blob: 76cc4914e7bd028323463611c4a98d8fa02ac010 [file] [log] [blame]
// Copyright 2006-2008 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#ifndef V8_CODEGEN_H_
#define V8_CODEGEN_H_
#include "ast.h"
#include "code-stubs.h"
#include "runtime.h"
// Include the declaration of the architecture defined class CodeGenerator.
// The contract to the shared code is that the the CodeGenerator is a subclass
// of Visitor and that the following methods are available publicly:
// MakeCode
// MakeCodePrologue
// MakeCodeEpilogue
// masm
// frame
// script
// has_valid_frame
// SetFrame
// DeleteFrame
// allocator
// AddDeferred
// in_spilled_code
// set_in_spilled_code
// RecordPositions
//
// These methods are either used privately by the shared code or implemented as
// shared code:
// CodeGenerator
// ~CodeGenerator
// ProcessDeferred
// GenCode
// ComputeLazyCompile
// BuildBoilerplate
// ComputeCallInitialize
// ComputeCallInitializeInLoop
// ProcessDeclarations
// DeclareGlobals
// FindInlineRuntimeLUT
// CheckForInlineRuntimeCall
// PatchInlineRuntimeEntry
// AnalyzeCondition
// CodeForFunctionPosition
// CodeForReturnPosition
// CodeForStatementPosition
// CodeForDoWhileConditionPosition
// CodeForSourcePosition
// Mode to overwrite BinaryExpression values.
enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT };
// Types of uncatchable exceptions.
enum UncatchableExceptionType { OUT_OF_MEMORY, TERMINATION };
#if V8_TARGET_ARCH_IA32
#include "ia32/codegen-ia32.h"
#elif V8_TARGET_ARCH_X64
#include "x64/codegen-x64.h"
#elif V8_TARGET_ARCH_ARM
#include "arm/codegen-arm.h"
#else
#error Unsupported target architecture.
#endif
#include "register-allocator.h"
namespace v8 {
namespace internal {
// Code generation can be nested. Code generation scopes form a stack
// of active code generators.
class CodeGeneratorScope BASE_EMBEDDED {
public:
explicit CodeGeneratorScope(CodeGenerator* cgen) {
previous_ = top_;
top_ = cgen;
}
~CodeGeneratorScope() {
top_ = previous_;
}
static CodeGenerator* Current() {
ASSERT(top_ != NULL);
return top_;
}
private:
static CodeGenerator* top_;
CodeGenerator* previous_;
};
// Deferred code objects are small pieces of code that are compiled
// out of line. They are used to defer the compilation of uncommon
// paths thereby avoiding expensive jumps around uncommon code parts.
class DeferredCode: public ZoneObject {
public:
DeferredCode();
virtual ~DeferredCode() { }
virtual void Generate() = 0;
MacroAssembler* masm() { return masm_; }
int statement_position() const { return statement_position_; }
int position() const { return position_; }
Label* entry_label() { return &entry_label_; }
Label* exit_label() { return &exit_label_; }
#ifdef DEBUG
void set_comment(const char* comment) { comment_ = comment; }
const char* comment() const { return comment_; }
#else
void set_comment(const char* comment) { }
const char* comment() const { return ""; }
#endif
inline void Jump();
inline void Branch(Condition cc);
void BindExit() { masm_->bind(&exit_label_); }
void SaveRegisters();
void RestoreRegisters();
protected:
MacroAssembler* masm_;
private:
// Constants indicating special actions. They should not be multiples
// of kPointerSize so they will not collide with valid offsets from
// the frame pointer.
static const int kIgnore = -1;
static const int kPush = 1;
// This flag is ored with a valid offset from the frame pointer, so
// it should fit in the low zero bits of a valid offset.
static const int kSyncedFlag = 2;
int statement_position_;
int position_;
Label entry_label_;
Label exit_label_;
int registers_[RegisterAllocator::kNumRegisters];
#ifdef DEBUG
const char* comment_;
#endif
DISALLOW_COPY_AND_ASSIGN(DeferredCode);
};
// RuntimeStub models code stubs calling entry points in the Runtime class.
class RuntimeStub : public CodeStub {
public:
explicit RuntimeStub(Runtime::FunctionId id, int num_arguments)
: id_(id), num_arguments_(num_arguments) { }
void Generate(MacroAssembler* masm);
// Disassembler support. It is useful to be able to print the name
// of the runtime function called through this stub.
