blob: bc0bb3656dccc9c61cd5cc8cfe81e262d3fc7d58 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/v8.h"
#include "src/arguments.h"
#include "src/base/bits.h"
#include "src/bootstrapper.h"
#include "src/codegen.h"
#include "src/runtime/runtime-utils.h"
#ifndef _STLP_VENDOR_CSTD
// STLPort doesn't import fpclassify and isless into the std namespace.
using std::fpclassify;
using std::isless;
#endif
namespace v8 {
namespace internal {
RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(radix, 1);
RUNTIME_ASSERT(2 <= radix && radix <= 36);
// Fast case where the result is a one character string.
if (args[0]->IsSmi()) {
int value = args.smi_at(0);
if (value >= 0 && value < radix) {
// Character array used for conversion.
static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
return *isolate->factory()->LookupSingleCharacterStringFromCode(
kCharTable[value]);
}
}
// Slow case.
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
if (std::isnan(value)) {
return isolate->heap()->nan_string();
}
if (std::isinf(value)) {
if (value < 0) {
return isolate->heap()->minus_infinity_string();
}
return isolate->heap()->infinity_string();
}
char* str = DoubleToRadixCString(value, radix);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_NumberToFixed) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
// See DoubleToFixedCString for these constants:
RUNTIME_ASSERT(f >= 0 && f <= 20);
RUNTIME_ASSERT(!Double(value).IsSpecial());
char* str = DoubleToFixedCString(value, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_NumberToExponential) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
RUNTIME_ASSERT(f >= -1 && f <= 20);
RUNTIME_ASSERT(!Double(value).IsSpecial());
char* str = DoubleToExponentialCString(value, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(value, 0);
CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
int f = FastD2IChecked(f_number);
RUNTIME_ASSERT(f >= 1 && f <= 21);
RUNTIME_ASSERT(!Double(value).IsSpecial());
char* str = DoubleToPrecisionCString(value, f);
Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
DeleteArray(str);
return *result;
}
RUNTIME_FUNCTION(Runtime_IsValidSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
return isolate->heap()->ToBoolean(Smi::IsValid(number));
}
static bool AreDigits(const uint8_t* s, int from, int to) {
for (int i = from; i < to; i++) {
if (s[i] < '0' || s[i] > '9') return false;
}
return true;
}
static int ParseDecimalInteger(const uint8_t* s, int from, int to) {
DCHECK(to - from < 10); // Overflow is not possible.
DCHECK(from < to);
int d = s[from] - '0';
for (int i = from + 1; i < to; i++) {
d = 10 * d + (s[i] - '0');
}
return d;
}
RUNTIME_FUNCTION(Runtime_StringToNumber) {
HandleScope handle_scope(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
subject = String::Flatten(subject);
// Fast case: short integer or some sorts of junk values.
if (subject->IsSeqOneByteString()) {
int len = subject->length();
if (len == 0) return Smi::FromInt(0);
DisallowHeapAllocation no_gc;
uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
bool minus = (data[0] == '-');
int start_pos = (minus ? 1 : 0);
if (start_pos == len) {
return isolate->heap()->nan_value();
} else if (data[start_pos] > '9') {
// Fast check for a junk value. A valid string may start from a
// whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
// or the 'I' character ('Infinity'). All of that have codes not greater
// than '9' except 'I' and &nbsp;.
if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
return isolate->heap()->nan_value();
}
} else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
// The maximal/minimal smi has 10 digits. If the string has less digits
// we know it will fit into the smi-data type.
int d = ParseDecimalInteger(data, start_pos, len);
if (minus) {
if (d == 0) return isolate->heap()->minus_zero_value();
d = -d;
} else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
(len == 1 || data[0] != '0')) {
// String hash is not calculated yet but all the data are present.
// Update the hash field to speed up sequential convertions.
uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
#ifdef DEBUG
subject->Hash(); // Force hash calculation.
