blob: 849b4b33c699d5b2a2038654638a1e9fd39ed29d [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_X64
6
7#include "src/crankshaft/x64/lithium-codegen-x64.h"
8
9#include "src/base/bits.h"
10#include "src/code-factory.h"
11#include "src/code-stubs.h"
12#include "src/crankshaft/hydrogen-osr.h"
13#include "src/ic/ic.h"
14#include "src/ic/stub-cache.h"
15#include "src/profiler/cpu-profiler.h"
16
17namespace v8 {
18namespace internal {
19
20
21// When invoking builtins, we need to record the safepoint in the middle of
22// the invoke instruction sequence generated by the macro assembler.
23class SafepointGenerator final : public CallWrapper {
24 public:
25 SafepointGenerator(LCodeGen* codegen,
26 LPointerMap* pointers,
27 Safepoint::DeoptMode mode)
28 : codegen_(codegen),
29 pointers_(pointers),
30 deopt_mode_(mode) { }
31 virtual ~SafepointGenerator() {}
32
33 void BeforeCall(int call_size) const override {}
34
35 void AfterCall() const override {
36 codegen_->RecordSafepoint(pointers_, deopt_mode_);
37 }
38
39 private:
40 LCodeGen* codegen_;
41 LPointerMap* pointers_;
42 Safepoint::DeoptMode deopt_mode_;
43};
44
45
46#define __ masm()->
47
48bool LCodeGen::GenerateCode() {
49 LPhase phase("Z_Code generation", chunk());
50 DCHECK(is_unused());
51 status_ = GENERATING;
52
53 // Open a frame scope to indicate that there is a frame on the stack. The
54 // MANUAL indicates that the scope shouldn't actually generate code to set up
55 // the frame (that is done in GeneratePrologue).
56 FrameScope frame_scope(masm_, StackFrame::MANUAL);
57
58 return GeneratePrologue() &&
59 GenerateBody() &&
60 GenerateDeferredCode() &&
61 GenerateJumpTable() &&
62 GenerateSafepointTable();
63}
64
65
66void LCodeGen::FinishCode(Handle<Code> code) {
67 DCHECK(is_done());
Ben Murdoch097c5b22016-05-18 11:27:45 +010068 code->set_stack_slots(GetTotalFrameSlotCount());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +000069 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
70 PopulateDeoptimizationData(code);
71}
72
73
74#ifdef _MSC_VER
75void LCodeGen::MakeSureStackPagesMapped(int offset) {
76 const int kPageSize = 4 * KB;
77 for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
78 __ movp(Operand(rsp, offset), rax);
79 }
80}
81#endif
82
83
84void LCodeGen::SaveCallerDoubles() {
85 DCHECK(info()->saves_caller_doubles());
86 DCHECK(NeedsEagerFrame());
87 Comment(";;; Save clobbered callee double registers");
88 int count = 0;
89 BitVector* doubles = chunk()->allocated_double_registers();
90 BitVector::Iterator save_iterator(doubles);
91 while (!save_iterator.Done()) {
92 __ Movsd(MemOperand(rsp, count * kDoubleSize),
93 XMMRegister::from_code(save_iterator.Current()));
94 save_iterator.Advance();
95 count++;
96 }
97}
98
99
100void LCodeGen::RestoreCallerDoubles() {
101 DCHECK(info()->saves_caller_doubles());
102 DCHECK(NeedsEagerFrame());
103 Comment(";;; Restore clobbered callee double registers");
104 BitVector* doubles = chunk()->allocated_double_registers();
105 BitVector::Iterator save_iterator(doubles);
106 int count = 0;
107 while (!save_iterator.Done()) {
108 __ Movsd(XMMRegister::from_code(save_iterator.Current()),
109 MemOperand(rsp, count * kDoubleSize));
110 save_iterator.Advance();
111 count++;
112 }
113}
114
115
116bool LCodeGen::GeneratePrologue() {
117 DCHECK(is_generating());
118
119 if (info()->IsOptimizing()) {
120 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000121 }
122
123 info()->set_prologue_offset(masm_->pc_offset());
124 if (NeedsEagerFrame()) {
125 DCHECK(!frame_is_built_);
126 frame_is_built_ = true;
127 if (info()->IsStub()) {
128 __ StubPrologue();
129 } else {
130 __ Prologue(info()->GeneratePreagedPrologue());
131 }
132 }
133
134 // Reserve space for the stack slots needed by the code.
135 int slots = GetStackSlotCount();
136 if (slots > 0) {
137 if (FLAG_debug_code) {
138 __ subp(rsp, Immediate(slots * kPointerSize));
139#ifdef _MSC_VER
140 MakeSureStackPagesMapped(slots * kPointerSize);
141#endif
142 __ Push(rax);
143 __ Set(rax, slots);
144 __ Set(kScratchRegister, kSlotsZapValue);
145 Label loop;
146 __ bind(&loop);
147 __ movp(MemOperand(rsp, rax, times_pointer_size, 0),
148 kScratchRegister);
149 __ decl(rax);
150 __ j(not_zero, &loop);
151 __ Pop(rax);
152 } else {
153 __ subp(rsp, Immediate(slots * kPointerSize));
154#ifdef _MSC_VER
155 MakeSureStackPagesMapped(slots * kPointerSize);
156#endif
157 }
158
159 if (info()->saves_caller_doubles()) {
160 SaveCallerDoubles();
161 }
162 }
163 return !is_aborted();
164}
165
166
167void LCodeGen::DoPrologue(LPrologue* instr) {
168 Comment(";;; Prologue begin");
169
170 // Possibly allocate a local context.
171 if (info_->num_heap_slots() > 0) {
172 Comment(";;; Allocate local context");
173 bool need_write_barrier = true;
174 // Argument to NewContext is the function, which is still in rdi.
175 int slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
176 Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
177 if (info()->scope()->is_script_scope()) {
178 __ Push(rdi);
179 __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
180 __ CallRuntime(Runtime::kNewScriptContext);
181 deopt_mode = Safepoint::kLazyDeopt;
182 } else if (slots <= FastNewContextStub::kMaximumSlots) {
183 FastNewContextStub stub(isolate(), slots);
184 __ CallStub(&stub);
185 // Result of FastNewContextStub is always in new space.
186 need_write_barrier = false;
187 } else {
188 __ Push(rdi);
189 __ CallRuntime(Runtime::kNewFunctionContext);
190 }
191 RecordSafepoint(deopt_mode);
192
193 // Context is returned in rax. It replaces the context passed to us.
194 // It's saved in the stack and kept live in rsi.
195 __ movp(rsi, rax);
196 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), rax);
197
198 // Copy any necessary parameters into the context.
199 int num_parameters = scope()->num_parameters();
200 int first_parameter = scope()->has_this_declaration() ? -1 : 0;
201 for (int i = first_parameter; i < num_parameters; i++) {
202 Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
203 if (var->IsContextSlot()) {
204 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
205 (num_parameters - 1 - i) * kPointerSize;
206 // Load parameter from stack.
207 __ movp(rax, Operand(rbp, parameter_offset));
208 // Store it in the context.
209 int context_offset = Context::SlotOffset(var->index());
210 __ movp(Operand(rsi, context_offset), rax);
211 // Update the write barrier. This clobbers rax and rbx.
212 if (need_write_barrier) {
213 __ RecordWriteContextSlot(rsi, context_offset, rax, rbx, kSaveFPRegs);
214 } else if (FLAG_debug_code) {
215 Label done;
216 __ JumpIfInNewSpace(rsi, rax, &done, Label::kNear);
217 __ Abort(kExpectedNewSpaceObject);
218 __ bind(&done);
219 }
220 }
221 }
222 Comment(";;; End allocate local context");
223 }
224
225 Comment(";;; Prologue end");
226}
227
228
229void LCodeGen::GenerateOsrPrologue() {
230 // Generate the OSR entry prologue at the first unknown OSR value, or if there
231 // are none, at the OSR entrypoint instruction.
232 if (osr_pc_offset_ >= 0) return;
233
234 osr_pc_offset_ = masm()->pc_offset();
235
236 // Adjust the frame size, subsuming the unoptimized frame into the
237 // optimized frame.
238 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
239 DCHECK(slots >= 0);
240 __ subp(rsp, Immediate(slots * kPointerSize));
241}
242
243
244void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
245 if (instr->IsCall()) {
246 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
247 }
248 if (!instr->IsLazyBailout() && !instr->IsGap()) {
249 safepoints_.BumpLastLazySafepointIndex();
250 }
251}
252
253
254void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
255 if (FLAG_debug_code && FLAG_enable_slow_asserts && instr->HasResult() &&
256 instr->hydrogen_value()->representation().IsInteger32() &&
257 instr->result()->IsRegister()) {
258 __ AssertZeroExtended(ToRegister(instr->result()));
259 }
260
261 if (instr->HasResult() && instr->MustSignExtendResult(chunk())) {
262 // We sign extend the dehoisted key at the definition point when the pointer
263 // size is 64-bit. For x32 port, we sign extend the dehoisted key at the use
264 // points and MustSignExtendResult is always false. We can't use
265 // STATIC_ASSERT here as the pointer size is 32-bit for x32.
266 DCHECK(kPointerSize == kInt64Size);
267 if (instr->result()->IsRegister()) {
268 Register result_reg = ToRegister(instr->result());
269 __ movsxlq(result_reg, result_reg);
270 } else {
271 // Sign extend the 32bit result in the stack slots.
272 DCHECK(instr->result()->IsStackSlot());
273 Operand src = ToOperand(instr->result());
274 __ movsxlq(kScratchRegister, src);
275 __ movq(src, kScratchRegister);
276 }
277 }
278}
279
280
281bool LCodeGen::GenerateJumpTable() {
282 if (jump_table_.length() == 0) return !is_aborted();
283
284 Label needs_frame;
285 Comment(";;; -------------------- Jump table --------------------");
286 for (int i = 0; i < jump_table_.length(); i++) {
287 Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
288 __ bind(&table_entry->label);
289 Address entry = table_entry->address;
290 DeoptComment(table_entry->deopt_info);
291 if (table_entry->needs_frame) {
292 DCHECK(!info()->saves_caller_doubles());
293 __ Move(kScratchRegister, ExternalReference::ForDeoptEntry(entry));
294 __ call(&needs_frame);
295 } else {
296 if (info()->saves_caller_doubles()) {
297 DCHECK(info()->IsStub());
298 RestoreCallerDoubles();
299 }
300 __ call(entry, RelocInfo::RUNTIME_ENTRY);
301 }
302 info()->LogDeoptCallPosition(masm()->pc_offset(),
303 table_entry->deopt_info.inlining_id);
304 }
305
306 if (needs_frame.is_linked()) {
307 __ bind(&needs_frame);
308 /* stack layout
309 4: return address <-- rsp
310 3: garbage
311 2: garbage
312 1: garbage
313 0: garbage
314 */
315 // Reserve space for context and stub marker.
316 __ subp(rsp, Immediate(2 * kPointerSize));
317 __ Push(MemOperand(rsp, 2 * kPointerSize)); // Copy return address.
318 __ Push(kScratchRegister); // Save entry address for ret(0)
319
320 /* stack layout
321 4: return address
322 3: garbage
323 2: garbage
324 1: return address
325 0: entry address <-- rsp
326 */
327
328 // Remember context pointer.
329 __ movp(kScratchRegister,
330 MemOperand(rbp, StandardFrameConstants::kContextOffset));
331 // Save context pointer into the stack frame.
332 __ movp(MemOperand(rsp, 3 * kPointerSize), kScratchRegister);
333
334 // Create a stack frame.
335 __ movp(MemOperand(rsp, 4 * kPointerSize), rbp);
336 __ leap(rbp, MemOperand(rsp, 4 * kPointerSize));
337
338 // This variant of deopt can only be used with stubs. Since we don't
339 // have a function pointer to install in the stack frame that we're
340 // building, install a special marker there instead.
341 DCHECK(info()->IsStub());
342 __ Move(MemOperand(rsp, 2 * kPointerSize), Smi::FromInt(StackFrame::STUB));
343
344 /* stack layout
345 4: old rbp
346 3: context pointer
347 2: stub marker
348 1: return address
349 0: entry address <-- rsp
350 */
351 __ ret(0);
352 }
353
354 return !is_aborted();
355}
356
357
358bool LCodeGen::GenerateDeferredCode() {
359 DCHECK(is_generating());
360 if (deferred_.length() > 0) {
361 for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
362 LDeferredCode* code = deferred_[i];
363
364 HValue* value =
365 instructions_->at(code->instruction_index())->hydrogen_value();
366 RecordAndWritePosition(
367 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
368
369 Comment(";;; <@%d,#%d> "
370 "-------------------- Deferred %s --------------------",
371 code->instruction_index(),
372 code->instr()->hydrogen_value()->id(),
373 code->instr()->Mnemonic());
374 __ bind(code->entry());
375 if (NeedsDeferredFrame()) {
376 Comment(";;; Build frame");
377 DCHECK(!frame_is_built_);
378 DCHECK(info()->IsStub());
379 frame_is_built_ = true;
380 // Build the frame in such a way that esi isn't trashed.
381 __ pushq(rbp); // Caller's frame pointer.
382 __ Push(Operand(rbp, StandardFrameConstants::kContextOffset));
383 __ Push(Smi::FromInt(StackFrame::STUB));
384 __ leap(rbp, Operand(rsp, 2 * kPointerSize));
385 Comment(";;; Deferred code");
386 }
387 code->Generate();
388 if (NeedsDeferredFrame()) {
389 __ bind(code->done());
390 Comment(";;; Destroy frame");
391 DCHECK(frame_is_built_);
392 frame_is_built_ = false;
393 __ movp(rsp, rbp);
394 __ popq(rbp);
395 }
396 __ jmp(code->exit());
397 }
398 }
399
400 // Deferred code is the last part of the instruction sequence. Mark
401 // the generated code as done unless we bailed out.
402 if (!is_aborted()) status_ = DONE;
403 return !is_aborted();
404}
405
406
407bool LCodeGen::GenerateSafepointTable() {
408 DCHECK(is_done());
Ben Murdoch097c5b22016-05-18 11:27:45 +0100409 safepoints_.Emit(masm(), GetTotalFrameSlotCount());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000410 return !is_aborted();
411}
412
413
414Register LCodeGen::ToRegister(int index) const {
415 return Register::from_code(index);
416}
417
418
419XMMRegister LCodeGen::ToDoubleRegister(int index) const {
420 return XMMRegister::from_code(index);
421}
422
423
424Register LCodeGen::ToRegister(LOperand* op) const {
425 DCHECK(op->IsRegister());
426 return ToRegister(op->index());
427}
428
429
430XMMRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
431 DCHECK(op->IsDoubleRegister());
432 return ToDoubleRegister(op->index());
433}
434
435
436bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
437 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
438}
439
440
441bool LCodeGen::IsExternalConstant(LConstantOperand* op) const {
442 return chunk_->LookupLiteralRepresentation(op).IsExternal();
443}
444
445
446bool LCodeGen::IsDehoistedKeyConstant(LConstantOperand* op) const {
447 return op->IsConstantOperand() &&
448 chunk_->IsDehoistedKey(chunk_->LookupConstant(op));
449}
450
451
452bool LCodeGen::IsSmiConstant(LConstantOperand* op) const {
453 return chunk_->LookupLiteralRepresentation(op).IsSmi();
454}
455
456
457int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
458 return ToRepresentation(op, Representation::Integer32());
459}
460
461
462int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
463 const Representation& r) const {
464 HConstant* constant = chunk_->LookupConstant(op);
465 int32_t value = constant->Integer32Value();
466 if (r.IsInteger32()) return value;
467 DCHECK(SmiValuesAre31Bits() && r.IsSmiOrTagged());
468 return static_cast<int32_t>(reinterpret_cast<intptr_t>(Smi::FromInt(value)));
469}
470
471
472Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
473 HConstant* constant = chunk_->LookupConstant(op);
474 return Smi::FromInt(constant->Integer32Value());
475}
476
477
478double LCodeGen::ToDouble(LConstantOperand* op) const {
479 HConstant* constant = chunk_->LookupConstant(op);
480 DCHECK(constant->HasDoubleValue());
481 return constant->DoubleValue();
482}
483
484
485ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
486 HConstant* constant = chunk_->LookupConstant(op);
487 DCHECK(constant->HasExternalReferenceValue());
488 return constant->ExternalReferenceValue();
489}
490
491
492Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
493 HConstant* constant = chunk_->LookupConstant(op);
494 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
495 return constant->handle(isolate());
496}
497
498
499static int ArgumentsOffsetWithoutFrame(int index) {
500 DCHECK(index < 0);
501 return -(index + 1) * kPointerSize + kPCOnStackSize;
502}
503
504
505Operand LCodeGen::ToOperand(LOperand* op) const {
506 // Does not handle registers. In X64 assembler, plain registers are not
507 // representable as an Operand.
508 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
509 if (NeedsEagerFrame()) {
Ben Murdoch097c5b22016-05-18 11:27:45 +0100510 return Operand(rbp, FrameSlotToFPOffset(op->index()));
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000511 } else {
512 // Retrieve parameter without eager stack-frame relative to the
513 // stack-pointer.
514 return Operand(rsp, ArgumentsOffsetWithoutFrame(op->index()));
515 }
516}
517
518
519void LCodeGen::WriteTranslation(LEnvironment* environment,
520 Translation* translation) {
521 if (environment == NULL) return;
522
523 // The translation includes one command per value in the environment.
524 int translation_size = environment->translation_size();
525
526 WriteTranslation(environment->outer(), translation);
527 WriteTranslationFrame(environment, translation);
528
529 int object_index = 0;
530 int dematerialized_index = 0;
531 for (int i = 0; i < translation_size; ++i) {
532 LOperand* value = environment->values()->at(i);
533 AddToTranslation(
534 environment, translation, value, environment->HasTaggedValueAt(i),
535 environment->HasUint32ValueAt(i), &object_index, &dematerialized_index);
536 }
537}
538
539
540void LCodeGen::AddToTranslation(LEnvironment* environment,
541 Translation* translation,
542 LOperand* op,
543 bool is_tagged,
544 bool is_uint32,
545 int* object_index_pointer,
546 int* dematerialized_index_pointer) {
547 if (op == LEnvironment::materialization_marker()) {
548 int object_index = (*object_index_pointer)++;
549 if (environment->ObjectIsDuplicateAt(object_index)) {
550 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
551 translation->DuplicateObject(dupe_of);
552 return;
553 }
554 int object_length = environment->ObjectLengthAt(object_index);
555 if (environment->ObjectIsArgumentsAt(object_index)) {
556 translation->BeginArgumentsObject(object_length);
557 } else {
558 translation->BeginCapturedObject(object_length);
559 }
560 int dematerialized_index = *dematerialized_index_pointer;
561 int env_offset = environment->translation_size() + dematerialized_index;
562 *dematerialized_index_pointer += object_length;
563 for (int i = 0; i < object_length; ++i) {
564 LOperand* value = environment->values()->at(env_offset + i);
565 AddToTranslation(environment,
566 translation,
567 value,
568 environment->HasTaggedValueAt(env_offset + i),
569 environment->HasUint32ValueAt(env_offset + i),
570 object_index_pointer,
571 dematerialized_index_pointer);
572 }
573 return;
574 }
575
576 if (op->IsStackSlot()) {
577 int index = op->index();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000578 if (is_tagged) {
579 translation->StoreStackSlot(index);
580 } else if (is_uint32) {
581 translation->StoreUint32StackSlot(index);
582 } else {
583 translation->StoreInt32StackSlot(index);
584 }
585 } else if (op->IsDoubleStackSlot()) {
586 int index = op->index();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000587 translation->StoreDoubleStackSlot(index);
588 } else if (op->IsRegister()) {
589 Register reg = ToRegister(op);
590 if (is_tagged) {
591 translation->StoreRegister(reg);
592 } else if (is_uint32) {
593 translation->StoreUint32Register(reg);
594 } else {
595 translation->StoreInt32Register(reg);
596 }
597 } else if (op->IsDoubleRegister()) {
598 XMMRegister reg = ToDoubleRegister(op);
599 translation->StoreDoubleRegister(reg);
600 } else if (op->IsConstantOperand()) {
601 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
602 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
603 translation->StoreLiteral(src_index);
604 } else {
605 UNREACHABLE();
606 }
607}
608
609
610void LCodeGen::CallCodeGeneric(Handle<Code> code,
611 RelocInfo::Mode mode,
612 LInstruction* instr,
613 SafepointMode safepoint_mode,
614 int argc) {
615 DCHECK(instr != NULL);
616 __ call(code, mode);
617 RecordSafepointWithLazyDeopt(instr, safepoint_mode, argc);
618
619 // Signal that we don't inline smi code before these stubs in the
620 // optimizing code generator.