static const char* GetNameFromMinorKey(int minor_key) {
return Runtime::FunctionForId(IdField::decode(minor_key))->stub_name;
}
private:
Runtime::FunctionId id_;
int num_arguments_;
class ArgumentField: public BitField<int, 0, 16> {};
class IdField: public BitField<Runtime::FunctionId, 16, kMinorBits - 16> {};
Major MajorKey() { return Runtime; }
int MinorKey() {
return IdField::encode(id_) | ArgumentField::encode(num_arguments_);
}
const char* GetName();
#ifdef DEBUG
void Print() {
PrintF("RuntimeStub (id %s)\n", Runtime::FunctionForId(id_)->name);
}
#endif
};
class StackCheckStub : public CodeStub {
public:
StackCheckStub() { }
void Generate(MacroAssembler* masm);
private:
const char* GetName() { return "StackCheckStub"; }
Major MajorKey() { return StackCheck; }
int MinorKey() { return 0; }
};
class FastNewClosureStub : public CodeStub {
public:
void Generate(MacroAssembler* masm);
private:
const char* GetName() { return "FastNewClosureStub"; }
Major MajorKey() { return FastNewClosure; }
int MinorKey() { return 0; }
};
class FastNewContextStub : public CodeStub {
public:
static const int kMaximumSlots = 64;
explicit FastNewContextStub(int slots) : slots_(slots) {
ASSERT(slots_ > 0 && slots <= kMaximumSlots);
}
void Generate(MacroAssembler* masm);
private:
int slots_;
const char* GetName() { return "FastNewContextStub"; }
Major MajorKey() { return FastNewContext; }
int MinorKey() { return slots_; }
};
class FastCloneShallowArrayStub : public CodeStub {
public:
static const int kMaximumLength = 8;
explicit FastCloneShallowArrayStub(int length) : length_(length) {
ASSERT(length >= 0 && length <= kMaximumLength);
}
void Generate(MacroAssembler* masm);
private:
int length_;
const char* GetName() { return "FastCloneShallowArrayStub"; }
Major MajorKey() { return FastCloneShallowArray; }
int MinorKey() { return length_; }
};
class InstanceofStub: public CodeStub {
public:
InstanceofStub() { }
void Generate(MacroAssembler* masm);
private:
Major MajorKey() { return Instanceof; }
int MinorKey() { return 0; }
};
class GenericUnaryOpStub : public CodeStub {
public:
GenericUnaryOpStub(Token::Value op, bool overwrite)
: op_(op), overwrite_(overwrite) { }
private:
Token::Value op_;
bool overwrite_;
class OverwriteField: public BitField<int, 0, 1> {};
class OpField: public BitField<Token::Value, 1, kMinorBits - 1> {};
Major MajorKey() { return GenericUnaryOp; }
int MinorKey() {
return OpField::encode(op_) | OverwriteField::encode(overwrite_);
}
void Generate(MacroAssembler* masm);
const char* GetName();
};
enum NaNInformation {
kBothCouldBeNaN,
kCantBothBeNaN
};
class CompareStub: public CodeStub {
public:
CompareStub(Condition cc,
bool strict,
NaNInformation nan_info = kBothCouldBeNaN) :
cc_(cc), strict_(strict), never_nan_nan_(nan_info == kCantBothBeNaN) { }
void Generate(MacroAssembler* masm);
private:
Condition cc_;
bool strict_;
// Only used for 'equal' comparisons. Tells the stub that we already know
// that at least one side of the comparison is not NaN. This allows the
// stub to use object identity in the positive case. We ignore it when
// generating the minor key for other comparisons to avoid creating more
// stubs.
bool never_nan_nan_;
Major MajorKey() { return Compare; }
int MinorKey();
// Branch to the label if the given object isn't a symbol.
void BranchIfNonSymbol(MacroAssembler* masm,
Label* label,
Register object,
Register scratch);
// Unfortunately you have to run without snapshots to see most of these
// names in the profile since most compare stubs end up in the snapshot.
const char* GetName();
#ifdef DEBUG
void Print() {
PrintF("CompareStub (cc %d), (strict %s)\n",
static_cast<int>(cc_),
strict_ ? "true" : "false");
}
#endif
};
class CEntryStub : public CodeStub {
public:
explicit CEntryStub(int result_size) : result_size_(result_size) { }
void Generate(MacroAssembler* masm) { GenerateBody(masm, false); }
protected:
void GenerateBody(MacroAssembler* masm, bool is_debug_break);
void GenerateCore(MacroAssembler* masm,
Label* throw_normal_exception,
Label* throw_termination_exception,
Label* throw_out_of_memory_exception,
ExitFrame::Mode mode,
bool do_gc,
bool always_allocate_scope);
void GenerateThrowTOS(MacroAssembler* masm);
void GenerateThrowUncatchable(MacroAssembler* masm,
UncatchableExceptionType type);
private:
// Number of pointers/values returned.
int result_size_;
Major MajorKey() { return CEntry; }
// Minor key must differ if different result_size_ values means different
// code is generated.