DCHECK_EQ(static_cast<int>(subject->hash_field()),
static_cast<int>(hash));
#endif
subject->set_hash_field(hash);
}
return Smi::FromInt(d);
}
}
// Slower case.
int flags = ALLOW_HEX;
if (FLAG_harmony_numeric_literals) {
// The current spec draft has not updated "ToNumber Applied to the String
// Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584
flags |= ALLOW_OCTAL | ALLOW_BINARY;
}
return *isolate->factory()->NewNumber(
StringToDouble(isolate->unicode_cache(), subject, flags));
}
RUNTIME_FUNCTION(Runtime_StringParseInt) {
HandleScope handle_scope(isolate);
DCHECK(args.length() == 2);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
subject = String::Flatten(subject);
double value;
{
DisallowHeapAllocation no_gc;
String::FlatContent flat = subject->GetFlatContent();
// ECMA-262 section 15.1.2.3, empty string is NaN
if (flat.IsOneByte()) {
value =
StringToInt(isolate->unicode_cache(), flat.ToOneByteVector(), radix);
} else {
value = StringToInt(isolate->unicode_cache(), flat.ToUC16Vector(), radix);
}
}
return *isolate->factory()->NewNumber(value);
}
RUNTIME_FUNCTION(Runtime_StringParseFloat) {
HandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
double value = StringToDouble(isolate->unicode_cache(), subject,
ALLOW_TRAILING_JUNK, base::OS::nan_value());
return *isolate->factory()->NewNumber(value);
}
RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
return *isolate->factory()->NumberToString(number);
}
RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
return *isolate->factory()->NumberToString(number, false);
}
RUNTIME_FUNCTION(Runtime_NumberToInteger) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
return *isolate->factory()->NewNumber(DoubleToInteger(number));
}
RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
double double_value = DoubleToInteger(number);
// Map both -0 and +0 to +0.
if (double_value == 0) double_value = 0;
return *isolate->factory()->NewNumber(double_value);
}
RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
return *isolate->factory()->NewNumberFromUint(number);
}
RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(number, 0);
return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
}
// Converts a Number to a Smi, if possible. Returns NaN if the number is not
// a small integer.
RUNTIME_FUNCTION(Runtime_NumberToSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
if (obj->IsSmi()) {
return obj;
}
if (obj->IsHeapNumber()) {
double value = HeapNumber::cast(obj)->value();
int int_value = FastD2I(value);
if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
return Smi::FromInt(int_value);
}
}
return isolate->heap()->nan_value();
}
RUNTIME_FUNCTION(Runtime_NumberAdd) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x + y);
}
RUNTIME_FUNCTION(Runtime_NumberSub) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x - y);
}
RUNTIME_FUNCTION(Runtime_NumberMul) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x * y);
}
RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
HandleScope scope(isolate);
DCHECK(args.length() == 1);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
return *isolate->factory()->NewNumber(-x);
}
RUNTIME_FUNCTION(Runtime_NumberDiv) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(x / y);
}
RUNTIME_FUNCTION(Runtime_NumberMod) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
return *isolate->factory()->NewNumber(modulo(x, y));
}
RUNTIME_FUNCTION(Runtime_NumberImul) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
// We rely on implementation-defined behavior below, but at least not on
// undefined behavior.
CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
int32_t product = static_cast<int32_t>(x * y);
return *isolate->factory()->NewNumberFromInt(product);
}
RUNTIME_FUNCTION(Runtime_NumberOr) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x | y);
}
RUNTIME_FUNCTION(Runtime_NumberAnd) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x & y);
}
RUNTIME_FUNCTION(Runtime_NumberXor) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x ^ y);
}
RUNTIME_FUNCTION(Runtime_NumberShl) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
}
RUNTIME_FUNCTION(Runtime_NumberShr) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
}
RUNTIME_FUNCTION(Runtime_NumberSar) {
HandleScope scope(isolate);
DCHECK(args.length() == 2);
CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
return *isolate->factory()->NewNumberFromInt(
ArithmeticShiftRight(x, y & 0x1f));
}
RUNTIME_FUNCTION(Runtime_NumberEquals) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
if (x == y) return Smi::FromInt(EQUAL);
Object* result;
if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
result = Smi::FromInt(EQUAL);
} else {
result = Smi::FromInt(NOT_EQUAL);
}
return result;
}
RUNTIME_FUNCTION(Runtime_NumberCompare) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 3);
CONVERT_DOUBLE_ARG_CHECKED(x, 0);
CONVERT_DOUBLE_ARG_CHECKED(y, 1);
CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
if (x == y) return Smi::FromInt(EQUAL);
if (isless(x, y)) return Smi::FromInt(LESS);
return Smi::FromInt(GREATER);
}
// Compare two Smis as if they were converted to strings and then
// compared lexicographically.
RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 2);
CONVERT_SMI_ARG_CHECKED(x_value, 0);
CONVERT_SMI_ARG_CHECKED(y_value, 1);
// If the integers are equal so are the string representations.
if (x_value == y_value) return Smi::FromInt(EQUAL);
// If one of the integers is zero the normal integer order is the
// same as the lexicographic order of the string representations.
if (x_value == 0 || y_value == 0)
return Smi::FromInt(x_value < y_value ? LESS : GREATER);
// If only one of the integers is negative the negative number is
// smallest because the char code of '-' is less than the char code
// of any digit. Otherwise, we make both values positive.
// Use unsigned values otherwise the logic is incorrect for -MIN_INT on
// architectures using 32-bit Smis.
uint32_t x_scaled = x_value;
uint32_t y_scaled = y_value;
if (x_value < 0 || y_value < 0) {
if (y_value >= 0) return Smi::FromInt(LESS);
if (x_value >= 0) return Smi::FromInt(GREATER);
x_scaled = -x_value;
y_scaled = -y_value;
}
static const uint32_t kPowersOf10[] = {
1, 10, 100, 1000,
10 * 1000, 100 * 1000, 1000 * 1000, 10 * 1000 * 1000,
100 * 1000 * 1000, 1000 * 1000 * 1000};
// If the integers have the same number of decimal digits they can be
// compared directly as the numeric order is the same as the
// lexicographic order. If one integer has fewer digits, it is scaled
// by some power of 10 to have the same number of digits as the longer
// integer. If the scaled integers are equal it means the shorter
// integer comes first in the lexicographic order.
// From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
int x_log2 = 31 - base::bits::CountLeadingZeros32(x_scaled);
int x_log10 = ((x_log2 + 1) * 1233) >> 12;
x_log10 -= x_scaled < kPowersOf10[x_log10];
int y_log2 = 31 - base::bits::CountLeadingZeros32(y_scaled);
int y_log10 = ((y_log2 + 1) * 1233) >> 12;
y_log10 -= y_scaled < kPowersOf10[y_log10];
int tie = EQUAL;
if (x_log10 < y_log10) {
// X has fewer digits. We would like to simply scale up X but that
// might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
// be scaled up to 9_000_000_000. So we scale up by the next
// smallest power and scale down Y to drop one digit. It is OK to
// drop one digit from the longer integer since the final digit is
// past the length of the shorter integer.
x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
y_scaled /= 10;
tie = LESS;
} else if (y_log10 < x_log10) {
y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
x_scaled /= 10;
tie = GREATER;
}
if (x_scaled < y_scaled) return Smi::FromInt(LESS);
if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
return Smi::FromInt(tie);
}
RUNTIME_FUNCTION(Runtime_GetRootNaN) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
RUNTIME_ASSERT(isolate->bootstrapper()->IsActive());
return isolate->heap()->nan_value();
}
RUNTIME_FUNCTION(Runtime_MaxSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 0);
return Smi::FromInt(Smi::kMaxValue);
}
RUNTIME_FUNCTION(RuntimeReference_NumberToString) {
SealHandleScope shs(isolate);
return __RT_impl_Runtime_NumberToStringRT(args, isolate);
}
RUNTIME_FUNCTION(RuntimeReference_IsSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsSmi());
}
RUNTIME_FUNCTION(RuntimeReference_IsNonNegativeSmi) {
SealHandleScope shs(isolate);
DCHECK(args.length() == 1);
CONVERT_ARG_CHECKED(Object, obj, 0);
return isolate->heap()->ToBoolean(obj->IsSmi() &&
Smi::cast(obj)->value() >= 0);
}
}
} // namespace v8::internal