621 if (code->kind() == Code::BINARY_OP_IC ||
622 code->kind() == Code::COMPARE_IC) {
623 __ nop();
624 }
625}
626
627
628void LCodeGen::CallCode(Handle<Code> code,
629 RelocInfo::Mode mode,
630 LInstruction* instr) {
631 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT, 0);
632}
633
634
635void LCodeGen::CallRuntime(const Runtime::Function* function,
636 int num_arguments,
637 LInstruction* instr,
638 SaveFPRegsMode save_doubles) {
639 DCHECK(instr != NULL);
640 DCHECK(instr->HasPointerMap());
641
642 __ CallRuntime(function, num_arguments, save_doubles);
643
644 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
645}
646
647
648void LCodeGen::LoadContextFromDeferred(LOperand* context) {
649 if (context->IsRegister()) {
650 if (!ToRegister(context).is(rsi)) {
651 __ movp(rsi, ToRegister(context));
652 }
653 } else if (context->IsStackSlot()) {
654 __ movp(rsi, ToOperand(context));
655 } else if (context->IsConstantOperand()) {
656 HConstant* constant =
657 chunk_->LookupConstant(LConstantOperand::cast(context));
658 __ Move(rsi, Handle<Object>::cast(constant->handle(isolate())));
659 } else {
660 UNREACHABLE();
661 }
662}
663
664
665
666void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
667 int argc,
668 LInstruction* instr,
669 LOperand* context) {
670 LoadContextFromDeferred(context);
671
672 __ CallRuntimeSaveDoubles(id);
673 RecordSafepointWithRegisters(
674 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
675}
676
677
678void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
679 Safepoint::DeoptMode mode) {
680 environment->set_has_been_used();
681 if (!environment->HasBeenRegistered()) {
682 // Physical stack frame layout:
683 // -x ............. -4 0 ..................................... y
684 // [incoming arguments] [spill slots] [pushed outgoing arguments]
685
686 // Layout of the environment:
687 // 0 ..................................................... size-1
688 // [parameters] [locals] [expression stack including arguments]
689
690 // Layout of the translation:
691 // 0 ........................................................ size - 1 + 4
692 // [expression stack including arguments] [locals] [4 words] [parameters]
693 // |>------------ translation_size ------------<|
694
695 int frame_count = 0;
696 int jsframe_count = 0;
697 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
698 ++frame_count;
699 if (e->frame_type() == JS_FUNCTION) {
700 ++jsframe_count;
701 }
702 }
703 Translation translation(&translations_, frame_count, jsframe_count, zone());
704 WriteTranslation(environment, &translation);
705 int deoptimization_index = deoptimizations_.length();
706 int pc_offset = masm()->pc_offset();
707 environment->Register(deoptimization_index,
708 translation.index(),
709 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
710 deoptimizations_.Add(environment, environment->zone());
711 }
712}
713
714
715void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
716 Deoptimizer::DeoptReason deopt_reason,
717 Deoptimizer::BailoutType bailout_type) {
718 LEnvironment* environment = instr->environment();
719 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
720 DCHECK(environment->HasBeenRegistered());
721 int id = environment->deoptimization_index();
722 Address entry =
723 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
724 if (entry == NULL) {
725 Abort(kBailoutWasNotPrepared);
726 return;
727 }
728
729 if (DeoptEveryNTimes()) {
730 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
731 Label no_deopt;
732 __ pushfq();
733 __ pushq(rax);
734 Operand count_operand = masm()->ExternalOperand(count, kScratchRegister);
735 __ movl(rax, count_operand);
736 __ subl(rax, Immediate(1));
737 __ j(not_zero, &no_deopt, Label::kNear);
738 if (FLAG_trap_on_deopt) __ int3();
739 __ movl(rax, Immediate(FLAG_deopt_every_n_times));
740 __ movl(count_operand, rax);
741 __ popq(rax);
742 __ popfq();
743 DCHECK(frame_is_built_);
744 __ call(entry, RelocInfo::RUNTIME_ENTRY);
745 __ bind(&no_deopt);
746 __ movl(count_operand, rax);
747 __ popq(rax);
748 __ popfq();
749 }
750
751 if (info()->ShouldTrapOnDeopt()) {
752 Label done;
753 if (cc != no_condition) {
754 __ j(NegateCondition(cc), &done, Label::kNear);
755 }
756 __ int3();
757 __ bind(&done);
758 }
759
760 Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
761
762 DCHECK(info()->IsStub() || frame_is_built_);
763 // Go through jump table if we need to handle condition, build frame, or
764 // restore caller doubles.
765 if (cc == no_condition && frame_is_built_ &&
766 !info()->saves_caller_doubles()) {
767 DeoptComment(deopt_info);
768 __ call(entry, RelocInfo::RUNTIME_ENTRY);
769 info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
770 } else {
771 Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
772 !frame_is_built_);
773 // We often have several deopts to the same entry, reuse the last
774 // jump entry if this is the case.
775 if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
776 jump_table_.is_empty() ||
777 !table_entry.IsEquivalentTo(jump_table_.last())) {
778 jump_table_.Add(table_entry, zone());
779 }
780 if (cc == no_condition) {
781 __ jmp(&jump_table_.last().label);
782 } else {
783 __ j(cc, &jump_table_.last().label);
784 }
785 }
786}
787
788
789void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
790 Deoptimizer::DeoptReason deopt_reason) {
791 Deoptimizer::BailoutType bailout_type = info()->IsStub()
792 ? Deoptimizer::LAZY
793 : Deoptimizer::EAGER;
794 DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
795}
796
797
798void LCodeGen::RecordSafepointWithLazyDeopt(
799 LInstruction* instr, SafepointMode safepoint_mode, int argc) {
800 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
801 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
802 } else {
803 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS);
804 RecordSafepointWithRegisters(
805 instr->pointer_map(), argc, Safepoint::kLazyDeopt);
806 }
807}
808
809
810void LCodeGen::RecordSafepoint(
811 LPointerMap* pointers,
812 Safepoint::Kind kind,
813 int arguments,
814 Safepoint::DeoptMode deopt_mode) {
815 DCHECK(kind == expected_safepoint_kind_);
816
817 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
818
819 Safepoint safepoint = safepoints_.DefineSafepoint(masm(),
820 kind, arguments, deopt_mode);
821 for (int i = 0; i < operands->length(); i++) {
822 LOperand* pointer = operands->at(i);
823 if (pointer->IsStackSlot()) {
824 safepoint.DefinePointerSlot(pointer->index(), zone());
825 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
826 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
827 }
828 }
829}
830
831
832void LCodeGen::RecordSafepoint(LPointerMap* pointers,
833 Safepoint::DeoptMode deopt_mode) {
834 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
835}
836
837
838void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
839 LPointerMap empty_pointers(zone());
840 RecordSafepoint(&empty_pointers, deopt_mode);
841}
842
843
844void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
845 int arguments,
846 Safepoint::DeoptMode deopt_mode) {
847 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
848}
849
850
851void LCodeGen::RecordAndWritePosition(int position) {
852 if (position == RelocInfo::kNoPosition) return;
853 masm()->positions_recorder()->RecordPosition(position);
854 masm()->positions_recorder()->WriteRecordedPositions();
855}
856
857
858static const char* LabelType(LLabel* label) {
859 if (label->is_loop_header()) return " (loop header)";
860 if (label->is_osr_entry()) return " (OSR entry)";
861 return "";
862}
863
864
865void LCodeGen::DoLabel(LLabel* label) {
866 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
867 current_instruction_,
868 label->hydrogen_value()->id(),
869 label->block_id(),
870 LabelType(label));
871 __ bind(label->label());
872 current_block_ = label->block_id();
873 DoGap(label);
874}
875
876
877void LCodeGen::DoParallelMove(LParallelMove* move) {
878 resolver_.Resolve(move);
879}
880
881
882void LCodeGen::DoGap(LGap* gap) {
883 for (int i = LGap::FIRST_INNER_POSITION;
884 i <= LGap::LAST_INNER_POSITION;
885 i++) {
886 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
887 LParallelMove* move = gap->GetParallelMove(inner_pos);
888 if (move != NULL) DoParallelMove(move);
889 }
890}
891
892
893void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
894 DoGap(instr);
895}
896
897
898void LCodeGen::DoParameter(LParameter* instr) {
899 // Nothing to do.
900}
901
902
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000903void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
904 GenerateOsrPrologue();
905}
906
907
908void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
909 Register dividend = ToRegister(instr->dividend());
910 int32_t divisor = instr->divisor();
911 DCHECK(dividend.is(ToRegister(instr->result())));
912
913 // Theoretically, a variation of the branch-free code for integer division by
914 // a power of 2 (calculating the remainder via an additional multiplication
915 // (which gets simplified to an 'and') and subtraction) should be faster, and
916 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
917 // indicate that positive dividends are heavily favored, so the branching
918 // version performs better.
919 HMod* hmod = instr->hydrogen();
920 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
921 Label dividend_is_not_negative, done;
922 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
923 __ testl(dividend, dividend);
924 __ j(not_sign, &dividend_is_not_negative, Label::kNear);
925 // Note that this is correct even for kMinInt operands.
926 __ negl(dividend);
927 __ andl(dividend, Immediate(mask));
928 __ negl(dividend);
929 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
930 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
931 }
932 __ jmp(&done, Label::kNear);
933 }
934
935 __ bind(&dividend_is_not_negative);
936 __ andl(dividend, Immediate(mask));
937 __ bind(&done);
938}
939
940
941void LCodeGen::DoModByConstI(LModByConstI* instr) {
942 Register dividend = ToRegister(instr->dividend());
943 int32_t divisor = instr->divisor();
944 DCHECK(ToRegister(instr->result()).is(rax));
945
946 if (divisor == 0) {
947 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
948 return;
949 }
950
951 __ TruncatingDiv(dividend, Abs(divisor));
952 __ imull(rdx, rdx, Immediate(Abs(divisor)));
953 __ movl(rax, dividend);
954 __ subl(rax, rdx);
955
956 // Check for negative zero.
957 HMod* hmod = instr->hydrogen();
958 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
959 Label remainder_not_zero;
960 __ j(not_zero, &remainder_not_zero, Label::kNear);
961 __ cmpl(dividend, Immediate(0));
962 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
963 __ bind(&remainder_not_zero);
964 }
965}
966
967
968void LCodeGen::DoModI(LModI* instr) {
969 HMod* hmod = instr->hydrogen();
970
971 Register left_reg = ToRegister(instr->left());
972 DCHECK(left_reg.is(rax));
973 Register right_reg = ToRegister(instr->right());
974 DCHECK(!right_reg.is(rax));
975 DCHECK(!right_reg.is(rdx));
976 Register result_reg = ToRegister(instr->result());
977 DCHECK(result_reg.is(rdx));
978
979 Label done;
980 // Check for x % 0, idiv would signal a divide error. We have to
981 // deopt in this case because we can't return a NaN.
982 if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
983 __ testl(right_reg, right_reg);
984 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
985 }
986
987 // Check for kMinInt % -1, idiv would signal a divide error. We
988 // have to deopt if we care about -0, because we can't return that.
989 if (hmod->CheckFlag(HValue::kCanOverflow)) {
990 Label no_overflow_possible;
991 __ cmpl(left_reg, Immediate(kMinInt));
992 __ j(not_zero, &no_overflow_possible, Label::kNear);
993 __ cmpl(right_reg, Immediate(-1));
994 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
995 DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero);
996 } else {
997 __ j(not_equal, &no_overflow_possible, Label::kNear);
998 __ Set(result_reg, 0);
999 __ jmp(&done, Label::kNear);
1000 }
1001 __ bind(&no_overflow_possible);
1002 }
1003
1004 // Sign extend dividend in eax into edx:eax, since we are using only the low
1005 // 32 bits of the values.
1006 __ cdq();
1007
1008 // If we care about -0, test if the dividend is <0 and the result is 0.
1009 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
1010 Label positive_left;
1011 __ testl(left_reg, left_reg);
1012 __ j(not_sign, &positive_left, Label::kNear);
1013 __ idivl(right_reg);
1014 __ testl(result_reg, result_reg);
1015 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1016 __ jmp(&done, Label::kNear);
1017 __ bind(&positive_left);
1018 }
1019 __ idivl(right_reg);
1020 __ bind(&done);
1021}
1022
1023
1024void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
1025 Register dividend = ToRegister(instr->dividend());
1026 int32_t divisor = instr->divisor();
1027 DCHECK(dividend.is(ToRegister(instr->result())));
1028
1029 // If the divisor is positive, things are easy: There can be no deopts and we
1030 // can simply do an arithmetic right shift.
1031 if (divisor == 1) return;
1032 int32_t shift = WhichPowerOf2Abs(divisor);
1033 if (divisor > 1) {
1034 __ sarl(dividend, Immediate(shift));
1035 return;
1036 }
1037
1038 // If the divisor is negative, we have to negate and handle edge cases.
1039 __ negl(dividend);
1040 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1041 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1042 }
1043
1044 // Dividing by -1 is basically negation, unless we overflow.
1045 if (divisor == -1) {
1046 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1047 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1048 }
1049 return;
1050 }
1051
1052 // If the negation could not overflow, simply shifting is OK.
1053 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
1054 __ sarl(dividend, Immediate(shift));
1055 return;
1056 }
1057
1058 Label not_kmin_int, done;
1059 __ j(no_overflow, &not_kmin_int, Label::kNear);
1060 __ movl(dividend, Immediate(kMinInt / divisor));
1061 __ jmp(&done, Label::kNear);
1062 __ bind(&not_kmin_int);
1063 __ sarl(dividend, Immediate(shift));
1064 __ bind(&done);
1065}
1066
1067
1068void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
1069 Register dividend = ToRegister(instr->dividend());
1070 int32_t divisor = instr->divisor();
1071 DCHECK(ToRegister(instr->result()).is(rdx));
1072
1073 if (divisor == 0) {
1074 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
1075 return;
1076 }
1077
1078 // Check for (0 / -x) that will produce negative zero.
1079 HMathFloorOfDiv* hdiv = instr->hydrogen();
1080 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1081 __ testl(dividend, dividend);
1082 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1083 }
1084
1085 // Easy case: We need no dynamic check for the dividend and the flooring
1086 // division is the same as the truncating division.
1087 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
1088 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
1089 __ TruncatingDiv(dividend, Abs(divisor));
1090 if (divisor < 0) __ negl(rdx);
1091 return;
1092 }
1093
1094 // In the general case we may need to adjust before and after the truncating
1095 // division to get a flooring division.
1096 Register temp = ToRegister(instr->temp3());
1097 DCHECK(!temp.is(dividend) && !temp.is(rax) && !temp.is(rdx));
1098 Label needs_adjustment, done;
1099 __ cmpl(dividend, Immediate(0));
1100 __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
1101 __ TruncatingDiv(dividend, Abs(divisor));
1102 if (divisor < 0) __ negl(rdx);
1103 __ jmp(&done, Label::kNear);
1104 __ bind(&needs_adjustment);
1105 __ leal(temp, Operand(dividend, divisor > 0 ? 1 : -1));
1106 __ TruncatingDiv(temp, Abs(divisor));
1107 if (divisor < 0) __ negl(rdx);
1108 __ decl(rdx);
1109 __ bind(&done);
1110}
1111
1112
1113// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
1114void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
1115 HBinaryOperation* hdiv = instr->hydrogen();
1116 Register dividend = ToRegister(instr->dividend());
1117 Register divisor = ToRegister(instr->divisor());
1118 Register remainder = ToRegister(instr->temp());
1119 Register result = ToRegister(instr->result());
1120 DCHECK(dividend.is(rax));
1121 DCHECK(remainder.is(rdx));
1122 DCHECK(result.is(rax));
1123 DCHECK(!divisor.is(rax));
1124 DCHECK(!divisor.is(rdx));
1125
1126 // Check for x / 0.
1127 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1128 __ testl(divisor, divisor);
1129 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
1130 }
1131
1132 // Check for (0 / -x) that will produce negative zero.
1133 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1134 Label dividend_not_zero;
1135 __ testl(dividend, dividend);
1136 __ j(not_zero, &dividend_not_zero, Label::kNear);
1137 __ testl(divisor, divisor);
1138 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1139 __ bind(&dividend_not_zero);
1140 }
1141
1142 // Check for (kMinInt / -1).
1143 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1144 Label dividend_not_min_int;
1145 __ cmpl(dividend, Immediate(kMinInt));
1146 __ j(not_zero, &dividend_not_min_int, Label::kNear);
1147 __ cmpl(divisor, Immediate(-1));
1148 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1149 __ bind(&dividend_not_min_int);
1150 }
1151
1152 // Sign extend to rdx (= remainder).
1153 __ cdq();
1154 __ idivl(divisor);
1155
1156 Label done;
1157 __ testl(remainder, remainder);
1158 __ j(zero, &done, Label::kNear);
1159 __ xorl(remainder, divisor);
1160 __ sarl(remainder, Immediate(31));
1161 __ addl(result, remainder);
1162 __ bind(&done);
1163}
1164
1165
1166void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
1167 Register dividend = ToRegister(instr->dividend());
1168 int32_t divisor = instr->divisor();
1169 Register result = ToRegister(instr->result());
1170 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
1171 DCHECK(!result.is(dividend));
1172
1173 // Check for (0 / -x) that will produce negative zero.
1174 HDiv* hdiv = instr->hydrogen();
1175 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1176 __ testl(dividend, dividend);
1177 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1178 }
1179 // Check for (kMinInt / -1).
1180 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
1181 __ cmpl(dividend, Immediate(kMinInt));
1182 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1183 }
1184 // Deoptimize if remainder will not be 0.
1185 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
1186 divisor != 1 && divisor != -1) {
1187 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
1188 __ testl(dividend, Immediate(mask));
1189 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
1190 }
1191 __ Move(result, dividend);
1192 int32_t shift = WhichPowerOf2Abs(divisor);
1193 if (shift > 0) {
1194 // The arithmetic shift is always OK, the 'if' is an optimization only.
