blob: 16063ab43b41c4b25e0618620a6f213b06985d42 [file] [log] [blame]
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "src/compiler/instruction-selector-impl.h"
#include "src/compiler/node-matchers.h"
#include "src/compiler/node-properties-inl.h"
namespace v8 {
namespace internal {
namespace compiler {
// Adds IA32-specific methods for generating operands.
class IA32OperandGenerator FINAL : public OperandGenerator {
public:
explicit IA32OperandGenerator(InstructionSelector* selector)
: OperandGenerator(selector) {}
InstructionOperand* UseByteRegister(Node* node) {
// TODO(dcarney): relax constraint.
return UseFixed(node, edx);
}
bool CanBeImmediate(Node* node) {
switch (node->opcode()) {
case IrOpcode::kInt32Constant:
case IrOpcode::kNumberConstant:
case IrOpcode::kExternalConstant:
return true;
case IrOpcode::kHeapConstant: {
// Constants in new space cannot be used as immediates in V8 because
// the GC does not scan code objects when collecting the new generation.
Unique<HeapObject> value = OpParameter<Unique<HeapObject> >(node);
return !isolate()->heap()->InNewSpace(*value.handle());
}
default:
return false;
}
}
AddressingMode GenerateMemoryOperandInputs(Node* index, int scale, Node* base,
Node* displacement_node,
InstructionOperand* inputs[],
size_t* input_count) {
AddressingMode mode = kMode_MRI;
int32_t displacement = (displacement_node == NULL)
? 0
: OpParameter<int32_t>(displacement_node);
if (base != NULL) {
if (base->opcode() == IrOpcode::kInt32Constant) {
displacement += OpParameter<int32_t>(base);
base = NULL;
}
}
if (base != NULL) {
inputs[(*input_count)++] = UseRegister(base);
if (index != NULL) {
DCHECK(scale >= 0 && scale <= 3);
inputs[(*input_count)++] = UseRegister(index);
if (displacement != 0) {
inputs[(*input_count)++] = TempImmediate(displacement);
static const AddressingMode kMRnI_modes[] = {kMode_MR1I, kMode_MR2I,
kMode_MR4I, kMode_MR8I};
mode = kMRnI_modes[scale];
} else {
static const AddressingMode kMRn_modes[] = {kMode_MR1, kMode_MR2,
kMode_MR4, kMode_MR8};
mode = kMRn_modes[scale];
}
} else {
if (displacement == 0) {
mode = kMode_MR;
} else {
inputs[(*input_count)++] = TempImmediate(displacement);
mode = kMode_MRI;
}
}
} else {
DCHECK(scale >= 0 && scale <= 3);
if (index != NULL) {
inputs[(*input_count)++] = UseRegister(index);
if (displacement != 0) {
inputs[(*input_count)++] = TempImmediate(displacement);
static const AddressingMode kMnI_modes[] = {kMode_MRI, kMode_M2I,
kMode_M4I, kMode_M8I};
mode = kMnI_modes[scale];
} else {
static const AddressingMode kMn_modes[] = {kMode_MR, kMode_M2,
kMode_M4, kMode_M8};
mode = kMn_modes[scale];
}
} else {
inputs[(*input_count)++] = TempImmediate(displacement);
return kMode_MI;
}
}
return mode;
}
AddressingMode GetEffectiveAddressMemoryOperand(Node* node,
InstructionOperand* inputs[],
size_t* input_count) {
BaseWithIndexAndDisplacement32Matcher m(node, true);
DCHECK(m.matches());
if ((m.displacement() == NULL || CanBeImmediate(m.displacement()))) {
return GenerateMemoryOperandInputs(m.index(), m.scale(), m.base(),
m.displacement(), inputs, input_count);
} else {
inputs[(*input_count)++] = UseRegister(node->InputAt(0));
inputs[(*input_count)++] = UseRegister(node->InputAt(1));
return kMode_MR1;
}
}
bool CanBeBetterLeftOperand(Node* node) const {
return !selector()->IsLive(node);
}
};
static void VisitRRFloat64(InstructionSelector* selector, ArchOpcode opcode,
Node* node) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)));
}
void InstructionSelector::VisitLoad(Node* node) {
MachineType rep = RepresentationOf(OpParameter<LoadRepresentation>(node));
MachineType typ = TypeOf(OpParameter<LoadRepresentation>(node));
ArchOpcode opcode;
// TODO(titzer): signed/unsigned small loads
switch (rep) {
case kRepFloat32:
opcode = kIA32Movss;
break;
case kRepFloat64:
opcode = kIA32Movsd;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = typ == kTypeInt32 ? kIA32Movsxbl : kIA32Movzxbl;
break;
case kRepWord16:
opcode = typ == kTypeInt32 ? kIA32Movsxwl : kIA32Movzxwl;
break;
case kRepTagged: // Fall through.