int MinorKey();
const char* GetName() { return "CEntryStub"; }
};
class ApiGetterEntryStub : public CodeStub {
public:
ApiGetterEntryStub(Handle<AccessorInfo> info,
ApiFunction* fun)
: info_(info),
fun_(fun) { }
void Generate(MacroAssembler* masm);
virtual bool has_custom_cache() { return true; }
virtual bool GetCustomCache(Code** code_out);
virtual void SetCustomCache(Code* value);
static const int kStackSpace = 6;
static const int kArgc = 4;
private:
Handle<AccessorInfo> info() { return info_; }
ApiFunction* fun() { return fun_; }
Major MajorKey() { return NoCache; }
int MinorKey() { return 0; }
const char* GetName() { return "ApiEntryStub"; }
// The accessor info associated with the function.
Handle<AccessorInfo> info_;
// The function to be called.
ApiFunction* fun_;
};
class CEntryDebugBreakStub : public CEntryStub {
public:
CEntryDebugBreakStub() : CEntryStub(1) { }
void Generate(MacroAssembler* masm) { GenerateBody(masm, true); }
private:
int MinorKey() { return 1; }
const char* GetName() { return "CEntryDebugBreakStub"; }
};
class JSEntryStub : public CodeStub {
public:
JSEntryStub() { }
void Generate(MacroAssembler* masm) { GenerateBody(masm, false); }
protected:
void GenerateBody(MacroAssembler* masm, bool is_construct);
private:
Major MajorKey() { return JSEntry; }
int MinorKey() { return 0; }
const char* GetName() { return "JSEntryStub"; }
};
class JSConstructEntryStub : public JSEntryStub {
public:
JSConstructEntryStub() { }
void Generate(MacroAssembler* masm) { GenerateBody(masm, true); }
private:
int MinorKey() { return 1; }
const char* GetName() { return "JSConstructEntryStub"; }
};
class ArgumentsAccessStub: public CodeStub {
public:
enum Type {
READ_LENGTH,
READ_ELEMENT,
NEW_OBJECT
};
explicit ArgumentsAccessStub(Type type) : type_(type) { }
private:
Type type_;
Major MajorKey() { return ArgumentsAccess; }
int MinorKey() { return type_; }
void Generate(MacroAssembler* masm);
void GenerateReadLength(MacroAssembler* masm);
void GenerateReadElement(MacroAssembler* masm);
void GenerateNewObject(MacroAssembler* masm);
const char* GetName() { return "ArgumentsAccessStub"; }
#ifdef DEBUG
void Print() {
PrintF("ArgumentsAccessStub (type %d)\n", type_);
}
#endif
};
class RegExpExecStub: public CodeStub {
public:
RegExpExecStub() { }
private:
Major MajorKey() { return RegExpExec; }
int MinorKey() { return 0; }
void Generate(MacroAssembler* masm);
const char* GetName() { return "RegExpExecStub"; }
#ifdef DEBUG
void Print() {
PrintF("RegExpExecStub\n");
}
#endif
};
class CallFunctionStub: public CodeStub {
public:
CallFunctionStub(int argc, InLoopFlag in_loop, CallFunctionFlags flags)
: argc_(argc), in_loop_(in_loop), flags_(flags) { }
void Generate(MacroAssembler* masm);
private:
int argc_;
InLoopFlag in_loop_;
CallFunctionFlags flags_;
#ifdef DEBUG
void Print() {
PrintF("CallFunctionStub (args %d, in_loop %d, flags %d)\n",
argc_,
static_cast<int>(in_loop_),
static_cast<int>(flags_));
}
#endif
// Minor key encoding in 31 bits AAAAAAAAAAAAAAAAAAAAAFI A(rgs)F(lag)I(nloop).
class InLoopBits: public BitField<InLoopFlag, 0, 1> {};
class FlagBits: public BitField<CallFunctionFlags, 1, 1> {};
class ArgcBits: public BitField<int, 2, 29> {};
Major MajorKey() { return CallFunction; }
int MinorKey() {
// Encode the parameters in a unique 31 bit value.
return InLoopBits::encode(in_loop_)
| FlagBits::encode(flags_)
| ArgcBits::encode(argc_);
}
InLoopFlag InLoop() { return in_loop_; }
bool ReceiverMightBeValue() {
return (flags_ & RECEIVER_MIGHT_BE_VALUE) != 0;
}
public:
static int ExtractArgcFromMinorKey(int minor_key) {
return ArgcBits::decode(minor_key);
}
};
class ToBooleanStub: public CodeStub {
public:
ToBooleanStub() { }
void Generate(MacroAssembler* masm);
private:
Major MajorKey() { return ToBoolean; }
int MinorKey() { return 0; }
};
} // namespace internal
} // namespace v8
#endif // V8_CODEGEN_H_