blob: ab572f6997116e99b3333f4457db8498ac7ffb31 [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_MARK_COMPACT_H_
#define V8_MARK_COMPACT_H_
namespace v8 {
namespace internal {
// Callback function, returns whether an object is alive. The heap size
// of the object is returned in size. It optionally updates the offset
// to the first live object in the page (only used for old and map objects).
typedef bool (*IsAliveFunction)(HeapObject* obj, int* size, int* offset);
// Callback function for non-live blocks in the old generation.
typedef void (*DeallocateFunction)(Address start, int size_in_bytes);
// Forward declarations.
class RootMarkingVisitor;
class MarkingVisitor;
// -------------------------------------------------------------------------
// Mark-Compact collector
//
// All methods are static.
class MarkCompactCollector: public AllStatic {
public:
// Type of functions to compute forwarding addresses of objects in
// compacted spaces. Given an object and its size, return a (non-failure)
// Object* that will be the object after forwarding. There is a separate
// allocation function for each (compactable) space based on the location
// of the object before compaction.
typedef Object* (*AllocationFunction)(HeapObject* object, int object_size);
// Type of functions to encode the forwarding address for an object.
// Given the object, its size, and the new (non-failure) object it will be
// forwarded to, encode the forwarding address. For paged spaces, the
// 'offset' input/output parameter contains the offset of the forwarded
// object from the forwarding address of the previous live object in the
// page as input, and is updated to contain the offset to be used for the
// next live object in the same page. For spaces using a different
// encoding (ie, contiguous spaces), the offset parameter is ignored.
typedef void (*EncodingFunction)(HeapObject* old_object,
int object_size,
Object* new_object,
int* offset);
// Type of functions to process non-live objects.
typedef void (*ProcessNonLiveFunction)(HeapObject* object);
// Set the global force_compaction flag, it must be called before Prepare
// to take effect.
static void SetForceCompaction(bool value) {
force_compaction_ = value;
}
// Prepares for GC by resetting relocation info in old and map spaces and
// choosing spaces to compact.
static void Prepare(GCTracer* tracer);
// Performs a global garbage collection.
static void CollectGarbage();
// True if the last full GC performed heap compaction.
static bool HasCompacted() { return compacting_collection_; }
// True after the Prepare phase if the compaction is taking place.
static bool IsCompacting() {
#ifdef DEBUG
// For the purposes of asserts we don't want this to keep returning true
// after the collection is completed.
return state_ != IDLE && compacting_collection_;
#else
return compacting_collection_;
#endif
}
// The count of the number of objects left marked at the end of the last
// completed full GC (expected to be zero).
static int previous_marked_count() { return previous_marked_count_; }
// During a full GC, there is a stack-allocated GCTracer that is used for
// bookkeeping information. Return a pointer to that tracer.
static GCTracer* tracer() { return tracer_; }
#ifdef DEBUG
// Checks whether performing mark-compact collection.
static bool in_use() { return state_ > PREPARE_GC; }
#endif
// Determine type of object and emit deletion log event.
static void ReportDeleteIfNeeded(HeapObject* obj);
private:
#ifdef DEBUG
enum CollectorState {
IDLE,
PREPARE_GC,
MARK_LIVE_OBJECTS,
SWEEP_SPACES,
ENCODE_FORWARDING_ADDRESSES,
UPDATE_POINTERS,
RELOCATE_OBJECTS,
REBUILD_RSETS
};
// The current stage of the collector.
static CollectorState state_;
#endif
// Global flag that forces a compaction.
static bool force_compaction_;
// Global flag indicating whether spaces were compacted on the last GC.
static bool compacting_collection_;
// Global flag indicating whether spaces will be compacted on the next GC.
static bool compact_on_next_gc_;
// The number of objects left marked at the end of the last completed full
// GC (expected to be zero).
static int previous_marked_count_;
// A pointer to the current stack-allocated GC tracer object during a full
// collection (NULL before and after).
static GCTracer* tracer_;
// Finishes GC, performs heap verification if enabled.
static void Finish();
// -----------------------------------------------------------------------
// Phase 1: Marking live objects.
//
// Before: The heap has been prepared for garbage collection by
// MarkCompactCollector::Prepare() and is otherwise in its
// normal state.
