCEPTION(
+              isolate, TransitionElements(js_object, elements_kind, isolate));
+        }
+      } else {
+        DCHECK(IsFastSmiOrObjectElementsKind(elements_kind) ||
+               !IsFastElementsKind(elements_kind));
+      }
+    }
+  } else if (receiver_obj->IsString() && key_obj->IsSmi()) {
+    // Fast case for string indexing using [] with a smi index.
+    Handle<String> str = Handle<String>::cast(receiver_obj);
+    int index = args.smi_at(1);
+    if (index >= 0 && index < str->length()) {
+      return *GetCharAt(str, index);
+    }
+  }
+
+  // Fall back to GetObjectProperty.
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Runtime::GetObjectProperty(isolate, receiver_obj, key_obj));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_AddNamedProperty) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 4);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+  CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
+  RUNTIME_ASSERT(
+      (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+  // Compute attributes.
+  PropertyAttributes attributes =
+      static_cast<PropertyAttributes>(unchecked_attributes);
+
+#ifdef DEBUG
+  uint32_t index = 0;
+  DCHECK(!key->ToArrayIndex(&index));
+  LookupIterator it(object, key, LookupIterator::OWN_SKIP_INTERCEPTOR);
+  Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+  if (!maybe.has_value) return isolate->heap()->exception();
+  RUNTIME_ASSERT(!it.IsFound());
+#endif
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      JSObject::SetOwnPropertyIgnoreAttributes(object, key, value, attributes));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetProperty) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 4);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+  CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode_arg, 3);
+  StrictMode strict_mode = strict_mode_arg;
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Runtime::SetObjectProperty(isolate, object, key, value, strict_mode));
+  return *result;
+}
+
+
+// Adds an element to an array.
+// This is used to create an indexed data property into an array.
+RUNTIME_FUNCTION(Runtime_AddElement) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 4);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, key, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+  CONVERT_SMI_ARG_CHECKED(unchecked_attributes, 3);
+  RUNTIME_ASSERT(
+      (unchecked_attributes & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+  // Compute attributes.
+  PropertyAttributes attributes =
+      static_cast<PropertyAttributes>(unchecked_attributes);
+
+  uint32_t index = 0;
+  key->ToArrayIndex(&index);
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, JSObject::SetElement(object, index, value, attributes,
+                                            SLOPPY, false, DEFINE_PROPERTY));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeleteProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+  CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 2);
+  JSReceiver::DeleteMode delete_mode = strict_mode == STRICT
+                                           ? JSReceiver::STRICT_DELETION
+                                           : JSReceiver::NORMAL_DELETION;
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, JSReceiver::DeleteProperty(object, key, delete_mode));
+  return *result;
+}
+
+
+static Object* HasOwnPropertyImplementation(Isolate* isolate,
+                                            Handle<JSObject> object,
+                                            Handle<Name> key) {
+  Maybe<bool> maybe = JSReceiver::HasOwnProperty(object, key);
+  if (!maybe.has_value) return isolate->heap()->exception();
+  if (maybe.value) return isolate->heap()->true_value();
+  // Handle hidden prototypes.  If there's a hidden prototype above this thing
+  // then we have to check it for properties, because they are supposed to
+  // look like they are on this object.
+  PrototypeIterator iter(isolate, object);
+  if (!iter.IsAtEnd() &&
+      Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter))
+          ->map()
+          ->is_hidden_prototype()) {
+    // TODO(verwaest): The recursion is not necessary for keys that are array
+    // indices. Removing this.
+    return HasOwnPropertyImplementation(
+        isolate, Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter)),
+        key);
+  }
+  RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+  return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasOwnProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0)
+  CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+
+  uint32_t index;
+  const bool key_is_array_index = key->AsArrayIndex(&index);
+
+  // Only JS objects can have properties.
+  if (object->IsJSObject()) {
+    Handle<JSObject> js_obj = Handle<JSObject>::cast(object);
+    // Fast case: either the key is a real named property or it is not
+    // an array index and there are no interceptors or hidden
+    // prototypes.
+    Maybe<bool> maybe;
+    if (key_is_array_index) {
+      maybe = JSObject::HasOwnElement(js_obj, index);
+    } else {
+      maybe = JSObject::HasRealNamedProperty(js_obj, key);
+    }
+    if (!maybe.has_value) return isolate->heap()->exception();
+    DCHECK(!isolate->has_pending_exception());
+    if (maybe.value) {
+      return isolate->heap()->true_value();
+    }
+    Map* map = js_obj->map();
+    if (!key_is_array_index && !map->has_named_interceptor() &&
+        !HeapObject::cast(map->prototype())->map()->is_hidden_prototype()) {
+      return isolate->heap()->false_value();
+    }
+    // Slow case.
+    return HasOwnPropertyImplementation(isolate, Handle<JSObject>(js_obj),
+                                        Handle<Name>(key));
+  } else if (object->IsString() && key_is_array_index) {
+    // Well, there is one exception:  Handle [] on strings.
+    Handle<String> string = Handle<String>::cast(object);
+    if (index < static_cast<uint32_t>(string->length())) {
+      return isolate->heap()->true_value();
+    }
+  }
+  return isolate->heap()->false_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+
+  Maybe<bool> maybe = JSReceiver::HasProperty(receiver, key);
+  if (!maybe.has_value) return isolate->heap()->exception();
+  return isolate->heap()->ToBoolean(maybe.value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasElement) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
+  CONVERT_SMI_ARG_CHECKED(index, 1);
+
+  Maybe<bool> maybe = JSReceiver::HasElement(receiver, index);
+  if (!maybe.has_value) return isolate->heap()->exception();
+  return isolate->heap()->ToBoolean(maybe.value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsPropertyEnumerable) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+
+  Maybe<PropertyAttributes> maybe =
+      JSReceiver::GetOwnPropertyAttributes(object, key);
+  if (!maybe.has_value) return isolate->heap()->exception();
+  if (maybe.value == ABSENT) maybe.value = DONT_ENUM;
+  return isolate->heap()->ToBoolean((maybe.value & DONT_ENUM) == 0);
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetPropertyNames) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, object, 0);
+  Handle<JSArray> result;
+
+  isolate->counters()->for_in()->Increment();
+  Handle<FixedArray> elements;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, elements,
+      JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
+  return *isolate->factory()->NewJSArrayWithElements(elements);
+}
+
+
+// Returns either a FixedArray as Runtime_GetPropertyNames,
+// or, if the given object has an enum cache that contains
+// all enumerable properties of the object and its prototypes
+// have none, the map of the object. This is used to speed up
+// the check for deletions during a for-in.
+RUNTIME_FUNCTION(Runtime_GetPropertyNamesFast) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(JSReceiver, raw_object, 0);
+
+  if (raw_object->IsSimpleEnum()) return raw_object->map();
+
+  HandleScope scope(isolate);
+  Handle<JSReceiver> object(raw_object);
+  Handle<FixedArray> content;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, content,
+      JSReceiver::GetKeys(object, JSReceiver::INCLUDE_PROTOS));
+
+  // Test again, since cache may have been built by preceding call.
+  if (object->IsSimpleEnum()) return object->map();
+
+  return *content;
+}
+
+
+// Find the length of the prototype chain that is to be handled as one. If a
+// prototype object is hidden it is to be viewed as part of the the object it
+// is prototype for.
+static int OwnPrototypeChainLength(JSObject* obj) {
+  int count = 1;
+  for (PrototypeIterator iter(obj->GetIsolate(), obj);
+       !iter.IsAtEnd(PrototypeIterator::END_AT_NON_HIDDEN); iter.Advance()) {
+    count++;
+  }
+  return count;
+}
+
+
+// Return the names of the own named properties.
+// args[0]: object
+// args[1]: PropertyAttributes as int
+RUNTIME_FUNCTION(Runtime_GetOwnPropertyNames) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  if (!args[0]->IsJSObject()) {
+    return isolate->heap()->undefined_value();
+  }
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  CONVERT_SMI_ARG_CHECKED(filter_value, 1);
+  PropertyAttributes filter = static_cast<PropertyAttributes>(filter_value);
+
+  // Skip the global proxy as it has no properties and always delegates to the
+  // real global object.
+  if (obj->IsJSGlobalProxy()) {
+    // Only collect names if access is permitted.
+    if (obj->IsAccessCheckNeeded() &&
+        !isolate->MayNamedAccess(obj, isolate->factory()->undefined_value(),
+                                 v8::ACCESS_KEYS)) {
+      isolate->ReportFailedAccessCheck(obj, v8::ACCESS_KEYS);
+      RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+      return *isolate->factory()->NewJSArray(0);
+    }
+    PrototypeIterator iter(isolate, obj);
+    obj = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+  }
+
+  // Find the number of objects making up this.
+  int length = OwnPrototypeChainLength(*obj);
+
+  // Find the number of own properties for each of the objects.
+  ScopedVector<int> own_property_count(length);
+  int total_property_count = 0;
+  {
+    PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
+    for (int i = 0; i < length; i++) {
+      DCHECK(!iter.IsAtEnd());
+      Handle<JSObject> jsproto =
+          Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+      // Only collect names if access is permitted.
+      if (jsproto->IsAccessCheckNeeded() &&
+          !isolate->MayNamedAccess(jsproto,
+                                   isolate->factory()->undefined_value(),
+                                   v8::ACCESS_KEYS)) {
+        isolate->ReportFailedAccessCheck(jsproto, v8::ACCESS_KEYS);
+        RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+        return *isolate->factory()->NewJSArray(0);
+      }
+      int n;
+      n = jsproto->NumberOfOwnProperties(filter);
+      own_property_count[i] = n;
+      total_property_count += n;
+      iter.Advance();
+    }
+  }
+
+  // Allocate an array with storage for all the property names.
+  Handle<FixedArray> names =
+      isolate->factory()->NewFixedArray(total_property_count);
+
+  // Get the property names.
+  int next_copy_index = 0;
+  int hidden_strings = 0;
+  {
+    PrototypeIterator iter(isolate, obj, PrototypeIterator::START_AT_RECEIVER);
+    for (int i = 0; i < length; i++) {
+      DCHECK(!iter.IsAtEnd());
+      Handle<JSObject> jsproto =
+          Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+      jsproto->GetOwnPropertyNames(*names, next_copy_index, filter);
+      // Names from hidden prototypes may already have been added
+      // for inherited function template instances. Count the duplicates
+      // and stub them out; the final copy pass at the end ignores holes.
+      for (int j = next_copy_index; j < next_copy_index + own_property_count[i];
+           j++) {
+        Object* name_from_hidden_proto = names->get(j);
+        if (isolate->IsInternallyUsedPropertyName(name_from_hidden_proto)) {
+          hidden_strings++;
+        } else {
+          for (int k = 0; k < next_copy_index; k++) {
+            Object* name = names->get(k);
+            if (name_from_hidden_proto == name) {
+              names->set(j, isolate->heap()->hidden_string());
+              hidden_strings++;
+              break;
+            }
+          }
+        }
+      }
+      next_copy_index += own_property_count[i];
+
+      iter.Advance();
+    }
+  }
+
+  // Filter out name of hidden properties object and
+  // hidden prototype duplicates.
+  if (hidden_strings > 0) {
+    Handle<FixedArray> old_names = names;
+    names = isolate->factory()->NewFixedArray(names->length() - hidden_strings);
+    int dest_pos = 0;
+    for (int i = 0; i < total_property_count; i++) {
+      Object* name = old_names->get(i);
+      if (isolate->IsInternallyUsedPropertyName(name)) {
+        hidden_strings--;
+        continue;
+      }
+      names->set(dest_pos++, name);
+    }
+    DCHECK_EQ(0, hidden_strings);
+  }
+
+  return *isolate->factory()->NewJSArrayWithElements(names);
+}
+
+
+// Return the names of the own indexed properties.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetOwnElementNames) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  if (!args[0]->IsJSObject()) {
+    return isolate->heap()->undefined_value();
+  }
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+  int n = obj->NumberOfOwnElements(static_cast<PropertyAttributes>(NONE));
+  Handle<FixedArray> names = isolate->factory()->NewFixedArray(n);
+  obj->GetOwnElementKeys(*names, static_cast<PropertyAttributes>(NONE));
+  return *isolate->factory()->NewJSArrayWithElements(names);
+}
+
+
+// Return information on whether an object has a named or indexed interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetInterceptorInfo) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  if (!args[0]->IsJSObject()) {
+    return Smi::FromInt(0);
+  }
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+  int result = 0;
+  if (obj->HasNamedInterceptor()) result |= 2;
+  if (obj->HasIndexedInterceptor()) result |= 1;
+
+  return Smi::FromInt(result);
+}
+
+
+// Return property names from named interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetNamedInterceptorPropertyNames) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+  if (obj->HasNamedInterceptor()) {
+    Handle<JSObject> result;
+    if (JSObject::GetKeysForNamedInterceptor(obj, obj).ToHandle(&result)) {
+      return *result;
+    }
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+// Return element names from indexed interceptor.
+// args[0]: object
+RUNTIME_FUNCTION(Runtime_GetIndexedInterceptorElementNames) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+
+  if (obj->HasIndexedInterceptor()) {
+    Handle<JSObject> result;
+    if (JSObject::GetKeysForIndexedInterceptor(obj, obj).ToHandle(&result)) {
+      return *result;
+    }
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_OwnKeys) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSObject, raw_object, 0);
+  Handle<JSObject> object(raw_object);
+
+  if (object->IsJSGlobalProxy()) {
+    // Do access checks before going to the global object.
+    if (object->IsAccessCheckNeeded() &&
+        !isolate->MayNamedAccess(object, isolate->factory()->undefined_value(),
+                                 v8::ACCESS_KEYS)) {
+      isolate->ReportFailedAccessCheck(object, v8::ACCESS_KEYS);
+      RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate);
+      return *isolate->factory()->NewJSArray(0);
+    }
+
+    PrototypeIterator iter(isolate, object);
+    // If proxy is detached we simply return an empty array.
+    if (iter.IsAtEnd()) return *isolate->factory()->NewJSArray(0);
+    object = Handle<JSObject>::cast(PrototypeIterator::GetCurrent(iter));
+  }
+
+  Handle<FixedArray> contents;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, contents, JSReceiver::GetKeys(object, JSReceiver::OWN_ONLY));
+
+  // Some fast paths through GetKeysInFixedArrayFor reuse a cached
+  // property array and since the result is mutable we have to create
+  // a fresh clone on each invocation.
+  int length = contents->length();
+  Handle<FixedArray> copy = isolate->factory()->NewFixedArray(length);
+  for (int i = 0; i < length; i++) {
+    Object* entry = contents->get(i);
+    if (entry->IsString()) {
+      copy->set(i, entry);
+    } else {
+      DCHECK(entry->IsNumber());
+      HandleScope scope(isolate);
+      Handle<Object> entry_handle(entry, isolate);
+      Handle<Object> entry_str =
+          isolate->factory()->NumberToString(entry_handle);
+      copy->set(i, *entry_str);
+    }
+  }
+  return *isolate->factory()->NewJSArrayWithElements(copy);
+}
+
+
+RUNTIME_FUNCTION(Runtime_ToFastProperties) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  if (object->IsJSObject() && !object->IsGlobalObject()) {
+    JSObject::MigrateSlowToFast(Handle<JSObject>::cast(object), 0,
+                                "RuntimeToFastProperties");
+  }
+  return *object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ToBool) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, object, 0);
+
+  return isolate->heap()->ToBoolean(object->BooleanValue());
+}
+
+
+// Returns the type string of a value; see ECMA-262, 11.4.3 (p 47).
+// Possible optimizations: put the type string into the oddballs.
+RUNTIME_FUNCTION(Runtime_Typeof) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  if (obj->IsNumber()) return isolate->heap()->number_string();
+  HeapObject* heap_obj = HeapObject::cast(obj);
+
+  // typeof an undetectable object is 'undefined'
+  if (heap_obj->map()->is_undetectable()) {
+    return isolate->heap()->undefined_string();
+  }
+
+  InstanceType instance_type = heap_obj->map()->instance_type();
+  if (instance_type < FIRST_NONSTRING_TYPE) {
+    return isolate->heap()->string_string();
+  }
+
+  switch (instance_type) {
+    case ODDBALL_TYPE:
+      if (heap_obj->IsTrue() || heap_obj->IsFalse()) {
+        return isolate->heap()->boolean_string();
+      }
+      if (heap_obj->IsNull()) {
+        return isolate->heap()->object_string();
+      }
+      DCHECK(heap_obj->IsUndefined());
+      return isolate->heap()->undefined_string();
+    case SYMBOL_TYPE:
+      return isolate->heap()->symbol_string();
+    case JS_FUNCTION_TYPE:
+    case JS_FUNCTION_PROXY_TYPE:
+      return isolate->heap()->function_string();
+    default:
+      // For any kind of object not handled above, the spec rule for
+      // host objects gives that it is okay to return "object"
+      return isolate->heap()->object_string();
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_Booleanize) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(Object, value_raw, 0);
+  CONVERT_SMI_ARG_CHECKED(token_raw, 1);
+  intptr_t value = reinterpret_cast<intptr_t>(value_raw);
+  Token::Value token = static_cast<Token::Value>(token_raw);
+  switch (token) {
+    case Token::EQ:
+    case Token::EQ_STRICT:
+      return isolate->heap()->ToBoolean(value == 0);
+    case Token::NE:
+    case Token::NE_STRICT:
+      return isolate->heap()->ToBoolean(value != 0);
+    case Token::LT:
+      return isolate->heap()->ToBoolean(value < 0);
+    case Token::GT:
+      return isolate->heap()->ToBoolean(value > 0);
+    case Token::LTE:
+      return isolate->heap()->ToBoolean(value <= 0);
+    case Token::GTE:
+      return isolate->heap()->ToBoolean(value >= 0);
+    default:
+      // This should only happen during natives fuzzing.
+      return isolate->heap()->undefined_value();
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewStringWrapper) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, value, 0);
+  return *Object::ToObject(isolate, value).ToHandleChecked();
+}
+
+
+RUNTIME_FUNCTION(Runtime_AllocateHeapNumber) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  return *isolate->factory()->NewHeapNumber(0);
+}
+
+
+static Object* Runtime_NewObjectHelper(Isolate* isolate,
+                                       Handle<Object> constructor,
+                                       Handle<AllocationSite> site) {
+  // If the constructor isn't a proper function we throw a type error.
+  if (!constructor->IsJSFunction()) {
+    Vector<Handle<Object> > arguments = HandleVector(&constructor, 1);
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+                                   NewTypeError("not_constructor", arguments));
+  }
+
+  Handle<JSFunction> function = Handle<JSFunction>::cast(constructor);
+
+  // If function should not have prototype, construction is not allowed. In this
+  // case generated code bailouts here, since function has no initial_map.
+  if (!function->should_have_prototype() && !function->shared()->bound()) {
+    Vector<Handle<Object> > arguments = HandleVector(&constructor, 1);
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+                                   NewTypeError("not_constructor", arguments));
+  }
+
+  Debug* debug = isolate->debug();
+  // Handle stepping into constructors if step into is active.
+  if (debug->StepInActive()) {
+    debug->HandleStepIn(function, Handle<Object>::null(), 0, true);
+  }
+
+  if (function->has_initial_map()) {
+    if (function->initial_map()->instance_type() == JS_FUNCTION_TYPE) {
+      // The 'Function' function ignores the receiver object when
+      // called using 'new' and creates a new JSFunction object that
+      // is returned.  The receiver object is only used for error
+      // reporting if an error occurs when constructing the new
+      // JSFunction. Factory::NewJSObject() should not be used to
+      // allocate JSFunctions since it does not properly initialize
+      // the shared part of the function. Since the receiver is
+      // ignored anyway, we use the global object as the receiver
+      // instead of a new JSFunction object. This way, errors are
+      // reported the same way whether or not 'Function' is called
+      // using 'new'.
+      return isolate->global_proxy();
+    }
+  }
+
+  // The function should be compiled for the optimization hints to be
+  // available.
+  Compiler::EnsureCompiled(function, CLEAR_EXCEPTION);
+
+  Handle<JSObject> result;
+  if (site.is_null()) {
+    result = isolate->factory()->NewJSObject(function);
+  } else {
+    result = isolate->factory()->NewJSObjectWithMemento(function, site);
+  }
+
+  isolate->counters()->constructed_objects()->Increment();
+  isolate->counters()->constructed_objects_runtime()->Increment();
+
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewObject) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 0);
+  return Runtime_NewObjectHelper(isolate, constructor,
+                                 Handle<AllocationSite>::null());
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewObjectWithAllocationSite) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, constructor, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, feedback, 0);
+  Handle<AllocationSite> site;
+  if (feedback->IsAllocationSite()) {
+    // The feedback can be an AllocationSite or undefined.
+    site = Handle<AllocationSite>::cast(feedback);
+  }
+  return Runtime_NewObjectHelper(isolate, constructor, site);
+}
+
+
+RUNTIME_FUNCTION(Runtime_FinalizeInstanceSize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  function->CompleteInobjectSlackTracking();
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GlobalProxy) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, global, 0);
+  if (!global->IsJSGlobalObject()) return isolate->heap()->null_value();
+  return JSGlobalObject::cast(global)->global_proxy();
+}
+
+
+RUNTIME_FUNCTION(Runtime_LookupAccessor) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, receiver, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+  CONVERT_SMI_ARG_CHECKED(flag, 2);
+  AccessorComponent component = flag == 0 ? ACCESSOR_GETTER : ACCESSOR_SETTER;
+  if (!receiver->IsJSObject()) return isolate->heap()->undefined_value();
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      JSObject::GetAccessor(Handle<JSObject>::cast(receiver), name, component));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_LoadMutableDouble) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Smi, index, 1);
+  RUNTIME_ASSERT((index->value() & 1) == 1);
+  FieldIndex field_index =
+      FieldIndex::ForLoadByFieldIndex(object->map(), index->value());
+  if (field_index.is_inobject()) {
+    RUNTIME_ASSERT(field_index.property_index() <
+                   object->map()->inobject_properties());
+  } else {
+    RUNTIME_ASSERT(field_index.outobject_array_index() <
+                   object->properties()->length());
+  }
+  return *JSObject::FastPropertyAt(object, Representation::Double(),
+                                   field_index);
+}
+
+
+RUNTIME_FUNCTION(Runtime_TryMigrateInstance) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, object, 0);
+  if (!object->IsJSObject()) return Smi::FromInt(0);
+  Handle<JSObject> js_object = Handle<JSObject>::cast(object);
+  if (!js_object->map()->is_deprecated()) return Smi::FromInt(0);
+  // This call must not cause lazy deopts, because it's called from deferred
+  // code where we can't handle lazy deopts for lack of a suitable bailout
+  // ID. So we just try migration and signal failure if necessary,
+  // which will also trigger a deopt.
+  if (!JSObject::TryMigrateInstance(js_object)) return Smi::FromInt(0);
+  return *object;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsJSGlobalProxy) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsJSGlobalProxy());
+}
+
+
+static bool IsValidAccessor(Handle<Object> obj) {
+  return obj->IsUndefined() || obj->IsSpecFunction() || obj->IsNull();
+}
+
+
+// Implements part of 8.12.9 DefineOwnProperty.
+// There are 3 cases that lead here:
+// Step 4b - define a new accessor property.
+// Steps 9c & 12 - replace an existing data property with an accessor property.
+// Step 12 - update an existing accessor property with an accessor or generic
+//           descriptor.
+RUNTIME_FUNCTION(Runtime_DefineAccessorPropertyUnchecked) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 5);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, obj, 0);
+  RUNTIME_ASSERT(!obj->IsNull());
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, getter, 2);
+  RUNTIME_ASSERT(IsValidAccessor(getter));
+  CONVERT_ARG_HANDLE_CHECKED(Object, setter, 3);
+  RUNTIME_ASSERT(IsValidAccessor(setter));
+  CONVERT_SMI_ARG_CHECKED(unchecked, 4);
+  RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+  PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
+
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, JSObject::DefineAccessor(obj, name, getter, setter, attr));
+  return isolate->heap()->undefined_value();
+}
+
+
+// Implements part of 8.12.9 DefineOwnProperty.
+// There are 3 cases that lead here:
+// Step 4a - define a new data property.
+// Steps 9b & 12 - replace an existing accessor property with a data property.
+// Step 12 - update an existing data property with a data or generic
+//           descriptor.
+RUNTIME_FUNCTION(Runtime_DefineDataPropertyUnchecked) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, js_object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, name, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, obj_value, 2);
+  CONVERT_SMI_ARG_CHECKED(unchecked, 3);
+  RUNTIME_ASSERT((unchecked & ~(READ_ONLY | DONT_ENUM | DONT_DELETE)) == 0);
+  PropertyAttributes attr = static_cast<PropertyAttributes>(unchecked);
+
+  LookupIterator it(js_object, name, LookupIterator::OWN_SKIP_INTERCEPTOR);
+  if (it.IsFound() && it.state() == LookupIterator::ACCESS_CHECK) {
+    if (!isolate->MayNamedAccess(js_object, name, v8::ACCESS_SET)) {
+      return isolate->heap()->undefined_value();
+    }
+    it.Next();
+  }
+
+  // Take special care when attributes are different and there is already
+  // a property.
+  if (it.state() == LookupIterator::ACCESSOR) {
+    // Use IgnoreAttributes version since a readonly property may be
+    // overridden and SetProperty does not allow this.
+    Handle<Object> result;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, result,
+        JSObject::SetOwnPropertyIgnoreAttributes(
+            js_object, name, obj_value, attr, JSObject::DONT_FORCE_FIELD));
+    return *result;
+  }
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Runtime::DefineObjectProperty(js_object, name, obj_value, attr));
+  return *result;
+}
+
+
+// Return property without being observable by accessors or interceptors.
+RUNTIME_FUNCTION(Runtime_GetDataProperty) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Name, key, 1);
+  return *JSObject::GetDataProperty(object, key);
+}
+
+
+RUNTIME_FUNCTION(Runtime_HasFastPackedElements) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(HeapObject, obj, 0);
+  return isolate->heap()->ToBoolean(
+      IsFastPackedElementsKind(obj->map()->elements_kind()));
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ValueOf) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  if (!obj->IsJSValue()) return obj;
+  return JSValue::cast(obj)->value();
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_SetValueOf) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  CONVERT_ARG_CHECKED(Object, value, 1);
+  if (!obj->IsJSValue()) return value;
+  JSValue::cast(obj)->set_value(value);
+  return value;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ObjectEquals) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(Object, obj1, 0);
+  CONVERT_ARG_CHECKED(Object, obj2, 1);
+  return isolate->heap()->ToBoolean(obj1 == obj2);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsObject) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  if (!obj->IsHeapObject()) return isolate->heap()->false_value();
+  if (obj->IsNull()) return isolate->heap()->true_value();
+  if (obj->IsUndetectableObject()) return isolate->heap()->false_value();
+  Map* map = HeapObject::cast(obj)->map();
+  bool is_non_callable_spec_object =
+      map->instance_type() >= FIRST_NONCALLABLE_SPEC_OBJECT_TYPE &&
+      map->instance_type() <= LAST_NONCALLABLE_SPEC_OBJECT_TYPE;
+  return isolate->heap()->ToBoolean(is_non_callable_spec_object);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsUndetectableObject) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsUndetectableObject());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsSpecObject) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsSpecObject());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ClassOf) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  if (!obj->IsJSReceiver()) return isolate->heap()->null_value();
+  return JSReceiver::cast(obj)->class_name();
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-observe.cc b/src/runtime/runtime-observe.cc
new file mode 100644
index 0000000..211922c
--- /dev/null
+++ b/src/runtime/runtime-observe.cc
@@ -0,0 +1,160 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/debug.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_IsObserved) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  if (!args[0]->IsJSReceiver()) return isolate->heap()->false_value();
+  CONVERT_ARG_CHECKED(JSReceiver, obj, 0);
+  DCHECK(!obj->IsJSGlobalProxy() || !obj->map()->is_observed());
+  return isolate->heap()->ToBoolean(obj->map()->is_observed());
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetIsObserved) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, obj, 0);
+  RUNTIME_ASSERT(!obj->IsJSGlobalProxy());
+  if (obj->IsJSProxy()) return isolate->heap()->undefined_value();
+  RUNTIME_ASSERT(!obj->map()->is_observed());
+
+  DCHECK(obj->IsJSObject());
+  JSObject::SetObserved(Handle<JSObject>::cast(obj));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_EnqueueMicrotask) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, microtask, 0);
+  isolate->EnqueueMicrotask(microtask);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_RunMicrotasks) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  isolate->RunMicrotasks();
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeliverObservationChangeRecords) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callback, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, argument, 1);
+  v8::TryCatch catcher;
+  // We should send a message on uncaught exception thrown during
+  // Object.observe delivery while not interrupting further delivery, thus
+  // we make a call inside a verbose TryCatch.
+  catcher.SetVerbose(true);
+  Handle<Object> argv[] = {argument};
+
+  // Allow stepping into the observer callback.
+  Debug* debug = isolate->debug();
+  if (debug->is_active() && debug->IsStepping() &&
+      debug->last_step_action() == StepIn) {
+    // Previous StepIn may have activated a StepOut if it was at the frame exit.
+    // In this case to be able to step into the callback again, we need to clear
+    // the step out first.
+    debug->ClearStepOut();
+    debug->FloodWithOneShot(callback);
+  }
+
+  USE(Execution::Call(isolate, callback, isolate->factory()->undefined_value(),
+                      arraysize(argv), argv));
+  if (isolate->has_pending_exception()) {
+    isolate->ReportPendingMessages();
+    isolate->clear_pending_exception();
+    isolate->set_external_caught_exception(false);
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObservationState) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  return isolate->heap()->observation_state();
+}
+
+
+static bool ContextsHaveSameOrigin(Handle<Context> context1,
+                                   Handle<Context> context2) {
+  return context1->security_token() == context2->security_token();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObserverObjectAndRecordHaveSameOrigin) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, observer, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, record, 2);
+
+  Handle<Context> observer_context(observer->context()->native_context());
+  Handle<Context> object_context(object->GetCreationContext());
+  Handle<Context> record_context(record->GetCreationContext());
+
+  return isolate->heap()->ToBoolean(
+      ContextsHaveSameOrigin(object_context, observer_context) &&
+      ContextsHaveSameOrigin(object_context, record_context));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ObjectWasCreatedInCurrentOrigin) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+  Handle<Context> creation_context(object->GetCreationContext(), isolate);
+  return isolate->heap()->ToBoolean(
+      ContextsHaveSameOrigin(creation_context, isolate->native_context()));
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObjectContextObjectObserve) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+  Handle<Context> context(object->GetCreationContext(), isolate);
+  return context->native_object_observe();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObjectContextObjectGetNotifier) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0);
+
+  Handle<Context> context(object->GetCreationContext(), isolate);
+  return context->native_object_get_notifier();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetObjectContextNotifierPerformChange) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSObject, object_info, 0);
+
+  Handle<Context> context(object_info->GetCreationContext(), isolate);
+  return context->native_object_notifier_perform_change();
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-proxy.cc b/src/runtime/runtime-proxy.cc
new file mode 100644
index 0000000..baf7cdb
--- /dev/null
+++ b/src/runtime/runtime-proxy.cc
@@ -0,0 +1,85 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_CreateJSProxy) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 1);
+  if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
+  return *isolate->factory()->NewJSProxy(handler, prototype);
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateJSFunctionProxy) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(JSReceiver, handler, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, call_trap, 1);
+  RUNTIME_ASSERT(call_trap->IsJSFunction() || call_trap->IsJSFunctionProxy());
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, construct_trap, 2);
+  CONVERT_ARG_HANDLE_CHECKED(Object, prototype, 3);
+  if (!prototype->IsJSReceiver()) prototype = isolate->factory()->null_value();
+  return *isolate->factory()->NewJSFunctionProxy(handler, call_trap,
+                                                 construct_trap, prototype);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsJSProxy) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsJSProxy());
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsJSFunctionProxy) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsJSFunctionProxy());
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetHandler) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSProxy, proxy, 0);
+  return proxy->handler();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetCallTrap) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
+  return proxy->call_trap();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetConstructTrap) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunctionProxy, proxy, 0);
+  return proxy->construct_trap();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Fix) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSProxy, proxy, 0);
+  JSProxy::Fix(proxy);
+  return isolate->heap()->undefined_value();
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-regexp.cc b/src/runtime/runtime-regexp.cc
new file mode 100644
index 0000000..9296a4b
--- /dev/null
+++ b/src/runtime/runtime-regexp.cc
@@ -0,0 +1,1122 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/jsregexp-inl.h"
+#include "src/jsregexp.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/string-builder.h"
+#include "src/string-search.h"
+
+namespace v8 {
+namespace internal {
+
+class CompiledReplacement {
+ public:
+  explicit CompiledReplacement(Zone* zone)
+      : parts_(1, zone), replacement_substrings_(0, zone), zone_(zone) {}
+
+  // Return whether the replacement is simple.