case kRepWord32:
opcode = kIA32Movl;
break;
default:
UNREACHABLE();
return;
}
IA32OperandGenerator g(this);
InstructionOperand* outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionOperand* inputs[3];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code = opcode | AddressingModeField::encode(mode);
Emit(code, 1, outputs, input_count, inputs);
}
void InstructionSelector::VisitStore(Node* node) {
IA32OperandGenerator g(this);
Node* base = node->InputAt(0);
Node* index = node->InputAt(1);
Node* value = node->InputAt(2);
StoreRepresentation store_rep = OpParameter<StoreRepresentation>(node);
MachineType rep = RepresentationOf(store_rep.machine_type());
if (store_rep.write_barrier_kind() == kFullWriteBarrier) {
DCHECK_EQ(kRepTagged, rep);
// TODO(dcarney): refactor RecordWrite function to take temp registers
// and pass them here instead of using fixed regs
// TODO(dcarney): handle immediate indices.
InstructionOperand* temps[] = {g.TempRegister(ecx), g.TempRegister(edx)};
Emit(kIA32StoreWriteBarrier, NULL, g.UseFixed(base, ebx),
g.UseFixed(index, ecx), g.UseFixed(value, edx), arraysize(temps),
temps);
return;
}
DCHECK_EQ(kNoWriteBarrier, store_rep.write_barrier_kind());
ArchOpcode opcode;
switch (rep) {
case kRepFloat32:
opcode = kIA32Movss;
break;
case kRepFloat64:
opcode = kIA32Movsd;
break;
case kRepBit: // Fall through.
case kRepWord8:
opcode = kIA32Movb;
break;
case kRepWord16:
opcode = kIA32Movw;
break;
case kRepTagged: // Fall through.
case kRepWord32:
opcode = kIA32Movl;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand* val;
if (g.CanBeImmediate(value)) {
val = g.UseImmediate(value);
} else if (rep == kRepWord8 || rep == kRepBit) {
val = g.UseByteRegister(value);
} else {
val = g.UseRegister(value);
}
InstructionOperand* inputs[4];
size_t input_count = 0;
AddressingMode mode =
g.GetEffectiveAddressMemoryOperand(node, inputs, &input_count);
InstructionCode code = opcode | AddressingModeField::encode(mode);
inputs[input_count++] = val;
Emit(code, 0, static_cast<InstructionOperand**>(NULL), input_count, inputs);
}
void InstructionSelector::VisitCheckedLoad(Node* node) {
MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
MachineType typ = TypeOf(OpParameter<MachineType>(node));
IA32OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
ArchOpcode opcode;
switch (rep) {
case kRepWord8:
opcode = typ == kTypeInt32 ? kCheckedLoadInt8 : kCheckedLoadUint8;
break;
case kRepWord16:
opcode = typ == kTypeInt32 ? kCheckedLoadInt16 : kCheckedLoadUint16;
break;
case kRepWord32:
opcode = kCheckedLoadWord32;
break;
case kRepFloat32:
opcode = kCheckedLoadFloat32;
break;
case kRepFloat64:
opcode = kCheckedLoadFloat64;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand* offset_operand = g.UseRegister(offset);
InstructionOperand* length_operand =
g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
if (g.CanBeImmediate(buffer)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI),
g.DefineAsRegister(node), offset_operand, length_operand,
offset_operand, g.UseImmediate(buffer));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MR1),
g.DefineAsRegister(node), offset_operand, length_operand,
g.UseRegister(buffer), offset_operand);
}
}
void InstructionSelector::VisitCheckedStore(Node* node) {
MachineType rep = RepresentationOf(OpParameter<MachineType>(node));
IA32OperandGenerator g(this);
Node* const buffer = node->InputAt(0);