//
// After: Live objects are marked and non-live objects are unmarked.
friend class RootMarkingVisitor;
friend class MarkingVisitor;
// Marking operations for objects reachable from roots.
static void MarkLiveObjects();
static void MarkUnmarkedObject(HeapObject* obj);
static inline void MarkObject(HeapObject* obj) {
if (!obj->IsMarked()) MarkUnmarkedObject(obj);
}
static inline void SetMark(HeapObject* obj) {
tracer_->increment_marked_count();
#ifdef DEBUG
UpdateLiveObjectCount(obj);
#endif
obj->SetMark();
}
// Creates back pointers for all map transitions, stores them in
// the prototype field. The original prototype pointers are restored
// in ClearNonLiveTransitions(). All JSObject maps
// connected by map transitions have the same prototype object, which
// is why we can use this field temporarily for back pointers.
static void CreateBackPointers();
// Mark a Map and its DescriptorArray together, skipping transitions.
static void MarkMapContents(Map* map);
static void MarkDescriptorArray(DescriptorArray* descriptors);
// Mark the heap roots and all objects reachable from them.
static void MarkRoots(RootMarkingVisitor* visitor);
// Mark the symbol table specially. References to symbols from the
// symbol table are weak.
static void MarkSymbolTable();
// Mark objects in object groups that have at least one object in the
// group marked.
static void MarkObjectGroups();
// Mark all objects in an object group with at least one marked
// object, then all objects reachable from marked objects in object
// groups, and repeat.
static void ProcessObjectGroups(MarkingVisitor* visitor);
// Mark objects reachable (transitively) from objects in the marking stack
// or overflowed in the heap.
static void ProcessMarkingStack(MarkingVisitor* visitor);
// Mark objects reachable (transitively) from objects in the marking
// stack. This function empties the marking stack, but may leave
// overflowed objects in the heap, in which case the marking stack's
// overflow flag will be set.
static void EmptyMarkingStack(MarkingVisitor* visitor);
// Refill the marking stack with overflowed objects from the heap. This
// function either leaves the marking stack full or clears the overflow
// flag on the marking stack.
static void RefillMarkingStack();
// Callback function for telling whether the object *p is an unmarked
// heap object.
static bool IsUnmarkedHeapObject(Object** p);
#ifdef DEBUG
static void UpdateLiveObjectCount(HeapObject* obj);
#endif
// We sweep the large object space in the same way whether we are
// compacting or not, because the large object space is never compacted.
static void SweepLargeObjectSpace();
// Test whether a (possibly marked) object is a Map.
static inline bool SafeIsMap(HeapObject* object);
// Map transitions from a live map to a dead map must be killed.
// We replace them with a null descriptor, with the same key.
static void ClearNonLiveTransitions();
// -----------------------------------------------------------------------
// Phase 2: Sweeping to clear mark bits and free non-live objects for
// a non-compacting collection, or else computing and encoding
// forwarding addresses for a compacting collection.
//
// Before: Live objects are marked and non-live objects are unmarked.
//
// After: (Non-compacting collection.) Live objects are unmarked,
// non-live regions have been added to their space's free
// list.
//
// After: (Compacting collection.) The forwarding address of live
// objects in the paged spaces is encoded in their map word
// along with their (non-forwarded) map pointer.
//
// The forwarding address of live objects in the new space is
// written to their map word's offset in the inactive
// semispace.
//
// Bookkeeping data is written to the remembered-set are of
// eached paged-space page that contains live objects after
// compaction:
//
// The 3rd word of the page (first word of the remembered
// set) contains the relocation top address, the address of
// the first word after the end of the last live object in
// the page after compaction.
//
// The 4th word contains the zero-based index of the page in
// its space. This word is only used for map space pages, in
// order to encode the map addresses in 21 bits to free 11
// bits per map word for the forwarding address.
//
// The 5th word contains the (nonencoded) forwarding address
// of the first live object in the page.
//
// In both the new space and the paged spaces, a linked list
// of live regions is constructructed (linked through
// pointers in the non-live region immediately following each
// live region) to speed further passes of the collector.
// Encodes forwarding addresses of objects in compactable parts of the
// heap.
static void EncodeForwardingAddresses();
// Encodes the forwarding addresses of objects in new space.
static void EncodeForwardingAddressesInNewSpace();
// Function template to encode the forwarding addresses of objects in
// paged spaces, parameterized by allocation and non-live processing
// functions.
template<AllocationFunction Alloc, ProcessNonLiveFunction ProcessNonLive>
static void EncodeForwardingAddressesInPagedSpace(PagedSpace* space);
// Iterates live objects in a space, passes live objects
// to a callback function which returns the heap size of the object.