+  bool Compile(Handle<String> replacement, int capture_count,
+               int subject_length);
+
+  // Use Apply only if Compile returned false.
+  void Apply(ReplacementStringBuilder* builder, int match_from, int match_to,
+             int32_t* match);
+
+  // Number of distinct parts of the replacement pattern.
+  int parts() { return parts_.length(); }
+
+  Zone* zone() const { return zone_; }
+
+ private:
+  enum PartType {
+    SUBJECT_PREFIX = 1,
+    SUBJECT_SUFFIX,
+    SUBJECT_CAPTURE,
+    REPLACEMENT_SUBSTRING,
+    REPLACEMENT_STRING,
+    NUMBER_OF_PART_TYPES
+  };
+
+  struct ReplacementPart {
+    static inline ReplacementPart SubjectMatch() {
+      return ReplacementPart(SUBJECT_CAPTURE, 0);
+    }
+    static inline ReplacementPart SubjectCapture(int capture_index) {
+      return ReplacementPart(SUBJECT_CAPTURE, capture_index);
+    }
+    static inline ReplacementPart SubjectPrefix() {
+      return ReplacementPart(SUBJECT_PREFIX, 0);
+    }
+    static inline ReplacementPart SubjectSuffix(int subject_length) {
+      return ReplacementPart(SUBJECT_SUFFIX, subject_length);
+    }
+    static inline ReplacementPart ReplacementString() {
+      return ReplacementPart(REPLACEMENT_STRING, 0);
+    }
+    static inline ReplacementPart ReplacementSubString(int from, int to) {
+      DCHECK(from >= 0);
+      DCHECK(to > from);
+      return ReplacementPart(-from, to);
+    }
+
+    // If tag <= 0 then it is the negation of a start index of a substring of
+    // the replacement pattern, otherwise it's a value from PartType.
+    ReplacementPart(int tag, int data) : tag(tag), data(data) {
+      // Must be non-positive or a PartType value.
+      DCHECK(tag < NUMBER_OF_PART_TYPES);
+    }
+    // Either a value of PartType or a non-positive number that is
+    // the negation of an index into the replacement string.
+    int tag;
+    // The data value's interpretation depends on the value of tag:
+    // tag == SUBJECT_PREFIX ||
+    // tag == SUBJECT_SUFFIX:  data is unused.
+    // tag == SUBJECT_CAPTURE: data is the number of the capture.
+    // tag == REPLACEMENT_SUBSTRING ||
+    // tag == REPLACEMENT_STRING:    data is index into array of substrings
+    //                               of the replacement string.
+    // tag <= 0: Temporary representation of the substring of the replacement
+    //           string ranging over -tag .. data.
+    //           Is replaced by REPLACEMENT_{SUB,}STRING when we create the
+    //           substring objects.
+    int data;
+  };
+
+  template <typename Char>
+  bool ParseReplacementPattern(ZoneList<ReplacementPart>* parts,
+                               Vector<Char> characters, int capture_count,
+                               int subject_length, Zone* zone) {
+    int length = characters.length();
+    int last = 0;
+    for (int i = 0; i < length; i++) {
+      Char c = characters[i];
+      if (c == '$') {
+        int next_index = i + 1;
+        if (next_index == length) {  // No next character!
+          break;
+        }
+        Char c2 = characters[next_index];
+        switch (c2) {
+          case '$':
+            if (i > last) {
+              // There is a substring before. Include the first "$".
+              parts->Add(
+                  ReplacementPart::ReplacementSubString(last, next_index),
+                  zone);
+              last = next_index + 1;  // Continue after the second "$".
+            } else {
+              // Let the next substring start with the second "$".
+              last = next_index;
+            }
+            i = next_index;
+            break;
+          case '`':
+            if (i > last) {
+              parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
+            }
+            parts->Add(ReplacementPart::SubjectPrefix(), zone);
+            i = next_index;
+            last = i + 1;
+            break;
+          case '\'':
+            if (i > last) {
+              parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
+            }
+            parts->Add(ReplacementPart::SubjectSuffix(subject_length), zone);
+            i = next_index;
+            last = i + 1;
+            break;
+          case '&':
+            if (i > last) {
+              parts->Add(ReplacementPart::ReplacementSubString(last, i), zone);
+            }
+            parts->Add(ReplacementPart::SubjectMatch(), zone);
+            i = next_index;
+            last = i + 1;
+            break;
+          case '0':
+          case '1':
+          case '2':
+          case '3':
+          case '4':
+          case '5':
+          case '6':
+          case '7':
+          case '8':
+          case '9': {
+            int capture_ref = c2 - '0';
+            if (capture_ref > capture_count) {
+              i = next_index;
+              continue;
+            }
+            int second_digit_index = next_index + 1;
+            if (second_digit_index < length) {
+              // Peek ahead to see if we have two digits.
+              Char c3 = characters[second_digit_index];
+              if ('0' <= c3 && c3 <= '9') {  // Double digits.
+                int double_digit_ref = capture_ref * 10 + c3 - '0';
+                if (double_digit_ref <= capture_count) {
+                  next_index = second_digit_index;
+                  capture_ref = double_digit_ref;
+                }
+              }
+            }
+            if (capture_ref > 0) {
+              if (i > last) {
+                parts->Add(ReplacementPart::ReplacementSubString(last, i),
+                           zone);
+              }
+              DCHECK(capture_ref <= capture_count);
+              parts->Add(ReplacementPart::SubjectCapture(capture_ref), zone);
+              last = next_index + 1;
+            }
+            i = next_index;
+            break;
+          }
+          default:
+            i = next_index;
+            break;
+        }
+      }
+    }
+    if (length > last) {
+      if (last == 0) {
+        // Replacement is simple.  Do not use Apply to do the replacement.
+        return true;
+      } else {
+        parts->Add(ReplacementPart::ReplacementSubString(last, length), zone);
+      }
+    }
+    return false;
+  }
+
+  ZoneList<ReplacementPart> parts_;
+  ZoneList<Handle<String> > replacement_substrings_;
+  Zone* zone_;
+};
+
+
+bool CompiledReplacement::Compile(Handle<String> replacement, int capture_count,
+                                  int subject_length) {
+  {
+    DisallowHeapAllocation no_gc;
+    String::FlatContent content = replacement->GetFlatContent();
+    DCHECK(content.IsFlat());
+    bool simple = false;
+    if (content.IsOneByte()) {
+      simple = ParseReplacementPattern(&parts_, content.ToOneByteVector(),
+                                       capture_count, subject_length, zone());
+    } else {
+      DCHECK(content.IsTwoByte());
+      simple = ParseReplacementPattern(&parts_, content.ToUC16Vector(),
+                                       capture_count, subject_length, zone());
+    }
+    if (simple) return true;
+  }
+
+  Isolate* isolate = replacement->GetIsolate();
+  // Find substrings of replacement string and create them as String objects.
+  int substring_index = 0;
+  for (int i = 0, n = parts_.length(); i < n; i++) {
+    int tag = parts_[i].tag;
+    if (tag <= 0) {  // A replacement string slice.
+      int from = -tag;
+      int to = parts_[i].data;
+      replacement_substrings_.Add(
+          isolate->factory()->NewSubString(replacement, from, to), zone());
+      parts_[i].tag = REPLACEMENT_SUBSTRING;
+      parts_[i].data = substring_index;
+      substring_index++;
+    } else if (tag == REPLACEMENT_STRING) {
+      replacement_substrings_.Add(replacement, zone());
+      parts_[i].data = substring_index;
+      substring_index++;
+    }
+  }
+  return false;
+}
+
+
+void CompiledReplacement::Apply(ReplacementStringBuilder* builder,
+                                int match_from, int match_to, int32_t* match) {
+  DCHECK_LT(0, parts_.length());
+  for (int i = 0, n = parts_.length(); i < n; i++) {
+    ReplacementPart part = parts_[i];
+    switch (part.tag) {
+      case SUBJECT_PREFIX:
+        if (match_from > 0) builder->AddSubjectSlice(0, match_from);
+        break;
+      case SUBJECT_SUFFIX: {
+        int subject_length = part.data;
+        if (match_to < subject_length) {
+          builder->AddSubjectSlice(match_to, subject_length);
+        }
+        break;
+      }
+      case SUBJECT_CAPTURE: {
+        int capture = part.data;
+        int from = match[capture * 2];
+        int to = match[capture * 2 + 1];
+        if (from >= 0 && to > from) {
+          builder->AddSubjectSlice(from, to);
+        }
+        break;
+      }
+      case REPLACEMENT_SUBSTRING:
+      case REPLACEMENT_STRING:
+        builder->AddString(replacement_substrings_[part.data]);
+        break;
+      default:
+        UNREACHABLE();
+    }
+  }
+}
+
+
+void FindOneByteStringIndices(Vector<const uint8_t> subject, uint8_t pattern,
+                              ZoneList<int>* indices, unsigned int limit,
+                              Zone* zone) {
+  DCHECK(limit > 0);
+  // Collect indices of pattern in subject using memchr.
+  // Stop after finding at most limit values.
+  const uint8_t* subject_start = subject.start();
+  const uint8_t* subject_end = subject_start + subject.length();
+  const uint8_t* pos = subject_start;
+  while (limit > 0) {
+    pos = reinterpret_cast<const uint8_t*>(
+        memchr(pos, pattern, subject_end - pos));
+    if (pos == NULL) return;
+    indices->Add(static_cast<int>(pos - subject_start), zone);
+    pos++;
+    limit--;
+  }
+}
+
+
+void FindTwoByteStringIndices(const Vector<const uc16> subject, uc16 pattern,
+                              ZoneList<int>* indices, unsigned int limit,
+                              Zone* zone) {
+  DCHECK(limit > 0);
+  const uc16* subject_start = subject.start();
+  const uc16* subject_end = subject_start + subject.length();
+  for (const uc16* pos = subject_start; pos < subject_end && limit > 0; pos++) {
+    if (*pos == pattern) {
+      indices->Add(static_cast<int>(pos - subject_start), zone);
+      limit--;
+    }
+  }
+}
+
+
+template <typename SubjectChar, typename PatternChar>
+void FindStringIndices(Isolate* isolate, Vector<const SubjectChar> subject,
+                       Vector<const PatternChar> pattern,
+                       ZoneList<int>* indices, unsigned int limit, Zone* zone) {
+  DCHECK(limit > 0);
+  // Collect indices of pattern in subject.
+  // Stop after finding at most limit values.
+  int pattern_length = pattern.length();
+  int index = 0;
+  StringSearch<PatternChar, SubjectChar> search(isolate, pattern);
+  while (limit > 0) {
+    index = search.Search(subject, index);
+    if (index < 0) return;
+    indices->Add(index, zone);
+    index += pattern_length;
+    limit--;
+  }
+}
+
+
+void FindStringIndicesDispatch(Isolate* isolate, String* subject,
+                               String* pattern, ZoneList<int>* indices,
+                               unsigned int limit, Zone* zone) {
+  {
+    DisallowHeapAllocation no_gc;
+    String::FlatContent subject_content = subject->GetFlatContent();
+    String::FlatContent pattern_content = pattern->GetFlatContent();
+    DCHECK(subject_content.IsFlat());
+    DCHECK(pattern_content.IsFlat());
+    if (subject_content.IsOneByte()) {
+      Vector<const uint8_t> subject_vector = subject_content.ToOneByteVector();
+      if (pattern_content.IsOneByte()) {
+        Vector<const uint8_t> pattern_vector =
+            pattern_content.ToOneByteVector();
+        if (pattern_vector.length() == 1) {
+          FindOneByteStringIndices(subject_vector, pattern_vector[0], indices,
+                                   limit, zone);
+        } else {
+          FindStringIndices(isolate, subject_vector, pattern_vector, indices,
+                            limit, zone);
+        }
+      } else {
+        FindStringIndices(isolate, subject_vector,
+                          pattern_content.ToUC16Vector(), indices, limit, zone);
+      }
+    } else {
+      Vector<const uc16> subject_vector = subject_content.ToUC16Vector();
+      if (pattern_content.IsOneByte()) {
+        Vector<const uint8_t> pattern_vector =
+            pattern_content.ToOneByteVector();
+        if (pattern_vector.length() == 1) {
+          FindTwoByteStringIndices(subject_vector, pattern_vector[0], indices,
+                                   limit, zone);
+        } else {
+          FindStringIndices(isolate, subject_vector, pattern_vector, indices,
+                            limit, zone);
+        }
+      } else {
+        Vector<const uc16> pattern_vector = pattern_content.ToUC16Vector();
+        if (pattern_vector.length() == 1) {
+          FindTwoByteStringIndices(subject_vector, pattern_vector[0], indices,
+                                   limit, zone);
+        } else {
+          FindStringIndices(isolate, subject_vector, pattern_vector, indices,
+                            limit, zone);
+        }
+      }
+    }
+  }
+}
+
+
+template <typename ResultSeqString>
+MUST_USE_RESULT static Object* StringReplaceGlobalAtomRegExpWithString(
+    Isolate* isolate, Handle<String> subject, Handle<JSRegExp> pattern_regexp,
+    Handle<String> replacement, Handle<JSArray> last_match_info) {
+  DCHECK(subject->IsFlat());
+  DCHECK(replacement->IsFlat());
+
+  ZoneScope zone_scope(isolate->runtime_zone());
+  ZoneList<int> indices(8, zone_scope.zone());
+  DCHECK_EQ(JSRegExp::ATOM, pattern_regexp->TypeTag());
+  String* pattern =
+      String::cast(pattern_regexp->DataAt(JSRegExp::kAtomPatternIndex));
+  int subject_len = subject->length();
+  int pattern_len = pattern->length();
+  int replacement_len = replacement->length();
+
+  FindStringIndicesDispatch(isolate, *subject, pattern, &indices, 0xffffffff,
+                            zone_scope.zone());
+
+  int matches = indices.length();
+  if (matches == 0) return *subject;
+
+  // Detect integer overflow.
+  int64_t result_len_64 = (static_cast<int64_t>(replacement_len) -
+                           static_cast<int64_t>(pattern_len)) *
+                              static_cast<int64_t>(matches) +
+                          static_cast<int64_t>(subject_len);
+  int result_len;
+  if (result_len_64 > static_cast<int64_t>(String::kMaxLength)) {
+    STATIC_ASSERT(String::kMaxLength < kMaxInt);
+    result_len = kMaxInt;  // Provoke exception.
+  } else {
+    result_len = static_cast<int>(result_len_64);
+  }
+
+  int subject_pos = 0;
+  int result_pos = 0;
+
+  MaybeHandle<SeqString> maybe_res;
+  if (ResultSeqString::kHasOneByteEncoding) {
+    maybe_res = isolate->factory()->NewRawOneByteString(result_len);
+  } else {
+    maybe_res = isolate->factory()->NewRawTwoByteString(result_len);
+  }
+  Handle<SeqString> untyped_res;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, untyped_res, maybe_res);
+  Handle<ResultSeqString> result = Handle<ResultSeqString>::cast(untyped_res);
+
+  for (int i = 0; i < matches; i++) {
+    // Copy non-matched subject content.
+    if (subject_pos < indices.at(i)) {
+      String::WriteToFlat(*subject, result->GetChars() + result_pos,
+                          subject_pos, indices.at(i));
+      result_pos += indices.at(i) - subject_pos;
+    }
+
+    // Replace match.
+    if (replacement_len > 0) {
+      String::WriteToFlat(*replacement, result->GetChars() + result_pos, 0,
+                          replacement_len);
+      result_pos += replacement_len;
+    }
+
+    subject_pos = indices.at(i) + pattern_len;
+  }
+  // Add remaining subject content at the end.
+  if (subject_pos < subject_len) {
+    String::WriteToFlat(*subject, result->GetChars() + result_pos, subject_pos,
+                        subject_len);
+  }
+
+  int32_t match_indices[] = {indices.at(matches - 1),
+                             indices.at(matches - 1) + pattern_len};
+  RegExpImpl::SetLastMatchInfo(last_match_info, subject, 0, match_indices);
+
+  return *result;
+}
+
+
+MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithString(
+    Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp,
+    Handle<String> replacement, Handle<JSArray> last_match_info) {
+  DCHECK(subject->IsFlat());
+  DCHECK(replacement->IsFlat());
+
+  int capture_count = regexp->CaptureCount();
+  int subject_length = subject->length();
+
+  // CompiledReplacement uses zone allocation.
+  ZoneScope zone_scope(isolate->runtime_zone());
+  CompiledReplacement compiled_replacement(zone_scope.zone());
+  bool simple_replace =
+      compiled_replacement.Compile(replacement, capture_count, subject_length);
+
+  // Shortcut for simple non-regexp global replacements
+  if (regexp->TypeTag() == JSRegExp::ATOM && simple_replace) {
+    if (subject->HasOnlyOneByteChars() && replacement->HasOnlyOneByteChars()) {
+      return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
+          isolate, subject, regexp, replacement, last_match_info);
+    } else {
+      return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
+          isolate, subject, regexp, replacement, last_match_info);
+    }
+  }
+
+  RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  int32_t* current_match = global_cache.FetchNext();
+  if (current_match == NULL) {
+    if (global_cache.HasException()) return isolate->heap()->exception();
+    return *subject;
+  }
+
+  // Guessing the number of parts that the final result string is built
+  // from. Global regexps can match any number of times, so we guess
+  // conservatively.
+  int expected_parts = (compiled_replacement.parts() + 1) * 4 + 1;
+  ReplacementStringBuilder builder(isolate->heap(), subject, expected_parts);
+
+  // Number of parts added by compiled replacement plus preceeding
+  // string and possibly suffix after last match.  It is possible for
+  // all components to use two elements when encoded as two smis.
+  const int parts_added_per_loop = 2 * (compiled_replacement.parts() + 2);
+
+  int prev = 0;
+
+  do {
+    builder.EnsureCapacity(parts_added_per_loop);
+
+    int start = current_match[0];
+    int end = current_match[1];
+
+    if (prev < start) {
+      builder.AddSubjectSlice(prev, start);
+    }
+
+    if (simple_replace) {
+      builder.AddString(replacement);
+    } else {
+      compiled_replacement.Apply(&builder, start, end, current_match);
+    }
+    prev = end;
+
+    current_match = global_cache.FetchNext();
+  } while (current_match != NULL);
+
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  if (prev < subject_length) {
+    builder.EnsureCapacity(2);
+    builder.AddSubjectSlice(prev, subject_length);
+  }
+
+  RegExpImpl::SetLastMatchInfo(last_match_info, subject, capture_count,
+                               global_cache.LastSuccessfulMatch());
+
+  Handle<String> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result, builder.ToString());
+  return *result;
+}
+
+
+template <typename ResultSeqString>
+MUST_USE_RESULT static Object* StringReplaceGlobalRegExpWithEmptyString(
+    Isolate* isolate, Handle<String> subject, Handle<JSRegExp> regexp,
+    Handle<JSArray> last_match_info) {
+  DCHECK(subject->IsFlat());
+
+  // Shortcut for simple non-regexp global replacements
+  if (regexp->TypeTag() == JSRegExp::ATOM) {
+    Handle<String> empty_string = isolate->factory()->empty_string();
+    if (subject->IsOneByteRepresentation()) {
+      return StringReplaceGlobalAtomRegExpWithString<SeqOneByteString>(
+          isolate, subject, regexp, empty_string, last_match_info);
+    } else {
+      return StringReplaceGlobalAtomRegExpWithString<SeqTwoByteString>(
+          isolate, subject, regexp, empty_string, last_match_info);
+    }
+  }
+
+  RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  int32_t* current_match = global_cache.FetchNext();
+  if (current_match == NULL) {
+    if (global_cache.HasException()) return isolate->heap()->exception();
+    return *subject;
+  }
+
+  int start = current_match[0];
+  int end = current_match[1];
+  int capture_count = regexp->CaptureCount();
+  int subject_length = subject->length();
+
+  int new_length = subject_length - (end - start);
+  if (new_length == 0) return isolate->heap()->empty_string();
+
+  Handle<ResultSeqString> answer;
+  if (ResultSeqString::kHasOneByteEncoding) {
+    answer = Handle<ResultSeqString>::cast(
+        isolate->factory()->NewRawOneByteString(new_length).ToHandleChecked());
+  } else {
+    answer = Handle<ResultSeqString>::cast(
+        isolate->factory()->NewRawTwoByteString(new_length).ToHandleChecked());
+  }
+
+  int prev = 0;
+  int position = 0;
+
+  do {
+    start = current_match[0];
+    end = current_match[1];
+    if (prev < start) {
+      // Add substring subject[prev;start] to answer string.
+      String::WriteToFlat(*subject, answer->GetChars() + position, prev, start);
+      position += start - prev;
+    }
+    prev = end;
+
+    current_match = global_cache.FetchNext();
+  } while (current_match != NULL);
+
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  RegExpImpl::SetLastMatchInfo(last_match_info, subject, capture_count,
+                               global_cache.LastSuccessfulMatch());
+
+  if (prev < subject_length) {
+    // Add substring subject[prev;length] to answer string.
+    String::WriteToFlat(*subject, answer->GetChars() + position, prev,
+                        subject_length);
+    position += subject_length - prev;
+  }
+
+  if (position == 0) return isolate->heap()->empty_string();
+
+  // Shorten string and fill
+  int string_size = ResultSeqString::SizeFor(position);
+  int allocated_string_size = ResultSeqString::SizeFor(new_length);
+  int delta = allocated_string_size - string_size;
+
+  answer->set_length(position);
+  if (delta == 0) return *answer;
+
+  Address end_of_string = answer->address() + string_size;
+  Heap* heap = isolate->heap();
+
+  // The trimming is performed on a newly allocated object, which is on a
+  // fresly allocated page or on an already swept page. Hence, the sweeper
+  // thread can not get confused with the filler creation. No synchronization
+  // needed.
+  heap->CreateFillerObjectAt(end_of_string, delta);
+  heap->AdjustLiveBytes(answer->address(), -delta, Heap::FROM_MUTATOR);
+  return *answer;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringReplaceGlobalRegExpWithString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, replacement, 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
+
+  RUNTIME_ASSERT(regexp->GetFlags().is_global());
+  RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
+
+  subject = String::Flatten(subject);
+
+  if (replacement->length() == 0) {
+    if (subject->HasOnlyOneByteChars()) {
+      return StringReplaceGlobalRegExpWithEmptyString<SeqOneByteString>(
+          isolate, subject, regexp, last_match_info);
+    } else {
+      return StringReplaceGlobalRegExpWithEmptyString<SeqTwoByteString>(
+          isolate, subject, regexp, last_match_info);
+    }
+  }
+
+  replacement = String::Flatten(replacement);
+
+  return StringReplaceGlobalRegExpWithString(isolate, subject, regexp,
+                                             replacement, last_match_info);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringSplit) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, pattern, 1);
+  CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[2]);
+  RUNTIME_ASSERT(limit > 0);
+
+  int subject_length = subject->length();
+  int pattern_length = pattern->length();
+  RUNTIME_ASSERT(pattern_length > 0);
+
+  if (limit == 0xffffffffu) {
+    Handle<Object> cached_answer(
+        RegExpResultsCache::Lookup(isolate->heap(), *subject, *pattern,
+                                   RegExpResultsCache::STRING_SPLIT_SUBSTRINGS),
+        isolate);
+    if (*cached_answer != Smi::FromInt(0)) {
+      // The cache FixedArray is a COW-array and can therefore be reused.
+      Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(
+          Handle<FixedArray>::cast(cached_answer));
+      return *result;
+    }
+  }
+
+  // The limit can be very large (0xffffffffu), but since the pattern
+  // isn't empty, we can never create more parts than ~half the length
+  // of the subject.
+
+  subject = String::Flatten(subject);
+  pattern = String::Flatten(pattern);
+
+  static const int kMaxInitialListCapacity = 16;
+
+  ZoneScope zone_scope(isolate->runtime_zone());
+
+  // Find (up to limit) indices of separator and end-of-string in subject
+  int initial_capacity = Min<uint32_t>(kMaxInitialListCapacity, limit);
+  ZoneList<int> indices(initial_capacity, zone_scope.zone());
+
+  FindStringIndicesDispatch(isolate, *subject, *pattern, &indices, limit,
+                            zone_scope.zone());
+
+  if (static_cast<uint32_t>(indices.length()) < limit) {
+    indices.Add(subject_length, zone_scope.zone());
+  }
+
+  // The list indices now contains the end of each part to create.
+
+  // Create JSArray of substrings separated by separator.
+  int part_count = indices.length();
+
+  Handle<JSArray> result = isolate->factory()->NewJSArray(part_count);
+  JSObject::EnsureCanContainHeapObjectElements(result);
+  result->set_length(Smi::FromInt(part_count));
+
+  DCHECK(result->HasFastObjectElements());
+
+  if (part_count == 1 && indices.at(0) == subject_length) {
+    FixedArray::cast(result->elements())->set(0, *subject);
+    return *result;
+  }
+
+  Handle<FixedArray> elements(FixedArray::cast(result->elements()));
+  int part_start = 0;
+  for (int i = 0; i < part_count; i++) {
+    HandleScope local_loop_handle(isolate);
+    int part_end = indices.at(i);
+    Handle<String> substring =
+        isolate->factory()->NewProperSubString(subject, part_start, part_end);
+    elements->set(i, *substring);
+    part_start = part_end + pattern_length;
+  }
+
+  if (limit == 0xffffffffu) {
+    if (result->HasFastObjectElements()) {
+      RegExpResultsCache::Enter(isolate, subject, pattern, elements,
+                                RegExpResultsCache::STRING_SPLIT_SUBSTRINGS);
+    }
+  }
+
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_RegExpExecRT) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
+  CONVERT_INT32_ARG_CHECKED(index, 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 3);
+  // Due to the way the JS calls are constructed this must be less than the
+  // length of a string, i.e. it is always a Smi.  We check anyway for security.
+  RUNTIME_ASSERT(index >= 0);
+  RUNTIME_ASSERT(index <= subject->length());
+  isolate->counters()->regexp_entry_runtime()->Increment();
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      RegExpImpl::Exec(regexp, subject, index, last_match_info));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_RegExpConstructResult) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_SMI_ARG_CHECKED(size, 0);
+  RUNTIME_ASSERT(size >= 0 && size <= FixedArray::kMaxLength);
+  CONVERT_ARG_HANDLE_CHECKED(Object, index, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, input, 2);
+  Handle<FixedArray> elements = isolate->factory()->NewFixedArray(size);
+  Handle<Map> regexp_map(isolate->native_context()->regexp_result_map());
+  Handle<JSObject> object =
+      isolate->factory()->NewJSObjectFromMap(regexp_map, NOT_TENURED, false);
+  Handle<JSArray> array = Handle<JSArray>::cast(object);
+  array->set_elements(*elements);
+  array->set_length(Smi::FromInt(size));
+  // Write in-object properties after the length of the array.
+  array->InObjectPropertyAtPut(JSRegExpResult::kIndexIndex, *index);
+  array->InObjectPropertyAtPut(JSRegExpResult::kInputIndex, *input);
+  return *array;
+}
+
+
+static JSRegExp::Flags RegExpFlagsFromString(Handle<String> flags,
+                                             bool* success) {
+  uint32_t value = JSRegExp::NONE;
+  int length = flags->length();
+  // A longer flags string cannot be valid.
+  if (length > 4) return JSRegExp::Flags(0);
+  for (int i = 0; i < length; i++) {
+    uint32_t flag = JSRegExp::NONE;
+    switch (flags->Get(i)) {
+      case 'g':
+        flag = JSRegExp::GLOBAL;
+        break;
+      case 'i':
+        flag = JSRegExp::IGNORE_CASE;
+        break;
+      case 'm':
+        flag = JSRegExp::MULTILINE;
+        break;
+      case 'y':
+        if (!FLAG_harmony_regexps) return JSRegExp::Flags(0);
+        flag = JSRegExp::STICKY;
+        break;
+      default:
+        return JSRegExp::Flags(0);
+    }
+    // Duplicate flag.
+    if (value & flag) return JSRegExp::Flags(0);
+    value |= flag;
+  }
+  *success = true;
+  return JSRegExp::Flags(value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_RegExpInitializeAndCompile) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, flags_string, 2);
+  Factory* factory = isolate->factory();
+  // If source is the empty string we set it to "(?:)" instead as
+  // suggested by ECMA-262, 5th, section 15.10.4.1.
+  if (source->length() == 0) source = factory->query_colon_string();
+
+  bool success = false;
+  JSRegExp::Flags flags = RegExpFlagsFromString(flags_string, &success);
+  if (!success) {
+    Handle<FixedArray> element = factory->NewFixedArray(1);
+    element->set(0, *flags_string);
+    Handle<JSArray> args = factory->NewJSArrayWithElements(element);
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewSyntaxError("invalid_regexp_flags", args));
+  }
+
+  Handle<Object> global = factory->ToBoolean(flags.is_global());
+  Handle<Object> ignore_case = factory->ToBoolean(flags.is_ignore_case());
+  Handle<Object> multiline = factory->ToBoolean(flags.is_multiline());
+  Handle<Object> sticky = factory->ToBoolean(flags.is_sticky());
+
+  Map* map = regexp->map();
+  Object* constructor = map->constructor();
+  if (!FLAG_harmony_regexps && constructor->IsJSFunction() &&
+      JSFunction::cast(constructor)->initial_map() == map) {
+    // If we still have the original map, set in-object properties directly.
+    // Both true and false are immovable immortal objects so no need for write
+    // barrier.
+    regexp->InObjectPropertyAtPut(JSRegExp::kGlobalFieldIndex, *global,
+                                  SKIP_WRITE_BARRIER);
+    regexp->InObjectPropertyAtPut(JSRegExp::kIgnoreCaseFieldIndex, *ignore_case,
+                                  SKIP_WRITE_BARRIER);
+    regexp->InObjectPropertyAtPut(JSRegExp::kMultilineFieldIndex, *multiline,
+                                  SKIP_WRITE_BARRIER);
+    regexp->InObjectPropertyAtPut(JSRegExp::kLastIndexFieldIndex,
+                                  Smi::FromInt(0), SKIP_WRITE_BARRIER);
+  } else {
+    // Map has changed, so use generic, but slower, method.  We also end here if
+    // the --harmony-regexp flag is set, because the initial map does not have
+    // space for the 'sticky' flag, since it is from the snapshot, but must work
+    // both with and without --harmony-regexp.  When sticky comes out from under
+    // the flag, we will be able to use the fast initial map.
+    PropertyAttributes final =
+        static_cast<PropertyAttributes>(READ_ONLY | DONT_ENUM | DONT_DELETE);
+    PropertyAttributes writable =
+        static_cast<PropertyAttributes>(DONT_ENUM | DONT_DELETE);
+    Handle<Object> zero(Smi::FromInt(0), isolate);
+    JSObject::SetOwnPropertyIgnoreAttributes(regexp, factory->global_string(),
+                                             global, final).Check();
+    JSObject::SetOwnPropertyIgnoreAttributes(
+        regexp, factory->ignore_case_string(), ignore_case, final).Check();
+    JSObject::SetOwnPropertyIgnoreAttributes(
+        regexp, factory->multiline_string(), multiline, final).Check();
+    if (FLAG_harmony_regexps) {
+      JSObject::SetOwnPropertyIgnoreAttributes(regexp, factory->sticky_string(),
+                                               sticky, final).Check();
+    }
+    JSObject::SetOwnPropertyIgnoreAttributes(
+        regexp, factory->last_index_string(), zero, writable).Check();
+  }
+
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, RegExpImpl::Compile(regexp, source, flags));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_MaterializeRegExpLiteral) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, literals, 0);
+  CONVERT_SMI_ARG_CHECKED(index, 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, pattern, 2);
+  CONVERT_ARG_HANDLE_CHECKED(String, flags, 3);
+
+  // Get the RegExp function from the context in the literals array.