1195 if (shift > 1) __ sarl(result, Immediate(31));
1196 __ shrl(result, Immediate(32 - shift));
1197 __ addl(result, dividend);
1198 __ sarl(result, Immediate(shift));
1199 }
1200 if (divisor < 0) __ negl(result);
1201}
1202
1203
1204void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
1205 Register dividend = ToRegister(instr->dividend());
1206 int32_t divisor = instr->divisor();
1207 DCHECK(ToRegister(instr->result()).is(rdx));
1208
1209 if (divisor == 0) {
1210 DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
1211 return;
1212 }
1213
1214 // Check for (0 / -x) that will produce negative zero.
1215 HDiv* hdiv = instr->hydrogen();
1216 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
1217 __ testl(dividend, dividend);
1218 DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
1219 }
1220
1221 __ TruncatingDiv(dividend, Abs(divisor));
1222 if (divisor < 0) __ negl(rdx);
1223
1224 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
1225 __ movl(rax, rdx);
1226 __ imull(rax, rax, Immediate(divisor));
1227 __ subl(rax, dividend);
1228 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
1229 }
1230}
1231
1232
1233// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
1234void LCodeGen::DoDivI(LDivI* instr) {
1235 HBinaryOperation* hdiv = instr->hydrogen();
1236 Register dividend = ToRegister(instr->dividend());
1237 Register divisor = ToRegister(instr->divisor());
1238 Register remainder = ToRegister(instr->temp());
1239 DCHECK(dividend.is(rax));
1240 DCHECK(remainder.is(rdx));
1241 DCHECK(ToRegister(instr->result()).is(rax));
1242 DCHECK(!divisor.is(rax));
1243 DCHECK(!divisor.is(rdx));
1244
1245 // Check for x / 0.
1246 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
1247 __ testl(divisor, divisor);
1248 DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
1249 }
1250
1251 // Check for (0 / -x) that will produce negative zero.
1252 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
1253 Label dividend_not_zero;
1254 __ testl(dividend, dividend);
1255 __ j(not_zero, &dividend_not_zero, Label::kNear);
1256 __ testl(divisor, divisor);
1257 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1258 __ bind(&dividend_not_zero);
1259 }
1260
1261 // Check for (kMinInt / -1).
1262 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
1263 Label dividend_not_min_int;
1264 __ cmpl(dividend, Immediate(kMinInt));
1265 __ j(not_zero, &dividend_not_min_int, Label::kNear);
1266 __ cmpl(divisor, Immediate(-1));
1267 DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
1268 __ bind(&dividend_not_min_int);
1269 }
1270
1271 // Sign extend to rdx (= remainder).
1272 __ cdq();
1273 __ idivl(divisor);
1274
1275 if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
1276 // Deoptimize if remainder is not 0.
1277 __ testl(remainder, remainder);
1278 DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
1279 }
1280}
1281
1282
1283void LCodeGen::DoMulI(LMulI* instr) {
1284 Register left = ToRegister(instr->left());
1285 LOperand* right = instr->right();
1286
1287 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1288 if (instr->hydrogen_value()->representation().IsSmi()) {
1289 __ movp(kScratchRegister, left);
1290 } else {
1291 __ movl(kScratchRegister, left);
1292 }
1293 }
1294
1295 bool can_overflow =
1296 instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1297 if (right->IsConstantOperand()) {
1298 int32_t right_value = ToInteger32(LConstantOperand::cast(right));
1299 if (right_value == -1) {
1300 __ negl(left);
1301 } else if (right_value == 0) {
1302 __ xorl(left, left);
1303 } else if (right_value == 2) {
1304 __ addl(left, left);
1305 } else if (!can_overflow) {
1306 // If the multiplication is known to not overflow, we
1307 // can use operations that don't set the overflow flag
1308 // correctly.
1309 switch (right_value) {
1310 case 1:
1311 // Do nothing.
1312 break;
1313 case 3:
1314 __ leal(left, Operand(left, left, times_2, 0));
1315 break;
1316 case 4:
1317 __ shll(left, Immediate(2));
1318 break;
1319 case 5:
1320 __ leal(left, Operand(left, left, times_4, 0));
1321 break;
1322 case 8:
1323 __ shll(left, Immediate(3));
1324 break;
1325 case 9:
1326 __ leal(left, Operand(left, left, times_8, 0));
1327 break;
1328 case 16:
1329 __ shll(left, Immediate(4));
1330 break;
1331 default:
1332 __ imull(left, left, Immediate(right_value));
1333 break;
1334 }
1335 } else {
1336 __ imull(left, left, Immediate(right_value));
1337 }
1338 } else if (right->IsStackSlot()) {
1339 if (instr->hydrogen_value()->representation().IsSmi()) {
1340 __ SmiToInteger64(left, left);
1341 __ imulp(left, ToOperand(right));
1342 } else {
1343 __ imull(left, ToOperand(right));
1344 }
1345 } else {
1346 if (instr->hydrogen_value()->representation().IsSmi()) {
1347 __ SmiToInteger64(left, left);
1348 __ imulp(left, ToRegister(right));
1349 } else {
1350 __ imull(left, ToRegister(right));
1351 }
1352 }
1353
1354 if (can_overflow) {
1355 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1356 }
1357
1358 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
1359 // Bail out if the result is supposed to be negative zero.
1360 Label done;
1361 if (instr->hydrogen_value()->representation().IsSmi()) {
1362 __ testp(left, left);
1363 } else {
1364 __ testl(left, left);
1365 }
1366 __ j(not_zero, &done, Label::kNear);
1367 if (right->IsConstantOperand()) {
1368 // Constant can't be represented as 32-bit Smi due to immediate size
1369 // limit.
1370 DCHECK(SmiValuesAre32Bits()
1371 ? !instr->hydrogen_value()->representation().IsSmi()
1372 : SmiValuesAre31Bits());
1373 if (ToInteger32(LConstantOperand::cast(right)) < 0) {
1374 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
1375 } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
1376 __ cmpl(kScratchRegister, Immediate(0));
1377 DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
1378 }
1379 } else if (right->IsStackSlot()) {
1380 if (instr->hydrogen_value()->representation().IsSmi()) {
1381 __ orp(kScratchRegister, ToOperand(right));
1382 } else {
1383 __ orl(kScratchRegister, ToOperand(right));
1384 }
1385 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1386 } else {
1387 // Test the non-zero operand for negative sign.
1388 if (instr->hydrogen_value()->representation().IsSmi()) {
1389 __ orp(kScratchRegister, ToRegister(right));
1390 } else {
1391 __ orl(kScratchRegister, ToRegister(right));
1392 }
1393 DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
1394 }
1395 __ bind(&done);
1396 }
1397}
1398
1399
1400void LCodeGen::DoBitI(LBitI* instr) {
1401 LOperand* left = instr->left();
1402 LOperand* right = instr->right();
1403 DCHECK(left->Equals(instr->result()));
1404 DCHECK(left->IsRegister());
1405
1406 if (right->IsConstantOperand()) {
1407 int32_t right_operand =
1408 ToRepresentation(LConstantOperand::cast(right),
1409 instr->hydrogen()->right()->representation());
1410 switch (instr->op()) {
1411 case Token::BIT_AND:
1412 __ andl(ToRegister(left), Immediate(right_operand));
1413 break;
1414 case Token::BIT_OR:
1415 __ orl(ToRegister(left), Immediate(right_operand));
1416 break;
1417 case Token::BIT_XOR:
1418 if (right_operand == int32_t(~0)) {
1419 __ notl(ToRegister(left));
1420 } else {
1421 __ xorl(ToRegister(left), Immediate(right_operand));
1422 }
1423 break;
1424 default:
1425 UNREACHABLE();
1426 break;
1427 }
1428 } else if (right->IsStackSlot()) {
1429 switch (instr->op()) {
1430 case Token::BIT_AND:
1431 if (instr->IsInteger32()) {
1432 __ andl(ToRegister(left), ToOperand(right));
1433 } else {
1434 __ andp(ToRegister(left), ToOperand(right));
1435 }
1436 break;
1437 case Token::BIT_OR:
1438 if (instr->IsInteger32()) {
1439 __ orl(ToRegister(left), ToOperand(right));
1440 } else {
1441 __ orp(ToRegister(left), ToOperand(right));
1442 }
1443 break;
1444 case Token::BIT_XOR:
1445 if (instr->IsInteger32()) {
1446 __ xorl(ToRegister(left), ToOperand(right));
1447 } else {
1448 __ xorp(ToRegister(left), ToOperand(right));
1449 }
1450 break;
1451 default:
1452 UNREACHABLE();
1453 break;
1454 }
1455 } else {
1456 DCHECK(right->IsRegister());
1457 switch (instr->op()) {
1458 case Token::BIT_AND:
1459 if (instr->IsInteger32()) {
1460 __ andl(ToRegister(left), ToRegister(right));
1461 } else {
1462 __ andp(ToRegister(left), ToRegister(right));
1463 }
1464 break;
1465 case Token::BIT_OR:
1466 if (instr->IsInteger32()) {
1467 __ orl(ToRegister(left), ToRegister(right));
1468 } else {
1469 __ orp(ToRegister(left), ToRegister(right));
1470 }
1471 break;
1472 case Token::BIT_XOR:
1473 if (instr->IsInteger32()) {
1474 __ xorl(ToRegister(left), ToRegister(right));
1475 } else {
1476 __ xorp(ToRegister(left), ToRegister(right));
1477 }
1478 break;
1479 default:
1480 UNREACHABLE();
1481 break;
1482 }
1483 }
1484}
1485
1486
1487void LCodeGen::DoShiftI(LShiftI* instr) {
1488 LOperand* left = instr->left();
1489 LOperand* right = instr->right();
1490 DCHECK(left->Equals(instr->result()));
1491 DCHECK(left->IsRegister());
1492 if (right->IsRegister()) {
1493 DCHECK(ToRegister(right).is(rcx));
1494
1495 switch (instr->op()) {
1496 case Token::ROR:
1497 __ rorl_cl(ToRegister(left));
1498 break;
1499 case Token::SAR:
1500 __ sarl_cl(ToRegister(left));
1501 break;
1502 case Token::SHR:
1503 __ shrl_cl(ToRegister(left));
1504 if (instr->can_deopt()) {
1505 __ testl(ToRegister(left), ToRegister(left));
1506 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
1507 }
1508 break;
1509 case Token::SHL:
1510 __ shll_cl(ToRegister(left));
1511 break;
1512 default:
1513 UNREACHABLE();
1514 break;
1515 }
1516 } else {
1517 int32_t value = ToInteger32(LConstantOperand::cast(right));
1518 uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
1519 switch (instr->op()) {
1520 case Token::ROR:
1521 if (shift_count != 0) {
1522 __ rorl(ToRegister(left), Immediate(shift_count));
1523 }
1524 break;
1525 case Token::SAR:
1526 if (shift_count != 0) {
1527 __ sarl(ToRegister(left), Immediate(shift_count));
1528 }
1529 break;
1530 case Token::SHR:
1531 if (shift_count != 0) {
1532 __ shrl(ToRegister(left), Immediate(shift_count));
1533 } else if (instr->can_deopt()) {
1534 __ testl(ToRegister(left), ToRegister(left));
1535 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
1536 }
1537 break;
1538 case Token::SHL:
1539 if (shift_count != 0) {
1540 if (instr->hydrogen_value()->representation().IsSmi()) {
1541 if (SmiValuesAre32Bits()) {
1542 __ shlp(ToRegister(left), Immediate(shift_count));
1543 } else {
1544 DCHECK(SmiValuesAre31Bits());
1545 if (instr->can_deopt()) {
1546 if (shift_count != 1) {
1547 __ shll(ToRegister(left), Immediate(shift_count - 1));
1548 }
1549 __ Integer32ToSmi(ToRegister(left), ToRegister(left));
1550 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1551 } else {
1552 __ shll(ToRegister(left), Immediate(shift_count));
1553 }
1554 }
1555 } else {
1556 __ shll(ToRegister(left), Immediate(shift_count));
1557 }
1558 }
1559 break;
1560 default:
1561 UNREACHABLE();
1562 break;
1563 }
1564 }
1565}
1566
1567
1568void LCodeGen::DoSubI(LSubI* instr) {
1569 LOperand* left = instr->left();
1570 LOperand* right = instr->right();
1571 DCHECK(left->Equals(instr->result()));
1572
1573 if (right->IsConstantOperand()) {
1574 int32_t right_operand =
1575 ToRepresentation(LConstantOperand::cast(right),
1576 instr->hydrogen()->right()->representation());
1577 __ subl(ToRegister(left), Immediate(right_operand));
1578 } else if (right->IsRegister()) {
1579 if (instr->hydrogen_value()->representation().IsSmi()) {
1580 __ subp(ToRegister(left), ToRegister(right));
1581 } else {
1582 __ subl(ToRegister(left), ToRegister(right));
1583 }
1584 } else {
1585 if (instr->hydrogen_value()->representation().IsSmi()) {
1586 __ subp(ToRegister(left), ToOperand(right));
1587 } else {
1588 __ subl(ToRegister(left), ToOperand(right));
1589 }
1590 }
1591
1592 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1593 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1594 }
1595}
1596
1597
1598void LCodeGen::DoConstantI(LConstantI* instr) {
1599 Register dst = ToRegister(instr->result());
1600 if (instr->value() == 0) {
1601 __ xorl(dst, dst);
1602 } else {
1603 __ movl(dst, Immediate(instr->value()));
1604 }
1605}
1606
1607
1608void LCodeGen::DoConstantS(LConstantS* instr) {
1609 __ Move(ToRegister(instr->result()), instr->value());
1610}
1611
1612
1613void LCodeGen::DoConstantD(LConstantD* instr) {
1614 __ Move(ToDoubleRegister(instr->result()), instr->bits());
1615}
1616
1617
1618void LCodeGen::DoConstantE(LConstantE* instr) {
1619 __ LoadAddress(ToRegister(instr->result()), instr->value());
1620}
1621
1622
1623void LCodeGen::DoConstantT(LConstantT* instr) {
1624 Handle<Object> object = instr->value(isolate());
1625 AllowDeferredHandleDereference smi_check;
1626 __ Move(ToRegister(instr->result()), object);
1627}
1628
1629
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001630Operand LCodeGen::BuildSeqStringOperand(Register string,
1631 LOperand* index,
1632 String::Encoding encoding) {
1633 if (index->IsConstantOperand()) {
1634 int offset = ToInteger32(LConstantOperand::cast(index));
1635 if (encoding == String::TWO_BYTE_ENCODING) {
1636 offset *= kUC16Size;
1637 }
1638 STATIC_ASSERT(kCharSize == 1);
1639 return FieldOperand(string, SeqString::kHeaderSize + offset);
1640 }
1641 return FieldOperand(
1642 string, ToRegister(index),
1643 encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
1644 SeqString::kHeaderSize);
1645}
1646
1647
1648void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
1649 String::Encoding encoding = instr->hydrogen()->encoding();
1650 Register result = ToRegister(instr->result());
1651 Register string = ToRegister(instr->string());
1652
1653 if (FLAG_debug_code) {
1654 __ Push(string);
1655 __ movp(string, FieldOperand(string, HeapObject::kMapOffset));
1656 __ movzxbp(string, FieldOperand(string, Map::kInstanceTypeOffset));
1657
1658 __ andb(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
1659 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1660 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1661 __ cmpp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
1662 ? one_byte_seq_type : two_byte_seq_type));
1663 __ Check(equal, kUnexpectedStringType);
1664 __ Pop(string);
1665 }
1666
1667 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1668 if (encoding == String::ONE_BYTE_ENCODING) {
1669 __ movzxbl(result, operand);
1670 } else {
1671 __ movzxwl(result, operand);
1672 }
1673}
1674
1675
1676void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
1677 String::Encoding encoding = instr->hydrogen()->encoding();
1678 Register string = ToRegister(instr->string());
1679
1680 if (FLAG_debug_code) {
1681 Register value = ToRegister(instr->value());
1682 Register index = ToRegister(instr->index());
1683 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
1684 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
1685 int encoding_mask =
1686 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
1687 ? one_byte_seq_type : two_byte_seq_type;
1688 __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
1689 }
1690
1691 Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
1692 if (instr->value()->IsConstantOperand()) {
1693 int value = ToInteger32(LConstantOperand::cast(instr->value()));
1694 DCHECK_LE(0, value);
1695 if (encoding == String::ONE_BYTE_ENCODING) {
1696 DCHECK_LE(value, String::kMaxOneByteCharCode);
1697 __ movb(operand, Immediate(value));
1698 } else {
1699 DCHECK_LE(value, String::kMaxUtf16CodeUnit);
1700 __ movw(operand, Immediate(value));
1701 }
1702 } else {
1703 Register value = ToRegister(instr->value());
1704 if (encoding == String::ONE_BYTE_ENCODING) {
1705 __ movb(operand, value);
1706 } else {
1707 __ movw(operand, value);
1708 }
1709 }
1710}
1711
1712
1713void LCodeGen::DoAddI(LAddI* instr) {
1714 LOperand* left = instr->left();
1715 LOperand* right = instr->right();
1716
1717 Representation target_rep = instr->hydrogen()->representation();
1718 bool is_p = target_rep.IsSmi() || target_rep.IsExternal();
1719
1720 if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
1721 if (right->IsConstantOperand()) {
1722 // No support for smi-immediates for 32-bit SMI.
1723 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1724 int32_t offset =
1725 ToRepresentation(LConstantOperand::cast(right),
1726 instr->hydrogen()->right()->representation());
1727 if (is_p) {
1728 __ leap(ToRegister(instr->result()),
1729 MemOperand(ToRegister(left), offset));
1730 } else {
1731 __ leal(ToRegister(instr->result()),
1732 MemOperand(ToRegister(left), offset));
1733 }
1734 } else {
1735 Operand address(ToRegister(left), ToRegister(right), times_1, 0);
1736 if (is_p) {
1737 __ leap(ToRegister(instr->result()), address);
1738 } else {
1739 __ leal(ToRegister(instr->result()), address);
1740 }
1741 }
1742 } else {
1743 if (right->IsConstantOperand()) {
1744 // No support for smi-immediates for 32-bit SMI.