Node* const offset = node->InputAt(1);
Node* const length = node->InputAt(2);
Node* const value = node->InputAt(3);
ArchOpcode opcode;
switch (rep) {
case kRepWord8:
opcode = kCheckedStoreWord8;
break;
case kRepWord16:
opcode = kCheckedStoreWord16;
break;
case kRepWord32:
opcode = kCheckedStoreWord32;
break;
case kRepFloat32:
opcode = kCheckedStoreFloat32;
break;
case kRepFloat64:
opcode = kCheckedStoreFloat64;
break;
default:
UNREACHABLE();
return;
}
InstructionOperand* value_operand =
g.CanBeImmediate(value)
? g.UseImmediate(value)
: ((rep == kRepWord8 || rep == kRepBit) ? g.UseByteRegister(value)
: g.UseRegister(value));
InstructionOperand* offset_operand = g.UseRegister(offset);
InstructionOperand* length_operand =
g.CanBeImmediate(length) ? g.UseImmediate(length) : g.UseRegister(length);
if (g.CanBeImmediate(buffer)) {
Emit(opcode | AddressingModeField::encode(kMode_MRI), nullptr,
offset_operand, length_operand, value_operand, offset_operand,
g.UseImmediate(buffer));
} else {
Emit(opcode | AddressingModeField::encode(kMode_MR1), nullptr,
offset_operand, length_operand, value_operand, g.UseRegister(buffer),
offset_operand);
}
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Int32BinopMatcher m(node);
Node* left = m.left().node();
Node* right = m.right().node();
InstructionOperand* inputs[4];
size_t input_count = 0;
InstructionOperand* outputs[2];
size_t output_count = 0;
// TODO(turbofan): match complex addressing modes.
if (left == right) {
// If both inputs refer to the same operand, enforce allocating a register
// for both of them to ensure that we don't end up generating code like
// this:
//
// mov eax, [ebp-0x10]
// add eax, [ebp-0x10]
// jo label
InstructionOperand* const input = g.UseRegister(left);
inputs[input_count++] = input;
inputs[input_count++] = input;
} else if (g.CanBeImmediate(right)) {
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.UseImmediate(right);
} else {
if (node->op()->HasProperty(Operator::kCommutative) &&
g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
inputs[input_count++] = g.UseRegister(left);
inputs[input_count++] = g.Use(right);
}
if (cont->IsBranch()) {
inputs[input_count++] = g.Label(cont->true_block());
inputs[input_count++] = g.Label(cont->false_block());
}
outputs[output_count++] = g.DefineSameAsFirst(node);
if (cont->IsSet()) {
// TODO(turbofan): Use byte register here.
outputs[output_count++] = g.DefineAsRegister(cont->result());
}
DCHECK_NE(0, input_count);
DCHECK_NE(0, output_count);
DCHECK_GE(arraysize(inputs), input_count);
DCHECK_GE(arraysize(outputs), output_count);
Instruction* instr = selector->Emit(cont->Encode(opcode), output_count,
outputs, input_count, inputs);
if (cont->IsBranch()) instr->MarkAsControl();
}
// Shared routine for multiple binary operations.
static void VisitBinop(InstructionSelector* selector, Node* node,
InstructionCode opcode) {
FlagsContinuation cont;
VisitBinop(selector, node, opcode, &cont);
}
void InstructionSelector::VisitWord32And(Node* node) {
VisitBinop(this, node, kIA32And);
}
void InstructionSelector::VisitWord32Or(Node* node) {
VisitBinop(this, node, kIA32Or);
}
void InstructionSelector::VisitWord32Xor(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.right().Is(-1)) {
Emit(kIA32Not, g.DefineSameAsFirst(node), g.UseRegister(m.left().node()));
} else {
VisitBinop(this, node, kIA32Xor);
}
}
// Shared routine for multiple shift operations.