+  // This is the RegExp function from the context in which the
+  // function was created.  We do not use the RegExp function from the
+  // current native context because this might be the RegExp function
+  // from another context which we should not have access to.
+  Handle<JSFunction> constructor = Handle<JSFunction>(
+      JSFunction::NativeContextFromLiterals(*literals)->regexp_function());
+  // Compute the regular expression literal.
+  Handle<Object> regexp;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, regexp,
+      RegExpImpl::CreateRegExpLiteral(constructor, pattern, flags));
+  literals->set(index, *regexp);
+  return *regexp;
+}
+
+
+// Only called from Runtime_RegExpExecMultiple so it doesn't need to maintain
+// separate last match info.  See comment on that function.
+template <bool has_capture>
+static Object* SearchRegExpMultiple(Isolate* isolate, Handle<String> subject,
+                                    Handle<JSRegExp> regexp,
+                                    Handle<JSArray> last_match_array,
+                                    Handle<JSArray> result_array) {
+  DCHECK(subject->IsFlat());
+  DCHECK_NE(has_capture, regexp->CaptureCount() == 0);
+
+  int capture_count = regexp->CaptureCount();
+  int subject_length = subject->length();
+
+  static const int kMinLengthToCache = 0x1000;
+
+  if (subject_length > kMinLengthToCache) {
+    Handle<Object> cached_answer(
+        RegExpResultsCache::Lookup(isolate->heap(), *subject, regexp->data(),
+                                   RegExpResultsCache::REGEXP_MULTIPLE_INDICES),
+        isolate);
+    if (*cached_answer != Smi::FromInt(0)) {
+      Handle<FixedArray> cached_fixed_array =
+          Handle<FixedArray>(FixedArray::cast(*cached_answer));
+      // The cache FixedArray is a COW-array and can therefore be reused.
+      JSArray::SetContent(result_array, cached_fixed_array);
+      // The actual length of the result array is stored in the last element of
+      // the backing store (the backing FixedArray may have a larger capacity).
+      Object* cached_fixed_array_last_element =
+          cached_fixed_array->get(cached_fixed_array->length() - 1);
+      Smi* js_array_length = Smi::cast(cached_fixed_array_last_element);
+      result_array->set_length(js_array_length);
+      RegExpImpl::SetLastMatchInfo(last_match_array, subject, capture_count,
+                                   NULL);
+      return *result_array;
+    }
+  }
+
+  RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  // Ensured in Runtime_RegExpExecMultiple.
+  DCHECK(result_array->HasFastObjectElements());
+  Handle<FixedArray> result_elements(
+      FixedArray::cast(result_array->elements()));
+  if (result_elements->length() < 16) {
+    result_elements = isolate->factory()->NewFixedArrayWithHoles(16);
+  }
+
+  FixedArrayBuilder builder(result_elements);
+
+  // Position to search from.
+  int match_start = -1;
+  int match_end = 0;
+  bool first = true;
+
+  // Two smis before and after the match, for very long strings.
+  static const int kMaxBuilderEntriesPerRegExpMatch = 5;
+
+  while (true) {
+    int32_t* current_match = global_cache.FetchNext();
+    if (current_match == NULL) break;
+    match_start = current_match[0];
+    builder.EnsureCapacity(kMaxBuilderEntriesPerRegExpMatch);
+    if (match_end < match_start) {
+      ReplacementStringBuilder::AddSubjectSlice(&builder, match_end,
+                                                match_start);
+    }
+    match_end = current_match[1];
+    {
+      // Avoid accumulating new handles inside loop.
+      HandleScope temp_scope(isolate);
+      Handle<String> match;
+      if (!first) {
+        match = isolate->factory()->NewProperSubString(subject, match_start,
+                                                       match_end);
+      } else {
+        match =
+            isolate->factory()->NewSubString(subject, match_start, match_end);
+        first = false;
+      }
+
+      if (has_capture) {
+        // Arguments array to replace function is match, captures, index and
+        // subject, i.e., 3 + capture count in total.
+        Handle<FixedArray> elements =
+            isolate->factory()->NewFixedArray(3 + capture_count);
+
+        elements->set(0, *match);
+        for (int i = 1; i <= capture_count; i++) {
+          int start = current_match[i * 2];
+          if (start >= 0) {
+            int end = current_match[i * 2 + 1];
+            DCHECK(start <= end);
+            Handle<String> substring =
+                isolate->factory()->NewSubString(subject, start, end);
+            elements->set(i, *substring);
+          } else {
+            DCHECK(current_match[i * 2 + 1] < 0);
+            elements->set(i, isolate->heap()->undefined_value());
+          }
+        }
+        elements->set(capture_count + 1, Smi::FromInt(match_start));
+        elements->set(capture_count + 2, *subject);
+        builder.Add(*isolate->factory()->NewJSArrayWithElements(elements));
+      } else {
+        builder.Add(*match);
+      }
+    }
+  }
+
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  if (match_start >= 0) {
+    // Finished matching, with at least one match.
+    if (match_end < subject_length) {
+      ReplacementStringBuilder::AddSubjectSlice(&builder, match_end,
+                                                subject_length);
+    }
+
+    RegExpImpl::SetLastMatchInfo(last_match_array, subject, capture_count,
+                                 NULL);
+
+    if (subject_length > kMinLengthToCache) {
+      // Store the length of the result array into the last element of the
+      // backing FixedArray.
+      builder.EnsureCapacity(1);
+      Handle<FixedArray> fixed_array = builder.array();
+      fixed_array->set(fixed_array->length() - 1,
+                       Smi::FromInt(builder.length()));
+      // Cache the result and turn the FixedArray into a COW array.
+      RegExpResultsCache::Enter(isolate, subject,
+                                handle(regexp->data(), isolate), fixed_array,
+                                RegExpResultsCache::REGEXP_MULTIPLE_INDICES);
+    }
+    return *builder.ToJSArray(result_array);
+  } else {
+    return isolate->heap()->null_value();  // No matches at all.
+  }
+}
+
+
+// This is only called for StringReplaceGlobalRegExpWithFunction.  This sets
+// lastMatchInfoOverride to maintain the last match info, so we don't need to
+// set any other last match array info.
+RUNTIME_FUNCTION(Runtime_RegExpExecMultiple) {
+  HandleScope handles(isolate);
+  DCHECK(args.length() == 4);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, last_match_info, 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, result_array, 3);
+  RUNTIME_ASSERT(last_match_info->HasFastObjectElements());
+  RUNTIME_ASSERT(result_array->HasFastObjectElements());
+
+  subject = String::Flatten(subject);
+  RUNTIME_ASSERT(regexp->GetFlags().is_global());
+
+  if (regexp->CaptureCount() == 0) {
+    return SearchRegExpMultiple<false>(isolate, subject, regexp,
+                                       last_match_info, result_array);
+  } else {
+    return SearchRegExpMultiple<true>(isolate, subject, regexp, last_match_info,
+                                      result_array);
+  }
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_RegExpConstructResult) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_RegExpConstructResult(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_RegExpExec) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_RegExpExecRT(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsRegExp) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsJSRegExp());
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-scopes.cc b/src/runtime/runtime-scopes.cc
new file mode 100644
index 0000000..2a0b435
--- /dev/null
+++ b/src/runtime/runtime-scopes.cc
@@ -0,0 +1,1088 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/accessors.h"
+#include "src/arguments.h"
+#include "src/frames-inl.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/scopeinfo.h"
+#include "src/scopes.h"
+
+namespace v8 {
+namespace internal {
+
+static Object* ThrowRedeclarationError(Isolate* isolate, Handle<String> name) {
+  HandleScope scope(isolate);
+  Handle<Object> args[1] = {name};
+  THROW_NEW_ERROR_RETURN_FAILURE(
+      isolate, NewTypeError("var_redeclaration", HandleVector(args, 1)));
+}
+
+
+RUNTIME_FUNCTION(Runtime_ThrowConstAssignError) {
+  HandleScope scope(isolate);
+  THROW_NEW_ERROR_RETURN_FAILURE(
+      isolate,
+      NewTypeError("harmony_const_assign", HandleVector<Object>(NULL, 0)));
+}
+
+
+// May throw a RedeclarationError.
+static Object* DeclareGlobals(Isolate* isolate, Handle<GlobalObject> global,
+                              Handle<String> name, Handle<Object> value,
+                              PropertyAttributes attr, bool is_var,
+                              bool is_const, bool is_function) {
+  Handle<ScriptContextTable> script_contexts(
+      global->native_context()->script_context_table());
+  ScriptContextTable::LookupResult lookup;
+  if (ScriptContextTable::Lookup(script_contexts, name, &lookup) &&
+      IsLexicalVariableMode(lookup.mode)) {
+    return ThrowRedeclarationError(isolate, name);
+  }
+
+  // Do the lookup own properties only, see ES5 erratum.
+  LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
+  Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+  if (!maybe.has_value) return isolate->heap()->exception();
+
+  if (it.IsFound()) {
+    PropertyAttributes old_attributes = maybe.value;
+    // The name was declared before; check for conflicting re-declarations.
+    if (is_const) return ThrowRedeclarationError(isolate, name);
+
+    // Skip var re-declarations.
+    if (is_var) return isolate->heap()->undefined_value();
+
+    DCHECK(is_function);
+    if ((old_attributes & DONT_DELETE) != 0) {
+      // Only allow reconfiguring globals to functions in user code (no
+      // natives, which are marked as read-only).
+      DCHECK((attr & READ_ONLY) == 0);
+
+      // Check whether we can reconfigure the existing property into a
+      // function.
+      PropertyDetails old_details = it.property_details();
+      // TODO(verwaest): CALLBACKS invalidly includes ExecutableAccessInfo,
+      // which are actually data properties, not accessor properties.
+      if (old_details.IsReadOnly() || old_details.IsDontEnum() ||
+          old_details.type() == CALLBACKS) {
+        return ThrowRedeclarationError(isolate, name);
+      }
+      // If the existing property is not configurable, keep its attributes. Do
+      attr = old_attributes;
+    }
+  }
+
+  // Define or redefine own property.
+  RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                                           global, name, value, attr));
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeclareGlobals) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  Handle<GlobalObject> global(isolate->global_object());
+
+  CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, pairs, 1);
+  CONVERT_SMI_ARG_CHECKED(flags, 2);
+
+  // Traverse the name/value pairs and set the properties.
+  int length = pairs->length();
+  for (int i = 0; i < length; i += 2) {
+    HandleScope scope(isolate);
+    Handle<String> name(String::cast(pairs->get(i)));
+    Handle<Object> initial_value(pairs->get(i + 1), isolate);
+
+    // We have to declare a global const property. To capture we only
+    // assign to it when evaluating the assignment for "const x =
+    // <expr>" the initial value is the hole.
+    bool is_var = initial_value->IsUndefined();
+    bool is_const = initial_value->IsTheHole();
+    bool is_function = initial_value->IsSharedFunctionInfo();
+    DCHECK(is_var + is_const + is_function == 1);
+
+    Handle<Object> value;
+    if (is_function) {
+      // Copy the function and update its context. Use it as value.
+      Handle<SharedFunctionInfo> shared =
+          Handle<SharedFunctionInfo>::cast(initial_value);
+      Handle<JSFunction> function =
+          isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
+                                                                TENURED);
+      value = function;
+    } else {
+      value = isolate->factory()->undefined_value();
+    }
+
+    // Compute the property attributes. According to ECMA-262,
+    // the property must be non-configurable except in eval.
+    bool is_native = DeclareGlobalsNativeFlag::decode(flags);
+    bool is_eval = DeclareGlobalsEvalFlag::decode(flags);
+    int attr = NONE;
+    if (is_const) attr |= READ_ONLY;
+    if (is_function && is_native) attr |= READ_ONLY;
+    if (!is_const && !is_eval) attr |= DONT_DELETE;
+
+    Object* result = DeclareGlobals(isolate, global, name, value,
+                                    static_cast<PropertyAttributes>(attr),
+                                    is_var, is_const, is_function);
+    if (isolate->has_pending_exception()) return result;
+  }
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_InitializeVarGlobal) {
+  HandleScope scope(isolate);
+  // args[0] == name
+  // args[1] == language_mode
+  // args[2] == value (optional)
+
+  // Determine if we need to assign to the variable if it already
+  // exists (based on the number of arguments).
+  RUNTIME_ASSERT(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+  CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 2);
+
+  Handle<GlobalObject> global(isolate->context()->global_object());
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, Object::SetProperty(global, name, value, strict_mode));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InitializeConstGlobal) {
+  HandleScope handle_scope(isolate);
+  // All constants are declared with an initial value. The name
+  // of the constant is the first argument and the initial value
+  // is the second.
+  RUNTIME_ASSERT(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 1);
+
+  Handle<GlobalObject> global = isolate->global_object();
+
+  // Lookup the property as own on the global object.
+  LookupIterator it(global, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
+  Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+  DCHECK(maybe.has_value);
+  PropertyAttributes old_attributes = maybe.value;
+
+  PropertyAttributes attr =
+      static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
+  // Set the value if the property is either missing, or the property attributes
+  // allow setting the value without invoking an accessor.
+  if (it.IsFound()) {
+    // Ignore if we can't reconfigure the value.
+    if ((old_attributes & DONT_DELETE) != 0) {
+      if ((old_attributes & READ_ONLY) != 0 ||
+          it.state() == LookupIterator::ACCESSOR) {
+        return *value;
+      }
+      attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
+    }
+  }
+
+  RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                                           global, name, value, attr));
+
+  return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeclareLookupSlot) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+
+  // Declarations are always made in a function, eval or script context. In
+  // the case of eval code, the context passed is the context of the caller,
+  // which may be some nested context and not the declaration context.
+  CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 0);
+  Handle<Context> context(context_arg->declaration_context());
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
+  CONVERT_SMI_ARG_CHECKED(attr_arg, 2);
+  PropertyAttributes attr = static_cast<PropertyAttributes>(attr_arg);
+  RUNTIME_ASSERT(attr == READ_ONLY || attr == NONE);
+  CONVERT_ARG_HANDLE_CHECKED(Object, initial_value, 3);
+
+  // TODO(verwaest): Unify the encoding indicating "var" with DeclareGlobals.
+  bool is_var = *initial_value == NULL;
+  bool is_const = initial_value->IsTheHole();
+  bool is_function = initial_value->IsJSFunction();
+  DCHECK(is_var + is_const + is_function == 1);
+
+  int index;
+  PropertyAttributes attributes;
+  ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
+  BindingFlags binding_flags;
+  Handle<Object> holder =
+      context->Lookup(name, flags, &index, &attributes, &binding_flags);
+
+  Handle<JSObject> object;
+  Handle<Object> value =
+      is_function ? initial_value
+                  : Handle<Object>::cast(isolate->factory()->undefined_value());
+
+  // TODO(verwaest): This case should probably not be covered by this function,
+  // but by DeclareGlobals instead.
+  if ((attributes != ABSENT && holder->IsJSGlobalObject()) ||
+      (context_arg->has_extension() &&
+       context_arg->extension()->IsJSGlobalObject())) {
+    return DeclareGlobals(isolate, Handle<JSGlobalObject>::cast(holder), name,
+                          value, attr, is_var, is_const, is_function);
+  }
+
+  if (attributes != ABSENT) {
+    // The name was declared before; check for conflicting re-declarations.
+    if (is_const || (attributes & READ_ONLY) != 0) {
+      return ThrowRedeclarationError(isolate, name);
+    }
+
+    // Skip var re-declarations.
+    if (is_var) return isolate->heap()->undefined_value();
+
+    DCHECK(is_function);
+    if (index >= 0) {
+      DCHECK(holder.is_identical_to(context));
+      context->set(index, *initial_value);
+      return isolate->heap()->undefined_value();
+    }
+
+    object = Handle<JSObject>::cast(holder);
+
+  } else if (context->has_extension()) {
+    object = handle(JSObject::cast(context->extension()));
+    DCHECK(object->IsJSContextExtensionObject() || object->IsJSGlobalObject());
+  } else {
+    DCHECK(context->IsFunctionContext());
+    object =
+        isolate->factory()->NewJSObject(isolate->context_extension_function());
+    context->set_extension(*object);
+  }
+
+  RETURN_FAILURE_ON_EXCEPTION(isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                                           object, name, value, attr));
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_InitializeLegacyConstLookupSlot) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
+  DCHECK(!value->IsTheHole());
+  // Initializations are always done in a function or native context.
+  CONVERT_ARG_HANDLE_CHECKED(Context, context_arg, 1);
+  Handle<Context> context(context_arg->declaration_context());
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
+
+  int index;
+  PropertyAttributes attributes;
+  ContextLookupFlags flags = DONT_FOLLOW_CHAINS;
+  BindingFlags binding_flags;
+  Handle<Object> holder =
+      context->Lookup(name, flags, &index, &attributes, &binding_flags);
+
+  if (index >= 0) {
+    DCHECK(holder->IsContext());
+    // Property was found in a context.  Perform the assignment if the constant
+    // was uninitialized.
+    Handle<Context> context = Handle<Context>::cast(holder);
+    DCHECK((attributes & READ_ONLY) != 0);
+    if (context->get(index)->IsTheHole()) context->set(index, *value);
+    return *value;
+  }
+
+  PropertyAttributes attr =
+      static_cast<PropertyAttributes>(DONT_DELETE | READ_ONLY);
+
+  // Strict mode handling not needed (legacy const is disallowed in strict
+  // mode).
+
+  // The declared const was configurable, and may have been deleted in the
+  // meanwhile. If so, re-introduce the variable in the context extension.
+  if (attributes == ABSENT) {
+    Handle<Context> declaration_context(context_arg->declaration_context());
+    DCHECK(declaration_context->has_extension());
+    holder = handle(declaration_context->extension(), isolate);
+    CHECK(holder->IsJSObject());
+  } else {
+    // For JSContextExtensionObjects, the initializer can be run multiple times
+    // if in a for loop: for (var i = 0; i < 2; i++) { const x = i; }. Only the
+    // first assignment should go through. For JSGlobalObjects, additionally any
+    // code can run in between that modifies the declared property.
+    DCHECK(holder->IsJSGlobalObject() || holder->IsJSContextExtensionObject());
+
+    LookupIterator it(holder, name, LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
+    Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+    if (!maybe.has_value) return isolate->heap()->exception();
+    PropertyAttributes old_attributes = maybe.value;
+
+    // Ignore if we can't reconfigure the value.
+    if ((old_attributes & DONT_DELETE) != 0) {
+      if ((old_attributes & READ_ONLY) != 0 ||
+          it.state() == LookupIterator::ACCESSOR) {
+        return *value;
+      }
+      attr = static_cast<PropertyAttributes>(old_attributes | READ_ONLY);
+    }
+  }
+
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, JSObject::SetOwnPropertyIgnoreAttributes(
+                   Handle<JSObject>::cast(holder), name, value, attr));
+
+  return *value;
+}
+
+
+static Handle<JSObject> NewSloppyArguments(Isolate* isolate,
+                                           Handle<JSFunction> callee,
+                                           Object** parameters,
+                                           int argument_count) {
+  Handle<JSObject> result =
+      isolate->factory()->NewArgumentsObject(callee, argument_count);
+
+  // Allocate the elements if needed.
+  int parameter_count = callee->shared()->formal_parameter_count();
+  if (argument_count > 0) {
+    if (parameter_count > 0) {
+      int mapped_count = Min(argument_count, parameter_count);
+      Handle<FixedArray> parameter_map =
+          isolate->factory()->NewFixedArray(mapped_count + 2, NOT_TENURED);
+      parameter_map->set_map(isolate->heap()->sloppy_arguments_elements_map());
+
+      Handle<Map> map = Map::Copy(handle(result->map()), "NewSloppyArguments");
+      map->set_elements_kind(SLOPPY_ARGUMENTS_ELEMENTS);
+
+      result->set_map(*map);
+      result->set_elements(*parameter_map);
+
+      // Store the context and the arguments array at the beginning of the
+      // parameter map.
+      Handle<Context> context(isolate->context());
+      Handle<FixedArray> arguments =
+          isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
+      parameter_map->set(0, *context);
+      parameter_map->set(1, *arguments);
+
+      // Loop over the actual parameters backwards.
+      int index = argument_count - 1;
+      while (index >= mapped_count) {
+        // These go directly in the arguments array and have no
+        // corresponding slot in the parameter map.
+        arguments->set(index, *(parameters - index - 1));
+        --index;
+      }
+
+      Handle<ScopeInfo> scope_info(callee->shared()->scope_info());
+      while (index >= 0) {
+        // Detect duplicate names to the right in the parameter list.
+        Handle<String> name(scope_info->ParameterName(index));
+        int context_local_count = scope_info->ContextLocalCount();
+        bool duplicate = false;
+        for (int j = index + 1; j < parameter_count; ++j) {
+          if (scope_info->ParameterName(j) == *name) {
+            duplicate = true;
+            break;
+          }
+        }
+
+        if (duplicate) {
+          // This goes directly in the arguments array with a hole in the
+          // parameter map.
+          arguments->set(index, *(parameters - index - 1));
+          parameter_map->set_the_hole(index + 2);
+        } else {
+          // The context index goes in the parameter map with a hole in the
+          // arguments array.
+          int context_index = -1;
+          for (int j = 0; j < context_local_count; ++j) {
+            if (scope_info->ContextLocalName(j) == *name) {
+              context_index = j;
+              break;
+            }
+          }
+          DCHECK(context_index >= 0);
+          arguments->set_the_hole(index);
+          parameter_map->set(
+              index + 2,
+              Smi::FromInt(Context::MIN_CONTEXT_SLOTS + context_index));
+        }
+
+        --index;
+      }
+    } else {
+      // If there is no aliasing, the arguments object elements are not
+      // special in any way.
+      Handle<FixedArray> elements =
+          isolate->factory()->NewFixedArray(argument_count, NOT_TENURED);
+      result->set_elements(*elements);
+      for (int i = 0; i < argument_count; ++i) {
+        elements->set(i, *(parameters - i - 1));
+      }
+    }
+  }
+  return result;
+}
+
+
+static Handle<JSObject> NewStrictArguments(Isolate* isolate,
+                                           Handle<JSFunction> callee,
+                                           Object** parameters,
+                                           int argument_count) {
+  Handle<JSObject> result =
+      isolate->factory()->NewArgumentsObject(callee, argument_count);
+
+  if (argument_count > 0) {
+    Handle<FixedArray> array =
+        isolate->factory()->NewUninitializedFixedArray(argument_count);
+    DisallowHeapAllocation no_gc;
+    WriteBarrierMode mode = array->GetWriteBarrierMode(no_gc);
+    for (int i = 0; i < argument_count; i++) {
+      array->set(i, *--parameters, mode);
+    }
+    result->set_elements(*array);
+  }
+  return result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewArguments) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
+  JavaScriptFrameIterator it(isolate);
+
+  // Find the frame that holds the actual arguments passed to the function.
+  it.AdvanceToArgumentsFrame();
+  JavaScriptFrame* frame = it.frame();
+
+  // Determine parameter location on the stack and dispatch on language mode.
+  int argument_count = frame->GetArgumentsLength();
+  Object** parameters = reinterpret_cast<Object**>(frame->GetParameterSlot(-1));
+  return callee->shared()->strict_mode() == STRICT
+             ? *NewStrictArguments(isolate, callee, parameters, argument_count)
+             : *NewSloppyArguments(isolate, callee, parameters, argument_count);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewSloppyArguments) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0);
+  Object** parameters = reinterpret_cast<Object**>(args[1]);
+  CONVERT_SMI_ARG_CHECKED(argument_count, 2);
+  return *NewSloppyArguments(isolate, callee, parameters, argument_count);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewStrictArguments) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, callee, 0)
+  Object** parameters = reinterpret_cast<Object**>(args[1]);
+  CONVERT_SMI_ARG_CHECKED(argument_count, 2);
+  return *NewStrictArguments(isolate, callee, parameters, argument_count);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewClosureFromStubFailure) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 0);
+  Handle<Context> context(isolate->context());
+  PretenureFlag pretenure_flag = NOT_TENURED;
+  return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
+                                                                pretenure_flag);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewClosure) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
+  CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared, 1);
+  CONVERT_BOOLEAN_ARG_CHECKED(pretenure, 2);
+
+  // The caller ensures that we pretenure closures that are assigned
+  // directly to properties.
+  PretenureFlag pretenure_flag = pretenure ? TENURED : NOT_TENURED;
+  return *isolate->factory()->NewFunctionFromSharedFunctionInfo(shared, context,
+                                                                pretenure_flag);
+}
+
+static Object* FindNameClash(Handle<ScopeInfo> scope_info,
+                             Handle<GlobalObject> global_object,
+                             Handle<ScriptContextTable> script_context) {
+  Isolate* isolate = scope_info->GetIsolate();
+  for (int var = 0; var < scope_info->ContextLocalCount(); var++) {
+    Handle<String> name(scope_info->ContextLocalName(var));
+    VariableMode mode = scope_info->ContextLocalMode(var);
+    ScriptContextTable::LookupResult lookup;
+    if (ScriptContextTable::Lookup(script_context, name, &lookup)) {
+      if (IsLexicalVariableMode(mode) || IsLexicalVariableMode(lookup.mode)) {
+        return ThrowRedeclarationError(isolate, name);
+      }
+    }
+
+    if (IsLexicalVariableMode(mode)) {
+      LookupIterator it(global_object, name,
+                        LookupIterator::HIDDEN_SKIP_INTERCEPTOR);
+      Maybe<PropertyAttributes> maybe = JSReceiver::GetPropertyAttributes(&it);
+      if (!maybe.has_value) return isolate->heap()->exception();
+      if ((maybe.value & DONT_DELETE) != 0) {
+        return ThrowRedeclarationError(isolate, name);
+      }
+
+      GlobalObject::InvalidatePropertyCell(global_object, name);
+    }
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewScriptContext) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
+  Handle<GlobalObject> global_object(function->context()->global_object());
+  Handle<Context> native_context(global_object->native_context());
+  Handle<ScriptContextTable> script_context_table(
+      native_context->script_context_table());
+
+  Handle<String> clashed_name;
+  Object* name_clash_result =
+      FindNameClash(scope_info, global_object, script_context_table);
+  if (isolate->has_pending_exception()) return name_clash_result;
+
+  Handle<Context> result =
+      isolate->factory()->NewScriptContext(function, scope_info);
+
+  DCHECK(function->context() == isolate->context());
+  DCHECK(function->context()->global_object() == result->global_object());
+
+  Handle<ScriptContextTable> new_script_context_table =
+      ScriptContextTable::Extend(script_context_table, result);
+  native_context->set_script_context_table(*new_script_context_table);
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewFunctionContext) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+
+  DCHECK(function->context() == isolate->context());
+  int length = function->shared()->scope_info()->ContextLength();
+  return *isolate->factory()->NewFunctionContext(length, function);
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushWithContext) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  Handle<JSReceiver> extension_object;
+  if (args[0]->IsJSReceiver()) {
+    extension_object = args.at<JSReceiver>(0);
+  } else {
+    // Try to convert the object to a proper JavaScript object.
+    MaybeHandle<JSReceiver> maybe_object =
+        Object::ToObject(isolate, args.at<Object>(0));
+    if (!maybe_object.ToHandle(&extension_object)) {
+      Handle<Object> handle = args.at<Object>(0);
+      THROW_NEW_ERROR_RETURN_FAILURE(
+          isolate, NewTypeError("with_expression", HandleVector(&handle, 1)));
+    }
+  }
+
+  Handle<JSFunction> function;
+  if (args[1]->IsSmi()) {
+    // A smi sentinel indicates a context nested inside global code rather
+    // than some function.  There is a canonical empty function that can be
+    // gotten from the native context.
+    function = handle(isolate->native_context()->closure());
+  } else {
+    function = args.at<JSFunction>(1);
+  }
+
+  Handle<Context> current(isolate->context());
+  Handle<Context> context =
+      isolate->factory()->NewWithContext(function, current, extension_object);
+  isolate->set_context(*context);
+  return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushCatchContext) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Object, thrown_object, 1);
+  Handle<JSFunction> function;
+  if (args[2]->IsSmi()) {
+    // A smi sentinel indicates a context nested inside global code rather
+    // than some function.  There is a canonical empty function that can be
+    // gotten from the native context.
+    function = handle(isolate->native_context()->closure());
+  } else {
+    function = args.at<JSFunction>(2);
+  }
+  Handle<Context> current(isolate->context());
+  Handle<Context> context = isolate->factory()->NewCatchContext(
+      function, current, name, thrown_object);
+  isolate->set_context(*context);
+  return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushBlockContext) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 0);
+  Handle<JSFunction> function;
+  if (args[1]->IsSmi()) {
+    // A smi sentinel indicates a context nested inside global code rather
+    // than some function.  There is a canonical empty function that can be
+    // gotten from the native context.
+    function = handle(isolate->native_context()->closure());
+  } else {
+    function = args.at<JSFunction>(1);
+  }
+  Handle<Context> current(isolate->context());
+  Handle<Context> context =
+      isolate->factory()->NewBlockContext(function, current, scope_info);
+  isolate->set_context(*context);
+  return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsJSModule) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  return isolate->heap()->ToBoolean(obj->IsJSModule());
+}
+
+
+RUNTIME_FUNCTION(Runtime_PushModuleContext) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_SMI_ARG_CHECKED(index, 0);
+
+  if (!args[1]->IsScopeInfo()) {
+    // Module already initialized. Find hosting context and retrieve context.
+    Context* host = Context::cast(isolate->context())->script_context();
+    Context* context = Context::cast(host->get(index));
+    DCHECK(context->previous() == isolate->context());
+    isolate->set_context(context);
+    return context;
+  }
+
+  CONVERT_ARG_HANDLE_CHECKED(ScopeInfo, scope_info, 1);
+
+  // Allocate module context.
+  HandleScope scope(isolate);
+  Factory* factory = isolate->factory();
+  Handle<Context> context = factory->NewModuleContext(scope_info);
+  Handle<JSModule> module = factory->NewJSModule(context, scope_info);
+  context->set_module(*module);
+  Context* previous = isolate->context();
+  context->set_previous(previous);
+  context->set_closure(previous->closure());
+  context->set_global_object(previous->global_object());
+  isolate->set_context(*context);
+
+  // Find hosting scope and initialize internal variable holding module there.
+  previous->script_context()->set(index, *context);
+
+  return *context;
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeclareModules) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(FixedArray, descriptions, 0);
+  Context* host_context = isolate->context();
+
+  for (int i = 0; i < descriptions->length(); ++i) {
+    Handle<ModuleInfo> description(ModuleInfo::cast(descriptions->get(i)));
+    int host_index = description->host_index();
+    Handle<Context> context(Context::cast(host_context->get(host_index)));
+    Handle<JSModule> module(context->module());
+
+    for (int j = 0; j < description->length(); ++j) {
+      Handle<String> name(description->name(j));
+      VariableMode mode = description->mode(j);
+      int index = description->index(j);
+      switch (mode) {
+        case VAR:
+        case LET:
+        case CONST:
+        case CONST_LEGACY: {
+          PropertyAttributes attr =
+              IsImmutableVariableMode(mode) ? FROZEN : SEALED;
+          Handle<AccessorInfo> info =
+              Accessors::MakeModuleExport(name, index, attr);
+          Handle<Object> result =
+              JSObject::SetAccessor(module, info).ToHandleChecked();
+          DCHECK(!result->IsUndefined());
+          USE(result);
+          break;
+        }
+        case MODULE: {
+          Object* referenced_context = Context::cast(host_context)->get(index);
+          Handle<JSModule> value(Context::cast(referenced_context)->module());
+          JSObject::SetOwnPropertyIgnoreAttributes(module, name, value, FROZEN)
+              .Assert();
+          break;
+        }
+        case INTERNAL:
+        case TEMPORARY:
+        case DYNAMIC:
+        case DYNAMIC_GLOBAL:
+        case DYNAMIC_LOCAL:
+          UNREACHABLE();
+      }
+    }
+
+    JSObject::PreventExtensions(module).Assert();
+  }
+
+  DCHECK(!isolate->has_pending_exception());
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DeleteLookupSlot) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(Context, context, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 1);
+
+  int index;
+  PropertyAttributes attributes;
+  ContextLookupFlags flags = FOLLOW_CHAINS;
+  BindingFlags binding_flags;
+  Handle<Object> holder =
+      context->Lookup(name, flags, &index, &attributes, &binding_flags);
+
+  // If the slot was not found the result is true.