1745 DCHECK(SmiValuesAre32Bits() ? !target_rep.IsSmi() : SmiValuesAre31Bits());
1746 int32_t right_operand =
1747 ToRepresentation(LConstantOperand::cast(right),
1748 instr->hydrogen()->right()->representation());
1749 if (is_p) {
1750 __ addp(ToRegister(left), Immediate(right_operand));
1751 } else {
1752 __ addl(ToRegister(left), Immediate(right_operand));
1753 }
1754 } else if (right->IsRegister()) {
1755 if (is_p) {
1756 __ addp(ToRegister(left), ToRegister(right));
1757 } else {
1758 __ addl(ToRegister(left), ToRegister(right));
1759 }
1760 } else {
1761 if (is_p) {
1762 __ addp(ToRegister(left), ToOperand(right));
1763 } else {
1764 __ addl(ToRegister(left), ToOperand(right));
1765 }
1766 }
1767 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
1768 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
1769 }
1770 }
1771}
1772
1773
1774void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
1775 LOperand* left = instr->left();
1776 LOperand* right = instr->right();
1777 DCHECK(left->Equals(instr->result()));
1778 HMathMinMax::Operation operation = instr->hydrogen()->operation();
1779 if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
1780 Label return_left;
1781 Condition condition = (operation == HMathMinMax::kMathMin)
1782 ? less_equal
1783 : greater_equal;
1784 Register left_reg = ToRegister(left);
1785 if (right->IsConstantOperand()) {
1786 Immediate right_imm = Immediate(
1787 ToRepresentation(LConstantOperand::cast(right),
1788 instr->hydrogen()->right()->representation()));
1789 DCHECK(SmiValuesAre32Bits()
1790 ? !instr->hydrogen()->representation().IsSmi()
1791 : SmiValuesAre31Bits());
1792 __ cmpl(left_reg, right_imm);
1793 __ j(condition, &return_left, Label::kNear);
1794 __ movp(left_reg, right_imm);
1795 } else if (right->IsRegister()) {
1796 Register right_reg = ToRegister(right);
1797 if (instr->hydrogen_value()->representation().IsSmi()) {
1798 __ cmpp(left_reg, right_reg);
1799 } else {
1800 __ cmpl(left_reg, right_reg);
1801 }
1802 __ j(condition, &return_left, Label::kNear);
1803 __ movp(left_reg, right_reg);
1804 } else {
1805 Operand right_op = ToOperand(right);
1806 if (instr->hydrogen_value()->representation().IsSmi()) {
1807 __ cmpp(left_reg, right_op);
1808 } else {
1809 __ cmpl(left_reg, right_op);
1810 }
1811 __ j(condition, &return_left, Label::kNear);
1812 __ movp(left_reg, right_op);
1813 }
1814 __ bind(&return_left);
1815 } else {
1816 DCHECK(instr->hydrogen()->representation().IsDouble());
1817 Label not_nan, distinct, return_left, return_right;
1818 Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
1819 XMMRegister left_reg = ToDoubleRegister(left);
1820 XMMRegister right_reg = ToDoubleRegister(right);
1821 __ Ucomisd(left_reg, right_reg);
1822 __ j(parity_odd, &not_nan, Label::kNear); // Both are not NaN.
1823
1824 // One of the numbers is NaN. Find which one and return it.
1825 __ Ucomisd(left_reg, left_reg);
1826 __ j(parity_even, &return_left, Label::kNear); // left is NaN.
1827 __ jmp(&return_right, Label::kNear); // right is NaN.
1828
1829 __ bind(&not_nan);
1830 __ j(not_equal, &distinct, Label::kNear); // left != right.
1831
1832 // left == right
1833 XMMRegister xmm_scratch = double_scratch0();
1834 __ Xorpd(xmm_scratch, xmm_scratch);
1835 __ Ucomisd(left_reg, xmm_scratch);
1836 __ j(not_equal, &return_left, Label::kNear); // left == right != 0.
1837
1838 // At this point, both left and right are either +0 or -0.
1839 if (operation == HMathMinMax::kMathMin) {
1840 __ Orpd(left_reg, right_reg);
1841 } else {
1842 __ Andpd(left_reg, right_reg);
1843 }
1844 __ jmp(&return_left, Label::kNear);
1845
1846 __ bind(&distinct);
1847 __ j(condition, &return_left, Label::kNear);
1848
1849 __ bind(&return_right);
1850 __ Movapd(left_reg, right_reg);
1851
1852 __ bind(&return_left);
1853 }
1854}
1855
1856
1857void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1858 XMMRegister left = ToDoubleRegister(instr->left());
1859 XMMRegister right = ToDoubleRegister(instr->right());
1860 XMMRegister result = ToDoubleRegister(instr->result());
1861 switch (instr->op()) {
1862 case Token::ADD:
1863 if (CpuFeatures::IsSupported(AVX)) {
1864 CpuFeatureScope scope(masm(), AVX);
1865 __ vaddsd(result, left, right);
1866 } else {
1867 DCHECK(result.is(left));
1868 __ addsd(left, right);
1869 }
1870 break;
1871 case Token::SUB:
1872 if (CpuFeatures::IsSupported(AVX)) {
1873 CpuFeatureScope scope(masm(), AVX);
1874 __ vsubsd(result, left, right);
1875 } else {
1876 DCHECK(result.is(left));
1877 __ subsd(left, right);
1878 }
1879 break;
1880 case Token::MUL:
1881 if (CpuFeatures::IsSupported(AVX)) {
1882 CpuFeatureScope scope(masm(), AVX);
1883 __ vmulsd(result, left, right);
1884 } else {
1885 DCHECK(result.is(left));
1886 __ mulsd(left, right);
1887 }
1888 break;
1889 case Token::DIV:
1890 if (CpuFeatures::IsSupported(AVX)) {
1891 CpuFeatureScope scope(masm(), AVX);
1892 __ vdivsd(result, left, right);
1893 } else {
1894 DCHECK(result.is(left));
1895 __ divsd(left, right);
1896 }
1897 // Don't delete this mov. It may improve performance on some CPUs,
1898 // when there is a (v)mulsd depending on the result
1899 __ Movapd(result, result);
1900 break;
1901 case Token::MOD: {
1902 XMMRegister xmm_scratch = double_scratch0();
1903 __ PrepareCallCFunction(2);
1904 __ Movapd(xmm_scratch, left);
1905 DCHECK(right.is(xmm1));
1906 __ CallCFunction(
1907 ExternalReference::mod_two_doubles_operation(isolate()), 2);
1908 __ Movapd(result, xmm_scratch);
1909 break;
1910 }
1911 default:
1912 UNREACHABLE();
1913 break;
1914 }
1915}
1916
1917
1918void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1919 DCHECK(ToRegister(instr->context()).is(rsi));
1920 DCHECK(ToRegister(instr->left()).is(rdx));
1921 DCHECK(ToRegister(instr->right()).is(rax));
1922 DCHECK(ToRegister(instr->result()).is(rax));
1923
Ben Murdoch097c5b22016-05-18 11:27:45 +01001924 Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), instr->op()).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001925 CallCode(code, RelocInfo::CODE_TARGET, instr);
1926}
1927
1928
1929template<class InstrType>
1930void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
1931 int left_block = instr->TrueDestination(chunk_);
1932 int right_block = instr->FalseDestination(chunk_);
1933
1934 int next_block = GetNextEmittedBlock();
1935
1936 if (right_block == left_block || cc == no_condition) {
1937 EmitGoto(left_block);
1938 } else if (left_block == next_block) {
1939 __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
1940 } else if (right_block == next_block) {
1941 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1942 } else {
1943 __ j(cc, chunk_->GetAssemblyLabel(left_block));
1944 if (cc != always) {
1945 __ jmp(chunk_->GetAssemblyLabel(right_block));
1946 }
1947 }
1948}
1949
1950
1951template <class InstrType>
1952void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
1953 int true_block = instr->TrueDestination(chunk_);
1954 __ j(cc, chunk_->GetAssemblyLabel(true_block));
1955}
1956
1957
1958template <class InstrType>
1959void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
1960 int false_block = instr->FalseDestination(chunk_);
1961 __ j(cc, chunk_->GetAssemblyLabel(false_block));
1962}
1963
1964
1965void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
1966 __ int3();
1967}
1968
1969
1970void LCodeGen::DoBranch(LBranch* instr) {
1971 Representation r = instr->hydrogen()->value()->representation();
1972 if (r.IsInteger32()) {
1973 DCHECK(!info()->IsStub());
1974 Register reg = ToRegister(instr->value());
1975 __ testl(reg, reg);
1976 EmitBranch(instr, not_zero);
1977 } else if (r.IsSmi()) {
1978 DCHECK(!info()->IsStub());
1979 Register reg = ToRegister(instr->value());
1980 __ testp(reg, reg);
1981 EmitBranch(instr, not_zero);
1982 } else if (r.IsDouble()) {
1983 DCHECK(!info()->IsStub());
1984 XMMRegister reg = ToDoubleRegister(instr->value());
1985 XMMRegister xmm_scratch = double_scratch0();
1986 __ Xorpd(xmm_scratch, xmm_scratch);
1987 __ Ucomisd(reg, xmm_scratch);
1988 EmitBranch(instr, not_equal);
1989 } else {
1990 DCHECK(r.IsTagged());
1991 Register reg = ToRegister(instr->value());
1992 HType type = instr->hydrogen()->value()->type();
1993 if (type.IsBoolean()) {
1994 DCHECK(!info()->IsStub());
1995 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
1996 EmitBranch(instr, equal);
1997 } else if (type.IsSmi()) {
1998 DCHECK(!info()->IsStub());
1999 __ SmiCompare(reg, Smi::FromInt(0));
2000 EmitBranch(instr, not_equal);
2001 } else if (type.IsJSArray()) {
2002 DCHECK(!info()->IsStub());
2003 EmitBranch(instr, no_condition);
2004 } else if (type.IsHeapNumber()) {
2005 DCHECK(!info()->IsStub());
2006 XMMRegister xmm_scratch = double_scratch0();
2007 __ Xorpd(xmm_scratch, xmm_scratch);
2008 __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2009 EmitBranch(instr, not_equal);
2010 } else if (type.IsString()) {
2011 DCHECK(!info()->IsStub());
2012 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2013 EmitBranch(instr, not_equal);
2014 } else {
2015 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
2016 // Avoid deopts in the case where we've never executed this path before.
2017 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
2018
2019 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
2020 // undefined -> false.
2021 __ CompareRoot(reg, Heap::kUndefinedValueRootIndex);
2022 __ j(equal, instr->FalseLabel(chunk_));
2023 }
2024 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
2025 // true -> true.
2026 __ CompareRoot(reg, Heap::kTrueValueRootIndex);
2027 __ j(equal, instr->TrueLabel(chunk_));
2028 // false -> false.
2029 __ CompareRoot(reg, Heap::kFalseValueRootIndex);
2030 __ j(equal, instr->FalseLabel(chunk_));
2031 }
2032 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
2033 // 'null' -> false.
2034 __ CompareRoot(reg, Heap::kNullValueRootIndex);
2035 __ j(equal, instr->FalseLabel(chunk_));
2036 }
2037
2038 if (expected.Contains(ToBooleanStub::SMI)) {
2039 // Smis: 0 -> false, all other -> true.
2040 __ Cmp(reg, Smi::FromInt(0));
2041 __ j(equal, instr->FalseLabel(chunk_));
2042 __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
2043 } else if (expected.NeedsMap()) {
2044 // If we need a map later and have a Smi -> deopt.
2045 __ testb(reg, Immediate(kSmiTagMask));
2046 DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
2047 }
2048
2049 const Register map = kScratchRegister;
2050 if (expected.NeedsMap()) {
2051 __ movp(map, FieldOperand(reg, HeapObject::kMapOffset));
2052
2053 if (expected.CanBeUndetectable()) {
2054 // Undetectable -> false.
2055 __ testb(FieldOperand(map, Map::kBitFieldOffset),
2056 Immediate(1 << Map::kIsUndetectable));
2057 __ j(not_zero, instr->FalseLabel(chunk_));
2058 }
2059 }
2060
2061 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
2062 // spec object -> true.
2063 __ CmpInstanceType(map, FIRST_JS_RECEIVER_TYPE);
2064 __ j(above_equal, instr->TrueLabel(chunk_));
2065 }
2066
2067 if (expected.Contains(ToBooleanStub::STRING)) {
2068 // String value -> false iff empty.
2069 Label not_string;
2070 __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
2071 __ j(above_equal, &not_string, Label::kNear);
2072 __ cmpp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
2073 __ j(not_zero, instr->TrueLabel(chunk_));
2074 __ jmp(instr->FalseLabel(chunk_));
2075 __ bind(&not_string);
2076 }
2077
2078 if (expected.Contains(ToBooleanStub::SYMBOL)) {
2079 // Symbol value -> true.
2080 __ CmpInstanceType(map, SYMBOL_TYPE);
2081 __ j(equal, instr->TrueLabel(chunk_));
2082 }
2083
2084 if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
2085 // SIMD value -> true.
2086 __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
2087 __ j(equal, instr->TrueLabel(chunk_));
2088 }
2089
2090 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
2091 // heap number -> false iff +0, -0, or NaN.
2092 Label not_heap_number;
2093 __ CompareRoot(map, Heap::kHeapNumberMapRootIndex);
2094 __ j(not_equal, &not_heap_number, Label::kNear);
2095 XMMRegister xmm_scratch = double_scratch0();
2096 __ Xorpd(xmm_scratch, xmm_scratch);
2097 __ Ucomisd(xmm_scratch, FieldOperand(reg, HeapNumber::kValueOffset));
2098 __ j(zero, instr->FalseLabel(chunk_));
2099 __ jmp(instr->TrueLabel(chunk_));
2100 __ bind(&not_heap_number);
2101 }
2102
2103 if (!expected.IsGeneric()) {
2104 // We've seen something for the first time -> deopt.
2105 // This can only happen if we are not generic already.
2106 DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject);
2107 }
2108 }
2109 }
2110}
2111
2112
2113void LCodeGen::EmitGoto(int block) {
2114 if (!IsNextEmittedBlock(block)) {
2115 __ jmp(chunk_->GetAssemblyLabel(chunk_->LookupDestination(block)));
2116 }
2117}
2118
2119
2120void LCodeGen::DoGoto(LGoto* instr) {
2121 EmitGoto(instr->block_id());
2122}
2123
2124
2125inline Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
2126 Condition cond = no_condition;
2127 switch (op) {
2128 case Token::EQ:
2129 case Token::EQ_STRICT:
2130 cond = equal;
2131 break;
2132 case Token::NE:
2133 case Token::NE_STRICT:
2134 cond = not_equal;
2135 break;
2136 case Token::LT:
2137 cond = is_unsigned ? below : less;
2138 break;
2139 case Token::GT:
2140 cond = is_unsigned ? above : greater;
2141 break;
2142 case Token::LTE:
2143 cond = is_unsigned ? below_equal : less_equal;
2144 break;
2145 case Token::GTE:
2146 cond = is_unsigned ? above_equal : greater_equal;
2147 break;
2148 case Token::IN:
2149 case Token::INSTANCEOF:
2150 default:
2151 UNREACHABLE();
2152 }
2153 return cond;
2154}
2155
2156
2157void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2158 LOperand* left = instr->left();
2159 LOperand* right = instr->right();
2160 bool is_unsigned =
2161 instr->is_double() ||
2162 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2163 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2164 Condition cc = TokenToCondition(instr->op(), is_unsigned);
2165
2166 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2167 // We can statically evaluate the comparison.
2168 double left_val = ToDouble(LConstantOperand::cast(left));
2169 double right_val = ToDouble(LConstantOperand::cast(right));
Ben Murdoch097c5b22016-05-18 11:27:45 +01002170 int next_block = Token::EvalComparison(instr->op(), left_val, right_val)
2171 ? instr->TrueDestination(chunk_)
2172 : instr->FalseDestination(chunk_);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002173 EmitGoto(next_block);
2174 } else {
2175 if (instr->is_double()) {
2176 // Don't base result on EFLAGS when a NaN is involved. Instead
2177 // jump to the false block.
2178 __ Ucomisd(ToDoubleRegister(left), ToDoubleRegister(right));
2179 __ j(parity_even, instr->FalseLabel(chunk_));
2180 } else {
2181 int32_t value;
2182 if (right->IsConstantOperand()) {
2183 value = ToInteger32(LConstantOperand::cast(right));
2184 if (instr->hydrogen_value()->representation().IsSmi()) {
2185 __ Cmp(ToRegister(left), Smi::FromInt(value));
2186 } else {
2187 __ cmpl(ToRegister(left), Immediate(value));
2188 }
2189 } else if (left->IsConstantOperand()) {
2190 value = ToInteger32(LConstantOperand::cast(left));
2191 if (instr->hydrogen_value()->representation().IsSmi()) {
2192 if (right->IsRegister()) {
2193 __ Cmp(ToRegister(right), Smi::FromInt(value));
2194 } else {
2195 __ Cmp(ToOperand(right), Smi::FromInt(value));
2196 }
2197 } else if (right->IsRegister()) {
2198 __ cmpl(ToRegister(right), Immediate(value));
2199 } else {
2200 __ cmpl(ToOperand(right), Immediate(value));
2201 }
2202 // We commuted the operands, so commute the condition.
2203 cc = CommuteCondition(cc);
2204 } else if (instr->hydrogen_value()->representation().IsSmi()) {
2205 if (right->IsRegister()) {
2206 __ cmpp(ToRegister(left), ToRegister(right));
2207 } else {
2208 __ cmpp(ToRegister(left), ToOperand(right));
2209 }
2210 } else {
2211 if (right->IsRegister()) {
2212 __ cmpl(ToRegister(left), ToRegister(right));
2213 } else {
2214 __ cmpl(ToRegister(left), ToOperand(right));
2215 }
2216 }
2217 }
2218 EmitBranch(instr, cc);
2219 }
2220}
2221
2222
2223void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2224 Register left = ToRegister(instr->left());
2225
2226 if (instr->right()->IsConstantOperand()) {
2227 Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
2228 __ Cmp(left, right);
2229 } else {
2230 Register right = ToRegister(instr->right());
2231 __ cmpp(left, right);
2232 }
2233 EmitBranch(instr, equal);
2234}
2235
2236
2237void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
2238 if (instr->hydrogen()->representation().IsTagged()) {
2239 Register input_reg = ToRegister(instr->object());
2240 __ Cmp(input_reg, factory()->the_hole_value());
2241 EmitBranch(instr, equal);
2242 return;
2243 }
2244
2245 XMMRegister input_reg = ToDoubleRegister(instr->object());
2246 __ Ucomisd(input_reg, input_reg);
2247 EmitFalseBranch(instr, parity_odd);
2248
2249 __ subp(rsp, Immediate(kDoubleSize));
2250 __ Movsd(MemOperand(rsp, 0), input_reg);
2251 __ addp(rsp, Immediate(kDoubleSize));
2252
2253 int offset = sizeof(kHoleNanUpper32);
2254 __ cmpl(MemOperand(rsp, -offset), Immediate(kHoleNanUpper32));
2255 EmitBranch(instr, equal);
2256}
2257
2258
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002259Condition LCodeGen::EmitIsString(Register input,
2260 Register temp1,
2261 Label* is_not_string,
2262 SmiCheck check_needed = INLINE_SMI_CHECK) {
2263 if (check_needed == INLINE_SMI_CHECK) {
2264 __ JumpIfSmi(input, is_not_string);
2265 }
2266
2267 Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
2268
2269 return cond;
2270}
2271
2272
2273void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
2274 Register reg = ToRegister(instr->value());
2275 Register temp = ToRegister(instr->temp());
2276
2277 SmiCheck check_needed =
2278 instr->hydrogen()->value()->type().IsHeapObject()
2279 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2280
2281 Condition true_cond = EmitIsString(
2282 reg, temp, instr->FalseLabel(chunk_), check_needed);
2283
2284 EmitBranch(instr, true_cond);
2285}
2286
2287
2288void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
2289 Condition is_smi;
2290 if (instr->value()->IsRegister()) {
2291 Register input = ToRegister(instr->value());
2292 is_smi = masm()->CheckSmi(input);
2293 } else {
2294 Operand input = ToOperand(instr->value());
2295 is_smi = masm()->CheckSmi(input);
2296 }
2297 EmitBranch(instr, is_smi);
2298}
2299
2300
2301void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
2302 Register input = ToRegister(instr->value());
2303 Register temp = ToRegister(instr->temp());
2304
2305 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2306 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2307 }
2308 __ movp(temp, FieldOperand(input, HeapObject::kMapOffset));
2309 __ testb(FieldOperand(temp, Map::kBitFieldOffset),
2310 Immediate(1 << Map::kIsUndetectable));
2311 EmitBranch(instr, not_zero);
2312}
2313
2314
2315void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
2316 DCHECK(ToRegister(instr->context()).is(rsi));
2317 DCHECK(ToRegister(instr->left()).is(rdx));
2318 DCHECK(ToRegister(instr->right()).is(rax));
2319
2320 Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
2321 CallCode(code, RelocInfo::CODE_TARGET, instr);
2322 __ testp(rax, rax);
2323
2324 EmitBranch(instr, TokenToCondition(instr->op(), false));
2325}
2326
2327
2328static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
2329 InstanceType from = instr->from();
2330 InstanceType to = instr->to();
2331 if (from == FIRST_TYPE) return to;
2332 DCHECK(from == to || to == LAST_TYPE);
2333 return from;
2334}
2335
2336
2337static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
2338 InstanceType from = instr->from();
2339 InstanceType to = instr->to();
2340 if (from == to) return equal;
2341 if (to == LAST_TYPE) return above_equal;
2342 if (from == FIRST_TYPE) return below_equal;
2343 UNREACHABLE();
2344 return equal;
2345}
2346
2347
2348void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
2349 Register input = ToRegister(instr->value());
2350
2351 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
2352 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
2353 }
2354
2355 __ CmpObjectType(input, TestType(instr->hydrogen()), kScratchRegister);
2356 EmitBranch(instr, BranchCondition(instr->hydrogen()));
2357}
2358
2359
2360void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2361 Register input = ToRegister(instr->value());
2362 Register result = ToRegister(instr->result());
2363
2364 __ AssertString(input);
2365
2366 __ movl(result, FieldOperand(input, String::kHashFieldOffset));
2367 DCHECK(String::kHashShift >= kSmiTagSize);
2368 __ IndexFromHash(result, result);
2369}
2370
2371
2372void LCodeGen::DoHasCachedArrayIndexAndBranch(
2373 LHasCachedArrayIndexAndBranch* instr) {
2374 Register input = ToRegister(instr->value());
2375
2376 __ testl(FieldOperand(input, String::kHashFieldOffset),
2377 Immediate(String::kContainsCachedArrayIndexMask));
2378 EmitBranch(instr, equal);
2379}
2380
2381
2382// Branches to a label or falls through with the answer in the z flag.