static inline void VisitShift(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (g.CanBeImmediate(right)) {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseImmediate(right));
} else {
selector->Emit(opcode, g.DefineSameAsFirst(node), g.UseRegister(left),
g.UseFixed(right, ecx));
}
}
namespace {
void VisitMulHigh(InstructionSelector* selector, Node* node,
ArchOpcode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsFixed(node, edx),
g.UseFixed(node->InputAt(0), eax),
g.UseUniqueRegister(node->InputAt(1)));
}
void VisitDiv(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
InstructionOperand* temps[] = {g.TempRegister(edx)};
selector->Emit(opcode, g.DefineAsFixed(node, eax),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)), arraysize(temps), temps);
}
void VisitMod(InstructionSelector* selector, Node* node, ArchOpcode opcode) {
IA32OperandGenerator g(selector);
selector->Emit(opcode, g.DefineAsFixed(node, edx),
g.UseFixed(node->InputAt(0), eax),
g.UseUnique(node->InputAt(1)));
}
void EmitLea(InstructionSelector* selector, Node* result, Node* index,
int scale, Node* base, Node* displacement) {
IA32OperandGenerator g(selector);
InstructionOperand* inputs[4];
size_t input_count = 0;
AddressingMode mode = g.GenerateMemoryOperandInputs(
index, scale, base, displacement, inputs, &input_count);
DCHECK_NE(0, static_cast<int>(input_count));
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand* outputs[1];
outputs[0] = g.DefineAsRegister(result);
InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea;
selector->Emit(opcode, 1, outputs, input_count, inputs);
}
} // namespace
void InstructionSelector::VisitWord32Shl(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : NULL;
EmitLea(this, node, index, m.scale(), base, NULL);
return;
}
VisitShift(this, node, kIA32Shl);
}
void InstructionSelector::VisitWord32Shr(Node* node) {
VisitShift(this, node, kIA32Shr);
}
void InstructionSelector::VisitWord32Sar(Node* node) {
VisitShift(this, node, kIA32Sar);
}
void InstructionSelector::VisitWord32Ror(Node* node) {
VisitShift(this, node, kIA32Ror);
}
void InstructionSelector::VisitInt32Add(Node* node) {
IA32OperandGenerator g(this);
// Try to match the Add to a lea pattern
BaseWithIndexAndDisplacement32Matcher m(node);
if (m.matches() &&
(m.displacement() == NULL || g.CanBeImmediate(m.displacement()))) {
InstructionOperand* inputs[4];
size_t input_count = 0;
AddressingMode mode = g.GenerateMemoryOperandInputs(
m.index(), m.scale(), m.base(), m.displacement(), inputs, &input_count);
DCHECK_NE(0, static_cast<int>(input_count));
DCHECK_GE(arraysize(inputs), input_count);
InstructionOperand* outputs[1];
outputs[0] = g.DefineAsRegister(node);
InstructionCode opcode = AddressingModeField::encode(mode) | kIA32Lea;
Emit(opcode, 1, outputs, input_count, inputs);
return;
}
// No lea pattern match, use add
VisitBinop(this, node, kIA32Add);
}
void InstructionSelector::VisitInt32Sub(Node* node) {
IA32OperandGenerator g(this);
Int32BinopMatcher m(node);
if (m.left().Is(0)) {
Emit(kIA32Neg, g.DefineSameAsFirst(node), g.Use(m.right().node()));
} else {
VisitBinop(this, node, kIA32Sub);
}
}
void InstructionSelector::VisitInt32Mul(Node* node) {
Int32ScaleMatcher m(node, true);
if (m.matches()) {
Node* index = node->InputAt(0);
Node* base = m.power_of_two_plus_one() ? index : NULL;
EmitLea(this, node, index, m.scale(), base, NULL);
return;
}
IA32OperandGenerator g(this);
Node* left = node->InputAt(0);
Node* right = node->InputAt(1);
if (g.CanBeImmediate(right)) {
Emit(kIA32Imul, g.DefineAsRegister(node), g.Use(left),
g.UseImmediate(right));
} else {
if (g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
Emit(kIA32Imul, g.DefineSameAsFirst(node), g.UseRegister(left),
g.Use(right));
}
}
void InstructionSelector::VisitInt32MulHigh(Node* node) {
VisitMulHigh(this, node, kIA32ImulHigh);