+  if (holder.is_null()) {
+    return isolate->heap()->true_value();
+  }
+
+  // If the slot was found in a context, it should be DONT_DELETE.
+  if (holder->IsContext()) {
+    return isolate->heap()->false_value();
+  }
+
+  // The slot was found in a JSObject, either a context extension object,
+  // the global object, or the subject of a with.  Try to delete it
+  // (respecting DONT_DELETE).
+  Handle<JSObject> object = Handle<JSObject>::cast(holder);
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, result,
+                                     JSReceiver::DeleteProperty(object, name));
+  return *result;
+}
+
+
+static Object* ComputeReceiverForNonGlobal(Isolate* isolate, JSObject* holder) {
+  DCHECK(!holder->IsGlobalObject());
+  Context* top = isolate->context();
+  // Get the context extension function.
+  JSFunction* context_extension_function =
+      top->native_context()->context_extension_function();
+  // If the holder isn't a context extension object, we just return it
+  // as the receiver. This allows arguments objects to be used as
+  // receivers, but only if they are put in the context scope chain
+  // explicitly via a with-statement.
+  Object* constructor = holder->map()->constructor();
+  if (constructor != context_extension_function) return holder;
+  // Fall back to using the global object as the implicit receiver if
+  // the property turns out to be a local variable allocated in a
+  // context extension object - introduced via eval.
+  return isolate->heap()->undefined_value();
+}
+
+
+static ObjectPair LoadLookupSlotHelper(Arguments args, Isolate* isolate,
+                                       bool throw_error) {
+  HandleScope scope(isolate);
+  DCHECK_EQ(2, args.length());
+
+  if (!args[0]->IsContext() || !args[1]->IsString()) {
+    return MakePair(isolate->ThrowIllegalOperation(), NULL);
+  }
+  Handle<Context> context = args.at<Context>(0);
+  Handle<String> name = args.at<String>(1);
+
+  int index;
+  PropertyAttributes attributes;
+  ContextLookupFlags flags = FOLLOW_CHAINS;
+  BindingFlags binding_flags;
+  Handle<Object> holder =
+      context->Lookup(name, flags, &index, &attributes, &binding_flags);
+  if (isolate->has_pending_exception()) {
+    return MakePair(isolate->heap()->exception(), NULL);
+  }
+
+  // If the index is non-negative, the slot has been found in a context.
+  if (index >= 0) {
+    DCHECK(holder->IsContext());
+    // If the "property" we were looking for is a local variable, the
+    // receiver is the global object; see ECMA-262, 3rd., 10.1.6 and 10.2.3.
+    Handle<Object> receiver = isolate->factory()->undefined_value();
+    Object* value = Context::cast(*holder)->get(index);
+    // Check for uninitialized bindings.
+    switch (binding_flags) {
+      case MUTABLE_CHECK_INITIALIZED:
+      case IMMUTABLE_CHECK_INITIALIZED_HARMONY:
+        if (value->IsTheHole()) {
+          Handle<Object> error;
+          MaybeHandle<Object> maybe_error =
+              isolate->factory()->NewReferenceError("not_defined",
+                                                    HandleVector(&name, 1));
+          if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
+          return MakePair(isolate->heap()->exception(), NULL);
+        }
+      // FALLTHROUGH
+      case MUTABLE_IS_INITIALIZED:
+      case IMMUTABLE_IS_INITIALIZED:
+      case IMMUTABLE_IS_INITIALIZED_HARMONY:
+        DCHECK(!value->IsTheHole());
+        return MakePair(value, *receiver);
+      case IMMUTABLE_CHECK_INITIALIZED:
+        if (value->IsTheHole()) {
+          DCHECK((attributes & READ_ONLY) != 0);
+          value = isolate->heap()->undefined_value();
+        }
+        return MakePair(value, *receiver);
+      case MISSING_BINDING:
+        UNREACHABLE();
+        return MakePair(NULL, NULL);
+    }
+  }
+
+  // Otherwise, if the slot was found the holder is a context extension
+  // object, subject of a with, or a global object.  We read the named
+  // property from it.
+  if (!holder.is_null()) {
+    Handle<JSReceiver> object = Handle<JSReceiver>::cast(holder);
+#ifdef DEBUG
+    if (!object->IsJSProxy()) {
+      Maybe<bool> maybe = JSReceiver::HasProperty(object, name);
+      DCHECK(maybe.has_value);
+      DCHECK(maybe.value);
+    }
+#endif
+    // GetProperty below can cause GC.
+    Handle<Object> receiver_handle(
+        object->IsGlobalObject()
+            ? Object::cast(isolate->heap()->undefined_value())
+            : object->IsJSProxy() ? static_cast<Object*>(*object)
+                                  : ComputeReceiverForNonGlobal(
+                                        isolate, JSObject::cast(*object)),
+        isolate);
+
+    // No need to unhole the value here.  This is taken care of by the
+    // GetProperty function.
+    Handle<Object> value;
+    ASSIGN_RETURN_ON_EXCEPTION_VALUE(
+        isolate, value, Object::GetProperty(object, name),
+        MakePair(isolate->heap()->exception(), NULL));
+    return MakePair(*value, *receiver_handle);
+  }
+
+  if (throw_error) {
+    // The property doesn't exist - throw exception.
+    Handle<Object> error;
+    MaybeHandle<Object> maybe_error = isolate->factory()->NewReferenceError(
+        "not_defined", HandleVector(&name, 1));
+    if (maybe_error.ToHandle(&error)) isolate->Throw(*error);
+    return MakePair(isolate->heap()->exception(), NULL);
+  } else {
+    // The property doesn't exist - return undefined.
+    return MakePair(isolate->heap()->undefined_value(),
+                    isolate->heap()->undefined_value());
+  }
+}
+
+
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlot) {
+  return LoadLookupSlotHelper(args, isolate, true);
+}
+
+
+RUNTIME_FUNCTION_RETURN_PAIR(Runtime_LoadLookupSlotNoReferenceError) {
+  return LoadLookupSlotHelper(args, isolate, false);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StoreLookupSlot) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+
+  CONVERT_ARG_HANDLE_CHECKED(Object, value, 0);
+  CONVERT_ARG_HANDLE_CHECKED(Context, context, 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 2);
+  CONVERT_STRICT_MODE_ARG_CHECKED(strict_mode, 3);
+
+  int index;
+  PropertyAttributes attributes;
+  ContextLookupFlags flags = FOLLOW_CHAINS;
+  BindingFlags binding_flags;
+  Handle<Object> holder =
+      context->Lookup(name, flags, &index, &attributes, &binding_flags);
+  // In case of JSProxy, an exception might have been thrown.
+  if (isolate->has_pending_exception()) return isolate->heap()->exception();
+
+  // The property was found in a context slot.
+  if (index >= 0) {
+    if ((attributes & READ_ONLY) == 0) {
+      Handle<Context>::cast(holder)->set(index, *value);
+    } else if (strict_mode == STRICT) {
+      // Setting read only property in strict mode.
+      THROW_NEW_ERROR_RETURN_FAILURE(
+          isolate,
+          NewTypeError("strict_cannot_assign", HandleVector(&name, 1)));
+    }
+    return *value;
+  }
+
+  // Slow case: The property is not in a context slot.  It is either in a
+  // context extension object, a property of the subject of a with, or a
+  // property of the global object.
+  Handle<JSReceiver> object;
+  if (attributes != ABSENT) {
+    // The property exists on the holder.
+    object = Handle<JSReceiver>::cast(holder);
+  } else if (strict_mode == STRICT) {
+    // If absent in strict mode: throw.
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewReferenceError("not_defined", HandleVector(&name, 1)));
+  } else {
+    // If absent in sloppy mode: add the property to the global object.
+    object = Handle<JSReceiver>(context->global_object());
+  }
+
+  RETURN_FAILURE_ON_EXCEPTION(
+      isolate, Object::SetProperty(object, name, value, strict_mode));
+
+  return *value;
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetArgumentsProperty) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, raw_key, 0);
+
+  // Compute the frame holding the arguments.
+  JavaScriptFrameIterator it(isolate);
+  it.AdvanceToArgumentsFrame();
+  JavaScriptFrame* frame = it.frame();
+
+  // Get the actual number of provided arguments.
+  const uint32_t n = frame->ComputeParametersCount();
+
+  // Try to convert the key to an index. If successful and within
+  // index return the the argument from the frame.
+  uint32_t index;
+  if (raw_key->ToArrayIndex(&index) && index < n) {
+    return frame->GetParameter(index);
+  }
+
+  HandleScope scope(isolate);
+  if (raw_key->IsSymbol()) {
+    Handle<Symbol> symbol = Handle<Symbol>::cast(raw_key);
+    if (Name::Equals(symbol, isolate->factory()->iterator_symbol())) {
+      return isolate->native_context()->array_values_iterator();
+    }
+    // Lookup in the initial Object.prototype object.
+    Handle<Object> result;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, result,
+        Object::GetProperty(isolate->initial_object_prototype(),
+                            Handle<Symbol>::cast(raw_key)));
+    return *result;
+  }
+
+  // Convert the key to a string.
+  Handle<Object> converted;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(isolate, converted,
+                                     Execution::ToString(isolate, raw_key));
+  Handle<String> key = Handle<String>::cast(converted);
+
+  // Try to convert the string key into an array index.
+  if (key->AsArrayIndex(&index)) {
+    if (index < n) {
+      return frame->GetParameter(index);
+    } else {
+      Handle<Object> initial_prototype(isolate->initial_object_prototype());
+      Handle<Object> result;
+      ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+          isolate, result,
+          Object::GetElement(isolate, initial_prototype, index));
+      return *result;
+    }
+  }
+
+  // Handle special arguments properties.
+  if (String::Equals(isolate->factory()->length_string(), key)) {
+    return Smi::FromInt(n);
+  }
+  if (String::Equals(isolate->factory()->callee_string(), key)) {
+    JSFunction* function = frame->function();
+    if (function->shared()->strict_mode() == STRICT) {
+      THROW_NEW_ERROR_RETURN_FAILURE(
+          isolate, NewTypeError("strict_arguments_callee",
+                                HandleVector<Object>(NULL, 0)));
+    }
+    return function;
+  }
+
+  // Lookup in the initial Object.prototype object.
+  Handle<Object> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      Object::GetProperty(isolate->initial_object_prototype(), key));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_ArgumentsLength) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  JavaScriptFrameIterator it(isolate);
+  JavaScriptFrame* frame = it.frame();
+  return Smi::FromInt(frame->GetArgumentsLength());
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_Arguments) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_GetArgumentsProperty(args, isolate);
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-strings.cc b/src/runtime/runtime-strings.cc
new file mode 100644
index 0000000..df2210c
--- /dev/null
+++ b/src/runtime/runtime-strings.cc
@@ -0,0 +1,1305 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/jsregexp-inl.h"
+#include "src/jsregexp.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/string-builder.h"
+#include "src/string-search.h"
+
+namespace v8 {
+namespace internal {
+
+
+// Perform string match of pattern on subject, starting at start index.
+// Caller must ensure that 0 <= start_index <= sub->length(),
+// and should check that pat->length() + start_index <= sub->length().
+int StringMatch(Isolate* isolate, Handle<String> sub, Handle<String> pat,
+                int start_index) {
+  DCHECK(0 <= start_index);
+  DCHECK(start_index <= sub->length());
+
+  int pattern_length = pat->length();
+  if (pattern_length == 0) return start_index;
+
+  int subject_length = sub->length();
+  if (start_index + pattern_length > subject_length) return -1;
+
+  sub = String::Flatten(sub);
+  pat = String::Flatten(pat);
+
+  DisallowHeapAllocation no_gc;  // ensure vectors stay valid
+  // Extract flattened substrings of cons strings before getting encoding.
+  String::FlatContent seq_sub = sub->GetFlatContent();
+  String::FlatContent seq_pat = pat->GetFlatContent();
+
+  // dispatch on type of strings
+  if (seq_pat.IsOneByte()) {
+    Vector<const uint8_t> pat_vector = seq_pat.ToOneByteVector();
+    if (seq_sub.IsOneByte()) {
+      return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
+                          start_index);
+    }
+    return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector,
+                        start_index);
+  }
+  Vector<const uc16> pat_vector = seq_pat.ToUC16Vector();
+  if (seq_sub.IsOneByte()) {
+    return SearchString(isolate, seq_sub.ToOneByteVector(), pat_vector,
+                        start_index);
+  }
+  return SearchString(isolate, seq_sub.ToUC16Vector(), pat_vector, start_index);
+}
+
+
+// This may return an empty MaybeHandle if an exception is thrown or
+// we abort due to reaching the recursion limit.
+MaybeHandle<String> StringReplaceOneCharWithString(
+    Isolate* isolate, Handle<String> subject, Handle<String> search,
+    Handle<String> replace, bool* found, int recursion_limit) {
+  StackLimitCheck stackLimitCheck(isolate);
+  if (stackLimitCheck.HasOverflowed() || (recursion_limit == 0)) {
+    return MaybeHandle<String>();
+  }
+  recursion_limit--;
+  if (subject->IsConsString()) {
+    ConsString* cons = ConsString::cast(*subject);
+    Handle<String> first = Handle<String>(cons->first());
+    Handle<String> second = Handle<String>(cons->second());
+    Handle<String> new_first;
+    if (!StringReplaceOneCharWithString(isolate, first, search, replace, found,
+                                        recursion_limit).ToHandle(&new_first)) {
+      return MaybeHandle<String>();
+    }
+    if (*found) return isolate->factory()->NewConsString(new_first, second);
+
+    Handle<String> new_second;
+    if (!StringReplaceOneCharWithString(isolate, second, search, replace, found,
+                                        recursion_limit)
+             .ToHandle(&new_second)) {
+      return MaybeHandle<String>();
+    }
+    if (*found) return isolate->factory()->NewConsString(first, new_second);
+
+    return subject;
+  } else {
+    int index = StringMatch(isolate, subject, search, 0);
+    if (index == -1) return subject;
+    *found = true;
+    Handle<String> first = isolate->factory()->NewSubString(subject, 0, index);
+    Handle<String> cons1;
+    ASSIGN_RETURN_ON_EXCEPTION(
+        isolate, cons1, isolate->factory()->NewConsString(first, replace),
+        String);
+    Handle<String> second =
+        isolate->factory()->NewSubString(subject, index + 1, subject->length());
+    return isolate->factory()->NewConsString(cons1, second);
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringReplaceOneCharWithString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, search, 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, replace, 2);
+
+  // If the cons string tree is too deep, we simply abort the recursion and
+  // retry with a flattened subject string.
+  const int kRecursionLimit = 0x1000;
+  bool found = false;
+  Handle<String> result;
+  if (StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
+                                     kRecursionLimit).ToHandle(&result)) {
+    return *result;
+  }
+  if (isolate->has_pending_exception()) return isolate->heap()->exception();
+
+  subject = String::Flatten(subject);
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result,
+      StringReplaceOneCharWithString(isolate, subject, search, replace, &found,
+                                     kRecursionLimit));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringIndexOf) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
+
+  uint32_t start_index;
+  if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
+
+  RUNTIME_ASSERT(start_index <= static_cast<uint32_t>(sub->length()));
+  int position = StringMatch(isolate, sub, pat, start_index);
+  return Smi::FromInt(position);
+}
+
+
+template <typename schar, typename pchar>
+static int StringMatchBackwards(Vector<const schar> subject,
+                                Vector<const pchar> pattern, int idx) {
+  int pattern_length = pattern.length();
+  DCHECK(pattern_length >= 1);
+  DCHECK(idx + pattern_length <= subject.length());
+
+  if (sizeof(schar) == 1 && sizeof(pchar) > 1) {
+    for (int i = 0; i < pattern_length; i++) {
+      uc16 c = pattern[i];
+      if (c > String::kMaxOneByteCharCode) {
+        return -1;
+      }
+    }
+  }
+
+  pchar pattern_first_char = pattern[0];
+  for (int i = idx; i >= 0; i--) {
+    if (subject[i] != pattern_first_char) continue;
+    int j = 1;
+    while (j < pattern_length) {
+      if (pattern[j] != subject[i + j]) {
+        break;
+      }
+      j++;
+    }
+    if (j == pattern_length) {
+      return i;
+    }
+  }
+  return -1;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringLastIndexOf) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, sub, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, pat, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, index, 2);
+
+  uint32_t start_index;
+  if (!index->ToArrayIndex(&start_index)) return Smi::FromInt(-1);
+
+  uint32_t pat_length = pat->length();
+  uint32_t sub_length = sub->length();
+
+  if (start_index + pat_length > sub_length) {
+    start_index = sub_length - pat_length;
+  }
+
+  if (pat_length == 0) {
+    return Smi::FromInt(start_index);
+  }
+
+  sub = String::Flatten(sub);
+  pat = String::Flatten(pat);
+
+  int position = -1;
+  DisallowHeapAllocation no_gc;  // ensure vectors stay valid
+
+  String::FlatContent sub_content = sub->GetFlatContent();
+  String::FlatContent pat_content = pat->GetFlatContent();
+
+  if (pat_content.IsOneByte()) {
+    Vector<const uint8_t> pat_vector = pat_content.ToOneByteVector();
+    if (sub_content.IsOneByte()) {
+      position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
+                                      start_index);
+    } else {
+      position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
+                                      start_index);
+    }
+  } else {
+    Vector<const uc16> pat_vector = pat_content.ToUC16Vector();
+    if (sub_content.IsOneByte()) {
+      position = StringMatchBackwards(sub_content.ToOneByteVector(), pat_vector,
+                                      start_index);
+    } else {
+      position = StringMatchBackwards(sub_content.ToUC16Vector(), pat_vector,
+                                      start_index);
+    }
+  }
+
+  return Smi::FromInt(position);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringLocaleCompare) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
+
+  if (str1.is_identical_to(str2)) return Smi::FromInt(0);  // Equal.
+  int str1_length = str1->length();
+  int str2_length = str2->length();
+
+  // Decide trivial cases without flattening.
+  if (str1_length == 0) {
+    if (str2_length == 0) return Smi::FromInt(0);  // Equal.
+    return Smi::FromInt(-str2_length);
+  } else {
+    if (str2_length == 0) return Smi::FromInt(str1_length);
+  }
+
+  int end = str1_length < str2_length ? str1_length : str2_length;
+
+  // No need to flatten if we are going to find the answer on the first
+  // character.  At this point we know there is at least one character
+  // in each string, due to the trivial case handling above.
+  int d = str1->Get(0) - str2->Get(0);
+  if (d != 0) return Smi::FromInt(d);
+
+  str1 = String::Flatten(str1);
+  str2 = String::Flatten(str2);
+
+  DisallowHeapAllocation no_gc;
+  String::FlatContent flat1 = str1->GetFlatContent();
+  String::FlatContent flat2 = str2->GetFlatContent();
+
+  for (int i = 0; i < end; i++) {
+    if (flat1.Get(i) != flat2.Get(i)) {
+      return Smi::FromInt(flat1.Get(i) - flat2.Get(i));
+    }
+  }
+
+  return Smi::FromInt(str1_length - str2_length);
+}
+
+
+RUNTIME_FUNCTION(Runtime_SubString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
+  int start, end;
+  // We have a fast integer-only case here to avoid a conversion to double in
+  // the common case where from and to are Smis.
+  if (args[1]->IsSmi() && args[2]->IsSmi()) {
+    CONVERT_SMI_ARG_CHECKED(from_number, 1);
+    CONVERT_SMI_ARG_CHECKED(to_number, 2);
+    start = from_number;
+    end = to_number;
+  } else {
+    CONVERT_DOUBLE_ARG_CHECKED(from_number, 1);
+    CONVERT_DOUBLE_ARG_CHECKED(to_number, 2);
+    start = FastD2IChecked(from_number);
+    end = FastD2IChecked(to_number);
+  }
+  RUNTIME_ASSERT(end >= start);
+  RUNTIME_ASSERT(start >= 0);
+  RUNTIME_ASSERT(end <= string->length());
+  isolate->counters()->sub_string_runtime()->Increment();
+
+  return *isolate->factory()->NewSubString(string, start, end);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringAdd) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(String, str1, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, str2, 1);
+  isolate->counters()->string_add_runtime()->Increment();
+  Handle<String> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, isolate->factory()->NewConsString(str1, str2));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_InternalizeString) {
+  HandleScope handles(isolate);
+  RUNTIME_ASSERT(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
+  return *isolate->factory()->InternalizeString(string);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringMatch) {
+  HandleScope handles(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSRegExp, regexp, 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, regexp_info, 2);
+
+  RUNTIME_ASSERT(regexp_info->HasFastObjectElements());
+
+  RegExpImpl::GlobalCache global_cache(regexp, subject, true, isolate);
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  int capture_count = regexp->CaptureCount();
+
+  ZoneScope zone_scope(isolate->runtime_zone());
+  ZoneList<int> offsets(8, zone_scope.zone());
+
+  while (true) {
+    int32_t* match = global_cache.FetchNext();
+    if (match == NULL) break;
+    offsets.Add(match[0], zone_scope.zone());  // start
+    offsets.Add(match[1], zone_scope.zone());  // end
+  }
+
+  if (global_cache.HasException()) return isolate->heap()->exception();
+
+  if (offsets.length() == 0) {
+    // Not a single match.
+    return isolate->heap()->null_value();
+  }
+
+  RegExpImpl::SetLastMatchInfo(regexp_info, subject, capture_count,
+                               global_cache.LastSuccessfulMatch());
+
+  int matches = offsets.length() / 2;
+  Handle<FixedArray> elements = isolate->factory()->NewFixedArray(matches);
+  Handle<String> substring =
+      isolate->factory()->NewSubString(subject, offsets.at(0), offsets.at(1));
+  elements->set(0, *substring);
+  for (int i = 1; i < matches; i++) {
+    HandleScope temp_scope(isolate);
+    int from = offsets.at(i * 2);
+    int to = offsets.at(i * 2 + 1);
+    Handle<String> substring =
+        isolate->factory()->NewProperSubString(subject, from, to);
+    elements->set(i, *substring);
+  }
+  Handle<JSArray> result = isolate->factory()->NewJSArrayWithElements(elements);
+  result->set_length(Smi::FromInt(matches));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringCharCodeAtRT) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+  CONVERT_NUMBER_CHECKED(uint32_t, i, Uint32, args[1]);
+
+  // Flatten the string.  If someone wants to get a char at an index
+  // in a cons string, it is likely that more indices will be
+  // accessed.
+  subject = String::Flatten(subject);
+
+  if (i >= static_cast<uint32_t>(subject->length())) {
+    return isolate->heap()->nan_value();
+  }
+
+  return Smi::FromInt(subject->Get(i));
+}
+
+
+RUNTIME_FUNCTION(Runtime_CharFromCode) {
+  HandleScope handlescope(isolate);
+  DCHECK(args.length() == 1);
+  if (args[0]->IsNumber()) {
+    CONVERT_NUMBER_CHECKED(uint32_t, code, Uint32, args[0]);
+    code &= 0xffff;
+    return *isolate->factory()->LookupSingleCharacterStringFromCode(code);
+  }
+  return isolate->heap()->empty_string();
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringCompare) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
+
+  isolate->counters()->string_compare_runtime()->Increment();
+
+  // A few fast case tests before we flatten.
+  if (x.is_identical_to(y)) return Smi::FromInt(EQUAL);
+  if (y->length() == 0) {
+    if (x->length() == 0) return Smi::FromInt(EQUAL);
+    return Smi::FromInt(GREATER);
+  } else if (x->length() == 0) {
+    return Smi::FromInt(LESS);
+  }
+
+  int d = x->Get(0) - y->Get(0);
+  if (d < 0)
+    return Smi::FromInt(LESS);
+  else if (d > 0)
+    return Smi::FromInt(GREATER);
+
+  // Slow case.
+  x = String::Flatten(x);
+  y = String::Flatten(y);
+
+  DisallowHeapAllocation no_gc;
+  Object* equal_prefix_result = Smi::FromInt(EQUAL);
+  int prefix_length = x->length();
+  if (y->length() < prefix_length) {
+    prefix_length = y->length();
+    equal_prefix_result = Smi::FromInt(GREATER);
+  } else if (y->length() > prefix_length) {
+    equal_prefix_result = Smi::FromInt(LESS);
+  }
+  int r;
+  String::FlatContent x_content = x->GetFlatContent();
+  String::FlatContent y_content = y->GetFlatContent();
+  if (x_content.IsOneByte()) {
+    Vector<const uint8_t> x_chars = x_content.ToOneByteVector();
+    if (y_content.IsOneByte()) {
+      Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
+      r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+    } else {
+      Vector<const uc16> y_chars = y_content.ToUC16Vector();
+      r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+    }
+  } else {
+    Vector<const uc16> x_chars = x_content.ToUC16Vector();
+    if (y_content.IsOneByte()) {
+      Vector<const uint8_t> y_chars = y_content.ToOneByteVector();
+      r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+    } else {
+      Vector<const uc16> y_chars = y_content.ToUC16Vector();
+      r = CompareChars(x_chars.start(), y_chars.start(), prefix_length);
+    }
+  }
+  Object* result;
+  if (r == 0) {
+    result = equal_prefix_result;
+  } else {
+    result = (r < 0) ? Smi::FromInt(LESS) : Smi::FromInt(GREATER);
+  }
+  return result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringBuilderConcat) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+  int32_t array_length;
+  if (!args[1]->ToInt32(&array_length)) {
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+  }
+  CONVERT_ARG_HANDLE_CHECKED(String, special, 2);
+
+  size_t actual_array_length = 0;
+  RUNTIME_ASSERT(
+      TryNumberToSize(isolate, array->length(), &actual_array_length));
+  RUNTIME_ASSERT(array_length >= 0);
+  RUNTIME_ASSERT(static_cast<size_t>(array_length) <= actual_array_length);
+
+  // This assumption is used by the slice encoding in one or two smis.
+  DCHECK(Smi::kMaxValue >= String::kMaxLength);
+
+  RUNTIME_ASSERT(array->HasFastElements());
+  JSObject::EnsureCanContainHeapObjectElements(array);
+
+  int special_length = special->length();
+  if (!array->HasFastObjectElements()) {
+    return isolate->Throw(isolate->heap()->illegal_argument_string());
+  }
+
+  int length;
+  bool one_byte = special->HasOnlyOneByteChars();
+
+  {
+    DisallowHeapAllocation no_gc;
+    FixedArray* fixed_array = FixedArray::cast(array->elements());
+    if (fixed_array->length() < array_length) {
+      array_length = fixed_array->length();
+    }
+
+    if (array_length == 0) {
+      return isolate->heap()->empty_string();
+    } else if (array_length == 1) {
+      Object* first = fixed_array->get(0);
+      if (first->IsString()) return first;
+    }
+    length = StringBuilderConcatLength(special_length, fixed_array,
+                                       array_length, &one_byte);
+  }
+
+  if (length == -1) {
+    return isolate->Throw(isolate->heap()->illegal_argument_string());
+  }
+
+  if (one_byte) {
+    Handle<SeqOneByteString> answer;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, answer, isolate->factory()->NewRawOneByteString(length));
+    StringBuilderConcatHelper(*special, answer->GetChars(),
+                              FixedArray::cast(array->elements()),
+                              array_length);
+    return *answer;
+  } else {
+    Handle<SeqTwoByteString> answer;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, answer, isolate->factory()->NewRawTwoByteString(length));
+    StringBuilderConcatHelper(*special, answer->GetChars(),
+                              FixedArray::cast(array->elements()),
+                              array_length);
+    return *answer;
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringBuilderJoin) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, array, 0);
+  int32_t array_length;
+  if (!args[1]->ToInt32(&array_length)) {
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+  }
+  CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
+  RUNTIME_ASSERT(array->HasFastObjectElements());
+  RUNTIME_ASSERT(array_length >= 0);
+
+  Handle<FixedArray> fixed_array(FixedArray::cast(array->elements()));
+  if (fixed_array->length() < array_length) {
+    array_length = fixed_array->length();
+  }
+
+  if (array_length == 0) {
+    return isolate->heap()->empty_string();
+  } else if (array_length == 1) {
+    Object* first = fixed_array->get(0);
+    RUNTIME_ASSERT(first->IsString());
+    return first;
+  }
+
+  int separator_length = separator->length();
+  RUNTIME_ASSERT(separator_length > 0);
+  int max_nof_separators =
+      (String::kMaxLength + separator_length - 1) / separator_length;
+  if (max_nof_separators < (array_length - 1)) {
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+  }
+  int length = (array_length - 1) * separator_length;
+  for (int i = 0; i < array_length; i++) {
+    Object* element_obj = fixed_array->get(i);
+    RUNTIME_ASSERT(element_obj->IsString());
+    String* element = String::cast(element_obj);
+    int increment = element->length();
+    if (increment > String::kMaxLength - length) {
+      STATIC_ASSERT(String::kMaxLength < kMaxInt);
+      length = kMaxInt;  // Provoke exception;
+      break;
+    }
+    length += increment;
+  }
+
+  Handle<SeqTwoByteString> answer;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, answer, isolate->factory()->NewRawTwoByteString(length));
+
+  DisallowHeapAllocation no_gc;
+
+  uc16* sink = answer->GetChars();
+#ifdef DEBUG
+  uc16* end = sink + length;
+#endif
+
+  RUNTIME_ASSERT(fixed_array->get(0)->IsString());
+  String* first = String::cast(fixed_array->get(0));
+  String* separator_raw = *separator;
+  int first_length = first->length();
+  String::WriteToFlat(first, sink, 0, first_length);
+  sink += first_length;
+
+  for (int i = 1; i < array_length; i++) {
+    DCHECK(sink + separator_length <= end);
+    String::WriteToFlat(separator_raw, sink, 0, separator_length);
+    sink += separator_length;
+
+    RUNTIME_ASSERT(fixed_array->get(i)->IsString());
+    String* element = String::cast(fixed_array->get(i));
+    int element_length = element->length();
+    DCHECK(sink + element_length <= end);
+    String::WriteToFlat(element, sink, 0, element_length);
+    sink += element_length;
+  }
+  DCHECK(sink == end);
+
+  // Use %_FastOneByteArrayJoin instead.
+  DCHECK(!answer->IsOneByteRepresentation());
+  return *answer;
+}
+
+template <typename Char>
+static void JoinSparseArrayWithSeparator(FixedArray* elements,
+                                         int elements_length,
+                                         uint32_t array_length,
+                                         String* separator,
+                                         Vector<Char> buffer) {
+  DisallowHeapAllocation no_gc;
+  int previous_separator_position = 0;
+  int separator_length = separator->length();
+  int cursor = 0;
+  for (int i = 0; i < elements_length; i += 2) {
+    int position = NumberToInt32(elements->get(i));
+    String* string = String::cast(elements->get(i + 1));
+    int string_length = string->length();
+    if (string->length() > 0) {
+      while (previous_separator_position < position) {
+        String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
+                                  separator_length);
+        cursor += separator_length;
+        previous_separator_position++;
+      }
+      String::WriteToFlat<Char>(string, &buffer[cursor], 0, string_length);
+      cursor += string->length();
+    }
+  }
+  if (separator_length > 0) {
+    // Array length must be representable as a signed 32-bit number,
+    // otherwise the total string length would have been too large.
+    DCHECK(array_length <= 0x7fffffff);  // Is int32_t.
+    int last_array_index = static_cast<int>(array_length - 1);
+    while (previous_separator_position < last_array_index) {
+      String::WriteToFlat<Char>(separator, &buffer[cursor], 0,
+                                separator_length);
+      cursor += separator_length;
+      previous_separator_position++;
+    }
+  }
+  DCHECK(cursor <= buffer.length());
+}
+
+
+RUNTIME_FUNCTION(Runtime_SparseJoinWithSeparator) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSArray, elements_array, 0);
+  CONVERT_NUMBER_CHECKED(uint32_t, array_length, Uint32, args[1]);
+  CONVERT_ARG_HANDLE_CHECKED(String, separator, 2);
+  // elements_array is fast-mode JSarray of alternating positions
+  // (increasing order) and strings.
+  RUNTIME_ASSERT(elements_array->HasFastSmiOrObjectElements());
+  // array_length is length of original array (used to add separators);
+  // separator is string to put between elements. Assumed to be non-empty.
+  RUNTIME_ASSERT(array_length > 0);
+
+  // Find total length of join result.