// Returns the number of live objects iterated.
static int IterateLiveObjects(NewSpace* space, HeapObjectCallback size_f);
static int IterateLiveObjects(PagedSpace* space, HeapObjectCallback size_f);
// Iterates the live objects between a range of addresses, returning the
// number of live objects.
static int IterateLiveObjectsInRange(Address start, Address end,
HeapObjectCallback size_func);
// Callback functions for deallocating non-live blocks in the old
// generation.
static void DeallocateOldPointerBlock(Address start, int size_in_bytes);
static void DeallocateOldDataBlock(Address start, int size_in_bytes);
static void DeallocateCodeBlock(Address start, int size_in_bytes);
static void DeallocateMapBlock(Address start, int size_in_bytes);
static void DeallocateCellBlock(Address start, int size_in_bytes);
// If we are not compacting the heap, we simply sweep the spaces except
// for the large object space, clearing mark bits and adding unmarked
// regions to each space's free list.
static void SweepSpaces();
// -----------------------------------------------------------------------
// Phase 3: Updating pointers in live objects.
//
// Before: Same as after phase 2 (compacting collection).
//
// After: All pointers in live objects, including encoded map
// pointers, are updated to point to their target's new
// location. The remembered set area of each paged-space
// page containing live objects still contains bookkeeping
// information.
friend class UpdatingVisitor; // helper for updating visited objects
// Updates pointers in all spaces.
static void UpdatePointers();
// Updates pointers in an object in new space.
// Returns the heap size of the object.
static int UpdatePointersInNewObject(HeapObject* obj);
// Updates pointers in an object in old spaces.
// Returns the heap size of the object.
static int UpdatePointersInOldObject(HeapObject* obj);
// Calculates the forwarding address of an object in an old space.
static Address GetForwardingAddressInOldSpace(HeapObject* obj);
// -----------------------------------------------------------------------
// Phase 4: Relocating objects.
//
// Before: Pointers to live objects are updated to point to their
// target's new location. The remembered set area of each
// paged-space page containing live objects still contains
// bookkeeping information.
//
// After: Objects have been moved to their new addresses. The
// remembered set area of each paged-space page containing
// live objects still contains bookkeeping information.
// Relocates objects in all spaces.
static void RelocateObjects();
// Converts a code object's inline target to addresses, convention from
// address to target happens in the marking phase.
static int ConvertCodeICTargetToAddress(HeapObject* obj);
// Relocate a map object.
static int RelocateMapObject(HeapObject* obj);
// Relocates an old object.
static int RelocateOldPointerObject(HeapObject* obj);
static int RelocateOldDataObject(HeapObject* obj);
// Relocate a property cell object.
static int RelocateCellObject(HeapObject* obj);
// Helper function.
static inline int RelocateOldNonCodeObject(HeapObject* obj,
PagedSpace* space);
// Relocates an object in the code space.
static int RelocateCodeObject(HeapObject* obj);
// Copy a new object.
static int RelocateNewObject(HeapObject* obj);
// -----------------------------------------------------------------------
// Phase 5: Rebuilding remembered sets.
//
// Before: The heap is in a normal state except that remembered sets
// in the paged spaces are not correct.
//
// After: The heap is in a normal state.
// Rebuild remembered set in old and map spaces.
static void RebuildRSets();
#ifdef DEBUG
// -----------------------------------------------------------------------
// Debugging variables, functions and classes
// Counters used for debugging the marking phase of mark-compact or
// mark-sweep collection.
// Number of live objects in Heap::to_space_.
static int live_young_objects_;
// Number of live objects in Heap::old_pointer_space_.
static int live_old_pointer_objects_;
// Number of live objects in Heap::old_data_space_.
static int live_old_data_objects_;
// Number of live objects in Heap::code_space_.
static int live_code_objects_;
// Number of live objects in Heap::map_space_.
static int live_map_objects_;
// Number of live objects in Heap::cell_space_.
static int live_cell_objects_;
// Number of live objects in Heap::lo_space_.
static int live_lo_objects_;
// Number of live bytes in this collection.
static int live_bytes_;
friend class MarkObjectVisitor;
static void VisitObject(HeapObject* obj);
friend class UnmarkObjectVisitor;
static void UnmarkObject(HeapObject* obj);
#endif
};
} } // namespace v8::internal
#endif // V8_MARK_COMPACT_H_