2383// Trashes the temp register.
2384void LCodeGen::EmitClassOfTest(Label* is_true,
2385 Label* is_false,
2386 Handle<String> class_name,
2387 Register input,
2388 Register temp,
2389 Register temp2) {
2390 DCHECK(!input.is(temp));
2391 DCHECK(!input.is(temp2));
2392 DCHECK(!temp.is(temp2));
2393
2394 __ JumpIfSmi(input, is_false);
2395
2396 __ CmpObjectType(input, JS_FUNCTION_TYPE, temp);
2397 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2398 __ j(equal, is_true);
2399 } else {
2400 __ j(equal, is_false);
2401 }
2402
2403 // Check if the constructor in the map is a function.
2404 __ GetMapConstructor(temp, temp, kScratchRegister);
2405
2406 // Objects with a non-function constructor have class 'Object'.
2407 __ CmpInstanceType(kScratchRegister, JS_FUNCTION_TYPE);
2408 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2409 __ j(not_equal, is_true);
2410 } else {
2411 __ j(not_equal, is_false);
2412 }
2413
2414 // temp now contains the constructor function. Grab the
2415 // instance class name from there.
2416 __ movp(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
2417 __ movp(temp, FieldOperand(temp,
2418 SharedFunctionInfo::kInstanceClassNameOffset));
2419 // The class name we are testing against is internalized since it's a literal.
2420 // The name in the constructor is internalized because of the way the context
2421 // is booted. This routine isn't expected to work for random API-created
2422 // classes and it doesn't have to because you can't access it with natives
2423 // syntax. Since both sides are internalized it is sufficient to use an
2424 // identity comparison.
2425 DCHECK(class_name->IsInternalizedString());
2426 __ Cmp(temp, class_name);
2427 // End with the answer in the z flag.
2428}
2429
2430
2431void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2432 Register input = ToRegister(instr->value());
2433 Register temp = ToRegister(instr->temp());
2434 Register temp2 = ToRegister(instr->temp2());
2435 Handle<String> class_name = instr->hydrogen()->class_name();
2436
2437 EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
2438 class_name, input, temp, temp2);
2439
2440 EmitBranch(instr, equal);
2441}
2442
2443
2444void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2445 Register reg = ToRegister(instr->value());
2446
2447 __ Cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
2448 EmitBranch(instr, equal);
2449}
2450
2451
2452void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
2453 DCHECK(ToRegister(instr->context()).is(rsi));
2454 DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
2455 DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
2456 DCHECK(ToRegister(instr->result()).is(rax));
2457 InstanceOfStub stub(isolate());
2458 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2459}
2460
2461
2462void LCodeGen::DoHasInPrototypeChainAndBranch(
2463 LHasInPrototypeChainAndBranch* instr) {
2464 Register const object = ToRegister(instr->object());
2465 Register const object_map = kScratchRegister;
2466 Register const object_prototype = object_map;
2467 Register const prototype = ToRegister(instr->prototype());
2468
2469 // The {object} must be a spec object. It's sufficient to know that {object}
2470 // is not a smi, since all other non-spec objects have {null} prototypes and
2471 // will be ruled out below.
2472 if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
2473 Condition is_smi = __ CheckSmi(object);
2474 EmitFalseBranch(instr, is_smi);
2475 }
2476
2477 // Loop through the {object}s prototype chain looking for the {prototype}.
2478 __ movp(object_map, FieldOperand(object, HeapObject::kMapOffset));
2479 Label loop;
2480 __ bind(&loop);
2481
2482
2483 // Deoptimize if the object needs to be access checked.
2484 __ testb(FieldOperand(object_map, Map::kBitFieldOffset),
2485 Immediate(1 << Map::kIsAccessCheckNeeded));
2486 DeoptimizeIf(not_zero, instr, Deoptimizer::kAccessCheck);
2487 // Deoptimize for proxies.
2488 __ CmpInstanceType(object_map, JS_PROXY_TYPE);
2489 DeoptimizeIf(equal, instr, Deoptimizer::kProxy);
2490
2491 __ movp(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
2492 __ cmpp(object_prototype, prototype);
2493 EmitTrueBranch(instr, equal);
2494 __ CompareRoot(object_prototype, Heap::kNullValueRootIndex);
2495 EmitFalseBranch(instr, equal);
2496 __ movp(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
2497 __ jmp(&loop);
2498}
2499
2500
2501void LCodeGen::DoCmpT(LCmpT* instr) {
2502 DCHECK(ToRegister(instr->context()).is(rsi));
2503 Token::Value op = instr->op();
2504
Ben Murdoch097c5b22016-05-18 11:27:45 +01002505 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002506 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2507
2508 Condition condition = TokenToCondition(op, false);
2509 Label true_value, done;
2510 __ testp(rax, rax);
2511 __ j(condition, &true_value, Label::kNear);
2512 __ LoadRoot(ToRegister(instr->result()), Heap::kFalseValueRootIndex);
2513 __ jmp(&done, Label::kNear);
2514 __ bind(&true_value);
2515 __ LoadRoot(ToRegister(instr->result()), Heap::kTrueValueRootIndex);
2516 __ bind(&done);
2517}
2518
2519
2520void LCodeGen::DoReturn(LReturn* instr) {
2521 if (FLAG_trace && info()->IsOptimizing()) {
2522 // Preserve the return value on the stack and rely on the runtime call
2523 // to return the value in the same register. We're leaving the code
2524 // managed by the register allocator and tearing down the frame, it's
2525 // safe to write to the context register.
2526 __ Push(rax);
2527 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
2528 __ CallRuntime(Runtime::kTraceExit);
2529 }
2530 if (info()->saves_caller_doubles()) {
2531 RestoreCallerDoubles();
2532 }
2533 if (NeedsEagerFrame()) {
2534 __ movp(rsp, rbp);
2535 __ popq(rbp);
2536 }
2537 if (instr->has_constant_parameter_count()) {
2538 __ Ret((ToInteger32(instr->constant_parameter_count()) + 1) * kPointerSize,
2539 rcx);
2540 } else {
2541 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
2542 Register reg = ToRegister(instr->parameter_count());
2543 // The argument count parameter is a smi
2544 __ SmiToInteger32(reg, reg);
2545 Register return_addr_reg = reg.is(rcx) ? rbx : rcx;
2546 __ PopReturnAddressTo(return_addr_reg);
2547 __ shlp(reg, Immediate(kPointerSizeLog2));
2548 __ addp(rsp, reg);
2549 __ jmp(return_addr_reg);
2550 }
2551}
2552
2553
2554template <class T>
2555void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
2556 Register vector_register = ToRegister(instr->temp_vector());
2557 Register slot_register = LoadWithVectorDescriptor::SlotRegister();
2558 DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
2559 DCHECK(slot_register.is(rax));
2560
2561 AllowDeferredHandleDereference vector_structure_check;
2562 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2563 __ Move(vector_register, vector);
2564 // No need to allocate this register.
2565 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2566 int index = vector->GetIndex(slot);
2567 __ Move(slot_register, Smi::FromInt(index));
2568}
2569
2570
2571template <class T>
2572void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
2573 Register vector_register = ToRegister(instr->temp_vector());
2574 Register slot_register = ToRegister(instr->temp_slot());
2575
2576 AllowDeferredHandleDereference vector_structure_check;
2577 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
2578 __ Move(vector_register, vector);
2579 FeedbackVectorSlot slot = instr->hydrogen()->slot();
2580 int index = vector->GetIndex(slot);
2581 __ Move(slot_register, Smi::FromInt(index));
2582}
2583
2584
2585void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
2586 DCHECK(ToRegister(instr->context()).is(rsi));
2587 DCHECK(ToRegister(instr->global_object())
2588 .is(LoadDescriptor::ReceiverRegister()));
2589 DCHECK(ToRegister(instr->result()).is(rax));
2590
2591 __ Move(LoadDescriptor::NameRegister(), instr->name());
2592 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002593 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
2594 isolate(), instr->typeof_mode(), PREMONOMORPHIC)
2595 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002596 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2597}
2598
2599
2600void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
2601 Register context = ToRegister(instr->context());
2602 Register result = ToRegister(instr->result());
2603 __ movp(result, ContextOperand(context, instr->slot_index()));
2604 if (instr->hydrogen()->RequiresHoleCheck()) {
2605 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2606 if (instr->hydrogen()->DeoptimizesOnHole()) {
2607 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2608 } else {
2609 Label is_not_hole;
2610 __ j(not_equal, &is_not_hole, Label::kNear);
2611 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
2612 __ bind(&is_not_hole);
2613 }
2614 }
2615}
2616
2617
2618void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
2619 Register context = ToRegister(instr->context());
2620 Register value = ToRegister(instr->value());
2621
2622 Operand target = ContextOperand(context, instr->slot_index());
2623
2624 Label skip_assignment;
2625 if (instr->hydrogen()->RequiresHoleCheck()) {
2626 __ CompareRoot(target, Heap::kTheHoleValueRootIndex);
2627 if (instr->hydrogen()->DeoptimizesOnHole()) {
2628 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2629 } else {
2630 __ j(not_equal, &skip_assignment);
2631 }
2632 }
2633 __ movp(target, value);
2634
2635 if (instr->hydrogen()->NeedsWriteBarrier()) {
2636 SmiCheck check_needed =
2637 instr->hydrogen()->value()->type().IsHeapObject()
2638 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
2639 int offset = Context::SlotOffset(instr->slot_index());
2640 Register scratch = ToRegister(instr->temp());
2641 __ RecordWriteContextSlot(context,
2642 offset,
2643 value,
2644 scratch,
2645 kSaveFPRegs,
2646 EMIT_REMEMBERED_SET,
2647 check_needed);
2648 }
2649
2650 __ bind(&skip_assignment);
2651}
2652
2653
2654void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
2655 HObjectAccess access = instr->hydrogen()->access();
2656 int offset = access.offset();
2657
2658 if (access.IsExternalMemory()) {
2659 Register result = ToRegister(instr->result());
2660 if (instr->object()->IsConstantOperand()) {
2661 DCHECK(result.is(rax));
2662 __ load_rax(ToExternalReference(LConstantOperand::cast(instr->object())));
2663 } else {
2664 Register object = ToRegister(instr->object());
2665 __ Load(result, MemOperand(object, offset), access.representation());
2666 }
2667 return;
2668 }
2669
2670 Register object = ToRegister(instr->object());
2671 if (instr->hydrogen()->representation().IsDouble()) {
2672 DCHECK(access.IsInobject());
2673 XMMRegister result = ToDoubleRegister(instr->result());
2674 __ Movsd(result, FieldOperand(object, offset));
2675 return;
2676 }
2677
2678 Register result = ToRegister(instr->result());
2679 if (!access.IsInobject()) {
2680 __ movp(result, FieldOperand(object, JSObject::kPropertiesOffset));
2681 object = result;
2682 }
2683
2684 Representation representation = access.representation();
2685 if (representation.IsSmi() && SmiValuesAre32Bits() &&
2686 instr->hydrogen()->representation().IsInteger32()) {
2687 if (FLAG_debug_code) {
2688 Register scratch = kScratchRegister;
2689 __ Load(scratch, FieldOperand(object, offset), representation);
2690 __ AssertSmi(scratch);
2691 }
2692
2693 // Read int value directly from upper half of the smi.
2694 STATIC_ASSERT(kSmiTag == 0);
2695 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2696 offset += kPointerSize / 2;
2697 representation = Representation::Integer32();
2698 }
2699 __ Load(result, FieldOperand(object, offset), representation);
2700}
2701
2702
2703void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
2704 DCHECK(ToRegister(instr->context()).is(rsi));
2705 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2706 DCHECK(ToRegister(instr->result()).is(rax));
2707
2708 __ Move(LoadDescriptor::NameRegister(), instr->name());
2709 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
Ben Murdoch097c5b22016-05-18 11:27:45 +01002710 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(
2711 isolate(), NOT_INSIDE_TYPEOF,
2712 instr->hydrogen()->initialization_state())
2713 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002714 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2715}
2716
2717
2718void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
2719 Register function = ToRegister(instr->function());
2720 Register result = ToRegister(instr->result());
2721
2722 // Get the prototype or initial map from the function.
2723 __ movp(result,
2724 FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2725
2726 // Check that the function has a prototype or an initial map.
2727 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2728 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2729
2730 // If the function does not have an initial map, we're done.
2731 Label done;
2732 __ CmpObjectType(result, MAP_TYPE, kScratchRegister);
2733 __ j(not_equal, &done, Label::kNear);
2734
2735 // Get the prototype from the initial map.
2736 __ movp(result, FieldOperand(result, Map::kPrototypeOffset));
2737
2738 // All done.
2739 __ bind(&done);
2740}
2741
2742
2743void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
2744 Register result = ToRegister(instr->result());
2745 __ LoadRoot(result, instr->index());
2746}
2747
2748
2749void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
2750 Register arguments = ToRegister(instr->arguments());
2751 Register result = ToRegister(instr->result());
2752
2753 if (instr->length()->IsConstantOperand() &&
2754 instr->index()->IsConstantOperand()) {
2755 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
2756 int32_t const_length = ToInteger32(LConstantOperand::cast(instr->length()));
2757 if (const_index >= 0 && const_index < const_length) {
2758 StackArgumentsAccessor args(arguments, const_length,
2759 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2760 __ movp(result, args.GetArgumentOperand(const_index));
2761 } else if (FLAG_debug_code) {
2762 __ int3();
2763 }
2764 } else {
2765 Register length = ToRegister(instr->length());
2766 // There are two words between the frame pointer and the last argument.
2767 // Subtracting from length accounts for one of them add one more.
2768 if (instr->index()->IsRegister()) {
2769 __ subl(length, ToRegister(instr->index()));
2770 } else {
2771 __ subl(length, ToOperand(instr->index()));
2772 }
2773 StackArgumentsAccessor args(arguments, length,
2774 ARGUMENTS_DONT_CONTAIN_RECEIVER);
2775 __ movp(result, args.GetArgumentOperand(0));
2776 }
2777}
2778
2779
2780void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
2781 ElementsKind elements_kind = instr->elements_kind();
2782 LOperand* key = instr->key();
2783 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
2784 Register key_reg = ToRegister(key);
2785 Representation key_representation =
2786 instr->hydrogen()->key()->representation();
2787 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
2788 __ SmiToInteger64(key_reg, key_reg);
2789 } else if (instr->hydrogen()->IsDehoisted()) {
2790 // Sign extend key because it could be a 32 bit negative value
2791 // and the dehoisted address computation happens in 64 bits
2792 __ movsxlq(key_reg, key_reg);
2793 }
2794 }
2795 Operand operand(BuildFastArrayOperand(
2796 instr->elements(),
2797 key,
2798 instr->hydrogen()->key()->representation(),
2799 elements_kind,
2800 instr->base_offset()));
2801
2802 if (elements_kind == FLOAT32_ELEMENTS) {
2803 XMMRegister result(ToDoubleRegister(instr->result()));
2804 __ Cvtss2sd(result, operand);
2805 } else if (elements_kind == FLOAT64_ELEMENTS) {
2806 __ Movsd(ToDoubleRegister(instr->result()), operand);
2807 } else {
2808 Register result(ToRegister(instr->result()));
2809 switch (elements_kind) {
2810 case INT8_ELEMENTS:
2811 __ movsxbl(result, operand);
2812 break;
2813 case UINT8_ELEMENTS:
2814 case UINT8_CLAMPED_ELEMENTS:
2815 __ movzxbl(result, operand);
2816 break;
2817 case INT16_ELEMENTS:
2818 __ movsxwl(result, operand);
2819 break;
2820 case UINT16_ELEMENTS:
2821 __ movzxwl(result, operand);
2822 break;
2823 case INT32_ELEMENTS:
2824 __ movl(result, operand);
2825 break;
2826 case UINT32_ELEMENTS:
2827 __ movl(result, operand);
2828 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
2829 __ testl(result, result);
2830 DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
2831 }
2832 break;
2833 case FLOAT32_ELEMENTS:
2834 case FLOAT64_ELEMENTS:
2835 case FAST_ELEMENTS:
2836 case FAST_SMI_ELEMENTS:
2837 case FAST_DOUBLE_ELEMENTS:
2838 case FAST_HOLEY_ELEMENTS:
2839 case FAST_HOLEY_SMI_ELEMENTS:
2840 case FAST_HOLEY_DOUBLE_ELEMENTS:
2841 case DICTIONARY_ELEMENTS:
2842 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
2843 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
Ben Murdoch097c5b22016-05-18 11:27:45 +01002844 case FAST_STRING_WRAPPER_ELEMENTS:
2845 case SLOW_STRING_WRAPPER_ELEMENTS:
2846 case NO_ELEMENTS:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00002847 UNREACHABLE();
2848 break;
2849 }
2850 }
2851}
2852
2853
2854void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
2855 XMMRegister result(ToDoubleRegister(instr->result()));
2856 LOperand* key = instr->key();
2857 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2858 instr->hydrogen()->IsDehoisted()) {
2859 // Sign extend key because it could be a 32 bit negative value
2860 // and the dehoisted address computation happens in 64 bits
2861 __ movsxlq(ToRegister(key), ToRegister(key));
2862 }
2863 if (instr->hydrogen()->RequiresHoleCheck()) {
2864 Operand hole_check_operand = BuildFastArrayOperand(
2865 instr->elements(),
2866 key,
2867 instr->hydrogen()->key()->representation(),
2868 FAST_DOUBLE_ELEMENTS,
2869 instr->base_offset() + sizeof(kHoleNanLower32));
2870 __ cmpl(hole_check_operand, Immediate(kHoleNanUpper32));
2871 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2872 }
2873
2874 Operand double_load_operand = BuildFastArrayOperand(
2875 instr->elements(),
2876 key,
2877 instr->hydrogen()->key()->representation(),
2878 FAST_DOUBLE_ELEMENTS,
2879 instr->base_offset());
2880 __ Movsd(result, double_load_operand);
2881}
2882
2883
2884void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
2885 HLoadKeyed* hinstr = instr->hydrogen();
2886 Register result = ToRegister(instr->result());
2887 LOperand* key = instr->key();
2888 bool requires_hole_check = hinstr->RequiresHoleCheck();
2889 Representation representation = hinstr->representation();
2890 int offset = instr->base_offset();
2891
2892 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
2893 instr->hydrogen()->IsDehoisted()) {
2894 // Sign extend key because it could be a 32 bit negative value
2895 // and the dehoisted address computation happens in 64 bits
2896 __ movsxlq(ToRegister(key), ToRegister(key));
2897 }
2898 if (representation.IsInteger32() && SmiValuesAre32Bits() &&
2899 hinstr->elements_kind() == FAST_SMI_ELEMENTS) {
2900 DCHECK(!requires_hole_check);
2901 if (FLAG_debug_code) {
2902 Register scratch = kScratchRegister;
2903 __ Load(scratch,
2904 BuildFastArrayOperand(instr->elements(),
2905 key,
2906 instr->hydrogen()->key()->representation(),
2907 FAST_ELEMENTS,
2908 offset),
2909 Representation::Smi());
2910 __ AssertSmi(scratch);
2911 }
2912 // Read int value directly from upper half of the smi.