+  int string_length = 0;
+  bool is_one_byte = separator->IsOneByteRepresentation();
+  bool overflow = false;
+  CONVERT_NUMBER_CHECKED(int, elements_length, Int32, elements_array->length());
+  RUNTIME_ASSERT(elements_length <= elements_array->elements()->length());
+  RUNTIME_ASSERT((elements_length & 1) == 0);  // Even length.
+  FixedArray* elements = FixedArray::cast(elements_array->elements());
+  for (int i = 0; i < elements_length; i += 2) {
+    RUNTIME_ASSERT(elements->get(i)->IsNumber());
+    CONVERT_NUMBER_CHECKED(uint32_t, position, Uint32, elements->get(i));
+    RUNTIME_ASSERT(position < array_length);
+    RUNTIME_ASSERT(elements->get(i + 1)->IsString());
+  }
+
+  {
+    DisallowHeapAllocation no_gc;
+    for (int i = 0; i < elements_length; i += 2) {
+      String* string = String::cast(elements->get(i + 1));
+      int length = string->length();
+      if (is_one_byte && !string->IsOneByteRepresentation()) {
+        is_one_byte = false;
+      }
+      if (length > String::kMaxLength ||
+          String::kMaxLength - length < string_length) {
+        overflow = true;
+        break;
+      }
+      string_length += length;
+    }
+  }
+
+  int separator_length = separator->length();
+  if (!overflow && separator_length > 0) {
+    if (array_length <= 0x7fffffffu) {
+      int separator_count = static_cast<int>(array_length) - 1;
+      int remaining_length = String::kMaxLength - string_length;
+      if ((remaining_length / separator_length) >= separator_count) {
+        string_length += separator_length * (array_length - 1);
+      } else {
+        // Not room for the separators within the maximal string length.
+        overflow = true;
+      }
+    } else {
+      // Nonempty separator and at least 2^31-1 separators necessary
+      // means that the string is too large to create.
+      STATIC_ASSERT(String::kMaxLength < 0x7fffffff);
+      overflow = true;
+    }
+  }
+  if (overflow) {
+    // Throw an exception if the resulting string is too large. See
+    // https://code.google.com/p/chromium/issues/detail?id=336820
+    // for details.
+    THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError());
+  }
+
+  if (is_one_byte) {
+    Handle<SeqOneByteString> result = isolate->factory()
+                                          ->NewRawOneByteString(string_length)
+                                          .ToHandleChecked();
+    JoinSparseArrayWithSeparator<uint8_t>(
+        FixedArray::cast(elements_array->elements()), elements_length,
+        array_length, *separator,
+        Vector<uint8_t>(result->GetChars(), string_length));
+    return *result;
+  } else {
+    Handle<SeqTwoByteString> result = isolate->factory()
+                                          ->NewRawTwoByteString(string_length)
+                                          .ToHandleChecked();
+    JoinSparseArrayWithSeparator<uc16>(
+        FixedArray::cast(elements_array->elements()), elements_length,
+        array_length, *separator,
+        Vector<uc16>(result->GetChars(), string_length));
+    return *result;
+  }
+}
+
+
+// Copies Latin1 characters to the given fixed array looking up
+// one-char strings in the cache. Gives up on the first char that is
+// not in the cache and fills the remainder with smi zeros. Returns
+// the length of the successfully copied prefix.
+static int CopyCachedOneByteCharsToArray(Heap* heap, const uint8_t* chars,
+                                         FixedArray* elements, int length) {
+  DisallowHeapAllocation no_gc;
+  FixedArray* one_byte_cache = heap->single_character_string_cache();
+  Object* undefined = heap->undefined_value();
+  int i;
+  WriteBarrierMode mode = elements->GetWriteBarrierMode(no_gc);
+  for (i = 0; i < length; ++i) {
+    Object* value = one_byte_cache->get(chars[i]);
+    if (value == undefined) break;
+    elements->set(i, value, mode);
+  }
+  if (i < length) {
+    DCHECK(Smi::FromInt(0) == 0);
+    memset(elements->data_start() + i, 0, kPointerSize * (length - i));
+  }
+#ifdef DEBUG
+  for (int j = 0; j < length; ++j) {
+    Object* element = elements->get(j);
+    DCHECK(element == Smi::FromInt(0) ||
+           (element->IsString() && String::cast(element)->LooksValid()));
+  }
+#endif
+  return i;
+}
+
+
+// Converts a String to JSArray.
+// For example, "foo" => ["f", "o", "o"].
+RUNTIME_FUNCTION(Runtime_StringToArray) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
+  CONVERT_NUMBER_CHECKED(uint32_t, limit, Uint32, args[1]);
+
+  s = String::Flatten(s);
+  const int length = static_cast<int>(Min<uint32_t>(s->length(), limit));
+
+  Handle<FixedArray> elements;
+  int position = 0;
+  if (s->IsFlat() && s->IsOneByteRepresentation()) {
+    // Try using cached chars where possible.
+    elements = isolate->factory()->NewUninitializedFixedArray(length);
+
+    DisallowHeapAllocation no_gc;
+    String::FlatContent content = s->GetFlatContent();
+    if (content.IsOneByte()) {
+      Vector<const uint8_t> chars = content.ToOneByteVector();
+      // Note, this will initialize all elements (not only the prefix)
+      // to prevent GC from seeing partially initialized array.
+      position = CopyCachedOneByteCharsToArray(isolate->heap(), chars.start(),
+                                               *elements, length);
+    } else {
+      MemsetPointer(elements->data_start(), isolate->heap()->undefined_value(),
+                    length);
+    }
+  } else {
+    elements = isolate->factory()->NewFixedArray(length);
+  }
+  for (int i = position; i < length; ++i) {
+    Handle<Object> str =
+        isolate->factory()->LookupSingleCharacterStringFromCode(s->Get(i));
+    elements->set(i, *str);
+  }
+
+#ifdef DEBUG
+  for (int i = 0; i < length; ++i) {
+    DCHECK(String::cast(elements->get(i))->length() == 1);
+  }
+#endif
+
+  return *isolate->factory()->NewJSArrayWithElements(elements);
+}
+
+
+static inline bool ToUpperOverflows(uc32 character) {
+  // y with umlauts and the micro sign are the only characters that stop
+  // fitting into one-byte when converting to uppercase.
+  static const uc32 yuml_code = 0xff;
+  static const uc32 micro_code = 0xb5;
+  return (character == yuml_code || character == micro_code);
+}
+
+
+template <class Converter>
+MUST_USE_RESULT static Object* ConvertCaseHelper(
+    Isolate* isolate, String* string, SeqString* result, int result_length,
+    unibrow::Mapping<Converter, 128>* mapping) {
+  DisallowHeapAllocation no_gc;
+  // We try this twice, once with the assumption that the result is no longer
+  // than the input and, if that assumption breaks, again with the exact
+  // length.  This may not be pretty, but it is nicer than what was here before
+  // and I hereby claim my vaffel-is.
+  //
+  // NOTE: This assumes that the upper/lower case of an ASCII
+  // character is also ASCII.  This is currently the case, but it
+  // might break in the future if we implement more context and locale
+  // dependent upper/lower conversions.
+  bool has_changed_character = false;
+
+  // Convert all characters to upper case, assuming that they will fit
+  // in the buffer
+  StringCharacterStream stream(string);
+  unibrow::uchar chars[Converter::kMaxWidth];
+  // We can assume that the string is not empty
+  uc32 current = stream.GetNext();
+  bool ignore_overflow = Converter::kIsToLower || result->IsSeqTwoByteString();
+  for (int i = 0; i < result_length;) {
+    bool has_next = stream.HasMore();
+    uc32 next = has_next ? stream.GetNext() : 0;
+    int char_length = mapping->get(current, next, chars);
+    if (char_length == 0) {
+      // The case conversion of this character is the character itself.
+      result->Set(i, current);
+      i++;
+    } else if (char_length == 1 &&
+               (ignore_overflow || !ToUpperOverflows(current))) {
+      // Common case: converting the letter resulted in one character.
+      DCHECK(static_cast<uc32>(chars[0]) != current);
+      result->Set(i, chars[0]);
+      has_changed_character = true;
+      i++;
+    } else if (result_length == string->length()) {
+      bool overflows = ToUpperOverflows(current);
+      // We've assumed that the result would be as long as the
+      // input but here is a character that converts to several
+      // characters.  No matter, we calculate the exact length
+      // of the result and try the whole thing again.
+      //
+      // Note that this leaves room for optimization.  We could just
+      // memcpy what we already have to the result string.  Also,
+      // the result string is the last object allocated we could
+      // "realloc" it and probably, in the vast majority of cases,
+      // extend the existing string to be able to hold the full
+      // result.
+      int next_length = 0;
+      if (has_next) {
+        next_length = mapping->get(next, 0, chars);
+        if (next_length == 0) next_length = 1;
+      }
+      int current_length = i + char_length + next_length;
+      while (stream.HasMore()) {
+        current = stream.GetNext();
+        overflows |= ToUpperOverflows(current);
+        // NOTE: we use 0 as the next character here because, while
+        // the next character may affect what a character converts to,
+        // it does not in any case affect the length of what it convert
+        // to.
+        int char_length = mapping->get(current, 0, chars);
+        if (char_length == 0) char_length = 1;
+        current_length += char_length;
+        if (current_length > String::kMaxLength) {
+          AllowHeapAllocation allocate_error_and_return;
+          THROW_NEW_ERROR_RETURN_FAILURE(isolate,
+                                         NewInvalidStringLengthError());
+        }
+      }
+      // Try again with the real length.  Return signed if we need
+      // to allocate a two-byte string for to uppercase.
+      return (overflows && !ignore_overflow) ? Smi::FromInt(-current_length)
+                                             : Smi::FromInt(current_length);
+    } else {
+      for (int j = 0; j < char_length; j++) {
+        result->Set(i, chars[j]);
+        i++;
+      }
+      has_changed_character = true;
+    }
+    current = next;
+  }
+  if (has_changed_character) {
+    return result;
+  } else {
+    // If we didn't actually change anything in doing the conversion
+    // we simple return the result and let the converted string
+    // become garbage; there is no reason to keep two identical strings
+    // alive.
+    return string;
+  }
+}
+
+
+static const uintptr_t kOneInEveryByte = kUintptrAllBitsSet / 0xFF;
+static const uintptr_t kAsciiMask = kOneInEveryByte << 7;
+
+// Given a word and two range boundaries returns a word with high bit
+// set in every byte iff the corresponding input byte was strictly in
+// the range (m, n). All the other bits in the result are cleared.
+// This function is only useful when it can be inlined and the
+// boundaries are statically known.
+// Requires: all bytes in the input word and the boundaries must be
+// ASCII (less than 0x7F).
+static inline uintptr_t AsciiRangeMask(uintptr_t w, char m, char n) {
+  // Use strict inequalities since in edge cases the function could be
+  // further simplified.
+  DCHECK(0 < m && m < n);
+  // Has high bit set in every w byte less than n.
+  uintptr_t tmp1 = kOneInEveryByte * (0x7F + n) - w;
+  // Has high bit set in every w byte greater than m.
+  uintptr_t tmp2 = w + kOneInEveryByte * (0x7F - m);
+  return (tmp1 & tmp2 & (kOneInEveryByte * 0x80));
+}
+
+
+#ifdef DEBUG
+static bool CheckFastAsciiConvert(char* dst, const char* src, int length,
+                                  bool changed, bool is_to_lower) {
+  bool expected_changed = false;
+  for (int i = 0; i < length; i++) {
+    if (dst[i] == src[i]) continue;
+    expected_changed = true;
+    if (is_to_lower) {
+      DCHECK('A' <= src[i] && src[i] <= 'Z');
+      DCHECK(dst[i] == src[i] + ('a' - 'A'));
+    } else {
+      DCHECK('a' <= src[i] && src[i] <= 'z');
+      DCHECK(dst[i] == src[i] - ('a' - 'A'));
+    }
+  }
+  return (expected_changed == changed);
+}
+#endif
+
+
+template <class Converter>
+static bool FastAsciiConvert(char* dst, const char* src, int length,
+                             bool* changed_out) {
+#ifdef DEBUG
+  char* saved_dst = dst;
+  const char* saved_src = src;
+#endif
+  DisallowHeapAllocation no_gc;
+  // We rely on the distance between upper and lower case letters
+  // being a known power of 2.
+  DCHECK('a' - 'A' == (1 << 5));
+  // Boundaries for the range of input characters than require conversion.
+  static const char lo = Converter::kIsToLower ? 'A' - 1 : 'a' - 1;
+  static const char hi = Converter::kIsToLower ? 'Z' + 1 : 'z' + 1;
+  bool changed = false;
+  uintptr_t or_acc = 0;
+  const char* const limit = src + length;
+
+  // dst is newly allocated and always aligned.
+  DCHECK(IsAligned(reinterpret_cast<intptr_t>(dst), sizeof(uintptr_t)));
+  // Only attempt processing one word at a time if src is also aligned.
+  if (IsAligned(reinterpret_cast<intptr_t>(src), sizeof(uintptr_t))) {
+    // Process the prefix of the input that requires no conversion one aligned
+    // (machine) word at a time.
+    while (src <= limit - sizeof(uintptr_t)) {
+      const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
+      or_acc |= w;
+      if (AsciiRangeMask(w, lo, hi) != 0) {
+        changed = true;
+        break;
+      }
+      *reinterpret_cast<uintptr_t*>(dst) = w;
+      src += sizeof(uintptr_t);
+      dst += sizeof(uintptr_t);
+    }
+    // Process the remainder of the input performing conversion when
+    // required one word at a time.
+    while (src <= limit - sizeof(uintptr_t)) {
+      const uintptr_t w = *reinterpret_cast<const uintptr_t*>(src);
+      or_acc |= w;
+      uintptr_t m = AsciiRangeMask(w, lo, hi);
+      // The mask has high (7th) bit set in every byte that needs
+      // conversion and we know that the distance between cases is
+      // 1 << 5.
+      *reinterpret_cast<uintptr_t*>(dst) = w ^ (m >> 2);
+      src += sizeof(uintptr_t);
+      dst += sizeof(uintptr_t);
+    }
+  }
+  // Process the last few bytes of the input (or the whole input if
+  // unaligned access is not supported).
+  while (src < limit) {
+    char c = *src;
+    or_acc |= c;
+    if (lo < c && c < hi) {
+      c ^= (1 << 5);
+      changed = true;
+    }
+    *dst = c;
+    ++src;
+    ++dst;
+  }
+
+  if ((or_acc & kAsciiMask) != 0) return false;
+
+  DCHECK(CheckFastAsciiConvert(saved_dst, saved_src, length, changed,
+                               Converter::kIsToLower));
+
+  *changed_out = changed;
+  return true;
+}
+
+
+template <class Converter>
+MUST_USE_RESULT static Object* ConvertCase(
+    Handle<String> s, Isolate* isolate,
+    unibrow::Mapping<Converter, 128>* mapping) {
+  s = String::Flatten(s);
+  int length = s->length();
+  // Assume that the string is not empty; we need this assumption later
+  if (length == 0) return *s;
+
+  // Simpler handling of ASCII strings.
+  //
+  // NOTE: This assumes that the upper/lower case of an ASCII
+  // character is also ASCII.  This is currently the case, but it
+  // might break in the future if we implement more context and locale
+  // dependent upper/lower conversions.
+  if (s->IsOneByteRepresentationUnderneath()) {
+    // Same length as input.
+    Handle<SeqOneByteString> result =
+        isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
+    DisallowHeapAllocation no_gc;
+    String::FlatContent flat_content = s->GetFlatContent();
+    DCHECK(flat_content.IsFlat());
+    bool has_changed_character = false;
+    bool is_ascii = FastAsciiConvert<Converter>(
+        reinterpret_cast<char*>(result->GetChars()),
+        reinterpret_cast<const char*>(flat_content.ToOneByteVector().start()),
+        length, &has_changed_character);
+    // If not ASCII, we discard the result and take the 2 byte path.
+    if (is_ascii) return has_changed_character ? *result : *s;
+  }
+
+  Handle<SeqString> result;  // Same length as input.
+  if (s->IsOneByteRepresentation()) {
+    result = isolate->factory()->NewRawOneByteString(length).ToHandleChecked();
+  } else {
+    result = isolate->factory()->NewRawTwoByteString(length).ToHandleChecked();
+  }
+
+  Object* answer = ConvertCaseHelper(isolate, *s, *result, length, mapping);
+  if (answer->IsException() || answer->IsString()) return answer;
+
+  DCHECK(answer->IsSmi());
+  length = Smi::cast(answer)->value();
+  if (s->IsOneByteRepresentation() && length > 0) {
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, result, isolate->factory()->NewRawOneByteString(length));
+  } else {
+    if (length < 0) length = -length;
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, result, isolate->factory()->NewRawTwoByteString(length));
+  }
+  return ConvertCaseHelper(isolate, *s, *result, length, mapping);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringToLowerCase) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
+  return ConvertCase(s, isolate, isolate->runtime_state()->to_lower_mapping());
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringToUpperCase) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, s, 0);
+  return ConvertCase(s, isolate, isolate->runtime_state()->to_upper_mapping());
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringTrim) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, string, 0);
+  CONVERT_BOOLEAN_ARG_CHECKED(trimLeft, 1);
+  CONVERT_BOOLEAN_ARG_CHECKED(trimRight, 2);
+
+  string = String::Flatten(string);
+  int length = string->length();
+
+  int left = 0;
+  UnicodeCache* unicode_cache = isolate->unicode_cache();
+  if (trimLeft) {
+    while (left < length &&
+           unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(left))) {
+      left++;
+    }
+  }
+
+  int right = length;
+  if (trimRight) {
+    while (
+        right > left &&
+        unicode_cache->IsWhiteSpaceOrLineTerminator(string->Get(right - 1))) {
+      right--;
+    }
+  }
+
+  return *isolate->factory()->NewSubString(string, left, right);
+}
+
+
+RUNTIME_FUNCTION(Runtime_TruncateString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(SeqString, string, 0);
+  CONVERT_INT32_ARG_CHECKED(new_length, 1);
+  RUNTIME_ASSERT(new_length >= 0);
+  return *SeqString::Truncate(string, new_length);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_INT32_ARG_CHECKED(length, 0);
+  CONVERT_BOOLEAN_ARG_CHECKED(is_one_byte, 1);
+  if (length == 0) return isolate->heap()->empty_string();
+  Handle<String> result;
+  if (is_one_byte) {
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, result, isolate->factory()->NewRawOneByteString(length));
+  } else {
+    ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+        isolate, result, isolate->factory()->NewRawTwoByteString(length));
+  }
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringEquals) {
+  HandleScope handle_scope(isolate);
+  DCHECK(args.length() == 2);
+
+  CONVERT_ARG_HANDLE_CHECKED(String, x, 0);
+  CONVERT_ARG_HANDLE_CHECKED(String, y, 1);
+
+  bool not_equal = !String::Equals(x, y);
+  // This is slightly convoluted because the value that signifies
+  // equality is 0 and inequality is 1 so we have to negate the result
+  // from String::Equals.
+  DCHECK(not_equal == 0 || not_equal == 1);
+  STATIC_ASSERT(EQUAL == 0);
+  STATIC_ASSERT(NOT_EQUAL == 1);
+  return Smi::FromInt(not_equal);
+}
+
+
+RUNTIME_FUNCTION(Runtime_FlattenString) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, str, 0);
+  return *String::Flatten(str);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCharFromCode) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_CharFromCode(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCharAt) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  if (!args[0]->IsString()) return Smi::FromInt(0);
+  if (!args[1]->IsNumber()) return Smi::FromInt(0);
+  if (std::isinf(args.number_at(1))) return isolate->heap()->empty_string();
+  Object* code = __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
+  if (code->IsNaN()) return isolate->heap()->empty_string();
+  return __RT_impl_Runtime_CharFromCode(Arguments(1, &code), isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_OneByteSeqStringSetChar) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_INT32_ARG_CHECKED(index, 0);
+  CONVERT_INT32_ARG_CHECKED(value, 1);
+  CONVERT_ARG_CHECKED(SeqOneByteString, string, 2);
+  string->SeqOneByteStringSet(index, value);
+  return string;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_TwoByteSeqStringSetChar) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_INT32_ARG_CHECKED(index, 0);
+  CONVERT_INT32_ARG_CHECKED(value, 1);
+  CONVERT_ARG_CHECKED(SeqTwoByteString, string, 2);
+  string->SeqTwoByteStringSet(index, value);
+  return string;
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCompare) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_StringCompare(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringCharCodeAt) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  if (!args[0]->IsString()) return isolate->heap()->undefined_value();
+  if (!args[1]->IsNumber()) return isolate->heap()->undefined_value();
+  if (std::isinf(args.number_at(1))) return isolate->heap()->nan_value();
+  return __RT_impl_Runtime_StringCharCodeAtRT(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_SubString) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_SubString(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_StringAdd) {
+  SealHandleScope shs(isolate);
+  return __RT_impl_Runtime_StringAdd(args, isolate);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_IsStringWrapperSafeForDefaultValueOf) {
+  UNIMPLEMENTED();
+  return NULL;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-symbol.cc b/src/runtime/runtime-symbol.cc
new file mode 100644
index 0000000..31b6bed
--- /dev/null
+++ b/src/runtime/runtime-symbol.cc
@@ -0,0 +1,100 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_CreateSymbol) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+  RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
+  Handle<Symbol> symbol = isolate->factory()->NewSymbol();
+  if (name->IsString()) symbol->set_name(*name);
+  return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreatePrivateSymbol) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+  RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
+  Handle<Symbol> symbol = isolate->factory()->NewPrivateSymbol();
+  if (name->IsString()) symbol->set_name(*name);
+  return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreatePrivateOwnSymbol) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, name, 0);
+  RUNTIME_ASSERT(name->IsString() || name->IsUndefined());
+  Handle<Symbol> symbol = isolate->factory()->NewPrivateOwnSymbol();
+  if (name->IsString()) symbol->set_name(*name);
+  return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_CreateGlobalPrivateOwnSymbol) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, name, 0);
+  Handle<JSObject> registry = isolate->GetSymbolRegistry();
+  Handle<String> part = isolate->factory()->private_intern_string();
+  Handle<Object> privates;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, privates, Object::GetPropertyOrElement(registry, part));
+  Handle<Object> symbol;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, symbol, Object::GetPropertyOrElement(privates, name));
+  if (!symbol->IsSymbol()) {
+    DCHECK(symbol->IsUndefined());
+    symbol = isolate->factory()->NewPrivateSymbol();
+    Handle<Symbol>::cast(symbol)->set_name(*name);
+    Handle<Symbol>::cast(symbol)->set_is_own(true);
+    JSObject::SetProperty(Handle<JSObject>::cast(privates), name, symbol,
+                          STRICT).Assert();
+  }
+  return *symbol;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NewSymbolWrapper) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(Symbol, symbol, 0);
+  return *Object::ToObject(isolate, symbol).ToHandleChecked();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SymbolDescription) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Symbol, symbol, 0);
+  return symbol->name();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SymbolRegistry) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  return *isolate->GetSymbolRegistry();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SymbolIsPrivate) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Symbol, symbol, 0);
+  return isolate->heap()->ToBoolean(symbol->is_private());
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-test.cc b/src/runtime/runtime-test.cc
new file mode 100644
index 0000000..b4b90e2
--- /dev/null
+++ b/src/runtime/runtime-test.cc
@@ -0,0 +1,418 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/deoptimizer.h"
+#include "src/full-codegen.h"
+#include "src/natives.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_DeoptimizeFunction) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  if (!function->IsOptimized()) return isolate->heap()->undefined_value();
+
+  // TODO(turbofan): Deoptimization is not supported yet.
+  if (function->code()->is_turbofanned() && !FLAG_turbo_deoptimization) {
+    return isolate->heap()->undefined_value();
+  }
+
+  Deoptimizer::DeoptimizeFunction(*function);
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_RunningInSimulator) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+#if defined(USE_SIMULATOR)
+  return isolate->heap()->true_value();
+#else
+  return isolate->heap()->false_value();
+#endif
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsConcurrentRecompilationSupported) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  return isolate->heap()->ToBoolean(
+      isolate->concurrent_recompilation_enabled());
+}
+
+
+RUNTIME_FUNCTION(Runtime_OptimizeFunctionOnNextCall) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  // The following two assertions are lifted from the DCHECKs inside
+  // JSFunction::MarkForOptimization().
+  RUNTIME_ASSERT(!function->shared()->is_generator());
+  RUNTIME_ASSERT(function->shared()->allows_lazy_compilation() ||
+                 (function->code()->kind() == Code::FUNCTION &&
+                  function->code()->optimizable()));
+
+  if (!isolate->use_crankshaft()) return isolate->heap()->undefined_value();
+
+  // If the function is already optimized, just return.
+  if (function->IsOptimized()) return isolate->heap()->undefined_value();
+
+  // If the function cannot optimized, just return.
+  if (function->shared()->optimization_disabled()) {
+    return isolate->heap()->undefined_value();
+  }
+
+  function->MarkForOptimization();
+
+  Code* unoptimized = function->shared()->code();
+  if (args.length() == 2 && unoptimized->kind() == Code::FUNCTION) {
+    CONVERT_ARG_HANDLE_CHECKED(String, type, 1);
+    if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("osr")) && FLAG_use_osr) {
+      // Start patching from the currently patched loop nesting level.
+      DCHECK(BackEdgeTable::Verify(isolate, unoptimized));
+      isolate->runtime_profiler()->AttemptOnStackReplacement(
+          *function, Code::kMaxLoopNestingMarker);
+    } else if (type->IsOneByteEqualTo(STATIC_CHAR_VECTOR("concurrent")) &&
+               isolate->concurrent_recompilation_enabled()) {
+      function->AttemptConcurrentOptimization();
+    }
+  }
+
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NeverOptimizeFunction) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSFunction, function, 0);
+  function->shared()->set_disable_optimization_reason(kOptimizationDisabled);
+  function->shared()->set_optimization_disabled(true);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetOptimizationStatus) {
+  HandleScope scope(isolate);
+  RUNTIME_ASSERT(args.length() == 1 || args.length() == 2);
+  if (!isolate->use_crankshaft()) {
+    return Smi::FromInt(4);  // 4 == "never".
+  }
+  bool sync_with_compiler_thread = true;
+  if (args.length() == 2) {
+    CONVERT_ARG_HANDLE_CHECKED(String, sync, 1);
+    if (sync->IsOneByteEqualTo(STATIC_CHAR_VECTOR("no sync"))) {
+      sync_with_compiler_thread = false;
+    }
+  }
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  if (isolate->concurrent_recompilation_enabled() &&
+      sync_with_compiler_thread) {
+    while (function->IsInOptimizationQueue()) {
+      isolate->optimizing_compiler_thread()->InstallOptimizedFunctions();
+      base::OS::Sleep(50);
+    }
+  }
+  if (FLAG_always_opt) {
+    // We may have always opt, but that is more best-effort than a real
+    // promise, so we still say "no" if it is not optimized.
+    return function->IsOptimized() ? Smi::FromInt(3)   // 3 == "always".
+                                   : Smi::FromInt(2);  // 2 == "no".
+  }
+  if (FLAG_deopt_every_n_times) {
+    return Smi::FromInt(6);  // 6 == "maybe deopted".
+  }
+  if (function->IsOptimized() && function->code()->is_turbofanned()) {
+    return Smi::FromInt(7);  // 7 == "TurboFan compiler".
+  }
+  return function->IsOptimized() ? Smi::FromInt(1)   // 1 == "yes".
+                                 : Smi::FromInt(2);  // 2 == "no".
+}
+
+
+RUNTIME_FUNCTION(Runtime_UnblockConcurrentRecompilation) {
+  DCHECK(args.length() == 0);
+  RUNTIME_ASSERT(FLAG_block_concurrent_recompilation);
+  RUNTIME_ASSERT(isolate->concurrent_recompilation_enabled());
+  isolate->optimizing_compiler_thread()->Unblock();
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_GetOptimizationCount) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  return Smi::FromInt(function->shared()->opt_count());
+}
+
+
+RUNTIME_FUNCTION(Runtime_ClearFunctionTypeFeedback) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0);
+  function->shared()->ClearTypeFeedbackInfo();
+  Code* unoptimized = function->shared()->code();
+  if (unoptimized->kind() == Code::FUNCTION) {
+    unoptimized->ClearInlineCaches();
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NotifyContextDisposed) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  isolate->heap()->NotifyContextDisposed(true);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_SetAllocationTimeout) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2 || args.length() == 3);
+#ifdef DEBUG
+  CONVERT_SMI_ARG_CHECKED(interval, 0);
+  CONVERT_SMI_ARG_CHECKED(timeout, 1);
+  isolate->heap()->set_allocation_timeout(timeout);
+  FLAG_gc_interval = interval;
+  if (args.length() == 3) {
+    // Enable/disable inline allocation if requested.
+    CONVERT_BOOLEAN_ARG_CHECKED(inline_allocation, 2);
+    if (inline_allocation) {
+      isolate->heap()->EnableInlineAllocation();
+    } else {
+      isolate->heap()->DisableInlineAllocation();
+    }
+  }
+#endif
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugPrint) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  OFStream os(stdout);
+#ifdef DEBUG
+  if (args[0]->IsString()) {
+    // If we have a string, assume it's a code "marker"
+    // and print some interesting cpu debugging info.
+    JavaScriptFrameIterator it(isolate);
+    JavaScriptFrame* frame = it.frame();
+    os << "fp = " << frame->fp() << ", sp = " << frame->sp()
+       << ", caller_sp = " << frame->caller_sp() << ": ";
+  } else {
+    os << "DebugPrint: ";
+  }
+  args[0]->Print(os);
+  if (args[0]->IsHeapObject()) {
+    os << "\n";
+    HeapObject::cast(args[0])->map()->Print(os);
+  }
+#else
+  // ShortPrint is available in release mode. Print is not.
+  os << Brief(args[0]);
+#endif
+  os << std::endl;
+
+  return args[0];  // return TOS
+}
+
+
+RUNTIME_FUNCTION(Runtime_DebugTrace) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  isolate->PrintStack(stdout);
+  return isolate->heap()->undefined_value();
+}
+
+
+// This will not allocate (flatten the string), but it may run
+// very slowly for very deeply nested ConsStrings.  For debugging use only.
+RUNTIME_FUNCTION(Runtime_GlobalPrint) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+
+  CONVERT_ARG_CHECKED(String, string, 0);
+  StringCharacterStream stream(string);
+  while (stream.HasMore()) {
+    uint16_t character = stream.GetNext();
+    PrintF("%c", character);
+  }
+  return string;
+}
+
+
+RUNTIME_FUNCTION(Runtime_SystemBreak) {
+  // The code below doesn't create handles, but when breaking here in GDB
+  // having a handle scope might be useful.
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+  base::OS::DebugBreak();
+  return isolate->heap()->undefined_value();
+}
+
+
+// Sets a v8 flag.
+RUNTIME_FUNCTION(Runtime_SetFlags) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(String, arg, 0);
+  SmartArrayPointer<char> flags =
+      arg->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL);
+  FlagList::SetFlagsFromString(flags.get(), StrLength(flags.get()));
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_Abort) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_SMI_ARG_CHECKED(message_id, 0);
+  const char* message =
+      GetBailoutReason(static_cast<BailoutReason>(message_id));
+  base::OS::PrintError("abort: %s\n", message);
+  isolate->PrintStack(stderr);
+  base::OS::Abort();
+  UNREACHABLE();
+  return NULL;
+}
+
+
+RUNTIME_FUNCTION(Runtime_AbortJS) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, message, 0);
+  base::OS::PrintError("abort: %s\n", message->ToCString().get());
+  isolate->PrintStack(stderr);
+  base::OS::Abort();
+  UNREACHABLE();
+  return NULL;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NativeScriptsCount) {
+  DCHECK(args.length() == 0);
+  return Smi::FromInt(Natives::GetBuiltinsCount());
+}
+
+
+// Returns V8 version as a string.