}
void InstructionSelector::VisitUint32MulHigh(Node* node) {
VisitMulHigh(this, node, kIA32UmulHigh);
}
void InstructionSelector::VisitInt32Div(Node* node) {
VisitDiv(this, node, kIA32Idiv);
}
void InstructionSelector::VisitUint32Div(Node* node) {
VisitDiv(this, node, kIA32Udiv);
}
void InstructionSelector::VisitInt32Mod(Node* node) {
VisitMod(this, node, kIA32Idiv);
}
void InstructionSelector::VisitUint32Mod(Node* node) {
VisitMod(this, node, kIA32Udiv);
}
void InstructionSelector::VisitChangeFloat32ToFloat64(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSECvtss2sd, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeInt32ToFloat64(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEInt32ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeUint32ToFloat64(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEUint32ToFloat64, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToInt32(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64ToInt32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitChangeFloat64ToUint32(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64ToUint32, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitTruncateFloat64ToFloat32(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSECvtsd2ss, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64Add(Node* node) {
IA32OperandGenerator g(this);
if (IsSupported(AVX)) {
Emit(kAVXFloat64Add, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
} else {
Emit(kSSEFloat64Add, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
}
}
void InstructionSelector::VisitFloat64Sub(Node* node) {
IA32OperandGenerator g(this);
if (IsSupported(AVX)) {
Emit(kAVXFloat64Sub, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
} else {
Emit(kSSEFloat64Sub, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
}
}
void InstructionSelector::VisitFloat64Mul(Node* node) {
IA32OperandGenerator g(this);
if (IsSupported(AVX)) {
Emit(kAVXFloat64Mul, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
} else {
Emit(kSSEFloat64Mul, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
}
}
void InstructionSelector::VisitFloat64Div(Node* node) {
IA32OperandGenerator g(this);
if (IsSupported(AVX)) {
Emit(kAVXFloat64Div, g.DefineAsRegister(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
} else {
Emit(kSSEFloat64Div, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.Use(node->InputAt(1)));
}
}
void InstructionSelector::VisitFloat64Mod(Node* node) {
IA32OperandGenerator g(this);
InstructionOperand* temps[] = {g.TempRegister(eax)};
Emit(kSSEFloat64Mod, g.DefineSameAsFirst(node),
g.UseRegister(node->InputAt(0)), g.UseRegister(node->InputAt(1)), 1,
temps);
}
void InstructionSelector::VisitFloat64Sqrt(Node* node) {
IA32OperandGenerator g(this);
Emit(kSSEFloat64Sqrt, g.DefineAsRegister(node), g.Use(node->InputAt(0)));
}
void InstructionSelector::VisitFloat64Floor(Node* node) {
DCHECK(CpuFeatures::IsSupported(SSE4_1));
VisitRRFloat64(this, kSSEFloat64Floor, node);
}
void InstructionSelector::VisitFloat64Ceil(Node* node) {
DCHECK(CpuFeatures::IsSupported(SSE4_1));
VisitRRFloat64(this, kSSEFloat64Ceil, node);
}
void InstructionSelector::VisitFloat64RoundTruncate(Node* node) {
DCHECK(CpuFeatures::IsSupported(SSE4_1));
VisitRRFloat64(this, kSSEFloat64RoundTruncate, node);
}
void InstructionSelector::VisitFloat64RoundTiesAway(Node* node) {
UNREACHABLE();
}
void InstructionSelector::VisitCall(Node* node) {
IA32OperandGenerator g(this);
const CallDescriptor* descriptor = OpParameter<const CallDescriptor*>(node);
FrameStateDescriptor* frame_state_descriptor = NULL;
if (descriptor->NeedsFrameState()) {
frame_state_descriptor =
GetFrameStateDescriptor(node->InputAt(descriptor->InputCount()));
}
CallBuffer buffer(zone(), descriptor, frame_state_descriptor);
// Compute InstructionOperands for inputs and outputs.