2913 STATIC_ASSERT(kSmiTag == 0);
2914 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
2915 offset += kPointerSize / 2;
2916 }
2917
2918 __ Load(result,
2919 BuildFastArrayOperand(instr->elements(), key,
2920 instr->hydrogen()->key()->representation(),
2921 FAST_ELEMENTS, offset),
2922 representation);
2923
2924 // Check for the hole value.
2925 if (requires_hole_check) {
2926 if (IsFastSmiElementsKind(hinstr->elements_kind())) {
2927 Condition smi = __ CheckSmi(result);
2928 DeoptimizeIf(NegateCondition(smi), instr, Deoptimizer::kNotASmi);
2929 } else {
2930 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2931 DeoptimizeIf(equal, instr, Deoptimizer::kHole);
2932 }
2933 } else if (hinstr->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
2934 DCHECK(hinstr->elements_kind() == FAST_HOLEY_ELEMENTS);
2935 Label done;
2936 __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
2937 __ j(not_equal, &done);
2938 if (info()->IsStub()) {
2939 // A stub can safely convert the hole to undefined only if the array
2940 // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
2941 // it needs to bail out.
2942 __ LoadRoot(result, Heap::kArrayProtectorRootIndex);
2943 __ Cmp(FieldOperand(result, Cell::kValueOffset),
2944 Smi::FromInt(Isolate::kArrayProtectorValid));
2945 DeoptimizeIf(not_equal, instr, Deoptimizer::kHole);
2946 }
2947 __ Move(result, isolate()->factory()->undefined_value());
2948 __ bind(&done);
2949 }
2950}
2951
2952
2953void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
2954 if (instr->is_fixed_typed_array()) {
2955 DoLoadKeyedExternalArray(instr);
2956 } else if (instr->hydrogen()->representation().IsDouble()) {
2957 DoLoadKeyedFixedDoubleArray(instr);
2958 } else {
2959 DoLoadKeyedFixedArray(instr);
2960 }
2961}
2962
2963
2964Operand LCodeGen::BuildFastArrayOperand(
2965 LOperand* elements_pointer,
2966 LOperand* key,
2967 Representation key_representation,
2968 ElementsKind elements_kind,
2969 uint32_t offset) {
2970 Register elements_pointer_reg = ToRegister(elements_pointer);
2971 int shift_size = ElementsKindToShiftSize(elements_kind);
2972 if (key->IsConstantOperand()) {
2973 int32_t constant_value = ToInteger32(LConstantOperand::cast(key));
2974 if (constant_value & 0xF0000000) {
2975 Abort(kArrayIndexConstantValueTooBig);
2976 }
2977 return Operand(elements_pointer_reg,
2978 (constant_value << shift_size) + offset);
2979 } else {
2980 // Guaranteed by ArrayInstructionInterface::KeyedAccessIndexRequirement().
2981 DCHECK(key_representation.IsInteger32());
2982
2983 ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
2984 return Operand(elements_pointer_reg,
2985 ToRegister(key),
2986 scale_factor,
2987 offset);
2988 }
2989}
2990
2991
2992void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
2993 DCHECK(ToRegister(instr->context()).is(rsi));
2994 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
2995 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
2996
2997 if (instr->hydrogen()->HasVectorAndSlot()) {
2998 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
2999 }
3000
3001 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
Ben Murdoch097c5b22016-05-18 11:27:45 +01003002 isolate(), instr->hydrogen()->initialization_state())
3003 .code();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003004 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3005}
3006
3007
3008void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
3009 Register result = ToRegister(instr->result());
3010
3011 if (instr->hydrogen()->from_inlined()) {
3012 __ leap(result, Operand(rsp, -kFPOnStackSize + -kPCOnStackSize));
3013 } else {
3014 // Check for arguments adapter frame.
3015 Label done, adapted;
3016 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3017 __ Cmp(Operand(result, StandardFrameConstants::kContextOffset),
3018 Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3019 __ j(equal, &adapted, Label::kNear);
3020
3021 // No arguments adaptor frame.
3022 __ movp(result, rbp);
3023 __ jmp(&done, Label::kNear);
3024
3025 // Arguments adaptor frame present.
3026 __ bind(&adapted);
3027 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3028
3029 // Result is the frame pointer for the frame if not adapted and for the real
3030 // frame below the adaptor frame if adapted.
3031 __ bind(&done);
3032 }
3033}
3034
3035
3036void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
3037 Register result = ToRegister(instr->result());
3038
3039 Label done;
3040
3041 // If no arguments adaptor frame the number of arguments is fixed.
3042 if (instr->elements()->IsRegister()) {
3043 __ cmpp(rbp, ToRegister(instr->elements()));
3044 } else {
3045 __ cmpp(rbp, ToOperand(instr->elements()));
3046 }
3047 __ movl(result, Immediate(scope()->num_parameters()));
3048 __ j(equal, &done, Label::kNear);
3049
3050 // Arguments adaptor frame present. Get argument length from there.
3051 __ movp(result, Operand(rbp, StandardFrameConstants::kCallerFPOffset));
3052 __ SmiToInteger32(result,
3053 Operand(result,
3054 ArgumentsAdaptorFrameConstants::kLengthOffset));
3055
3056 // Argument length is in result register.
3057 __ bind(&done);
3058}
3059
3060
3061void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
3062 Register receiver = ToRegister(instr->receiver());
3063 Register function = ToRegister(instr->function());
3064
3065 // If the receiver is null or undefined, we have to pass the global
3066 // object as a receiver to normal functions. Values have to be
3067 // passed unchanged to builtins and strict-mode functions.
3068 Label global_object, receiver_ok;
3069 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3070
3071 if (!instr->hydrogen()->known_function()) {
3072 // Do not transform the receiver to object for strict mode
3073 // functions.
3074 __ movp(kScratchRegister,
3075 FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
3076 __ testb(FieldOperand(kScratchRegister,
3077 SharedFunctionInfo::kStrictModeByteOffset),
3078 Immediate(1 << SharedFunctionInfo::kStrictModeBitWithinByte));
3079 __ j(not_equal, &receiver_ok, dist);
3080
3081 // Do not transform the receiver to object for builtins.
3082 __ testb(FieldOperand(kScratchRegister,
3083 SharedFunctionInfo::kNativeByteOffset),
3084 Immediate(1 << SharedFunctionInfo::kNativeBitWithinByte));
3085 __ j(not_equal, &receiver_ok, dist);
3086 }
3087
3088 // Normal function. Replace undefined or null with global receiver.
3089 __ CompareRoot(receiver, Heap::kNullValueRootIndex);
3090 __ j(equal, &global_object, Label::kNear);
3091 __ CompareRoot(receiver, Heap::kUndefinedValueRootIndex);
3092 __ j(equal, &global_object, Label::kNear);
3093
3094 // The receiver should be a JS object.
3095 Condition is_smi = __ CheckSmi(receiver);
3096 DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
3097 __ CmpObjectType(receiver, FIRST_JS_RECEIVER_TYPE, kScratchRegister);
3098 DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject);
3099
3100 __ jmp(&receiver_ok, Label::kNear);
3101 __ bind(&global_object);
3102 __ movp(receiver, FieldOperand(function, JSFunction::kContextOffset));
3103 __ movp(receiver, ContextOperand(receiver, Context::NATIVE_CONTEXT_INDEX));
3104 __ movp(receiver, ContextOperand(receiver, Context::GLOBAL_PROXY_INDEX));
3105
3106 __ bind(&receiver_ok);
3107}
3108
3109
3110void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
3111 Register receiver = ToRegister(instr->receiver());
3112 Register function = ToRegister(instr->function());
3113 Register length = ToRegister(instr->length());
3114 Register elements = ToRegister(instr->elements());
3115 DCHECK(receiver.is(rax)); // Used for parameter count.
3116 DCHECK(function.is(rdi)); // Required by InvokeFunction.
3117 DCHECK(ToRegister(instr->result()).is(rax));
3118
3119 // Copy the arguments to this function possibly from the
3120 // adaptor frame below it.
3121 const uint32_t kArgumentsLimit = 1 * KB;
3122 __ cmpp(length, Immediate(kArgumentsLimit));
3123 DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments);
3124
3125 __ Push(receiver);
3126 __ movp(receiver, length);
3127
3128 // Loop through the arguments pushing them onto the execution
3129 // stack.
3130 Label invoke, loop;
3131 // length is a small non-negative integer, due to the test above.
3132 __ testl(length, length);
3133 __ j(zero, &invoke, Label::kNear);
3134 __ bind(&loop);
3135 StackArgumentsAccessor args(elements, length,
3136 ARGUMENTS_DONT_CONTAIN_RECEIVER);
3137 __ Push(args.GetArgumentOperand(0));
3138 __ decl(length);
3139 __ j(not_zero, &loop);
3140
3141 // Invoke the function.
3142 __ bind(&invoke);
3143 DCHECK(instr->HasPointerMap());
3144 LPointerMap* pointers = instr->pointer_map();
3145 SafepointGenerator safepoint_generator(
3146 this, pointers, Safepoint::kLazyDeopt);
3147 ParameterCount actual(rax);
3148 __ InvokeFunction(function, no_reg, actual, CALL_FUNCTION,
3149 safepoint_generator);
3150}
3151
3152
3153void LCodeGen::DoPushArgument(LPushArgument* instr) {
3154 LOperand* argument = instr->value();
3155 EmitPushTaggedOperand(argument);
3156}
3157
3158
3159void LCodeGen::DoDrop(LDrop* instr) {
3160 __ Drop(instr->count());
3161}
3162
3163
3164void LCodeGen::DoThisFunction(LThisFunction* instr) {
3165 Register result = ToRegister(instr->result());
3166 __ movp(result, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset));
3167}
3168
3169
3170void LCodeGen::DoContext(LContext* instr) {
3171 Register result = ToRegister(instr->result());
3172 if (info()->IsOptimizing()) {
3173 __ movp(result, Operand(rbp, StandardFrameConstants::kContextOffset));
3174 } else {
3175 // If there is no frame, the context must be in rsi.
3176 DCHECK(result.is(rsi));
3177 }
3178}
3179
3180
3181void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
3182 DCHECK(ToRegister(instr->context()).is(rsi));
3183 __ Push(instr->hydrogen()->pairs());
3184 __ Push(Smi::FromInt(instr->hydrogen()->flags()));
3185 CallRuntime(Runtime::kDeclareGlobals, instr);
3186}
3187
3188
3189void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
3190 int formal_parameter_count, int arity,
3191 LInstruction* instr) {
3192 bool dont_adapt_arguments =
3193 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
3194 bool can_invoke_directly =
3195 dont_adapt_arguments || formal_parameter_count == arity;
3196
3197 Register function_reg = rdi;
3198 LPointerMap* pointers = instr->pointer_map();
3199
3200 if (can_invoke_directly) {
3201 // Change context.
3202 __ movp(rsi, FieldOperand(function_reg, JSFunction::kContextOffset));
3203
3204 // Always initialize new target and number of actual arguments.
3205 __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
3206 __ Set(rax, arity);
3207
3208 // Invoke function.
3209 if (function.is_identical_to(info()->closure())) {
3210 __ CallSelf();
3211 } else {
3212 __ Call(FieldOperand(function_reg, JSFunction::kCodeEntryOffset));
3213 }
3214
3215 // Set up deoptimization.
3216 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT, 0);
3217 } else {
3218 // We need to adapt arguments.
3219 SafepointGenerator generator(
3220 this, pointers, Safepoint::kLazyDeopt);
3221 ParameterCount count(arity);
3222 ParameterCount expected(formal_parameter_count);
3223 __ InvokeFunction(function_reg, no_reg, expected, count, CALL_FUNCTION,
3224 generator);
3225 }
3226}
3227
3228
3229void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
3230 DCHECK(ToRegister(instr->result()).is(rax));
3231
3232 if (instr->hydrogen()->IsTailCall()) {
3233 if (NeedsEagerFrame()) __ leave();
3234
3235 if (instr->target()->IsConstantOperand()) {
3236 LConstantOperand* target = LConstantOperand::cast(instr->target());
3237 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3238 __ jmp(code, RelocInfo::CODE_TARGET);
3239 } else {
3240 DCHECK(instr->target()->IsRegister());
3241 Register target = ToRegister(instr->target());
3242 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3243 __ jmp(target);
3244 }
3245 } else {
3246 LPointerMap* pointers = instr->pointer_map();
3247 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3248
3249 if (instr->target()->IsConstantOperand()) {
3250 LConstantOperand* target = LConstantOperand::cast(instr->target());
3251 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
3252 generator.BeforeCall(__ CallSize(code));
3253 __ call(code, RelocInfo::CODE_TARGET);
3254 } else {
3255 DCHECK(instr->target()->IsRegister());
3256 Register target = ToRegister(instr->target());
3257 generator.BeforeCall(__ CallSize(target));
3258 __ addp(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
3259 __ call(target);
3260 }
3261 generator.AfterCall();
3262 }
3263}
3264
3265
3266void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
3267 DCHECK(ToRegister(instr->function()).is(rdi));
3268 DCHECK(ToRegister(instr->result()).is(rax));
3269
3270 // Change context.
3271 __ movp(rsi, FieldOperand(rdi, JSFunction::kContextOffset));
3272
3273 // Always initialize new target and number of actual arguments.
3274 __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex);
3275 __ Set(rax, instr->arity());
3276
3277 LPointerMap* pointers = instr->pointer_map();
3278 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3279
3280 bool is_self_call = false;
3281 if (instr->hydrogen()->function()->IsConstant()) {
3282 Handle<JSFunction> jsfun = Handle<JSFunction>::null();
3283 HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
3284 jsfun = Handle<JSFunction>::cast(fun_const->handle(isolate()));
3285 is_self_call = jsfun.is_identical_to(info()->closure());
3286 }
3287
3288 if (is_self_call) {
3289 __ CallSelf();
3290 } else {
3291 Operand target = FieldOperand(rdi, JSFunction::kCodeEntryOffset);
3292 generator.BeforeCall(__ CallSize(target));
3293 __ Call(target);
3294 }
3295 generator.AfterCall();
3296}
3297
3298
3299void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
3300 Register input_reg = ToRegister(instr->value());
3301 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
3302 Heap::kHeapNumberMapRootIndex);
3303 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
3304
3305 Label slow, allocated, done;
3306 Register tmp = input_reg.is(rax) ? rcx : rax;
3307 Register tmp2 = tmp.is(rcx) ? rdx : input_reg.is(rcx) ? rdx : rcx;
3308
3309 // Preserve the value of all registers.
3310 PushSafepointRegistersScope scope(this);
3311
3312 __ movl(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
3313 // Check the sign of the argument. If the argument is positive, just
3314 // return it. We do not need to patch the stack since |input| and
3315 // |result| are the same register and |input| will be restored
3316 // unchanged by popping safepoint registers.
3317 __ testl(tmp, Immediate(HeapNumber::kSignMask));
3318 __ j(zero, &done);
3319
3320 __ AllocateHeapNumber(tmp, tmp2, &slow);
3321 __ jmp(&allocated, Label::kNear);
3322
3323 // Slow case: Call the runtime system to do the number allocation.
3324 __ bind(&slow);
3325 CallRuntimeFromDeferred(
3326 Runtime::kAllocateHeapNumber, 0, instr, instr->context());
3327 // Set the pointer to the new heap number in tmp.
3328 if (!tmp.is(rax)) __ movp(tmp, rax);
3329 // Restore input_reg after call to runtime.
3330 __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
3331
3332 __ bind(&allocated);
3333 __ movq(tmp2, FieldOperand(input_reg, HeapNumber::kValueOffset));
3334 __ shlq(tmp2, Immediate(1));
3335 __ shrq(tmp2, Immediate(1));
3336 __ movq(FieldOperand(tmp, HeapNumber::kValueOffset), tmp2);
3337 __ StoreToSafepointRegisterSlot(input_reg, tmp);
3338
3339 __ bind(&done);
3340}
3341
3342
3343void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
3344 Register input_reg = ToRegister(instr->value());
3345 __ testl(input_reg, input_reg);
3346 Label is_positive;
3347 __ j(not_sign, &is_positive, Label::kNear);
3348 __ negl(input_reg); // Sets flags.
3349 DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
3350 __ bind(&is_positive);
3351}
3352
3353
3354void LCodeGen::EmitSmiMathAbs(LMathAbs* instr) {
3355 Register input_reg = ToRegister(instr->value());
3356 __ testp(input_reg, input_reg);
3357 Label is_positive;
3358 __ j(not_sign, &is_positive, Label::kNear);
3359 __ negp(input_reg); // Sets flags.
3360 DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
3361 __ bind(&is_positive);
3362}
3363
3364
3365void LCodeGen::DoMathAbs(LMathAbs* instr) {
3366 // Class for deferred case.
3367 class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
3368 public:
3369 DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen, LMathAbs* instr)
3370 : LDeferredCode(codegen), instr_(instr) { }
3371 void Generate() override {
3372 codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
3373 }
3374 LInstruction* instr() override { return instr_; }
3375
3376 private:
3377 LMathAbs* instr_;
3378 };
3379
3380 DCHECK(instr->value()->Equals(instr->result()));
3381 Representation r = instr->hydrogen()->value()->representation();
3382
3383 if (r.IsDouble()) {
3384 XMMRegister scratch = double_scratch0();
3385 XMMRegister input_reg = ToDoubleRegister(instr->value());
3386 __ Xorpd(scratch, scratch);
3387 __ Subsd(scratch, input_reg);
3388 __ Andpd(input_reg, scratch);
3389 } else if (r.IsInteger32()) {
3390 EmitIntegerMathAbs(instr);
3391 } else if (r.IsSmi()) {
3392 EmitSmiMathAbs(instr);
3393 } else { // Tagged case.