+RUNTIME_FUNCTION(Runtime_GetV8Version) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 0);
+
+  const char* version_string = v8::V8::GetVersion();
+
+  return *isolate->factory()->NewStringFromAsciiChecked(version_string);
+}
+
+
+static int StackSize(Isolate* isolate) {
+  int n = 0;
+  for (JavaScriptFrameIterator it(isolate); !it.done(); it.Advance()) n++;
+  return n;
+}
+
+
+static void PrintTransition(Isolate* isolate, Object* result) {
+  // indentation
+  {
+    const int nmax = 80;
+    int n = StackSize(isolate);
+    if (n <= nmax)
+      PrintF("%4d:%*s", n, n, "");
+    else
+      PrintF("%4d:%*s", n, nmax, "...");
+  }
+
+  if (result == NULL) {
+    JavaScriptFrame::PrintTop(isolate, stdout, true, false);
+    PrintF(" {\n");
+  } else {
+    // function result
+    PrintF("} -> ");
+    result->ShortPrint();
+    PrintF("\n");
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_TraceEnter) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 0);
+  PrintTransition(isolate, NULL);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_TraceExit) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, obj, 0);
+  PrintTransition(isolate, obj);
+  return obj;  // return TOS
+}
+
+
+RUNTIME_FUNCTION(Runtime_HaveSameMap) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_CHECKED(JSObject, obj1, 0);
+  CONVERT_ARG_CHECKED(JSObject, obj2, 1);
+  return isolate->heap()->ToBoolean(obj1->map() == obj2->map());
+}
+
+
+#define ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(Name)       \
+  RUNTIME_FUNCTION(Runtime_Has##Name) {                  \
+    CONVERT_ARG_CHECKED(JSObject, obj, 0);               \
+    return isolate->heap()->ToBoolean(obj->Has##Name()); \
+  }
+
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiElements)
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastObjectElements)
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastSmiOrObjectElements)
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastDoubleElements)
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastHoleyElements)
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(DictionaryElements)
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(SloppyArgumentsElements)
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(ExternalArrayElements)
+// Properties test sitting with elements tests - not fooling anyone.
+ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION(FastProperties)
+
+#undef ELEMENTS_KIND_CHECK_RUNTIME_FUNCTION
+
+
+#define TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, size) \
+  RUNTIME_FUNCTION(Runtime_HasExternal##Type##Elements) {                  \
+    CONVERT_ARG_CHECKED(JSObject, obj, 0);                                 \
+    return isolate->heap()->ToBoolean(obj->HasExternal##Type##Elements()); \
+  }
+
+TYPED_ARRAYS(TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
+
+#undef TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
+
+
+#define FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION(Type, type, TYPE, ctype, s) \
+  RUNTIME_FUNCTION(Runtime_HasFixed##Type##Elements) {                        \
+    CONVERT_ARG_CHECKED(JSObject, obj, 0);                                    \
+    return isolate->heap()->ToBoolean(obj->HasFixed##Type##Elements());       \
+  }
+
+TYPED_ARRAYS(FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION)
+
+#undef FIXED_TYPED_ARRAYS_CHECK_RUNTIME_FUNCTION
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-typedarray.cc b/src/runtime/runtime-typedarray.cc
new file mode 100644
index 0000000..cd2c0eb
--- /dev/null
+++ b/src/runtime/runtime-typedarray.cc
@@ -0,0 +1,768 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+
+namespace v8 {
+namespace internal {
+
+void Runtime::FreeArrayBuffer(Isolate* isolate,
+                              JSArrayBuffer* phantom_array_buffer) {
+  if (phantom_array_buffer->should_be_freed()) {
+    DCHECK(phantom_array_buffer->is_external());
+    free(phantom_array_buffer->backing_store());
+  }
+  if (phantom_array_buffer->is_external()) return;
+
+  size_t allocated_length =
+      NumberToSize(isolate, phantom_array_buffer->byte_length());
+
+  reinterpret_cast<v8::Isolate*>(isolate)
+      ->AdjustAmountOfExternalAllocatedMemory(
+          -static_cast<int64_t>(allocated_length));
+  CHECK(V8::ArrayBufferAllocator() != NULL);
+  V8::ArrayBufferAllocator()->Free(phantom_array_buffer->backing_store(),
+                                   allocated_length);
+}
+
+
+void Runtime::SetupArrayBuffer(Isolate* isolate,
+                               Handle<JSArrayBuffer> array_buffer,
+                               bool is_external, void* data,
+                               size_t allocated_length) {
+  DCHECK(array_buffer->GetInternalFieldCount() ==
+         v8::ArrayBuffer::kInternalFieldCount);
+  for (int i = 0; i < v8::ArrayBuffer::kInternalFieldCount; i++) {
+    array_buffer->SetInternalField(i, Smi::FromInt(0));
+  }
+  array_buffer->set_backing_store(data);
+  array_buffer->set_flag(Smi::FromInt(0));
+  array_buffer->set_is_external(is_external);
+  array_buffer->set_is_neuterable(true);
+
+  Handle<Object> byte_length =
+      isolate->factory()->NewNumberFromSize(allocated_length);
+  CHECK(byte_length->IsSmi() || byte_length->IsHeapNumber());
+  array_buffer->set_byte_length(*byte_length);
+
+  array_buffer->set_weak_next(isolate->heap()->array_buffers_list());
+  isolate->heap()->set_array_buffers_list(*array_buffer);
+  array_buffer->set_weak_first_view(isolate->heap()->undefined_value());
+}
+
+
+bool Runtime::SetupArrayBufferAllocatingData(Isolate* isolate,
+                                             Handle<JSArrayBuffer> array_buffer,
+                                             size_t allocated_length,
+                                             bool initialize) {
+  void* data;
+  CHECK(V8::ArrayBufferAllocator() != NULL);
+  if (allocated_length != 0) {
+    if (initialize) {
+      data = V8::ArrayBufferAllocator()->Allocate(allocated_length);
+    } else {
+      data =
+          V8::ArrayBufferAllocator()->AllocateUninitialized(allocated_length);
+    }
+    if (data == NULL) return false;
+  } else {
+    data = NULL;
+  }
+
+  SetupArrayBuffer(isolate, array_buffer, false, data, allocated_length);
+
+  reinterpret_cast<v8::Isolate*>(isolate)
+      ->AdjustAmountOfExternalAllocatedMemory(allocated_length);
+
+  return true;
+}
+
+
+void Runtime::NeuterArrayBuffer(Handle<JSArrayBuffer> array_buffer) {
+  Isolate* isolate = array_buffer->GetIsolate();
+  for (Handle<Object> view_obj(array_buffer->weak_first_view(), isolate);
+       !view_obj->IsUndefined();) {
+    Handle<JSArrayBufferView> view(JSArrayBufferView::cast(*view_obj));
+    if (view->IsJSTypedArray()) {
+      JSTypedArray::cast(*view)->Neuter();
+    } else if (view->IsJSDataView()) {
+      JSDataView::cast(*view)->Neuter();
+    } else {
+      UNREACHABLE();
+    }
+    view_obj = handle(view->weak_next(), isolate);
+  }
+  array_buffer->Neuter();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ArrayBufferInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 2);
+  CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, holder, 0);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(byteLength, 1);
+  if (!holder->byte_length()->IsUndefined()) {
+    // ArrayBuffer is already initialized; probably a fuzz test.
+    return *holder;
+  }
+  size_t allocated_length = 0;
+  if (!TryNumberToSize(isolate, *byteLength, &allocated_length)) {
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewRangeError("invalid_array_buffer_length",
+                               HandleVector<Object>(NULL, 0)));
+  }
+  if (!Runtime::SetupArrayBufferAllocatingData(isolate, holder,
+                                               allocated_length)) {
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewRangeError("invalid_array_buffer_length",
+                               HandleVector<Object>(NULL, 0)));
+  }
+  return *holder;
+}
+
+
+RUNTIME_FUNCTION(Runtime_ArrayBufferGetByteLength) {
+  SealHandleScope shs(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(JSArrayBuffer, holder, 0);
+  return holder->byte_length();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ArrayBufferSliceImpl) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, source, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, target, 1);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(first, 2);
+  RUNTIME_ASSERT(!source.is_identical_to(target));
+  size_t start = 0;
+  RUNTIME_ASSERT(TryNumberToSize(isolate, *first, &start));
+  size_t target_length = NumberToSize(isolate, target->byte_length());
+
+  if (target_length == 0) return isolate->heap()->undefined_value();
+
+  size_t source_byte_length = NumberToSize(isolate, source->byte_length());
+  RUNTIME_ASSERT(start <= source_byte_length);
+  RUNTIME_ASSERT(source_byte_length - start >= target_length);
+  uint8_t* source_data = reinterpret_cast<uint8_t*>(source->backing_store());
+  uint8_t* target_data = reinterpret_cast<uint8_t*>(target->backing_store());
+  CopyBytes(target_data, source_data + start, target_length);
+  return isolate->heap()->undefined_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_ArrayBufferIsView) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_CHECKED(Object, object, 0);
+  return isolate->heap()->ToBoolean(object->IsJSArrayBufferView());
+}
+
+
+RUNTIME_FUNCTION(Runtime_ArrayBufferNeuter) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, array_buffer, 0);
+  if (array_buffer->backing_store() == NULL) {
+    CHECK(Smi::FromInt(0) == array_buffer->byte_length());
+    return isolate->heap()->undefined_value();
+  }
+  DCHECK(!array_buffer->is_external());
+  void* backing_store = array_buffer->backing_store();
+  size_t byte_length = NumberToSize(isolate, array_buffer->byte_length());
+  array_buffer->set_is_external(true);
+  Runtime::NeuterArrayBuffer(array_buffer);
+  V8::ArrayBufferAllocator()->Free(backing_store, byte_length);
+  return isolate->heap()->undefined_value();
+}
+
+
+void Runtime::ArrayIdToTypeAndSize(int arrayId, ExternalArrayType* array_type,
+                                   ElementsKind* external_elements_kind,
+                                   ElementsKind* fixed_elements_kind,
+                                   size_t* element_size) {
+  switch (arrayId) {
+#define ARRAY_ID_CASE(Type, type, TYPE, ctype, size)      \
+  case ARRAY_ID_##TYPE:                                   \
+    *array_type = kExternal##Type##Array;                 \
+    *external_elements_kind = EXTERNAL_##TYPE##_ELEMENTS; \
+    *fixed_elements_kind = TYPE##_ELEMENTS;               \
+    *element_size = size;                                 \
+    break;
+
+    TYPED_ARRAYS(ARRAY_ID_CASE)
+#undef ARRAY_ID_CASE
+
+    default:
+      UNREACHABLE();
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_TypedArrayInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 5);
+  CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
+  CONVERT_SMI_ARG_CHECKED(arrayId, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, maybe_buffer, 2);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset_object, 3);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length_object, 4);
+
+  RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
+                 arrayId <= Runtime::ARRAY_ID_LAST);
+
+  ExternalArrayType array_type = kExternalInt8Array;  // Bogus initialization.
+  size_t element_size = 1;                            // Bogus initialization.
+  ElementsKind external_elements_kind =
+      EXTERNAL_INT8_ELEMENTS;                        // Bogus initialization.
+  ElementsKind fixed_elements_kind = INT8_ELEMENTS;  // Bogus initialization.
+  Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &external_elements_kind,
+                                &fixed_elements_kind, &element_size);
+  RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
+
+  size_t byte_offset = 0;
+  size_t byte_length = 0;
+  RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset_object, &byte_offset));
+  RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length_object, &byte_length));
+
+  if (maybe_buffer->IsJSArrayBuffer()) {
+    Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
+    size_t array_buffer_byte_length =
+        NumberToSize(isolate, buffer->byte_length());
+    RUNTIME_ASSERT(byte_offset <= array_buffer_byte_length);
+    RUNTIME_ASSERT(array_buffer_byte_length - byte_offset >= byte_length);
+  } else {
+    RUNTIME_ASSERT(maybe_buffer->IsNull());
+  }
+
+  RUNTIME_ASSERT(byte_length % element_size == 0);
+  size_t length = byte_length / element_size;
+
+  if (length > static_cast<unsigned>(Smi::kMaxValue)) {
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewRangeError("invalid_typed_array_length",
+                               HandleVector<Object>(NULL, 0)));
+  }
+
+  // All checks are done, now we can modify objects.
+
+  DCHECK(holder->GetInternalFieldCount() ==
+         v8::ArrayBufferView::kInternalFieldCount);
+  for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
+    holder->SetInternalField(i, Smi::FromInt(0));
+  }
+  Handle<Object> length_obj = isolate->factory()->NewNumberFromSize(length);
+  holder->set_length(*length_obj);
+  holder->set_byte_offset(*byte_offset_object);
+  holder->set_byte_length(*byte_length_object);
+
+  if (!maybe_buffer->IsNull()) {
+    Handle<JSArrayBuffer> buffer = Handle<JSArrayBuffer>::cast(maybe_buffer);
+    holder->set_buffer(*buffer);
+    holder->set_weak_next(buffer->weak_first_view());
+    buffer->set_weak_first_view(*holder);
+
+    Handle<ExternalArray> elements = isolate->factory()->NewExternalArray(
+        static_cast<int>(length), array_type,
+        static_cast<uint8_t*>(buffer->backing_store()) + byte_offset);
+    Handle<Map> map =
+        JSObject::GetElementsTransitionMap(holder, external_elements_kind);
+    JSObject::SetMapAndElements(holder, map, elements);
+    DCHECK(IsExternalArrayElementsKind(holder->map()->elements_kind()));
+  } else {
+    holder->set_buffer(Smi::FromInt(0));
+    holder->set_weak_next(isolate->heap()->undefined_value());
+    Handle<FixedTypedArrayBase> elements =
+        isolate->factory()->NewFixedTypedArray(static_cast<int>(length),
+                                               array_type);
+    holder->set_elements(*elements);
+  }
+  return isolate->heap()->undefined_value();
+}
+
+
+// Initializes a typed array from an array-like object.
+// If an array-like object happens to be a typed array of the same type,
+// initializes backing store using memove.
+//
+// Returns true if backing store was initialized or false otherwise.
+RUNTIME_FUNCTION(Runtime_TypedArrayInitializeFromArrayLike) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
+  CONVERT_SMI_ARG_CHECKED(arrayId, 1);
+  CONVERT_ARG_HANDLE_CHECKED(Object, source, 2);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(length_obj, 3);
+
+  RUNTIME_ASSERT(arrayId >= Runtime::ARRAY_ID_FIRST &&
+                 arrayId <= Runtime::ARRAY_ID_LAST);
+
+  ExternalArrayType array_type = kExternalInt8Array;  // Bogus initialization.
+  size_t element_size = 1;                            // Bogus initialization.
+  ElementsKind external_elements_kind =
+      EXTERNAL_INT8_ELEMENTS;                        // Bogus intialization.
+  ElementsKind fixed_elements_kind = INT8_ELEMENTS;  // Bogus initialization.
+  Runtime::ArrayIdToTypeAndSize(arrayId, &array_type, &external_elements_kind,
+                                &fixed_elements_kind, &element_size);
+
+  RUNTIME_ASSERT(holder->map()->elements_kind() == fixed_elements_kind);
+
+  Handle<JSArrayBuffer> buffer = isolate->factory()->NewJSArrayBuffer();
+  if (source->IsJSTypedArray() &&
+      JSTypedArray::cast(*source)->type() == array_type) {
+    length_obj = Handle<Object>(JSTypedArray::cast(*source)->length(), isolate);
+  }
+  size_t length = 0;
+  RUNTIME_ASSERT(TryNumberToSize(isolate, *length_obj, &length));
+
+  if ((length > static_cast<unsigned>(Smi::kMaxValue)) ||
+      (length > (kMaxInt / element_size))) {
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewRangeError("invalid_typed_array_length",
+                               HandleVector<Object>(NULL, 0)));
+  }
+  size_t byte_length = length * element_size;
+
+  DCHECK(holder->GetInternalFieldCount() ==
+         v8::ArrayBufferView::kInternalFieldCount);
+  for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
+    holder->SetInternalField(i, Smi::FromInt(0));
+  }
+
+  // NOTE: not initializing backing store.
+  // We assume that the caller of this function will initialize holder
+  // with the loop
+  //      for(i = 0; i < length; i++) { holder[i] = source[i]; }
+  // We assume that the caller of this function is always a typed array
+  // constructor.
+  // If source is a typed array, this loop will always run to completion,
+  // so we are sure that the backing store will be initialized.
+  // Otherwise, the indexing operation might throw, so the loop will not
+  // run to completion and the typed array might remain partly initialized.
+  // However we further assume that the caller of this function is a typed array
+  // constructor, and the exception will propagate out of the constructor,
+  // therefore uninitialized memory will not be accessible by a user program.
+  //
+  // TODO(dslomov): revise this once we support subclassing.
+
+  if (!Runtime::SetupArrayBufferAllocatingData(isolate, buffer, byte_length,
+                                               false)) {
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewRangeError("invalid_array_buffer_length",
+                               HandleVector<Object>(NULL, 0)));
+  }
+
+  holder->set_buffer(*buffer);
+  holder->set_byte_offset(Smi::FromInt(0));
+  Handle<Object> byte_length_obj(
+      isolate->factory()->NewNumberFromSize(byte_length));
+  holder->set_byte_length(*byte_length_obj);
+  holder->set_length(*length_obj);
+  holder->set_weak_next(buffer->weak_first_view());
+  buffer->set_weak_first_view(*holder);
+
+  Handle<ExternalArray> elements = isolate->factory()->NewExternalArray(
+      static_cast<int>(length), array_type,
+      static_cast<uint8_t*>(buffer->backing_store()));
+  Handle<Map> map =
+      JSObject::GetElementsTransitionMap(holder, external_elements_kind);
+  JSObject::SetMapAndElements(holder, map, elements);
+
+  if (source->IsJSTypedArray()) {
+    Handle<JSTypedArray> typed_array(JSTypedArray::cast(*source));
+
+    if (typed_array->type() == holder->type()) {
+      uint8_t* backing_store =
+          static_cast<uint8_t*>(typed_array->GetBuffer()->backing_store());
+      size_t source_byte_offset =
+          NumberToSize(isolate, typed_array->byte_offset());
+      memcpy(buffer->backing_store(), backing_store + source_byte_offset,
+             byte_length);
+      return isolate->heap()->true_value();
+    }
+  }
+
+  return isolate->heap()->false_value();
+}
+
+
+#define BUFFER_VIEW_GETTER(Type, getter, accessor)   \
+  RUNTIME_FUNCTION(Runtime_##Type##Get##getter) {    \
+    HandleScope scope(isolate);                      \
+    DCHECK(args.length() == 1);                      \
+    CONVERT_ARG_HANDLE_CHECKED(JS##Type, holder, 0); \
+    return holder->accessor();                       \
+  }
+
+BUFFER_VIEW_GETTER(ArrayBufferView, ByteLength, byte_length)
+BUFFER_VIEW_GETTER(ArrayBufferView, ByteOffset, byte_offset)
+BUFFER_VIEW_GETTER(TypedArray, Length, length)
+BUFFER_VIEW_GETTER(DataView, Buffer, buffer)
+
+#undef BUFFER_VIEW_GETTER
+
+RUNTIME_FUNCTION(Runtime_TypedArrayGetBuffer) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, holder, 0);
+  return *holder->GetBuffer();
+}
+
+
+// Return codes for Runtime_TypedArraySetFastCases.
+// Should be synchronized with typedarray.js natives.
+enum TypedArraySetResultCodes {
+  // Set from typed array of the same type.
+  // This is processed by TypedArraySetFastCases
+  TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE = 0,
+  // Set from typed array of the different type, overlapping in memory.
+  TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING = 1,
+  // Set from typed array of the different type, non-overlapping.
+  TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING = 2,
+  // Set from non-typed array.
+  TYPED_ARRAY_SET_NON_TYPED_ARRAY = 3
+};
+
+
+RUNTIME_FUNCTION(Runtime_TypedArraySetFastCases) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 3);
+  if (!args[0]->IsJSTypedArray()) {
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate,
+        NewTypeError("not_typed_array", HandleVector<Object>(NULL, 0)));
+  }
+
+  if (!args[1]->IsJSTypedArray())
+    return Smi::FromInt(TYPED_ARRAY_SET_NON_TYPED_ARRAY);
+
+  CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, target_obj, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSTypedArray, source_obj, 1);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset_obj, 2);
+
+  Handle<JSTypedArray> target(JSTypedArray::cast(*target_obj));
+  Handle<JSTypedArray> source(JSTypedArray::cast(*source_obj));
+  size_t offset = 0;
+  RUNTIME_ASSERT(TryNumberToSize(isolate, *offset_obj, &offset));
+  size_t target_length = NumberToSize(isolate, target->length());
+  size_t source_length = NumberToSize(isolate, source->length());
+  size_t target_byte_length = NumberToSize(isolate, target->byte_length());
+  size_t source_byte_length = NumberToSize(isolate, source->byte_length());
+  if (offset > target_length || offset + source_length > target_length ||
+      offset + source_length < offset) {  // overflow
+    THROW_NEW_ERROR_RETURN_FAILURE(
+        isolate, NewRangeError("typed_array_set_source_too_large",
+                               HandleVector<Object>(NULL, 0)));
+  }
+
+  size_t target_offset = NumberToSize(isolate, target->byte_offset());
+  size_t source_offset = NumberToSize(isolate, source->byte_offset());
+  uint8_t* target_base =
+      static_cast<uint8_t*>(target->GetBuffer()->backing_store()) +
+      target_offset;
+  uint8_t* source_base =
+      static_cast<uint8_t*>(source->GetBuffer()->backing_store()) +
+      source_offset;
+
+  // Typed arrays of the same type: use memmove.
+  if (target->type() == source->type()) {
+    memmove(target_base + offset * target->element_size(), source_base,
+            source_byte_length);
+    return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_SAME_TYPE);
+  }
+
+  // Typed arrays of different types over the same backing store
+  if ((source_base <= target_base &&
+       source_base + source_byte_length > target_base) ||
+      (target_base <= source_base &&
+       target_base + target_byte_length > source_base)) {
+    // We do not support overlapping ArrayBuffers
+    DCHECK(target->GetBuffer()->backing_store() ==
+           source->GetBuffer()->backing_store());
+    return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_OVERLAPPING);
+  } else {  // Non-overlapping typed arrays
+    return Smi::FromInt(TYPED_ARRAY_SET_TYPED_ARRAY_NONOVERLAPPING);
+  }
+}
+
+
+RUNTIME_FUNCTION(Runtime_TypedArrayMaxSizeInHeap) {
+  DCHECK(args.length() == 0);
+  DCHECK_OBJECT_SIZE(FLAG_typed_array_max_size_in_heap +
+                     FixedTypedArrayBase::kDataOffset);
+  return Smi::FromInt(FLAG_typed_array_max_size_in_heap);
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsTypedArray) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  return isolate->heap()->ToBoolean(args[0]->IsJSTypedArray());
+}
+
+
+RUNTIME_FUNCTION(Runtime_DataViewInitialize) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 4);
+  CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);
+  CONVERT_ARG_HANDLE_CHECKED(JSArrayBuffer, buffer, 1);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_offset, 2);
+  CONVERT_NUMBER_ARG_HANDLE_CHECKED(byte_length, 3);
+
+  DCHECK(holder->GetInternalFieldCount() ==
+         v8::ArrayBufferView::kInternalFieldCount);
+  for (int i = 0; i < v8::ArrayBufferView::kInternalFieldCount; i++) {
+    holder->SetInternalField(i, Smi::FromInt(0));
+  }
+  size_t buffer_length = 0;
+  size_t offset = 0;
+  size_t length = 0;
+  RUNTIME_ASSERT(
+      TryNumberToSize(isolate, buffer->byte_length(), &buffer_length));
+  RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_offset, &offset));
+  RUNTIME_ASSERT(TryNumberToSize(isolate, *byte_length, &length));
+
+  // TODO(jkummerow): When we have a "safe numerics" helper class, use it here.
+  // Entire range [offset, offset + length] must be in bounds.
+  RUNTIME_ASSERT(offset <= buffer_length);
+  RUNTIME_ASSERT(offset + length <= buffer_length);
+  // No overflow.
+  RUNTIME_ASSERT(offset + length >= offset);
+
+  holder->set_buffer(*buffer);
+  holder->set_byte_offset(*byte_offset);
+  holder->set_byte_length(*byte_length);
+
+  holder->set_weak_next(buffer->weak_first_view());
+  buffer->set_weak_first_view(*holder);
+
+  return isolate->heap()->undefined_value();
+}
+
+
+inline static bool NeedToFlipBytes(bool is_little_endian) {
+#ifdef V8_TARGET_LITTLE_ENDIAN
+  return !is_little_endian;
+#else
+  return is_little_endian;
+#endif
+}
+
+
+template <int n>
+inline void CopyBytes(uint8_t* target, uint8_t* source) {
+  for (int i = 0; i < n; i++) {
+    *(target++) = *(source++);
+  }
+}
+
+
+template <int n>
+inline void FlipBytes(uint8_t* target, uint8_t* source) {
+  source = source + (n - 1);
+  for (int i = 0; i < n; i++) {
+    *(target++) = *(source--);
+  }
+}
+
+
+template <typename T>
+inline static bool DataViewGetValue(Isolate* isolate,
+                                    Handle<JSDataView> data_view,
+                                    Handle<Object> byte_offset_obj,
+                                    bool is_little_endian, T* result) {
+  size_t byte_offset = 0;
+  if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
+    return false;
+  }
+  Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
+
+  size_t data_view_byte_offset =
+      NumberToSize(isolate, data_view->byte_offset());
+  size_t data_view_byte_length =
+      NumberToSize(isolate, data_view->byte_length());
+  if (byte_offset + sizeof(T) > data_view_byte_length ||
+      byte_offset + sizeof(T) < byte_offset) {  // overflow
+    return false;
+  }
+
+  union Value {
+    T data;
+    uint8_t bytes[sizeof(T)];
+  };
+
+  Value value;
+  size_t buffer_offset = data_view_byte_offset + byte_offset;
+  DCHECK(NumberToSize(isolate, buffer->byte_length()) >=
+         buffer_offset + sizeof(T));
+  uint8_t* source =
+      static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
+  if (NeedToFlipBytes(is_little_endian)) {
+    FlipBytes<sizeof(T)>(value.bytes, source);
+  } else {
+    CopyBytes<sizeof(T)>(value.bytes, source);
+  }
+  *result = value.data;
+  return true;
+}
+
+
+template <typename T>
+static bool DataViewSetValue(Isolate* isolate, Handle<JSDataView> data_view,
+                             Handle<Object> byte_offset_obj,
+                             bool is_little_endian, T data) {
+  size_t byte_offset = 0;
+  if (!TryNumberToSize(isolate, *byte_offset_obj, &byte_offset)) {
+    return false;
+  }
+  Handle<JSArrayBuffer> buffer(JSArrayBuffer::cast(data_view->buffer()));
+
+  size_t data_view_byte_offset =
+      NumberToSize(isolate, data_view->byte_offset());
+  size_t data_view_byte_length =
+      NumberToSize(isolate, data_view->byte_length());
+  if (byte_offset + sizeof(T) > data_view_byte_length ||
+      byte_offset + sizeof(T) < byte_offset) {  // overflow
+    return false;
+  }
+
+  union Value {
+    T data;
+    uint8_t bytes[sizeof(T)];
+  };
+
+  Value value;
+  value.data = data;
+  size_t buffer_offset = data_view_byte_offset + byte_offset;
+  DCHECK(NumberToSize(isolate, buffer->byte_length()) >=
+         buffer_offset + sizeof(T));
+  uint8_t* target =
+      static_cast<uint8_t*>(buffer->backing_store()) + buffer_offset;
+  if (NeedToFlipBytes(is_little_endian)) {
+    FlipBytes<sizeof(T)>(target, value.bytes);
+  } else {
+    CopyBytes<sizeof(T)>(target, value.bytes);
+  }
+  return true;
+}
+
+
+#define DATA_VIEW_GETTER(TypeName, Type, Converter)                   \
+  RUNTIME_FUNCTION(Runtime_DataViewGet##TypeName) {                   \
+    HandleScope scope(isolate);                                       \
+    DCHECK(args.length() == 3);                                       \
+    CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);                \
+    CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1);                     \
+    CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 2);                 \
+    Type result;                                                      \
+    if (DataViewGetValue(isolate, holder, offset, is_little_endian,   \
+                         &result)) {                                  \
+      return *isolate->factory()->Converter(result);                  \
+    } else {                                                          \
+      THROW_NEW_ERROR_RETURN_FAILURE(                                 \
+          isolate, NewRangeError("invalid_data_view_accessor_offset", \
+                                 HandleVector<Object>(NULL, 0)));     \
+    }                                                                 \
+  }
+
+DATA_VIEW_GETTER(Uint8, uint8_t, NewNumberFromUint)
+DATA_VIEW_GETTER(Int8, int8_t, NewNumberFromInt)
+DATA_VIEW_GETTER(Uint16, uint16_t, NewNumberFromUint)
+DATA_VIEW_GETTER(Int16, int16_t, NewNumberFromInt)
+DATA_VIEW_GETTER(Uint32, uint32_t, NewNumberFromUint)
+DATA_VIEW_GETTER(Int32, int32_t, NewNumberFromInt)
+DATA_VIEW_GETTER(Float32, float, NewNumber)
+DATA_VIEW_GETTER(Float64, double, NewNumber)
+
+#undef DATA_VIEW_GETTER
+
+
+template <typename T>
+static T DataViewConvertValue(double value);
+
+
+template <>
+int8_t DataViewConvertValue<int8_t>(double value) {
+  return static_cast<int8_t>(DoubleToInt32(value));
+}
+
+
+template <>
+int16_t DataViewConvertValue<int16_t>(double value) {
+  return static_cast<int16_t>(DoubleToInt32(value));
+}
+
+
+template <>
+int32_t DataViewConvertValue<int32_t>(double value) {
+  return DoubleToInt32(value);
+}
+
+
+template <>
+uint8_t DataViewConvertValue<uint8_t>(double value) {
+  return static_cast<uint8_t>(DoubleToUint32(value));
+}
+
+
+template <>
+uint16_t DataViewConvertValue<uint16_t>(double value) {
+  return static_cast<uint16_t>(DoubleToUint32(value));
+}
+
+
+template <>
+uint32_t DataViewConvertValue<uint32_t>(double value) {
+  return DoubleToUint32(value);
+}
+
+
+template <>
+float DataViewConvertValue<float>(double value) {
+  return static_cast<float>(value);
+}
+
+
+template <>
+double DataViewConvertValue<double>(double value) {
+  return value;
+}
+
+
+#define DATA_VIEW_SETTER(TypeName, Type)                                  \
+  RUNTIME_FUNCTION(Runtime_DataViewSet##TypeName) {                       \
+    HandleScope scope(isolate);                                           \
+    DCHECK(args.length() == 4);                                           \
+    CONVERT_ARG_HANDLE_CHECKED(JSDataView, holder, 0);                    \
+    CONVERT_NUMBER_ARG_HANDLE_CHECKED(offset, 1);                         \
+    CONVERT_NUMBER_ARG_HANDLE_CHECKED(value, 2);                          \
+    CONVERT_BOOLEAN_ARG_CHECKED(is_little_endian, 3);                     \
+    Type v = DataViewConvertValue<Type>(value->Number());                 \
+    if (DataViewSetValue(isolate, holder, offset, is_little_endian, v)) { \
+      return isolate->heap()->undefined_value();                          \
+    } else {                                                              \
+      THROW_NEW_ERROR_RETURN_FAILURE(                                     \
+          isolate, NewRangeError("invalid_data_view_accessor_offset",     \
+                                 HandleVector<Object>(NULL, 0)));         \
+    }                                                                     \
+  }
+
+DATA_VIEW_SETTER(Uint8, uint8_t)
+DATA_VIEW_SETTER(Int8, int8_t)
+DATA_VIEW_SETTER(Uint16, uint16_t)
+DATA_VIEW_SETTER(Int16, int16_t)
+DATA_VIEW_SETTER(Uint32, uint32_t)
+DATA_VIEW_SETTER(Int32, int32_t)
+DATA_VIEW_SETTER(Float32, float)
+DATA_VIEW_SETTER(Float64, double)
+
+#undef DATA_VIEW_SETTER
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-uri.cc b/src/runtime/runtime-uri.cc
new file mode 100644
index 0000000..477071a
--- /dev/null
+++ b/src/runtime/runtime-uri.cc
@@ -0,0 +1,288 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/conversions.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/string-search.h"
+#include "src/utils.h"
+
+
+namespace v8 {
+namespace internal {
+
+class URIUnescape : public AllStatic {
+ public:
+  template <typename Char>
+  MUST_USE_RESULT static MaybeHandle<String> Unescape(Isolate* isolate,
+                                                      Handle<String> source);
+
+ private:
+  static const signed char kHexValue['g'];
+
+  template <typename Char>
+  MUST_USE_RESULT static MaybeHandle<String> UnescapeSlow(Isolate* isolate,
+                                                          Handle<String> string,
+                                                          int start_index);
+
+  static INLINE(int TwoDigitHex(uint16_t character1, uint16_t character2));
+
+  template <typename Char>
+  static INLINE(int UnescapeChar(Vector<const Char> vector, int i, int length,
+                                 int* step));
+};
+
+
+const signed char URIUnescape::kHexValue[] = {
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -0, 1,  2,  3,  4,  5,
+    6,  7,  8,  9,  -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15, -1,
+    -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
+    -1, -1, -1, -1, -1, -1, -1, 10, 11, 12, 13, 14, 15};
+
+
+template <typename Char>
+MaybeHandle<String> URIUnescape::Unescape(Isolate* isolate,
+                                          Handle<String> source) {
+  int index;
+  {
+    DisallowHeapAllocation no_allocation;
+    StringSearch<uint8_t, Char> search(isolate, STATIC_CHAR_VECTOR("%"));
+    index = search.Search(source->GetCharVector<Char>(), 0);
+    if (index < 0) return source;
+  }
+  return UnescapeSlow<Char>(isolate, source, index);
+}
+
+
+template <typename Char>
+MaybeHandle<String> URIUnescape::UnescapeSlow(Isolate* isolate,
+                                              Handle<String> string,
+                                              int start_index) {
+  bool one_byte = true;
+  int length = string->length();
+
+  int unescaped_length = 0;
+  {
+    DisallowHeapAllocation no_allocation;
+    Vector<const Char> vector = string->GetCharVector<Char>();
+    for (int i = start_index; i < length; unescaped_length++) {
+      int step;
+      if (UnescapeChar(vector, i, length, &step) >
+          String::kMaxOneByteCharCode) {
+        one_byte = false;
+      }
+      i += step;
+    }
+  }
+
+  DCHECK(start_index < length);
+  Handle<String> first_part =
+      isolate->factory()->NewProperSubString(string, 0, start_index);
+
+  int dest_position = 0;
+  Handle<String> second_part;
+  DCHECK(unescaped_length <= String::kMaxLength);
+  if (one_byte) {
+    Handle<SeqOneByteString> dest = isolate->factory()
+                                        ->NewRawOneByteString(unescaped_length)
+                                        .ToHandleChecked();
+    DisallowHeapAllocation no_allocation;
+    Vector<const Char> vector = string->GetCharVector<Char>();
+    for (int i = start_index; i < length; dest_position++) {
+      int step;
+      dest->SeqOneByteStringSet(dest_position,
+                                UnescapeChar(vector, i, length, &step));
+      i += step;
+    }
+    second_part = dest;
+  } else {
+    Handle<SeqTwoByteString> dest = isolate->factory()
+                                        ->NewRawTwoByteString(unescaped_length)
+                                        .ToHandleChecked();
+    DisallowHeapAllocation no_allocation;
+    Vector<const Char> vector = string->GetCharVector<Char>();
+    for (int i = start_index; i < length; dest_position++) {
+      int step;
+      dest->SeqTwoByteStringSet(dest_position,
+                                UnescapeChar(vector, i, length, &step));
+      i += step;
+    }
+    second_part = dest;
+  }
+  return isolate->factory()->NewConsString(first_part, second_part);
+}
+
+
+int URIUnescape::TwoDigitHex(uint16_t character1, uint16_t character2) {
+  if (character1 > 'f') return -1;
+  int hi = kHexValue[character1];
+  if (hi == -1) return -1;
+  if (character2 > 'f') return -1;
+  int lo = kHexValue[character2];
+  if (lo == -1) return -1;
+  return (hi << 4) + lo;
+}
+
+
+template <typename Char>
+int URIUnescape::UnescapeChar(Vector<const Char> vector, int i, int length,
+                              int* step) {
+  uint16_t character = vector[i];
+  int32_t hi = 0;
+  int32_t lo = 0;
+  if (character == '%' && i <= length - 6 && vector[i + 1] == 'u' &&
+      (hi = TwoDigitHex(vector[i + 2], vector[i + 3])) != -1 &&
+      (lo = TwoDigitHex(vector[i + 4], vector[i + 5])) != -1) {
+    *step = 6;
+    return (hi << 8) + lo;
+  } else if (character == '%' && i <= length - 3 &&
+             (lo = TwoDigitHex(vector[i + 1], vector[i + 2])) != -1) {
+    *step = 3;
+    return lo;
+  } else {
+    *step = 1;
+    return character;
+  }
+}
+
+
+class URIEscape : public AllStatic {
+ public:
+  template <typename Char>
+  MUST_USE_RESULT static MaybeHandle<String> Escape(Isolate* isolate,
+                                                    Handle<String> string);
+
+ private:
+  static const char kHexChars[17];
+  static const char kNotEscaped[256];
+
+  static bool IsNotEscaped(uint16_t c) { return kNotEscaped[c] != 0; }
+};
+
+
+const char URIEscape::kHexChars[] = "0123456789ABCDEF";
+
+
+// kNotEscaped is generated by the following:
+//
+// #!/bin/perl
+// for (my $i = 0; $i < 256; $i++) {
+//   print "\n" if $i % 16 == 0;
+//   my $c = chr($i);
+//   my $escaped = 1;
+//   $escaped = 0 if $c =~ m#[A-Za-z0-9@*_+./-]#;
+//   print $escaped ? "0, " : "1, ";
+// }
+
+const char URIEscape::kNotEscaped[] = {
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1,
+    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1,
+    1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1,
+    0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+    1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+    0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
+
+
+template <typename Char>
+MaybeHandle<String> URIEscape::Escape(Isolate* isolate, Handle<String> string) {
+  DCHECK(string->IsFlat());
+  int escaped_length = 0;
+  int length = string->length();
+
+  {
+    DisallowHeapAllocation no_allocation;
+    Vector<const Char> vector = string->GetCharVector<Char>();
+    for (int i = 0; i < length; i++) {
+      uint16_t c = vector[i];
+      if (c >= 256) {
+        escaped_length += 6;
+      } else if (IsNotEscaped(c)) {
+        escaped_length++;
+      } else {
+        escaped_length += 3;
+      }
+
+      // We don't allow strings that are longer than a maximal length.