InitializeCallBuffer(node, &buffer, true, true);
// Push any stack arguments.
for (NodeVectorRIter input = buffer.pushed_nodes.rbegin();
input != buffer.pushed_nodes.rend(); input++) {
// TODO(titzer): handle pushing double parameters.
Emit(kIA32Push, NULL,
g.CanBeImmediate(*input) ? g.UseImmediate(*input) : g.Use(*input));
}
// Select the appropriate opcode based on the call type.
InstructionCode opcode;
switch (descriptor->kind()) {
case CallDescriptor::kCallCodeObject: {
opcode = kArchCallCodeObject;
break;
}
case CallDescriptor::kCallJSFunction:
opcode = kArchCallJSFunction;
break;
default:
UNREACHABLE();
return;
}
opcode |= MiscField::encode(descriptor->flags());
// Emit the call instruction.
InstructionOperand** first_output =
buffer.outputs.size() > 0 ? &buffer.outputs.front() : NULL;
Instruction* call_instr =
Emit(opcode, buffer.outputs.size(), first_output,
buffer.instruction_args.size(), &buffer.instruction_args.front());
call_instr->MarkAsCall();
}
namespace {
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
InstructionOperand* left, InstructionOperand* right,
FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
if (cont->IsBranch()) {
selector->Emit(cont->Encode(opcode), NULL, left, right,
g.Label(cont->true_block()),
g.Label(cont->false_block()))->MarkAsControl();
} else {
DCHECK(cont->IsSet());
// TODO(titzer): Needs byte register.
selector->Emit(cont->Encode(opcode), g.DefineAsRegister(cont->result()),
left, right);
}
}
// Shared routine for multiple compare operations.
void VisitCompare(InstructionSelector* selector, InstructionCode opcode,
Node* left, Node* right, FlagsContinuation* cont,
bool commutative) {
IA32OperandGenerator g(selector);
if (commutative && g.CanBeBetterLeftOperand(right)) {
std::swap(left, right);
}
VisitCompare(selector, opcode, g.UseRegister(left), g.Use(right), cont);
}
// Shared routine for multiple float compare operations.
void VisitFloat64Compare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitCompare(selector, kSSEFloat64Cmp, node->InputAt(0), node->InputAt(1),
cont, node->op()->HasProperty(Operator::kCommutative));
}
// Shared routine for multiple word compare operations.
void VisitWordCompare(InstructionSelector* selector, Node* node,
InstructionCode opcode, FlagsContinuation* cont) {
IA32OperandGenerator g(selector);
Node* const left = node->InputAt(0);
Node* const right = node->InputAt(1);
// Match immediates on left or right side of comparison.
if (g.CanBeImmediate(right)) {
VisitCompare(selector, opcode, g.Use(left), g.UseImmediate(right), cont);
} else if (g.CanBeImmediate(left)) {
if (!node->op()->HasProperty(Operator::kCommutative)) cont->Commute();
VisitCompare(selector, opcode, g.Use(right), g.UseImmediate(left), cont);
} else {
VisitCompare(selector, opcode, left, right, cont,
node->op()->HasProperty(Operator::kCommutative));
}
}
void VisitWordCompare(InstructionSelector* selector, Node* node,
FlagsContinuation* cont) {
VisitWordCompare(selector, node, kIA32Cmp, cont);
}
// Shared routine for word comparison with zero.
void VisitWordCompareZero(InstructionSelector* selector, Node* user,
Node* value, FlagsContinuation* cont) {
// Try to combine the branch with a comparison.
while (selector->CanCover(user, value)) {
switch (value->opcode()) {
case IrOpcode::kWord32Equal: {
// Try to combine with comparisons against 0 by simply inverting the
// continuation.