3394 DeferredMathAbsTaggedHeapNumber* deferred =
3395 new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr);
3396 Register input_reg = ToRegister(instr->value());
3397 // Smi check.
3398 __ JumpIfNotSmi(input_reg, deferred->entry());
3399 EmitSmiMathAbs(instr);
3400 __ bind(deferred->exit());
3401 }
3402}
3403
3404
3405void LCodeGen::DoMathFloor(LMathFloor* instr) {
3406 XMMRegister xmm_scratch = double_scratch0();
3407 Register output_reg = ToRegister(instr->result());
3408 XMMRegister input_reg = ToDoubleRegister(instr->value());
3409
3410 if (CpuFeatures::IsSupported(SSE4_1)) {
3411 CpuFeatureScope scope(masm(), SSE4_1);
3412 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3413 // Deoptimize if minus zero.
3414 __ Movq(output_reg, input_reg);
3415 __ subq(output_reg, Immediate(1));
3416 DeoptimizeIf(overflow, instr, Deoptimizer::kMinusZero);
3417 }
3418 __ Roundsd(xmm_scratch, input_reg, kRoundDown);
3419 __ Cvttsd2si(output_reg, xmm_scratch);
3420 __ cmpl(output_reg, Immediate(0x1));
3421 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3422 } else {
3423 Label negative_sign, done;
3424 // Deoptimize on unordered.
3425 __ Xorpd(xmm_scratch, xmm_scratch); // Zero the register.
3426 __ Ucomisd(input_reg, xmm_scratch);
3427 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
3428 __ j(below, &negative_sign, Label::kNear);
3429
3430 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3431 // Check for negative zero.
3432 Label positive_sign;
3433 __ j(above, &positive_sign, Label::kNear);
3434 __ Movmskpd(output_reg, input_reg);
3435 __ testl(output_reg, Immediate(1));
3436 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
3437 __ Set(output_reg, 0);
3438 __ jmp(&done);
3439 __ bind(&positive_sign);
3440 }
3441
3442 // Use truncating instruction (OK because input is positive).
3443 __ Cvttsd2si(output_reg, input_reg);
3444 // Overflow is signalled with minint.
3445 __ cmpl(output_reg, Immediate(0x1));
3446 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3447 __ jmp(&done, Label::kNear);
3448
3449 // Non-zero negative reaches here.
3450 __ bind(&negative_sign);
3451 // Truncate, then compare and compensate.
3452 __ Cvttsd2si(output_reg, input_reg);
3453 __ Cvtlsi2sd(xmm_scratch, output_reg);
3454 __ Ucomisd(input_reg, xmm_scratch);
3455 __ j(equal, &done, Label::kNear);
3456 __ subl(output_reg, Immediate(1));
3457 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3458
3459 __ bind(&done);
3460 }
3461}
3462
3463
3464void LCodeGen::DoMathRound(LMathRound* instr) {
3465 const XMMRegister xmm_scratch = double_scratch0();
3466 Register output_reg = ToRegister(instr->result());
3467 XMMRegister input_reg = ToDoubleRegister(instr->value());
3468 XMMRegister input_temp = ToDoubleRegister(instr->temp());
3469 static int64_t one_half = V8_INT64_C(0x3FE0000000000000); // 0.5
3470 static int64_t minus_one_half = V8_INT64_C(0xBFE0000000000000); // -0.5
3471
3472 Label done, round_to_zero, below_one_half;
3473 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
3474 __ movq(kScratchRegister, one_half);
3475 __ Movq(xmm_scratch, kScratchRegister);
3476 __ Ucomisd(xmm_scratch, input_reg);
3477 __ j(above, &below_one_half, Label::kNear);
3478
3479 // CVTTSD2SI rounds towards zero, since 0.5 <= x, we use floor(0.5 + x).
3480 __ Addsd(xmm_scratch, input_reg);
3481 __ Cvttsd2si(output_reg, xmm_scratch);
3482 // Overflow is signalled with minint.
3483 __ cmpl(output_reg, Immediate(0x1));
3484 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3485 __ jmp(&done, dist);
3486
3487 __ bind(&below_one_half);
3488 __ movq(kScratchRegister, minus_one_half);
3489 __ Movq(xmm_scratch, kScratchRegister);
3490 __ Ucomisd(xmm_scratch, input_reg);
3491 __ j(below_equal, &round_to_zero, Label::kNear);
3492
3493 // CVTTSD2SI rounds towards zero, we use ceil(x - (-0.5)) and then
3494 // compare and compensate.
3495 __ Movapd(input_temp, input_reg); // Do not alter input_reg.
3496 __ Subsd(input_temp, xmm_scratch);
3497 __ Cvttsd2si(output_reg, input_temp);
3498 // Catch minint due to overflow, and to prevent overflow when compensating.
3499 __ cmpl(output_reg, Immediate(0x1));
3500 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
3501
3502 __ Cvtlsi2sd(xmm_scratch, output_reg);
3503 __ Ucomisd(xmm_scratch, input_temp);
3504 __ j(equal, &done, dist);
3505 __ subl(output_reg, Immediate(1));
3506 // No overflow because we already ruled out minint.
3507 __ jmp(&done, dist);
3508
3509 __ bind(&round_to_zero);
3510 // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
3511 // we can ignore the difference between a result of -0 and +0.
3512 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
3513 __ Movq(output_reg, input_reg);
3514 __ testq(output_reg, output_reg);
3515 DeoptimizeIf(negative, instr, Deoptimizer::kMinusZero);
3516 }
3517 __ Set(output_reg, 0);
3518 __ bind(&done);
3519}
3520
3521
3522void LCodeGen::DoMathFround(LMathFround* instr) {
3523 XMMRegister input_reg = ToDoubleRegister(instr->value());
3524 XMMRegister output_reg = ToDoubleRegister(instr->result());
3525 __ Cvtsd2ss(output_reg, input_reg);
3526 __ Cvtss2sd(output_reg, output_reg);
3527}
3528
3529
3530void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
3531 XMMRegister output = ToDoubleRegister(instr->result());
3532 if (instr->value()->IsDoubleRegister()) {
3533 XMMRegister input = ToDoubleRegister(instr->value());
3534 __ Sqrtsd(output, input);
3535 } else {
3536 Operand input = ToOperand(instr->value());
3537 __ Sqrtsd(output, input);
3538 }
3539}
3540
3541
3542void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
3543 XMMRegister xmm_scratch = double_scratch0();
3544 XMMRegister input_reg = ToDoubleRegister(instr->value());
3545 DCHECK(ToDoubleRegister(instr->result()).is(input_reg));
3546
3547 // Note that according to ECMA-262 15.8.2.13:
3548 // Math.pow(-Infinity, 0.5) == Infinity
3549 // Math.sqrt(-Infinity) == NaN
3550 Label done, sqrt;
3551 // Check base for -Infinity. According to IEEE-754, double-precision
3552 // -Infinity has the highest 12 bits set and the lowest 52 bits cleared.
3553 __ movq(kScratchRegister, V8_INT64_C(0xFFF0000000000000));
3554 __ Movq(xmm_scratch, kScratchRegister);
3555 __ Ucomisd(xmm_scratch, input_reg);
3556 // Comparing -Infinity with NaN results in "unordered", which sets the
3557 // zero flag as if both were equal. However, it also sets the carry flag.
3558 __ j(not_equal, &sqrt, Label::kNear);
3559 __ j(carry, &sqrt, Label::kNear);
3560 // If input is -Infinity, return Infinity.
3561 __ Xorpd(input_reg, input_reg);
3562 __ Subsd(input_reg, xmm_scratch);
3563 __ jmp(&done, Label::kNear);
3564
3565 // Square root.
3566 __ bind(&sqrt);
3567 __ Xorpd(xmm_scratch, xmm_scratch);
3568 __ Addsd(input_reg, xmm_scratch); // Convert -0 to +0.
3569 __ Sqrtsd(input_reg, input_reg);
3570 __ bind(&done);
3571}
3572
3573
3574void LCodeGen::DoPower(LPower* instr) {
3575 Representation exponent_type = instr->hydrogen()->right()->representation();
3576 // Having marked this as a call, we can use any registers.
3577 // Just make sure that the input/output registers are the expected ones.
3578
3579 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
3580 DCHECK(!instr->right()->IsRegister() ||
3581 ToRegister(instr->right()).is(tagged_exponent));
3582 DCHECK(!instr->right()->IsDoubleRegister() ||
3583 ToDoubleRegister(instr->right()).is(xmm1));
3584 DCHECK(ToDoubleRegister(instr->left()).is(xmm2));
3585 DCHECK(ToDoubleRegister(instr->result()).is(xmm3));
3586
3587 if (exponent_type.IsSmi()) {
3588 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3589 __ CallStub(&stub);
3590 } else if (exponent_type.IsTagged()) {
3591 Label no_deopt;
3592 __ JumpIfSmi(tagged_exponent, &no_deopt, Label::kNear);
3593 __ CmpObjectType(tagged_exponent, HEAP_NUMBER_TYPE, rcx);
3594 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
3595 __ bind(&no_deopt);
3596 MathPowStub stub(isolate(), MathPowStub::TAGGED);
3597 __ CallStub(&stub);
3598 } else if (exponent_type.IsInteger32()) {
3599 MathPowStub stub(isolate(), MathPowStub::INTEGER);
3600 __ CallStub(&stub);
3601 } else {
3602 DCHECK(exponent_type.IsDouble());
3603 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
3604 __ CallStub(&stub);
3605 }
3606}
3607
3608
3609void LCodeGen::DoMathExp(LMathExp* instr) {
3610 XMMRegister input = ToDoubleRegister(instr->value());
3611 XMMRegister result = ToDoubleRegister(instr->result());
3612 XMMRegister temp0 = double_scratch0();
3613 Register temp1 = ToRegister(instr->temp1());
3614 Register temp2 = ToRegister(instr->temp2());
3615
3616 MathExpGenerator::EmitMathExp(masm(), input, result, temp0, temp1, temp2);
3617}
3618
3619
3620void LCodeGen::DoMathLog(LMathLog* instr) {
3621 DCHECK(instr->value()->Equals(instr->result()));
3622 XMMRegister input_reg = ToDoubleRegister(instr->value());
3623 XMMRegister xmm_scratch = double_scratch0();
3624 Label positive, done, zero;
3625 __ Xorpd(xmm_scratch, xmm_scratch);
3626 __ Ucomisd(input_reg, xmm_scratch);
3627 __ j(above, &positive, Label::kNear);
3628 __ j(not_carry, &zero, Label::kNear);
3629 __ Pcmpeqd(input_reg, input_reg);
3630 __ jmp(&done, Label::kNear);
3631 __ bind(&zero);
3632 ExternalReference ninf =
3633 ExternalReference::address_of_negative_infinity();
3634 Operand ninf_operand = masm()->ExternalOperand(ninf);
3635 __ Movsd(input_reg, ninf_operand);
3636 __ jmp(&done, Label::kNear);
3637 __ bind(&positive);
3638 __ fldln2();
3639 __ subp(rsp, Immediate(kDoubleSize));
3640 __ Movsd(Operand(rsp, 0), input_reg);
3641 __ fld_d(Operand(rsp, 0));
3642 __ fyl2x();
3643 __ fstp_d(Operand(rsp, 0));
3644 __ Movsd(input_reg, Operand(rsp, 0));
3645 __ addp(rsp, Immediate(kDoubleSize));
3646 __ bind(&done);
3647}
3648
3649
3650void LCodeGen::DoMathClz32(LMathClz32* instr) {
3651 Register input = ToRegister(instr->value());
3652 Register result = ToRegister(instr->result());
3653
3654 __ Lzcntl(result, input);
3655}
3656
3657
3658void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3659 DCHECK(ToRegister(instr->context()).is(rsi));
3660 DCHECK(ToRegister(instr->function()).is(rdi));
3661 DCHECK(instr->HasPointerMap());
3662
3663 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3664 if (known_function.is_null()) {
3665 LPointerMap* pointers = instr->pointer_map();
3666 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3667 ParameterCount count(instr->arity());
3668 __ InvokeFunction(rdi, no_reg, count, CALL_FUNCTION, generator);
3669 } else {
3670 CallKnownFunction(known_function,
3671 instr->hydrogen()->formal_parameter_count(),
3672 instr->arity(), instr);
3673 }
3674}
3675
3676
3677void LCodeGen::DoCallFunction(LCallFunction* instr) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01003678 HCallFunction* hinstr = instr->hydrogen();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003679 DCHECK(ToRegister(instr->context()).is(rsi));
3680 DCHECK(ToRegister(instr->function()).is(rdi));
3681 DCHECK(ToRegister(instr->result()).is(rax));
3682
3683 int arity = instr->arity();
Ben Murdoch097c5b22016-05-18 11:27:45 +01003684
3685 ConvertReceiverMode mode = hinstr->convert_mode();
3686 if (hinstr->HasVectorAndSlot()) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003687 Register slot_register = ToRegister(instr->temp_slot());
3688 Register vector_register = ToRegister(instr->temp_vector());
3689 DCHECK(slot_register.is(rdx));
3690 DCHECK(vector_register.is(rbx));
3691
3692 AllowDeferredHandleDereference vector_structure_check;
Ben Murdoch097c5b22016-05-18 11:27:45 +01003693 Handle<TypeFeedbackVector> vector = hinstr->feedback_vector();
3694 int index = vector->GetIndex(hinstr->slot());
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00003695
3696 __ Move(vector_register, vector);
3697 __ Move(slot_register, Smi::FromInt(index));
3698
3699 Handle<Code> ic =
3700 CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
3701 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3702 } else {
3703 __ Set(rax, arity);
3704 CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
3705 }
3706}
3707
3708
3709void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
3710 DCHECK(ToRegister(instr->context()).is(rsi));
3711 DCHECK(ToRegister(instr->constructor()).is(rdi));
3712 DCHECK(ToRegister(instr->result()).is(rax));
3713
3714 __ Set(rax, instr->arity());
3715 if (instr->arity() == 1) {
3716 // We only need the allocation site for the case we have a length argument.
3717 // The case may bail out to the runtime, which will determine the correct
3718 // elements kind with the site.
3719 __ Move(rbx, instr->hydrogen()->site());
3720 } else {
3721 __ LoadRoot(rbx, Heap::kUndefinedValueRootIndex);
3722 }
3723
3724 ElementsKind kind = instr->hydrogen()->elements_kind();
3725 AllocationSiteOverrideMode override_mode =
3726 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
3727 ? DISABLE_ALLOCATION_SITES
3728 : DONT_OVERRIDE;
3729
3730 if (instr->arity() == 0) {
3731 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
3732 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3733 } else if (instr->arity() == 1) {
3734 Label done;
3735 if (IsFastPackedElementsKind(kind)) {
3736 Label packed_case;
3737 // We might need a change here
3738 // look at the first argument
3739 __ movp(rcx, Operand(rsp, 0));
3740 __ testp(rcx, rcx);
3741 __ j(zero, &packed_case, Label::kNear);
3742
3743 ElementsKind holey_kind = GetHoleyElementsKind(kind);
3744 ArraySingleArgumentConstructorStub stub(isolate(),
3745 holey_kind,
3746 override_mode);
3747 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3748 __ jmp(&done, Label::kNear);
3749 __ bind(&packed_case);
3750 }
3751
3752 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
3753 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3754 __ bind(&done);
3755 } else {
3756 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
3757 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3758 }
3759}
3760
3761
3762void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
3763 DCHECK(ToRegister(instr->context()).is(rsi));
3764 CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
3765}
3766
3767
3768void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
3769 Register function = ToRegister(instr->function());
3770 Register code_object = ToRegister(instr->code_object());
3771 __ leap(code_object, FieldOperand(code_object, Code::kHeaderSize));
3772 __ movp(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
3773}
3774
3775
3776void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3777 Register result = ToRegister(instr->result());
3778 Register base = ToRegister(instr->base_object());
3779 if (instr->offset()->IsConstantOperand()) {
3780 LConstantOperand* offset = LConstantOperand::cast(instr->offset());
3781 __ leap(result, Operand(base, ToInteger32(offset)));
3782 } else {
3783 Register offset = ToRegister(instr->offset());
3784 __ leap(result, Operand(base, offset, times_1, 0));
3785 }
3786}
3787
3788
3789void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
3790 HStoreNamedField* hinstr = instr->hydrogen();
3791 Representation representation = instr->representation();
3792
3793 HObjectAccess access = hinstr->access();
3794 int offset = access.offset();
3795
3796 if (access.IsExternalMemory()) {
3797 DCHECK(!hinstr->NeedsWriteBarrier());
3798 Register value = ToRegister(instr->value());
3799 if (instr->object()->IsConstantOperand()) {
3800 DCHECK(value.is(rax));
3801 LConstantOperand* object = LConstantOperand::cast(instr->object());
3802 __ store_rax(ToExternalReference(object));
3803 } else {
3804 Register object = ToRegister(instr->object());
3805 __ Store(MemOperand(object, offset), value, representation);
3806 }
3807 return;
3808 }
3809
3810 Register object = ToRegister(instr->object());
3811 __ AssertNotSmi(object);
3812
3813 DCHECK(!representation.IsSmi() ||
3814 !instr->value()->IsConstantOperand() ||
3815 IsInteger32Constant(LConstantOperand::cast(instr->value())));
3816 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
3817 DCHECK(access.IsInobject());
3818 DCHECK(!hinstr->has_transition());
3819 DCHECK(!hinstr->NeedsWriteBarrier());
3820 XMMRegister value = ToDoubleRegister(instr->value());
3821 __ Movsd(FieldOperand(object, offset), value);
3822 return;
3823 }
3824
3825 if (hinstr->has_transition()) {
3826 Handle<Map> transition = hinstr->transition_map();
3827 AddDeprecationDependency(transition);
3828 if (!hinstr->NeedsWriteBarrierForMap()) {
3829 __ Move(FieldOperand(object, HeapObject::kMapOffset), transition);
3830 } else {
3831 Register temp = ToRegister(instr->temp());
3832 __ Move(kScratchRegister, transition);
3833 __ movp(FieldOperand(object, HeapObject::kMapOffset), kScratchRegister);
3834 // Update the write barrier for the map field.
3835 __ RecordWriteForMap(object,
3836 kScratchRegister,
3837 temp,
3838 kSaveFPRegs);
3839 }
3840 }
3841
3842 // Do the store.
3843 Register write_register = object;
3844 if (!access.IsInobject()) {
3845 write_register = ToRegister(instr->temp());
3846 __ movp(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
3847 }
3848
3849 if (representation.IsSmi() && SmiValuesAre32Bits() &&
3850 hinstr->value()->representation().IsInteger32()) {
3851 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
3852 if (FLAG_debug_code) {
3853 Register scratch = kScratchRegister;
3854 __ Load(scratch, FieldOperand(write_register, offset), representation);
3855 __ AssertSmi(scratch);
3856 }
3857 // Store int value directly to upper half of the smi.