+      DCHECK(String::kMaxLength < 0x7fffffff - 6);     // Cannot overflow.
+      if (escaped_length > String::kMaxLength) break;  // Provoke exception.
+    }
+  }
+
+  // No length change implies no change.  Return original string if no change.
+  if (escaped_length == length) return string;
+
+  Handle<SeqOneByteString> dest;
+  ASSIGN_RETURN_ON_EXCEPTION(
+      isolate, dest, isolate->factory()->NewRawOneByteString(escaped_length),
+      String);
+  int dest_position = 0;
+
+  {
+    DisallowHeapAllocation no_allocation;
+    Vector<const Char> vector = string->GetCharVector<Char>();
+    for (int i = 0; i < length; i++) {
+      uint16_t c = vector[i];
+      if (c >= 256) {
+        dest->SeqOneByteStringSet(dest_position, '%');
+        dest->SeqOneByteStringSet(dest_position + 1, 'u');
+        dest->SeqOneByteStringSet(dest_position + 2, kHexChars[c >> 12]);
+        dest->SeqOneByteStringSet(dest_position + 3, kHexChars[(c >> 8) & 0xf]);
+        dest->SeqOneByteStringSet(dest_position + 4, kHexChars[(c >> 4) & 0xf]);
+        dest->SeqOneByteStringSet(dest_position + 5, kHexChars[c & 0xf]);
+        dest_position += 6;
+      } else if (IsNotEscaped(c)) {
+        dest->SeqOneByteStringSet(dest_position, c);
+        dest_position++;
+      } else {
+        dest->SeqOneByteStringSet(dest_position, '%');
+        dest->SeqOneByteStringSet(dest_position + 1, kHexChars[c >> 4]);
+        dest->SeqOneByteStringSet(dest_position + 2, kHexChars[c & 0xf]);
+        dest_position += 3;
+      }
+    }
+  }
+
+  return dest;
+}
+
+
+RUNTIME_FUNCTION(Runtime_URIEscape) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
+  Handle<String> string = String::Flatten(source);
+  DCHECK(string->IsFlat());
+  Handle<String> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, string->IsOneByteRepresentationUnderneath()
+                           ? URIEscape::Escape<uint8_t>(isolate, source)
+                           : URIEscape::Escape<uc16>(isolate, source));
+  return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_URIUnescape) {
+  HandleScope scope(isolate);
+  DCHECK(args.length() == 1);
+  CONVERT_ARG_HANDLE_CHECKED(String, source, 0);
+  Handle<String> string = String::Flatten(source);
+  DCHECK(string->IsFlat());
+  Handle<String> result;
+  ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
+      isolate, result, string->IsOneByteRepresentationUnderneath()
+                           ? URIUnescape::Unescape<uint8_t>(isolate, source)
+                           : URIUnescape::Unescape<uc16>(isolate, source));
+  return *result;
+}
+}
+}  // namespace v8::internal
diff --git a/src/runtime/runtime-utils.h b/src/runtime/runtime-utils.h
new file mode 100644
index 0000000..95d75f5
--- /dev/null
+++ b/src/runtime/runtime-utils.h
@@ -0,0 +1,147 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_RUNTIME_RUNTIME_UTILS_H_
+#define V8_RUNTIME_RUNTIME_UTILS_H_
+
+
+namespace v8 {
+namespace internal {
+
+#define RUNTIME_ASSERT(value) \
+  if (!(value)) return isolate->ThrowIllegalOperation();
+
+#define RUNTIME_ASSERT_HANDLIFIED(value, T) \
+  if (!(value)) {                           \
+    isolate->ThrowIllegalOperation();       \
+    return MaybeHandle<T>();                \
+  }
+
+// Cast the given object to a value of the specified type and store
+// it in a variable with the given name.  If the object is not of the
+// expected type call IllegalOperation and return.
+#define CONVERT_ARG_CHECKED(Type, name, index) \
+  RUNTIME_ASSERT(args[index]->Is##Type());     \
+  Type* name = Type::cast(args[index]);
+
+#define CONVERT_ARG_HANDLE_CHECKED(Type, name, index) \
+  RUNTIME_ASSERT(args[index]->Is##Type());            \
+  Handle<Type> name = args.at<Type>(index);
+
+#define CONVERT_NUMBER_ARG_HANDLE_CHECKED(name, index) \
+  RUNTIME_ASSERT(args[index]->IsNumber());             \
+  Handle<Object> name = args.at<Object>(index);
+
+// Cast the given object to a boolean and store it in a variable with
+// the given name.  If the object is not a boolean call IllegalOperation
+// and return.
+#define CONVERT_BOOLEAN_ARG_CHECKED(name, index) \
+  RUNTIME_ASSERT(args[index]->IsBoolean());      \
+  bool name = args[index]->IsTrue();
+
+// Cast the given argument to a Smi and store its value in an int variable
+// with the given name.  If the argument is not a Smi call IllegalOperation
+// and return.
+#define CONVERT_SMI_ARG_CHECKED(name, index) \
+  RUNTIME_ASSERT(args[index]->IsSmi());      \
+  int name = args.smi_at(index);
+
+// Cast the given argument to a double and store it in a variable with
+// the given name.  If the argument is not a number (as opposed to
+// the number not-a-number) call IllegalOperation and return.
+#define CONVERT_DOUBLE_ARG_CHECKED(name, index) \
+  RUNTIME_ASSERT(args[index]->IsNumber());      \
+  double name = args.number_at(index);
+
+// Call the specified converter on the object *comand store the result in
+// a variable of the specified type with the given name.  If the
+// object is not a Number call IllegalOperation and return.
+#define CONVERT_NUMBER_CHECKED(type, name, Type, obj) \
+  RUNTIME_ASSERT(obj->IsNumber());                    \
+  type name = NumberTo##Type(obj);
+
+
+// Cast the given argument to PropertyDetails and store its value in a
+// variable with the given name.  If the argument is not a Smi call
+// IllegalOperation and return.
+#define CONVERT_PROPERTY_DETAILS_CHECKED(name, index) \
+  RUNTIME_ASSERT(args[index]->IsSmi());               \
+  PropertyDetails name = PropertyDetails(Smi::cast(args[index]));
+
+
+// Assert that the given argument has a valid value for a StrictMode
+// and store it in a StrictMode variable with the given name.
+#define CONVERT_STRICT_MODE_ARG_CHECKED(name, index) \
+  RUNTIME_ASSERT(args[index]->IsSmi());              \
+  RUNTIME_ASSERT(args.smi_at(index) == STRICT ||     \
+                 args.smi_at(index) == SLOPPY);      \
+  StrictMode name = static_cast<StrictMode>(args.smi_at(index));
+
+
+// Assert that the given argument is a number within the Int32 range
+// and convert it to int32_t.  If the argument is not an Int32 call
+// IllegalOperation and return.
+#define CONVERT_INT32_ARG_CHECKED(name, index) \
+  RUNTIME_ASSERT(args[index]->IsNumber());     \
+  int32_t name = 0;                            \
+  RUNTIME_ASSERT(args[index]->ToInt32(&name));
+
+
+// A mechanism to return a pair of Object pointers in registers (if possible).
+// How this is achieved is calling convention-dependent.
+// All currently supported x86 compiles uses calling conventions that are cdecl
+// variants where a 64-bit value is returned in two 32-bit registers
+// (edx:eax on ia32, r1:r0 on ARM).
+// In AMD-64 calling convention a struct of two pointers is returned in rdx:rax.
+// In Win64 calling convention, a struct of two pointers is returned in memory,
+// allocated by the caller, and passed as a pointer in a hidden first parameter.
+#ifdef V8_HOST_ARCH_64_BIT
+struct ObjectPair {
+  Object* x;
+  Object* y;
+};
+
+
+static inline ObjectPair MakePair(Object* x, Object* y) {
+  ObjectPair result = {x, y};
+  // Pointers x and y returned in rax and rdx, in AMD-x64-abi.
+  // In Win64 they are assigned to a hidden first argument.
+  return result;
+}
+#elif V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
+// For x32 a 128-bit struct return is done as rax and rdx from the ObjectPair
+// are used in the full codegen and Crankshaft compiler. An alternative is
+// using uint64_t and modifying full codegen and Crankshaft compiler.
+struct ObjectPair {
+  Object* x;
+  uint32_t x_upper;
+  Object* y;
+  uint32_t y_upper;
+};
+
+
+static inline ObjectPair MakePair(Object* x, Object* y) {
+  ObjectPair result = {x, 0, y, 0};
+  // Pointers x and y returned in rax and rdx, in x32-abi.
+  return result;
+}
+#else
+typedef uint64_t ObjectPair;
+static inline ObjectPair MakePair(Object* x, Object* y) {
+#if defined(V8_TARGET_LITTLE_ENDIAN)
+  return reinterpret_cast<uint32_t>(x) |
+         (reinterpret_cast<ObjectPair>(y) << 32);
+#elif defined(V8_TARGET_BIG_ENDIAN)
+  return reinterpret_cast<uint32_t>(y) |
+         (reinterpret_cast<ObjectPair>(x) << 32);
+#else
+#error Unknown endianness
+#endif
+}
+#endif
+
+}
+}  // namespace v8::internal
+
+#endif  // V8_RUNTIME_RUNTIME_UTILS_H_
diff --git a/src/runtime/runtime.cc b/src/runtime/runtime.cc
new file mode 100644
index 0000000..459ca50
--- /dev/null
+++ b/src/runtime/runtime.cc
@@ -0,0 +1,122 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+namespace v8 {
+namespace internal {
+
+// Header of runtime functions.
+#define F(name, number_of_args, result_size)                    \
+  Object* Runtime_##name(int args_length, Object** args_object, \
+                         Isolate* isolate);
+
+#define P(name, number_of_args, result_size)                       \
+  ObjectPair Runtime_##name(int args_length, Object** args_object, \
+                            Isolate* isolate);
+
+// Reference implementation for inlined runtime functions.  Only used when the
+// compiler does not support a certain intrinsic.  Don't optimize these, but
+// implement the intrinsic in the respective compiler instead.
+// TODO(mstarzinger): These are place-holder stubs for TurboFan and will
+// eventually all have a C++ implementation and this macro will be gone.
+#define I(name, number_of_args, result_size)                             \
+  Object* RuntimeReference_##name(int args_length, Object** args_object, \
+                                  Isolate* isolate);
+
+RUNTIME_FUNCTION_LIST_RETURN_OBJECT(F)
+RUNTIME_FUNCTION_LIST_RETURN_PAIR(P)
+INLINE_OPTIMIZED_FUNCTION_LIST(F)
+INLINE_FUNCTION_LIST(I)
+
+#undef I
+#undef F
+#undef P
+
+
+#define F(name, number_of_args, result_size)                                  \
+  {                                                                           \
+    Runtime::k##name, Runtime::RUNTIME, #name, FUNCTION_ADDR(Runtime_##name), \
+        number_of_args, result_size                                           \
+  }                                                                           \
+  ,
+
+
+#define I(name, number_of_args, result_size)                                \
+  {                                                                         \
+    Runtime::kInline##name, Runtime::INLINE, "_" #name,                     \
+        FUNCTION_ADDR(RuntimeReference_##name), number_of_args, result_size \
+  }                                                                         \
+  ,
+
+
+#define IO(name, number_of_args, result_size)                              \
+  {                                                                        \
+    Runtime::kInlineOptimized##name, Runtime::INLINE_OPTIMIZED, "_" #name, \
+        FUNCTION_ADDR(Runtime_##name), number_of_args, result_size         \
+  }                                                                        \
+  ,
+
+
+static const Runtime::Function kIntrinsicFunctions[] = {
+    RUNTIME_FUNCTION_LIST(F) INLINE_OPTIMIZED_FUNCTION_LIST(F)
+    INLINE_FUNCTION_LIST(I) INLINE_OPTIMIZED_FUNCTION_LIST(IO)};
+
+#undef IO
+#undef I
+#undef F
+
+
+void Runtime::InitializeIntrinsicFunctionNames(Isolate* isolate,
+                                               Handle<NameDictionary> dict) {
+  DCHECK(dict->NumberOfElements() == 0);
+  HandleScope scope(isolate);
+  for (int i = 0; i < kNumFunctions; ++i) {
+    const char* name = kIntrinsicFunctions[i].name;
+    if (name == NULL) continue;
+    Handle<NameDictionary> new_dict = NameDictionary::Add(
+        dict, isolate->factory()->InternalizeUtf8String(name),
+        Handle<Smi>(Smi::FromInt(i), isolate), PropertyDetails(NONE, FIELD, 0));
+    // The dictionary does not need to grow.
+    CHECK(new_dict.is_identical_to(dict));
+  }
+}
+
+
+const Runtime::Function* Runtime::FunctionForName(Handle<String> name) {
+  Heap* heap = name->GetHeap();
+  int entry = heap->intrinsic_function_names()->FindEntry(name);
+  if (entry != kNotFound) {
+    Object* smi_index = heap->intrinsic_function_names()->ValueAt(entry);
+    int function_index = Smi::cast(smi_index)->value();
+    return &(kIntrinsicFunctions[function_index]);
+  }
+  return NULL;
+}
+
+
+const Runtime::Function* Runtime::FunctionForEntry(Address entry) {
+  for (size_t i = 0; i < arraysize(kIntrinsicFunctions); ++i) {
+    if (entry == kIntrinsicFunctions[i].entry) {
+      return &(kIntrinsicFunctions[i]);
+    }
+  }
+  return NULL;
+}
+
+
+const Runtime::Function* Runtime::FunctionForId(Runtime::FunctionId id) {
+  return &(kIntrinsicFunctions[static_cast<int>(id)]);
+}
+
+
+std::ostream& operator<<(std::ostream& os, Runtime::FunctionId id) {
+  return os << Runtime::FunctionForId(id)->name;
+}
+
+}  // namespace internal
+}  // namespace v8
diff --git a/src/runtime/runtime.h b/src/runtime/runtime.h
new file mode 100644
index 0000000..9e6c495
--- /dev/null
+++ b/src/runtime/runtime.h
@@ -0,0 +1,898 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_RUNTIME_RUNTIME_H_
+#define V8_RUNTIME_RUNTIME_H_
+
+#include "src/allocation.h"
+#include "src/objects.h"
+#include "src/zone.h"
+
+namespace v8 {
+namespace internal {
+
+// The interface to C++ runtime functions.
+
+// ----------------------------------------------------------------------------
+// RUNTIME_FUNCTION_LIST_ALWAYS defines runtime calls available in both
+// release and debug mode.
+// This macro should only be used by the macro RUNTIME_FUNCTION_LIST.
+
+// WARNING: RUNTIME_FUNCTION_LIST_ALWAYS_* is a very large macro that caused
+// MSVC Intellisense to crash.  It was broken into two macros to work around
+// this problem. Please avoid large recursive macros whenever possible.
+#define RUNTIME_FUNCTION_LIST_ALWAYS_1(F)                  \
+  /* Property access */                                    \
+  F(GetProperty, 2, 1)                                     \
+  F(KeyedGetProperty, 2, 1)                                \
+  F(DeleteProperty, 3, 1)                                  \
+  F(HasOwnProperty, 2, 1)                                  \
+  F(HasProperty, 2, 1)                                     \
+  F(HasElement, 2, 1)                                      \
+  F(IsPropertyEnumerable, 2, 1)                            \
+  F(GetPropertyNames, 1, 1)                                \
+  F(GetPropertyNamesFast, 1, 1)                            \
+  F(GetOwnPropertyNames, 2, 1)                             \
+  F(GetOwnElementNames, 1, 1)                              \
+  F(GetInterceptorInfo, 1, 1)                              \
+  F(GetNamedInterceptorPropertyNames, 1, 1)                \
+  F(GetIndexedInterceptorElementNames, 1, 1)               \
+  F(GetArgumentsProperty, 1, 1)                            \
+  F(ToFastProperties, 1, 1)                                \
+  F(FinishArrayPrototypeSetup, 1, 1)                       \
+  F(SpecialArrayFunctions, 0, 1)                           \
+  F(IsSloppyModeFunction, 1, 1)                            \
+  F(GetDefaultReceiver, 1, 1)                              \
+                                                           \
+  F(SetPrototype, 2, 1)                                    \
+  F(InternalSetPrototype, 2, 1)                            \
+  F(IsInPrototypeChain, 2, 1)                              \
+                                                           \
+  F(GetOwnProperty, 2, 1)                                  \
+                                                           \
+  F(IsExtensible, 1, 1)                                    \
+  F(PreventExtensions, 1, 1)                               \
+                                                           \
+  /* Utilities */                                          \
+  F(CheckIsBootstrapping, 0, 1)                            \
+  F(GetRootNaN, 0, 1)                                      \
+  F(Call, -1 /* >= 2 */, 1)                                \
+  F(Apply, 5, 1)                                           \
+  F(GetFunctionDelegate, 1, 1)                             \
+  F(GetConstructorDelegate, 1, 1)                          \
+  F(DeoptimizeFunction, 1, 1)                              \
+  F(ClearFunctionTypeFeedback, 1, 1)                       \
+  F(RunningInSimulator, 0, 1)                              \
+  F(IsConcurrentRecompilationSupported, 0, 1)              \
+  F(OptimizeFunctionOnNextCall, -1, 1)                     \
+  F(NeverOptimizeFunction, 1, 1)                           \
+  F(GetOptimizationStatus, -1, 1)                          \
+  F(GetOptimizationCount, 1, 1)                            \
+  F(UnblockConcurrentRecompilation, 0, 1)                  \
+  F(CompileForOnStackReplacement, 1, 1)                    \
+  F(SetAllocationTimeout, -1 /* 2 || 3 */, 1)              \
+  F(SetNativeFlag, 1, 1)                                   \
+  F(SetInlineBuiltinFlag, 1, 1)                            \
+  F(StoreArrayLiteralElement, 5, 1)                        \
+  F(DebugPrepareStepInIfStepping, 1, 1)                    \
+  F(DebugPushPromise, 1, 1)                                \
+  F(DebugPopPromise, 0, 1)                                 \
+  F(DebugPromiseEvent, 1, 1)                               \
+  F(DebugAsyncTaskEvent, 1, 1)                             \
+  F(PromiseRejectEvent, 3, 1)                              \
+  F(PromiseRevokeReject, 1, 1)                             \
+  F(PromiseHasHandlerSymbol, 0, 1)                         \
+  F(FlattenString, 1, 1)                                   \
+  F(LoadMutableDouble, 2, 1)                               \
+  F(TryMigrateInstance, 1, 1)                              \
+  F(NotifyContextDisposed, 0, 1)                           \
+                                                           \
+  /* Array join support */                                 \
+  F(PushIfAbsent, 2, 1)                                    \
+  F(ArrayConcat, 1, 1)                                     \
+                                                           \
+  /* Conversions */                                        \
+  F(ToBool, 1, 1)                                          \
+  F(Typeof, 1, 1)                                          \
+                                                           \
+  F(Booleanize, 2, 1) /* TODO(turbofan): Only temporary */ \
+                                                           \
+  F(StringToNumber, 1, 1)                                  \
+  F(StringParseInt, 2, 1)                                  \
+  F(StringParseFloat, 1, 1)                                \
+  F(StringToLowerCase, 1, 1)                               \
+  F(StringToUpperCase, 1, 1)                               \
+  F(StringSplit, 3, 1)                                     \
+  F(CharFromCode, 1, 1)                                    \
+  F(URIEscape, 1, 1)                                       \
+  F(URIUnescape, 1, 1)                                     \
+                                                           \
+  F(NumberToInteger, 1, 1)                                 \
+  F(NumberToIntegerMapMinusZero, 1, 1)                     \
+  F(NumberToJSUint32, 1, 1)                                \
+  F(NumberToJSInt32, 1, 1)                                 \
+                                                           \
+  /* Arithmetic operations */                              \
+  F(NumberAdd, 2, 1)                                       \
+  F(NumberSub, 2, 1)                                       \
+  F(NumberMul, 2, 1)                                       \
+  F(NumberDiv, 2, 1)                                       \
+  F(NumberMod, 2, 1)                                       \
+  F(NumberUnaryMinus, 1, 1)                                \
+  F(NumberImul, 2, 1)                                      \
+                                                           \
+  F(StringBuilderConcat, 3, 1)                             \
+  F(StringBuilderJoin, 3, 1)                               \
+  F(SparseJoinWithSeparator, 3, 1)                         \
+                                                           \
+  /* Bit operations */                                     \
+  F(NumberOr, 2, 1)                                        \
+  F(NumberAnd, 2, 1)                                       \
+  F(NumberXor, 2, 1)                                       \
+                                                           \
+  F(NumberShl, 2, 1)                                       \
+  F(NumberShr, 2, 1)                                       \
+  F(NumberSar, 2, 1)                                       \
+                                                           \
+  /* Comparisons */                                        \
+  F(NumberEquals, 2, 1)                                    \
+  F(StringEquals, 2, 1)                                    \
+                                                           \
+  F(NumberCompare, 3, 1)                                   \
+  F(SmiLexicographicCompare, 2, 1)                         \
+                                                           \
+  /* Math */                                               \
+  F(MathAcos, 1, 1)                                        \
+  F(MathAsin, 1, 1)                                        \
+  F(MathAtan, 1, 1)                                        \
+  F(MathFloorRT, 1, 1)                                     \
+  F(MathAtan2, 2, 1)                                       \
+  F(MathExpRT, 1, 1)                                       \
+  F(RoundNumber, 1, 1)                                     \
+  F(MathFround, 1, 1)                                      \
+  F(RemPiO2, 1, 1)                                         \
+                                                           \
+  /* Regular expressions */                                \
+  F(RegExpInitializeAndCompile, 3, 1)                      \
+  F(RegExpExecMultiple, 4, 1)                              \
+                                                           \
+  /* JSON */                                               \
+  F(ParseJson, 1, 1)                                       \
+  F(BasicJSONStringify, 1, 1)                              \
+  F(QuoteJSONString, 1, 1)                                 \
+                                                           \
+  /* Strings */                                            \
+  F(StringIndexOf, 3, 1)                                   \
+  F(StringLastIndexOf, 3, 1)                               \
+  F(StringLocaleCompare, 2, 1)                             \
+  F(StringReplaceGlobalRegExpWithString, 4, 1)             \
+  F(StringReplaceOneCharWithString, 3, 1)                  \
+  F(StringMatch, 3, 1)                                     \
+  F(StringTrim, 3, 1)                                      \
+  F(StringToArray, 2, 1)                                   \
+  F(NewStringWrapper, 1, 1)                                \
+  F(NewString, 2, 1)                                       \
+  F(TruncateString, 2, 1)                                  \
+                                                           \
+  /* Numbers */                                            \
+  F(NumberToRadixString, 2, 1)                             \
+  F(NumberToFixed, 2, 1)                                   \
+  F(NumberToExponential, 2, 1)                             \
+  F(NumberToPrecision, 2, 1)                               \
+  F(IsValidSmi, 1, 1)                                      \
+                                                           \
+  /* Classes support */                                    \
+  F(ToMethod, 2, 1)                                        \
+  F(HomeObjectSymbol, 0, 1)                                \
+  F(DefineClass, 6, 1)                                     \
+  F(DefineClassMethod, 3, 1)                               \
+  F(DefineClassGetter, 3, 1)                               \
+  F(DefineClassSetter, 3, 1)                               \
+  F(ClassGetSourceCode, 1, 1)                              \
+  F(ThrowNonMethodError, 0, 1)                             \
+  F(ThrowUnsupportedSuperError, 0, 1)                      \
+  F(LoadFromSuper, 3, 1)                                   \
+  F(LoadKeyedFromSuper, 3, 1)                              \
+  F(StoreToSuper_Strict, 4, 1)                             \
+  F(StoreToSuper_Sloppy, 4, 1)                             \
+  F(StoreKeyedToSuper_Strict, 4, 1)                        \
+  F(StoreKeyedToSuper_Sloppy, 4, 1)                        \
+  F(DefaultConstructorSuperCall, 0, 1)
+
+
+#define RUNTIME_FUNCTION_LIST_ALWAYS_2(F)              \
+  /* Reflection */                                     \
+  F(FunctionSetInstanceClassName, 2, 1)                \
+  F(FunctionSetLength, 2, 1)                           \
+  F(FunctionSetPrototype, 2, 1)                        \
+  F(FunctionGetName, 1, 1)                             \
+  F(FunctionSetName, 2, 1)                             \
+  F(FunctionNameShouldPrintAsAnonymous, 1, 1)          \
+  F(FunctionMarkNameShouldPrintAsAnonymous, 1, 1)      \
+  F(FunctionIsGenerator, 1, 1)                         \
+  F(FunctionIsArrow, 1, 1)                             \
+  F(FunctionIsConciseMethod, 1, 1)                     \
+  F(FunctionBindArguments, 4, 1)                       \
+  F(BoundFunctionGetBindings, 1, 1)                    \
+  F(FunctionRemovePrototype, 1, 1)                     \
+  F(FunctionGetSourceCode, 1, 1)                       \
+  F(FunctionGetScript, 1, 1)                           \
+  F(FunctionGetScriptSourcePosition, 1, 1)             \
+  F(FunctionGetPositionForOffset, 2, 1)                \
+  F(FunctionIsAPIFunction, 1, 1)                       \
+  F(FunctionIsBuiltin, 1, 1)                           \
+  F(GetScript, 1, 1)                                   \
+  F(CollectStackTrace, 2, 1)                           \
+  F(GetV8Version, 0, 1)                                \
+  F(GeneratorGetFunction, 1, 1)                        \
+  F(GeneratorGetContext, 1, 1)                         \
+  F(GeneratorGetReceiver, 1, 1)                        \
+  F(GeneratorGetContinuation, 1, 1)                    \
+  F(GeneratorGetSourcePosition, 1, 1)                  \
+                                                       \
+  F(SetCode, 2, 1)                                     \
+                                                       \
+  F(CreateApiFunction, 2, 1)                           \
+  F(IsTemplate, 1, 1)                                  \
+  F(GetTemplateField, 2, 1)                            \
+  F(DisableAccessChecks, 1, 1)                         \
+  F(EnableAccessChecks, 1, 1)                          \
+                                                       \
+  /* Dates */                                          \
+  F(DateCurrentTime, 0, 1)                             \
+  F(DateParseString, 2, 1)                             \
+  F(DateLocalTimezone, 1, 1)                           \
+  F(DateToUTC, 1, 1)                                   \
+  F(DateMakeDay, 2, 1)                                 \
+  F(DateSetValue, 3, 1)                                \
+  F(DateCacheVersion, 0, 1)                            \
+                                                       \
+  /* Globals */                                        \
+  F(CompileString, 3, 1)                               \
+                                                       \
+  /* Eval */                                           \
+  F(GlobalProxy, 1, 1)                                 \
+                                                       \
+  F(AddNamedProperty, 4, 1)                            \
+  F(AddPropertyForTemplate, 4, 1)                      \
+  F(SetProperty, 4, 1)                                 \
+  F(AddElement, 4, 1)                                  \
+  F(DefineApiAccessorProperty, 5, 1)                   \
+  F(DefineDataPropertyUnchecked, 4, 1)                 \
+  F(DefineAccessorPropertyUnchecked, 5, 1)             \
+  F(GetDataProperty, 2, 1)                             \
+                                                       \
+  /* Arrays */                                         \
+  F(RemoveArrayHoles, 2, 1)                            \
+  F(GetArrayKeys, 2, 1)                                \
+  F(MoveArrayContents, 2, 1)                           \
+  F(EstimateNumberOfElements, 1, 1)                    \
+  F(NormalizeElements, 1, 1)                           \
+  F(HasComplexElements, 1, 1)                          \
+                                                       \
+  /* Getters and Setters */                            \
+  F(LookupAccessor, 3, 1)                              \
+                                                       \
+  /* ES5 */                                            \
+  F(ObjectSeal, 1, 1)                                  \
+  F(ObjectFreeze, 1, 1)                                \
+                                                       \
+  /* Harmony modules */                                \
+  F(IsJSModule, 1, 1)                                  \
+                                                       \
+  /* Harmony symbols */                                \
+  F(CreateSymbol, 1, 1)                                \
+  F(CreatePrivateSymbol, 1, 1)                         \
+  F(CreateGlobalPrivateOwnSymbol, 1, 1)                \
+  F(CreatePrivateOwnSymbol, 1, 1)                      \
+  F(NewSymbolWrapper, 1, 1)                            \
+  F(SymbolDescription, 1, 1)                           \
+  F(SymbolRegistry, 0, 1)                              \
+  F(SymbolIsPrivate, 1, 1)                             \
+                                                       \
+  /* Harmony proxies */                                \
+  F(CreateJSProxy, 2, 1)                               \