Int32BinopMatcher m(value);
if (m.right().Is(0)) {
user = value;
value = m.left().node();
cont->Negate();
continue;
}
cont->OverwriteAndNegateIfEqual(kEqual);
return VisitWordCompare(selector, value, cont);
}
case IrOpcode::kInt32LessThan:
cont->OverwriteAndNegateIfEqual(kSignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kInt32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kSignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThan:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThan);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kUint32LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnsignedLessThanOrEqual);
return VisitWordCompare(selector, value, cont);
case IrOpcode::kFloat64Equal:
cont->OverwriteAndNegateIfEqual(kUnorderedEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThan:
cont->OverwriteAndNegateIfEqual(kUnorderedLessThan);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kFloat64LessThanOrEqual:
cont->OverwriteAndNegateIfEqual(kUnorderedLessThanOrEqual);
return VisitFloat64Compare(selector, value, cont);
case IrOpcode::kProjection:
// Check if this is the overflow output projection of an
// <Operation>WithOverflow node.
if (OpParameter<size_t>(value) == 1u) {
// We cannot combine the <Operation>WithOverflow with this branch
// unless the 0th projection (the use of the actual value of the
// <Operation> is either NULL, which means there's no use of the
// actual value, or was already defined, which means it is scheduled
// *AFTER* this branch).
Node* node = value->InputAt(0);
Node* result = node->FindProjection(0);
if (result == NULL || selector->IsDefined(result)) {
switch (node->opcode()) {
case IrOpcode::kInt32AddWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kIA32Add, cont);
case IrOpcode::kInt32SubWithOverflow:
cont->OverwriteAndNegateIfEqual(kOverflow);
return VisitBinop(selector, node, kIA32Sub, cont);
default:
break;
}
}
}
break;
case IrOpcode::kInt32Sub:
return VisitWordCompare(selector, value, cont);
case IrOpcode::kWord32And:
return VisitWordCompare(selector, value, kIA32Test, cont);
default:
break;
}
break;
}
// Continuation could not be combined with a compare, emit compare against 0.
IA32OperandGenerator g(selector);
VisitCompare(selector, kIA32Cmp, g.Use(value), g.TempImmediate(0), cont);
}
} // namespace
void InstructionSelector::VisitBranch(Node* branch, BasicBlock* tbranch,
BasicBlock* fbranch) {
FlagsContinuation cont(kNotEqual, tbranch, fbranch);
VisitWordCompareZero(this, branch, branch->InputAt(0), &cont);
}
void InstructionSelector::VisitWord32Equal(Node* const node) {
FlagsContinuation cont(kEqual, node);
Int32BinopMatcher m(node);
if (m.right().Is(0)) {
return VisitWordCompareZero(this, m.node(), m.left().node(), &cont);
}
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThan(Node* node) {
FlagsContinuation cont(kSignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kSignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThan(Node* node) {
FlagsContinuation cont(kUnsignedLessThan, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitUint32LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnsignedLessThanOrEqual, node);
VisitWordCompare(this, node, &cont);
}
void InstructionSelector::VisitInt32AddWithOverflow(Node* node) {
if (Node* ovf = node->FindProjection(1)) {
FlagsContinuation cont(kOverflow, ovf);
return VisitBinop(this, node, kIA32Add, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kIA32Add, &cont);
}
void InstructionSelector::VisitInt32SubWithOverflow(Node* node) {
if (Node* ovf = node->FindProjection(1)) {
FlagsContinuation cont(kOverflow, ovf);
return VisitBinop(this, node, kIA32Sub, &cont);
}
FlagsContinuation cont;
VisitBinop(this, node, kIA32Sub, &cont);
}
void InstructionSelector::VisitFloat64Equal(Node* node) {
FlagsContinuation cont(kUnorderedEqual, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThan(Node* node) {
FlagsContinuation cont(kUnorderedLessThan, node);
VisitFloat64Compare(this, node, &cont);
}
void InstructionSelector::VisitFloat64LessThanOrEqual(Node* node) {
FlagsContinuation cont(kUnorderedLessThanOrEqual, node);
VisitFloat64Compare(this, node, &cont);
}
// static
MachineOperatorBuilder::Flags
InstructionSelector::SupportedMachineOperatorFlags() {
if (CpuFeatures::IsSupported(SSE4_1)) {
return MachineOperatorBuilder::kFloat64Floor |
MachineOperatorBuilder::kFloat64Ceil |
MachineOperatorBuilder::kFloat64RoundTruncate |
MachineOperatorBuilder::kWord32ShiftIsSafe;
}
return MachineOperatorBuilder::Flag::kNoFlags;
}
} // namespace compiler
} // namespace internal
} // namespace v8