+  F(CreateJSFunctionProxy, 4, 1)                       \
+  F(IsJSFunctionProxy, 1, 1)                           \
+  F(GetHandler, 1, 1)                                  \
+  F(GetCallTrap, 1, 1)                                 \
+  F(GetConstructTrap, 1, 1)                            \
+  F(Fix, 1, 1)                                         \
+                                                       \
+  /* ES6 collection iterators */                       \
+  F(SetIteratorInitialize, 3, 1)                       \
+  F(SetIteratorClone, 1, 1)                            \
+  F(SetIteratorNext, 2, 1)                             \
+  F(SetIteratorDetails, 1, 1)                          \
+  F(MapIteratorInitialize, 3, 1)                       \
+  F(MapIteratorClone, 1, 1)                            \
+  F(MapIteratorNext, 2, 1)                             \
+  F(MapIteratorDetails, 1, 1)                          \
+                                                       \
+  /* Harmony weak maps and sets */                     \
+  F(WeakCollectionInitialize, 1, 1)                    \
+  F(WeakCollectionGet, 2, 1)                           \
+  F(WeakCollectionHas, 2, 1)                           \
+  F(WeakCollectionDelete, 2, 1)                        \
+  F(WeakCollectionSet, 3, 1)                           \
+                                                       \
+  F(GetWeakMapEntries, 2, 1)                           \
+  F(GetWeakSetValues, 2, 1)                            \
+                                                       \
+  /* Harmony events */                                 \
+  F(EnqueueMicrotask, 1, 1)                            \
+  F(RunMicrotasks, 0, 1)                               \
+                                                       \
+  /* Harmony observe */                                \
+  F(IsObserved, 1, 1)                                  \
+  F(SetIsObserved, 1, 1)                               \
+  F(GetObservationState, 0, 1)                         \
+  F(ObservationWeakMapCreate, 0, 1)                    \
+  F(ObserverObjectAndRecordHaveSameOrigin, 3, 1)       \
+  F(ObjectWasCreatedInCurrentOrigin, 1, 1)             \
+  F(GetObjectContextObjectObserve, 1, 1)               \
+  F(GetObjectContextObjectGetNotifier, 1, 1)           \
+  F(GetObjectContextNotifierPerformChange, 1, 1)       \
+  F(DeliverObservationChangeRecords, 2, 1)             \
+                                                       \
+  /* Harmony typed arrays */                           \
+  F(ArrayBufferInitialize, 2, 1)                       \
+  F(ArrayBufferSliceImpl, 3, 1)                        \
+  F(ArrayBufferIsView, 1, 1)                           \
+  F(ArrayBufferNeuter, 1, 1)                           \
+                                                       \
+  F(IsTypedArray, 1, 1)                                \
+  F(TypedArrayInitializeFromArrayLike, 4, 1)           \
+  F(TypedArrayGetBuffer, 1, 1)                         \
+  F(TypedArraySetFastCases, 3, 1)                      \
+                                                       \
+  F(DataViewGetBuffer, 1, 1)                           \
+  F(DataViewGetInt8, 3, 1)                             \
+  F(DataViewGetUint8, 3, 1)                            \
+  F(DataViewGetInt16, 3, 1)                            \
+  F(DataViewGetUint16, 3, 1)                           \
+  F(DataViewGetInt32, 3, 1)                            \
+  F(DataViewGetUint32, 3, 1)                           \
+  F(DataViewGetFloat32, 3, 1)                          \
+  F(DataViewGetFloat64, 3, 1)                          \
+                                                       \
+  F(DataViewSetInt8, 4, 1)                             \
+  F(DataViewSetUint8, 4, 1)                            \
+  F(DataViewSetInt16, 4, 1)                            \
+  F(DataViewSetUint16, 4, 1)                           \
+  F(DataViewSetInt32, 4, 1)                            \
+  F(DataViewSetUint32, 4, 1)                           \
+  F(DataViewSetFloat32, 4, 1)                          \
+  F(DataViewSetFloat64, 4, 1)                          \
+                                                       \
+  /* Statements */                                     \
+  F(NewObjectFromBound, 1, 1)                          \
+                                                       \
+  /* Declarations and initialization */                \
+  F(InitializeVarGlobal, 3, 1)                         \
+  F(OptimizeObjectForAddingMultipleProperties, 2, 1)   \
+                                                       \
+  /* Debugging */                                      \
+  F(DebugPrint, 1, 1)                                  \
+  F(GlobalPrint, 1, 1)                                 \
+  F(DebugTrace, 0, 1)                                  \
+  F(TraceEnter, 0, 1)                                  \
+  F(TraceExit, 1, 1)                                   \
+  F(Abort, 1, 1)                                       \
+  F(AbortJS, 1, 1)                                     \
+  F(NativeScriptsCount, 0, 1)                          \
+  /* ES5 */                                            \
+  F(OwnKeys, 1, 1)                                     \
+                                                       \
+  /* Message objects */                                \
+  F(MessageGetStartPosition, 1, 1)                     \
+  F(MessageGetScript, 1, 1)                            \
+                                                       \
+  /* Pseudo functions - handled as macros by parser */ \
+  F(IS_VAR, 1, 1)                                      \
+                                                       \
+  /* expose boolean functions from objects-inl.h */    \
+  F(HasFastSmiElements, 1, 1)                          \
+  F(HasFastSmiOrObjectElements, 1, 1)                  \
+  F(HasFastObjectElements, 1, 1)                       \
+  F(HasFastDoubleElements, 1, 1)                       \
+  F(HasFastHoleyElements, 1, 1)                        \
+  F(HasDictionaryElements, 1, 1)                       \
+  F(HasSloppyArgumentsElements, 1, 1)                  \
+  F(HasExternalUint8ClampedElements, 1, 1)             \
+  F(HasExternalArrayElements, 1, 1)                    \
+  F(HasExternalInt8Elements, 1, 1)                     \
+  F(HasExternalUint8Elements, 1, 1)                    \
+  F(HasExternalInt16Elements, 1, 1)                    \
+  F(HasExternalUint16Elements, 1, 1)                   \
+  F(HasExternalInt32Elements, 1, 1)                    \
+  F(HasExternalUint32Elements, 1, 1)                   \
+  F(HasExternalFloat32Elements, 1, 1)                  \
+  F(HasExternalFloat64Elements, 1, 1)                  \
+  F(HasFixedUint8ClampedElements, 1, 1)                \
+  F(HasFixedInt8Elements, 1, 1)                        \
+  F(HasFixedUint8Elements, 1, 1)                       \
+  F(HasFixedInt16Elements, 1, 1)                       \
+  F(HasFixedUint16Elements, 1, 1)                      \
+  F(HasFixedInt32Elements, 1, 1)                       \
+  F(HasFixedUint32Elements, 1, 1)                      \
+  F(HasFixedFloat32Elements, 1, 1)                     \
+  F(HasFixedFloat64Elements, 1, 1)                     \
+  F(HasFastProperties, 1, 1)                           \
+  F(TransitionElementsKind, 2, 1)                      \
+  F(HaveSameMap, 2, 1)                                 \
+  F(IsJSGlobalProxy, 1, 1)                             \
+  F(ForInCacheArrayLength, 2, 1) /* TODO(turbofan): Only temporary */
+
+
+#define RUNTIME_FUNCTION_LIST_ALWAYS_3(F)                    \
+  /* String and Regexp */                                    \
+  F(NumberToStringRT, 1, 1)                                  \
+  F(RegExpConstructResult, 3, 1)                             \
+  F(RegExpExecRT, 4, 1)                                      \
+  F(StringAdd, 2, 1)                                         \
+  F(SubString, 3, 1)                                         \
+  F(InternalizeString, 1, 1)                                 \
+  F(StringCompare, 2, 1)                                     \
+  F(StringCharCodeAtRT, 2, 1)                                \
+  F(GetFromCache, 2, 1)                                      \
+                                                             \
+  /* Compilation */                                          \
+  F(CompileLazy, 1, 1)                                       \
+  F(CompileOptimized, 2, 1)                                  \
+  F(TryInstallOptimizedCode, 1, 1)                           \
+  F(NotifyDeoptimized, 1, 1)                                 \
+  F(NotifyStubFailure, 0, 1)                                 \
+                                                             \
+  /* Utilities */                                            \
+  F(AllocateInNewSpace, 1, 1)                                \
+  F(AllocateInTargetSpace, 2, 1)                             \
+  F(AllocateHeapNumber, 0, 1)                                \
+  F(NumberToSmi, 1, 1)                                       \
+  F(NumberToStringSkipCache, 1, 1)                           \
+                                                             \
+  F(NewArguments, 1, 1) /* TODO(turbofan): Only temporary */ \
+  F(NewSloppyArguments, 3, 1)                                \
+  F(NewStrictArguments, 3, 1)                                \
+                                                             \
+  /* Harmony generators */                                   \
+  F(CreateJSGeneratorObject, 0, 1)                           \
+  F(SuspendJSGeneratorObject, 1, 1)                          \
+  F(ResumeJSGeneratorObject, 3, 1)                           \
+  F(GeneratorClose, 1, 1)                                    \
+                                                             \
+  /* Arrays */                                               \
+  F(ArrayConstructor, -1, 1)                                 \
+  F(InternalArrayConstructor, -1, 1)                         \
+                                                             \
+  /* Literals */                                             \
+  F(MaterializeRegExpLiteral, 4, 1)                          \
+  F(CreateObjectLiteral, 4, 1)                               \
+  F(CreateArrayLiteral, 4, 1)                                \
+  F(CreateArrayLiteralStubBailout, 3, 1)                     \
+                                                             \
+  /* Statements */                                           \
+  F(NewClosure, 3, 1)                                        \
+  F(NewClosureFromStubFailure, 1, 1)                         \
+  F(NewObject, 1, 1)                                         \
+  F(NewObjectWithAllocationSite, 2, 1)                       \
+  F(FinalizeInstanceSize, 1, 1)                              \
+  F(Throw, 1, 1)                                             \
+  F(ReThrow, 1, 1)                                           \
+  F(ThrowReferenceError, 1, 1)                               \
+  F(ThrowNotDateError, 0, 1)                                 \
+  F(ThrowConstAssignError, 0, 1)                             \
+  F(StackGuard, 0, 1)                                        \
+  F(Interrupt, 0, 1)                                         \
+  F(PromoteScheduledException, 0, 1)                         \
+                                                             \
+  /* Contexts */                                             \
+  F(NewScriptContext, 2, 1)                                  \
+  F(NewFunctionContext, 1, 1)                                \
+  F(PushWithContext, 2, 1)                                   \
+  F(PushCatchContext, 3, 1)                                  \
+  F(PushBlockContext, 2, 1)                                  \
+  F(PushModuleContext, 2, 1)                                 \
+  F(DeleteLookupSlot, 2, 1)                                  \
+  F(StoreLookupSlot, 4, 1)                                   \
+                                                             \
+  /* Declarations and initialization */                      \
+  F(DeclareGlobals, 3, 1)                                    \
+  F(DeclareModules, 1, 1)                                    \
+  F(DeclareLookupSlot, 4, 1)                                 \
+  F(InitializeConstGlobal, 2, 1)                             \
+  F(InitializeLegacyConstLookupSlot, 3, 1)                   \
+                                                             \
+  /* Maths */                                                \
+  F(MathPowSlow, 2, 1)                                       \
+  F(MathPowRT, 2, 1)
+
+
+#define RUNTIME_FUNCTION_LIST_RETURN_PAIR(F)              \
+  F(LoadLookupSlot, 2, 2)                                 \
+  F(LoadLookupSlotNoReferenceError, 2, 2)                 \
+  F(ResolvePossiblyDirectEval, 6, 2)                      \
+  F(ForInInit, 2, 2) /* TODO(turbofan): Only temporary */ \
+  F(ForInNext, 4, 2) /* TODO(turbofan): Only temporary */
+
+
+#define RUNTIME_FUNCTION_LIST_DEBUGGER(F)           \
+  /* Debugger support*/                             \
+  F(DebugBreak, 0, 1)                               \
+  F(SetDebugEventListener, 2, 1)                    \
+  F(Break, 0, 1)                                    \
+  F(DebugGetPropertyDetails, 2, 1)                  \
+  F(DebugGetProperty, 2, 1)                         \
+  F(DebugPropertyTypeFromDetails, 1, 1)             \
+  F(DebugPropertyAttributesFromDetails, 1, 1)       \
+  F(DebugPropertyIndexFromDetails, 1, 1)            \
+  F(DebugNamedInterceptorPropertyValue, 2, 1)       \
+  F(DebugIndexedInterceptorElementValue, 2, 1)      \
+  F(CheckExecutionState, 1, 1)                      \
+  F(GetFrameCount, 1, 1)                            \
+  F(GetFrameDetails, 2, 1)                          \
+  F(GetScopeCount, 2, 1)                            \
+  F(GetStepInPositions, 2, 1)                       \
+  F(GetScopeDetails, 4, 1)                          \
+  F(GetAllScopesDetails, 4, 1)                      \
+  F(GetFunctionScopeCount, 1, 1)                    \
+  F(GetFunctionScopeDetails, 2, 1)                  \
+  F(SetScopeVariableValue, 6, 1)                    \
+  F(DebugPrintScopes, 0, 1)                         \
+  F(GetThreadCount, 1, 1)                           \
+  F(GetThreadDetails, 2, 1)                         \
+  F(SetDisableBreak, 1, 1)                          \
+  F(GetBreakLocations, 2, 1)                        \
+  F(SetFunctionBreakPoint, 3, 1)                    \
+  F(SetScriptBreakPoint, 4, 1)                      \
+  F(ClearBreakPoint, 1, 1)                          \
+  F(ChangeBreakOnException, 2, 1)                   \
+  F(IsBreakOnException, 1, 1)                       \
+  F(PrepareStep, 4, 1)                              \
+  F(ClearStepping, 0, 1)                            \
+  F(DebugEvaluate, 6, 1)                            \
+  F(DebugEvaluateGlobal, 4, 1)                      \
+  F(DebugGetLoadedScripts, 0, 1)                    \
+  F(DebugReferencedBy, 3, 1)                        \
+  F(DebugConstructedBy, 2, 1)                       \
+  F(DebugGetPrototype, 1, 1)                        \
+  F(DebugSetScriptSource, 2, 1)                     \
+  F(DebugCallbackSupportsStepping, 1, 1)            \
+  F(SystemBreak, 0, 1)                              \
+  F(DebugDisassembleFunction, 1, 1)                 \
+  F(DebugDisassembleConstructor, 1, 1)              \
+  F(FunctionGetInferredName, 1, 1)                  \
+  F(LiveEditFindSharedFunctionInfosForScript, 1, 1) \
+  F(LiveEditGatherCompileInfo, 2, 1)                \
+  F(LiveEditReplaceScript, 3, 1)                    \
+  F(LiveEditReplaceFunctionCode, 2, 1)              \
+  F(LiveEditFunctionSourceUpdated, 1, 1)            \
+  F(LiveEditFunctionSetScript, 2, 1)                \
+  F(LiveEditReplaceRefToNestedFunction, 3, 1)       \
+  F(LiveEditPatchFunctionPositions, 2, 1)           \
+  F(LiveEditCheckAndDropActivations, 2, 1)          \
+  F(LiveEditCompareStrings, 2, 1)                   \
+  F(LiveEditRestartFrame, 2, 1)                     \
+  F(GetFunctionCodePositionFromSource, 2, 1)        \
+  F(ExecuteInDebugContext, 2, 1)                    \
+                                                    \
+  F(SetFlags, 1, 1)                                 \
+  F(CollectGarbage, 1, 1)                           \
+  F(GetHeapUsage, 0, 1)
+
+
+#ifdef V8_I18N_SUPPORT
+#define RUNTIME_FUNCTION_LIST_I18N_SUPPORT(F) \
+  /* i18n support */                          \
+  /* Standalone, helper methods. */           \
+  F(CanonicalizeLanguageTag, 1, 1)            \
+  F(AvailableLocalesOf, 1, 1)                 \
+  F(GetDefaultICULocale, 0, 1)                \
+  F(GetLanguageTagVariants, 1, 1)             \
+  F(IsInitializedIntlObject, 1, 1)            \
+  F(IsInitializedIntlObjectOfType, 2, 1)      \
+  F(MarkAsInitializedIntlObjectOfType, 3, 1)  \
+  F(GetImplFromInitializedIntlObject, 1, 1)   \
+                                              \
+  /* Date format and parse. */                \
+  F(CreateDateTimeFormat, 3, 1)               \
+  F(InternalDateFormat, 2, 1)                 \
+  F(InternalDateParse, 2, 1)                  \
+                                              \
+  /* Number format and parse. */              \
+  F(CreateNumberFormat, 3, 1)                 \
+  F(InternalNumberFormat, 2, 1)               \
+  F(InternalNumberParse, 2, 1)                \
+                                              \
+  /* Collator. */                             \
+  F(CreateCollator, 3, 1)                     \
+  F(InternalCompare, 3, 1)                    \
+                                              \
+  /* String.prototype.normalize. */           \
+  F(StringNormalize, 2, 1)                    \
+                                              \
+  /* Break iterator. */                       \
+  F(CreateBreakIterator, 3, 1)                \
+  F(BreakIteratorAdoptText, 2, 1)             \
+  F(BreakIteratorFirst, 1, 1)                 \
+  F(BreakIteratorNext, 1, 1)                  \
+  F(BreakIteratorCurrent, 1, 1)               \
+  F(BreakIteratorBreakType, 1, 1)
+
+#else
+#define RUNTIME_FUNCTION_LIST_I18N_SUPPORT(F)
+#endif
+
+
+// ----------------------------------------------------------------------------
+// RUNTIME_FUNCTION_LIST defines all runtime functions accessed
+// either directly by id (via the code generator), or indirectly
+// via a native call by name (from within JS code).
+// Entries have the form F(name, number of arguments, number of return values).
+
+#define RUNTIME_FUNCTION_LIST_RETURN_OBJECT(F) \
+  RUNTIME_FUNCTION_LIST_ALWAYS_1(F)            \
+  RUNTIME_FUNCTION_LIST_ALWAYS_2(F)            \
+  RUNTIME_FUNCTION_LIST_ALWAYS_3(F)            \
+  RUNTIME_FUNCTION_LIST_DEBUGGER(F)            \
+  RUNTIME_FUNCTION_LIST_I18N_SUPPORT(F)
+
+
+#define RUNTIME_FUNCTION_LIST(F)         \
+  RUNTIME_FUNCTION_LIST_RETURN_OBJECT(F) \
+  RUNTIME_FUNCTION_LIST_RETURN_PAIR(F)
+
+// ----------------------------------------------------------------------------
+// INLINE_FUNCTION_LIST defines all inlined functions accessed
+// with a native call of the form %_name from within JS code.
+// Entries have the form F(name, number of arguments, number of return values).
+#define INLINE_FUNCTION_LIST(F)                             \
+  F(IsSmi, 1, 1)                                            \
+  F(IsNonNegativeSmi, 1, 1)                                 \
+  F(IsArray, 1, 1)                                          \
+  F(IsRegExp, 1, 1)                                         \
+  F(IsJSProxy, 1, 1)                                        \
+  F(IsConstructCall, 0, 1)                                  \
+  F(CallFunction, -1 /* receiver + n args + function */, 1) \
+  F(ArgumentsLength, 0, 1)                                  \
+  F(Arguments, 1, 1)                                        \
+  F(ValueOf, 1, 1)                                          \
+  F(SetValueOf, 2, 1)                                       \
+  F(DateField, 2 /* date object, field index */, 1)         \
+  F(StringCharFromCode, 1, 1)                               \
+  F(StringCharAt, 2, 1)                                     \
+  F(OneByteSeqStringSetChar, 3, 1)                          \
+  F(TwoByteSeqStringSetChar, 3, 1)                          \
+  F(ObjectEquals, 2, 1)                                     \
+  F(IsObject, 1, 1)                                         \
+  F(IsFunction, 1, 1)                                       \
+  F(IsUndetectableObject, 1, 1)                             \
+  F(IsSpecObject, 1, 1)                                     \
+  F(IsStringWrapperSafeForDefaultValueOf, 1, 1)             \
+  F(MathPow, 2, 1)                                          \
+  F(IsMinusZero, 1, 1)                                      \
+  F(HasCachedArrayIndex, 1, 1)                              \
+  F(GetCachedArrayIndex, 1, 1)                              \
+  F(FastOneByteArrayJoin, 2, 1)                             \
+  F(GeneratorNext, 2, 1)                                    \
+  F(GeneratorThrow, 2, 1)                                   \
+  F(DebugBreakInOptimizedCode, 0, 1)                        \
+  F(ClassOf, 1, 1)                                          \
+  F(StringCharCodeAt, 2, 1)                                 \
+  F(StringAdd, 2, 1)                                        \
+  F(SubString, 3, 1)                                        \
+  F(StringCompare, 2, 1)                                    \
+  F(RegExpExec, 4, 1)                                       \
+  F(RegExpConstructResult, 3, 1)                            \
+  F(GetFromCache, 2, 1)                                     \
+  F(NumberToString, 1, 1)                                   \
+  F(DebugIsActive, 0, 1)
+
+
+// ----------------------------------------------------------------------------
+// INLINE_OPTIMIZED_FUNCTION_LIST defines all inlined functions accessed
+// with a native call of the form %_name from within JS code that also have
+// a corresponding runtime function, that is called from non-optimized code.
+// For the benefit of (fuzz) tests, the runtime version can also be called
+// directly as %name (i.e. without the leading underscore).
+// Entries have the form F(name, number of arguments, number of return values).
+#define INLINE_OPTIMIZED_FUNCTION_LIST(F) \
+  /* Typed Arrays */                      \
+  F(TypedArrayInitialize, 5, 1)           \
+  F(DataViewInitialize, 4, 1)             \
+  F(MaxSmi, 0, 1)                         \
+  F(TypedArrayMaxSizeInHeap, 0, 1)        \
+  F(ArrayBufferViewGetByteLength, 1, 1)   \
+  F(ArrayBufferViewGetByteOffset, 1, 1)   \
+  F(TypedArrayGetLength, 1, 1)            \
+  /* ArrayBuffer */                       \
+  F(ArrayBufferGetByteLength, 1, 1)       \
+  /* Maths */                             \
+  F(ConstructDouble, 2, 1)                \
+  F(DoubleHi, 1, 1)                       \
+  F(DoubleLo, 1, 1)                       \
+  F(MathSqrtRT, 1, 1)                     \
+  F(MathLogRT, 1, 1)                      \
+  /* ES6 Collections */                   \
+  F(MapClear, 1, 1)                       \
+  F(MapDelete, 2, 1)                      \
+  F(MapGet, 2, 1)                         \
+  F(MapGetSize, 1, 1)                     \
+  F(MapHas, 2, 1)                         \
+  F(MapInitialize, 1, 1)                  \
+  F(MapSet, 3, 1)                         \
+  F(SetAdd, 2, 1)                         \
+  F(SetClear, 1, 1)                       \
+  F(SetDelete, 2, 1)                      \
+  F(SetGetSize, 1, 1)                     \
+  F(SetHas, 2, 1)                         \
+  F(SetInitialize, 1, 1)                  \
+  /* Arrays */                            \
+  F(HasFastPackedElements, 1, 1)          \
+  F(GetPrototype, 1, 1)
+
+
+//---------------------------------------------------------------------------
+// Runtime provides access to all C++ runtime functions.
+
+class RuntimeState {
+ public:
+  unibrow::Mapping<unibrow::ToUppercase, 128>* to_upper_mapping() {
+    return &to_upper_mapping_;
+  }
+  unibrow::Mapping<unibrow::ToLowercase, 128>* to_lower_mapping() {
+    return &to_lower_mapping_;
+  }
+
+ private:
+  RuntimeState() {}
+  unibrow::Mapping<unibrow::ToUppercase, 128> to_upper_mapping_;
+  unibrow::Mapping<unibrow::ToLowercase, 128> to_lower_mapping_;
+
+  friend class Isolate;
+  friend class Runtime;
+
+  DISALLOW_COPY_AND_ASSIGN(RuntimeState);
+};
+
+
+class JavaScriptFrameIterator;  // Forward declaration.
+
+
+class Runtime : public AllStatic {
+ public:
+  enum FunctionId {
+#define F(name, nargs, ressize) k##name,
+    RUNTIME_FUNCTION_LIST(F) INLINE_OPTIMIZED_FUNCTION_LIST(F)
+#undef F
+#define F(name, nargs, ressize) kInline##name,
+    INLINE_FUNCTION_LIST(F)
+#undef F
+#define F(name, nargs, ressize) kInlineOptimized##name,
+    INLINE_OPTIMIZED_FUNCTION_LIST(F)
+#undef F
+    kNumFunctions,
+    kFirstInlineFunction = kInlineIsSmi
+  };
+
+  enum IntrinsicType { RUNTIME, INLINE, INLINE_OPTIMIZED };
+
+  // Intrinsic function descriptor.
+  struct Function {
+    FunctionId function_id;
+    IntrinsicType intrinsic_type;
+    // The JS name of the function.
+    const char* name;
+
+    // The C++ (native) entry point.  NULL if the function is inlined.
+    byte* entry;
+
+    // The number of arguments expected. nargs is -1 if the function takes
+    // a variable number of arguments.
+    int nargs;
+    // Size of result.  Most functions return a single pointer, size 1.
+    int result_size;
+  };
+
+  static const int kNotFound = -1;
+
+  // Add internalized strings for all the intrinsic function names to a
+  // StringDictionary.
+  static void InitializeIntrinsicFunctionNames(Isolate* isolate,
+                                               Handle<NameDictionary> dict);
+
+  // Get the intrinsic function with the given name, which must be internalized.
+  static const Function* FunctionForName(Handle<String> name);
+
+  // Get the intrinsic function with the given FunctionId.
+  static const Function* FunctionForId(FunctionId id);
+
+  // Get the intrinsic function with the given function entry address.
+  static const Function* FunctionForEntry(Address ref);
+
+  // TODO(1240886): Some of the following methods are *not* handle safe, but
+  // accept handle arguments. This seems fragile.
+
+  // Support getting the characters in a string using [] notation as
+  // in Firefox/SpiderMonkey, Safari and Opera.
+  MUST_USE_RESULT static MaybeHandle<Object> GetElementOrCharAt(
+      Isolate* isolate, Handle<Object> object, uint32_t index);
+
+  MUST_USE_RESULT static MaybeHandle<Object> SetObjectProperty(
+      Isolate* isolate, Handle<Object> object, Handle<Object> key,
+      Handle<Object> value, StrictMode strict_mode);
+
+  MUST_USE_RESULT static MaybeHandle<Object> DefineObjectProperty(
+      Handle<JSObject> object, Handle<Object> key, Handle<Object> value,
+      PropertyAttributes attr);
+
+  MUST_USE_RESULT static MaybeHandle<Object> GetObjectProperty(
+      Isolate* isolate, Handle<Object> object, Handle<Object> key);
+
+  MUST_USE_RESULT static MaybeHandle<Object> GetPrototype(
+      Isolate* isolate, Handle<Object> object);
+
+  MUST_USE_RESULT static MaybeHandle<Name> ToName(Isolate* isolate,
+                                                  Handle<Object> key);
+
+  static void SetupArrayBuffer(Isolate* isolate,
+                               Handle<JSArrayBuffer> array_buffer,
+                               bool is_external, void* data,
+                               size_t allocated_length);
+
+  static bool SetupArrayBufferAllocatingData(Isolate* isolate,
+                                             Handle<JSArrayBuffer> array_buffer,
+                                             size_t allocated_length,
+                                             bool initialize = true);
+
+  static void NeuterArrayBuffer(Handle<JSArrayBuffer> array_buffer);
+
+  static void FreeArrayBuffer(Isolate* isolate,
+                              JSArrayBuffer* phantom_array_buffer);
+
+  static int FindIndexedNonNativeFrame(JavaScriptFrameIterator* it, int index);
+
+  enum TypedArrayId {
+    // arrayIds below should be synchromized with typedarray.js natives.
+    ARRAY_ID_UINT8 = 1,
+    ARRAY_ID_INT8 = 2,
+    ARRAY_ID_UINT16 = 3,
+    ARRAY_ID_INT16 = 4,
+    ARRAY_ID_UINT32 = 5,
+    ARRAY_ID_INT32 = 6,
+    ARRAY_ID_FLOAT32 = 7,
+    ARRAY_ID_FLOAT64 = 8,
+    ARRAY_ID_UINT8_CLAMPED = 9,
+    ARRAY_ID_FIRST = ARRAY_ID_UINT8,
+    ARRAY_ID_LAST = ARRAY_ID_UINT8_CLAMPED
+  };
+
+  static void ArrayIdToTypeAndSize(int array_id, ExternalArrayType* type,
+                                   ElementsKind* external_elements_kind,
+                                   ElementsKind* fixed_elements_kind,
+                                   size_t* element_size);
+
+  // Used in runtime.cc and hydrogen's VisitArrayLiteral.
+  MUST_USE_RESULT static MaybeHandle<Object> CreateArrayLiteralBoilerplate(
+      Isolate* isolate, Handle<FixedArray> literals,
+      Handle<FixedArray> elements);
+};
+
+
+std::ostream& operator<<(std::ostream&, Runtime::FunctionId);
+
+//---------------------------------------------------------------------------
+// Constants used by interface to runtime functions.
+
+class AllocateDoubleAlignFlag : public BitField<bool, 0, 1> {};
+class AllocateTargetSpace : public BitField<AllocationSpace, 1, 3> {};
+
+class DeclareGlobalsEvalFlag : public BitField<bool, 0, 1> {};
+class DeclareGlobalsNativeFlag : public BitField<bool, 1, 1> {};
+class DeclareGlobalsStrictMode : public BitField<StrictMode, 2, 1> {};
+
+}  // namespace internal
+}  // namespace v8
+
+#endif  // V8_RUNTIME_RUNTIME_H_