3858 STATIC_ASSERT(kSmiTag == 0);
3859 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
3860 offset += kPointerSize / 2;
3861 representation = Representation::Integer32();
3862 }
3863
3864 Operand operand = FieldOperand(write_register, offset);
3865
3866 if (FLAG_unbox_double_fields && representation.IsDouble()) {
3867 DCHECK(access.IsInobject());
3868 XMMRegister value = ToDoubleRegister(instr->value());
3869 __ Movsd(operand, value);
3870
3871 } else if (instr->value()->IsRegister()) {
3872 Register value = ToRegister(instr->value());
3873 __ Store(operand, value, representation);
3874 } else {
3875 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
3876 if (IsInteger32Constant(operand_value)) {
3877 DCHECK(!hinstr->NeedsWriteBarrier());
3878 int32_t value = ToInteger32(operand_value);
3879 if (representation.IsSmi()) {
3880 __ Move(operand, Smi::FromInt(value));
3881
3882 } else {
3883 __ movl(operand, Immediate(value));
3884 }
3885
3886 } else if (IsExternalConstant(operand_value)) {
3887 DCHECK(!hinstr->NeedsWriteBarrier());
3888 ExternalReference ptr = ToExternalReference(operand_value);
3889 __ Move(kScratchRegister, ptr);
3890 __ movp(operand, kScratchRegister);
3891 } else {
3892 Handle<Object> handle_value = ToHandle(operand_value);
3893 DCHECK(!hinstr->NeedsWriteBarrier());
3894 __ Move(operand, handle_value);
3895 }
3896 }
3897
3898 if (hinstr->NeedsWriteBarrier()) {
3899 Register value = ToRegister(instr->value());
3900 Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
3901 // Update the write barrier for the object for in-object properties.
3902 __ RecordWriteField(write_register,
3903 offset,
3904 value,
3905 temp,
3906 kSaveFPRegs,
3907 EMIT_REMEMBERED_SET,
3908 hinstr->SmiCheckForWriteBarrier(),
3909 hinstr->PointersToHereCheckForValue());
3910 }
3911}
3912
3913
3914void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
3915 DCHECK(ToRegister(instr->context()).is(rsi));
3916 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
3917 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
3918
3919 if (instr->hydrogen()->HasVectorAndSlot()) {
3920 EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
3921 }
3922
3923 __ Move(StoreDescriptor::NameRegister(), instr->hydrogen()->name());
3924 Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
3925 isolate(), instr->language_mode(),
3926 instr->hydrogen()->initialization_state()).code();
3927 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3928}
3929
3930
3931void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
3932 Representation representation = instr->hydrogen()->length()->representation();
3933 DCHECK(representation.Equals(instr->hydrogen()->index()->representation()));
3934 DCHECK(representation.IsSmiOrInteger32());
3935
3936 Condition cc = instr->hydrogen()->allow_equality() ? below : below_equal;
3937 if (instr->length()->IsConstantOperand()) {
3938 int32_t length = ToInteger32(LConstantOperand::cast(instr->length()));
3939 Register index = ToRegister(instr->index());
3940 if (representation.IsSmi()) {
3941 __ Cmp(index, Smi::FromInt(length));
3942 } else {
3943 __ cmpl(index, Immediate(length));
3944 }
3945 cc = CommuteCondition(cc);
3946 } else if (instr->index()->IsConstantOperand()) {
3947 int32_t index = ToInteger32(LConstantOperand::cast(instr->index()));
3948 if (instr->length()->IsRegister()) {
3949 Register length = ToRegister(instr->length());
3950 if (representation.IsSmi()) {
3951 __ Cmp(length, Smi::FromInt(index));
3952 } else {
3953 __ cmpl(length, Immediate(index));
3954 }
3955 } else {
3956 Operand length = ToOperand(instr->length());
3957 if (representation.IsSmi()) {
3958 __ Cmp(length, Smi::FromInt(index));
3959 } else {
3960 __ cmpl(length, Immediate(index));
3961 }
3962 }
3963 } else {
3964 Register index = ToRegister(instr->index());
3965 if (instr->length()->IsRegister()) {
3966 Register length = ToRegister(instr->length());
3967 if (representation.IsSmi()) {
3968 __ cmpp(length, index);
3969 } else {
3970 __ cmpl(length, index);
3971 }
3972 } else {
3973 Operand length = ToOperand(instr->length());
3974 if (representation.IsSmi()) {
3975 __ cmpp(length, index);
3976 } else {
3977 __ cmpl(length, index);
3978 }
3979 }
3980 }
3981 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
3982 Label done;
3983 __ j(NegateCondition(cc), &done, Label::kNear);
3984 __ int3();
3985 __ bind(&done);
3986 } else {
3987 DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
3988 }
3989}
3990
3991
3992void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
3993 ElementsKind elements_kind = instr->elements_kind();
3994 LOperand* key = instr->key();
3995 if (kPointerSize == kInt32Size && !key->IsConstantOperand()) {
3996 Register key_reg = ToRegister(key);
3997 Representation key_representation =
3998 instr->hydrogen()->key()->representation();
3999 if (ExternalArrayOpRequiresTemp(key_representation, elements_kind)) {
4000 __ SmiToInteger64(key_reg, key_reg);
4001 } else if (instr->hydrogen()->IsDehoisted()) {
4002 // Sign extend key because it could be a 32 bit negative value
4003 // and the dehoisted address computation happens in 64 bits
4004 __ movsxlq(key_reg, key_reg);
4005 }
4006 }
4007 Operand operand(BuildFastArrayOperand(
4008 instr->elements(),
4009 key,
4010 instr->hydrogen()->key()->representation(),
4011 elements_kind,
4012 instr->base_offset()));
4013
4014 if (elements_kind == FLOAT32_ELEMENTS) {
4015 XMMRegister value(ToDoubleRegister(instr->value()));
4016 __ Cvtsd2ss(value, value);
4017 __ Movss(operand, value);
4018 } else if (elements_kind == FLOAT64_ELEMENTS) {
4019 __ Movsd(operand, ToDoubleRegister(instr->value()));
4020 } else {
4021 Register value(ToRegister(instr->value()));
4022 switch (elements_kind) {
4023 case INT8_ELEMENTS:
4024 case UINT8_ELEMENTS:
4025 case UINT8_CLAMPED_ELEMENTS:
4026 __ movb(operand, value);
4027 break;
4028 case INT16_ELEMENTS:
4029 case UINT16_ELEMENTS:
4030 __ movw(operand, value);
4031 break;
4032 case INT32_ELEMENTS:
4033 case UINT32_ELEMENTS:
4034 __ movl(operand, value);
4035 break;
4036 case FLOAT32_ELEMENTS:
4037 case FLOAT64_ELEMENTS:
4038 case FAST_ELEMENTS:
4039 case FAST_SMI_ELEMENTS:
4040 case FAST_DOUBLE_ELEMENTS:
4041 case FAST_HOLEY_ELEMENTS:
4042 case FAST_HOLEY_SMI_ELEMENTS:
4043 case FAST_HOLEY_DOUBLE_ELEMENTS:
4044 case DICTIONARY_ELEMENTS:
4045 case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
4046 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
Ben Murdoch097c5b22016-05-18 11:27:45 +01004047 case FAST_STRING_WRAPPER_ELEMENTS:
4048 case SLOW_STRING_WRAPPER_ELEMENTS:
4049 case NO_ELEMENTS:
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00004050 UNREACHABLE();
4051 break;
4052 }
4053 }
4054}
4055
4056
4057void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
4058 XMMRegister value = ToDoubleRegister(instr->value());
4059 LOperand* key = instr->key();
4060 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
4061 instr->hydrogen()->IsDehoisted()) {
4062 // Sign extend key because it could be a 32 bit negative value
4063 // and the dehoisted address computation happens in 64 bits
4064 __ movsxlq(ToRegister(key), ToRegister(key));
4065 }
4066 if (instr->NeedsCanonicalization()) {
4067 XMMRegister xmm_scratch = double_scratch0();
4068 // Turn potential sNaN value into qNaN.
4069 __ Xorpd(xmm_scratch, xmm_scratch);
4070 __ Subsd(value, xmm_scratch);
4071 }
4072
4073 Operand double_store_operand = BuildFastArrayOperand(
4074 instr->elements(),
4075 key,
4076 instr->hydrogen()->key()->representation(),
4077 FAST_DOUBLE_ELEMENTS,
4078 instr->base_offset());
4079
4080 __ Movsd(double_store_operand, value);
4081}
4082
4083
4084void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
4085 HStoreKeyed* hinstr = instr->hydrogen();
4086 LOperand* key = instr->key();
4087 int offset = instr->base_offset();
4088 Representation representation = hinstr->value()->representation();
4089
4090 if (kPointerSize == kInt32Size && !key->IsConstantOperand() &&
4091 instr->hydrogen()->IsDehoisted()) {
4092 // Sign extend key because it could be a 32 bit negative value
4093 // and the dehoisted address computation happens in 64 bits
4094 __ movsxlq(ToRegister(key), ToRegister(key));
4095 }
4096 if (representation.IsInteger32() && SmiValuesAre32Bits()) {
4097 DCHECK(hinstr->store_mode() == STORE_TO_INITIALIZED_ENTRY);
4098 DCHECK(hinstr->elements_kind() == FAST_SMI_ELEMENTS);
4099 if (FLAG_debug_code) {
4100 Register scratch = kScratchRegister;
4101 __ Load(scratch,
4102 BuildFastArrayOperand(instr->elements(),
4103 key,
4104 instr->hydrogen()->key()->representation(),
4105 FAST_ELEMENTS,
4106 offset),
4107 Representation::Smi());
4108 __ AssertSmi(scratch);
4109 }
4110 // Store int value directly to upper half of the smi.
4111 STATIC_ASSERT(kSmiTag == 0);
4112 DCHECK(kSmiTagSize + kSmiShiftSize == 32);
4113 offset += kPointerSize / 2;
4114 }
4115
4116 Operand operand =
4117 BuildFastArrayOperand(instr->elements(),
4118 key,
4119 instr->hydrogen()->key()->representation(),
4120 FAST_ELEMENTS,
4121 offset);
4122 if (instr->value()->IsRegister()) {
4123 __ Store(operand, ToRegister(instr->value()), representation);
4124 } else {
4125 LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
4126 if (IsInteger32Constant(operand_value)) {
4127 int32_t value = ToInteger32(operand_value);
4128 if (representation.IsSmi()) {
4129 __ Move(operand, Smi::FromInt(value));
4130
4131 } else {
4132 __ movl(operand, Immediate(value));
4133 }
4134 } else {
4135 Handle<Object> handle_value = ToHandle(operand_value);
4136 __ Move(operand, handle_value);
4137 }
4138 }
4139
4140 if (hinstr->NeedsWriteBarrier()) {
4141 Register elements = ToRegister(instr->elements());
4142 DCHECK(instr->value()->IsRegister());
4143 Register value = ToRegister(instr->value());
4144 DCHECK(!key->IsConstantOperand());
4145 SmiCheck check_needed = hinstr->value()->type().IsHeapObject()
4146 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
4147 // Compute address of modified element and store it into key register.
4148 Register key_reg(ToRegister(key));
4149 __ leap(key_reg, operand);
4150 __ RecordWrite(elements,
4151 key_reg,
4152 value,
4153 kSaveFPRegs,
4154 EMIT_REMEMBERED_SET,
4155 check_needed,
4156 hinstr->PointersToHereCheckForValue());
4157 }
4158}
4159
4160
4161void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
4162 if (instr->is_fixed_typed_array()) {
4163 DoStoreKeyedExternalArray(instr);
4164 } else if (instr->hydrogen()->value()->representation().IsDouble()) {
4165 DoStoreKeyedFixedDoubleArray(instr);
4166 } else {
4167 DoStoreKeyedFixedArray(instr);
4168 }
4169}
4170
4171
4172void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
4173 DCHECK(ToRegister(instr->context()).is(rsi));
4174 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
4175 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
4176 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
4177
4178 if (instr->hydrogen()->HasVectorAndSlot()) {
4179 EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
4180 }
4181
4182 Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
4183 isolate(), instr->language_mode(),
4184 instr->hydrogen()->initialization_state()).code();
4185 CallCode(ic, RelocInfo::CODE_TARGET, instr);
4186}
4187
4188
4189void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
4190 class DeferredMaybeGrowElements final : public LDeferredCode {
4191 public:
4192 DeferredMaybeGrowElements(LCodeGen* codegen, LMaybeGrowElements* instr)
4193 : LDeferredCode(codegen), instr_(instr) {}
4194 void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
4195 LInstruction* instr() override { return instr_; }
4196
4197 private:
4198 LMaybeGrowElements* instr_;
4199 };
4200
4201 Register result = rax;
4202 DeferredMaybeGrowElements* deferred =
4203 new (zone()) DeferredMaybeGrowElements(this, instr);
4204 LOperand* key = instr->key();
4205 LOperand* current_capacity = instr->current_capacity();
4206
4207 DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
4208 DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
4209 DCHECK(key->IsConstantOperand() || key->IsRegister());
4210 DCHECK(current_capacity->IsConstantOperand() ||
4211 current_capacity->IsRegister());
4212
4213 if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
4214 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4215 int32_t constant_capacity =
4216 ToInteger32(LConstantOperand::cast(current_capacity));
4217 if (constant_key >= constant_capacity) {
4218 // Deferred case.
4219 __ jmp(deferred->entry());
4220 }
4221 } else if (key->IsConstantOperand()) {
4222 int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
4223 __ cmpl(ToRegister(current_capacity), Immediate(constant_key));
4224 __ j(less_equal, deferred->entry());
4225 } else if (current_capacity->IsConstantOperand()) {
4226 int32_t constant_capacity =
4227 ToInteger32(LConstantOperand::cast(current_capacity));
4228 __ cmpl(ToRegister(key), Immediate(constant_capacity));
4229 __ j(greater_equal, deferred->entry());
4230 } else {
4231 __ cmpl(ToRegister(key), ToRegister(current_capacity));
4232 __ j(greater_equal, deferred->entry());
4233 }
4234
4235 if (instr->elements()->IsRegister()) {
4236 __ movp(result, ToRegister(instr->elements()));
4237 } else {
4238 __ movp(result, ToOperand(instr->elements()));
4239 }
4240
4241 __ bind(deferred->exit());
4242}
4243
4244
4245void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
4246 // TODO(3095996): Get rid of this. For now, we need to make the
4247 // result register contain a valid pointer because it is already
4248 // contained in the register pointer map.
4249 Register result = rax;
4250 __ Move(result, Smi::FromInt(0));
4251
4252 // We have to call a stub.
4253 {
4254 PushSafepointRegistersScope scope(this);
4255 if (instr->object()->IsConstantOperand()) {
4256 LConstantOperand* constant_object =
4257 LConstantOperand::cast(instr->object());
4258 if (IsSmiConstant(constant_object)) {
4259 Smi* immediate = ToSmi(constant_object);
4260 __ Move(result, immediate);
4261 } else {
4262 Handle<Object> handle_value = ToHandle(constant_object);
4263 __ Move(result, handle_value);
4264 }
4265 } else if (instr->object()->IsRegister()) {
4266 __ Move(result, ToRegister(instr->object()));
4267 } else {
4268 __ movp(result, ToOperand(instr->object()));
4269 }
4270
4271 LOperand* key = instr->key();
4272 if (key->IsConstantOperand()) {
4273 __ Move(rbx, ToSmi(LConstantOperand::cast(key)));
4274 } else {
4275 __ Move(rbx, ToRegister(key));
4276 __ Integer32ToSmi(rbx, rbx);
4277 }
4278
4279 GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
4280 instr->hydrogen()->kind());
4281 __ CallStub(&stub);
4282 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4283 __ StoreToSafepointRegisterSlot(result, result);
4284 }
4285
4286 // Deopt on smi, which means the elements array changed to dictionary mode.
4287 Condition is_smi = __ CheckSmi(result);
4288 DeoptimizeIf(is_smi, instr, Deoptimizer::kSmi);
4289}
4290
4291
4292void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
4293 Register object_reg = ToRegister(instr->object());
4294
4295 Handle<Map> from_map = instr->original_map();
4296 Handle<Map> to_map = instr->transitioned_map();
4297 ElementsKind from_kind = instr->from_kind();
4298 ElementsKind to_kind = instr->to_kind();
4299
4300 Label not_applicable;
4301 __ Cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
4302 __ j(not_equal, &not_applicable);
4303 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
4304 Register new_map_reg = ToRegister(instr->new_map_temp());
4305 __ Move(new_map_reg, to_map, RelocInfo::EMBEDDED_OBJECT);
4306 __ movp(FieldOperand(object_reg, HeapObject::kMapOffset), new_map_reg);
4307 // Write barrier.
4308 __ RecordWriteForMap(object_reg, new_map_reg, ToRegister(instr->temp()),
4309 kDontSaveFPRegs);
4310 } else {
4311 DCHECK(object_reg.is(rax));
4312 DCHECK(ToRegister(instr->context()).is(rsi));
4313 PushSafepointRegistersScope scope(this);
4314 __ Move(rbx, to_map);
4315 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
4316 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
4317 __ CallStub(&stub);
4318 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
4319 }
4320 __ bind(&not_applicable);
4321}
4322
4323
4324void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
4325 Register object = ToRegister(instr->object());
4326 Register temp = ToRegister(instr->temp());
4327 Label no_memento_found;
4328 __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
4329 DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound);
4330 __ bind(&no_memento_found);
4331}
4332
4333
4334void LCodeGen::DoStringAdd(LStringAdd* instr) {
4335 DCHECK(ToRegister(instr->context()).is(rsi));
4336 DCHECK(ToRegister(instr->left()).is(rdx));
4337 DCHECK(ToRegister(instr->right()).is(rax));
4338 StringAddStub stub(isolate(),
4339 instr->hydrogen()->flags(),
4340 instr->hydrogen()->pretenure_flag());
4341 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
4342}
4343
4344
4345void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
4346 class DeferredStringCharCodeAt final : public LDeferredCode {
4347 public:
4348 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
4349 : LDeferredCode(codegen), instr_(instr) { }
4350 void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
4351 LInstruction* instr() override { return instr_; }
4352
4353 private:
4354 LStringCharCodeAt* instr_;
4355 };
4356
4357 DeferredStringCharCodeAt* deferred =
4358 new(zone()) DeferredStringCharCodeAt(this, instr);
4359
4360 StringCharLoadGenerator::Generate(masm(),
4361 ToRegister(instr->string()),
4362 ToRegister(instr->index()),
4363 ToRegister(instr->result()),
4364 deferred->entry());
4365 __ bind(deferred->exit());
4366}
4367
4368
4369void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
4370 Register string = ToRegister(instr->string());
4371 Register result = ToRegister(instr->result());
4372
4373 // TODO(3095996): Get rid of this. For now, we need to make the
4374 // result register contain a valid pointer because it is already
4375 // contained in the register pointer map.
4376 __ Set(result, 0);
4377
4378 PushSafepointRegistersScope scope(this);
4379 __ Push(string);
4380 // Push the index as a smi. This is safe because of the checks in
4381 // DoStringCharCodeAt above.
4382 STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
4383 if (instr->index()->IsConstantOperand()) {
4384 int32_t const_index = ToInteger32(LConstantOperand::cast(instr->index()));
4385 __ Push(Smi::FromInt(const_index));
4386 } else {
4387 Register index = ToRegister(instr->index());
4388 __ Integer32ToSmi(index, index);
4389 __ Push(index);
4390 }
4391 CallRuntimeFromDeferred(
4392 Runtime::kStringCharCodeAtRT, 2, instr, instr->context());
4393 __ AssertSmi(rax);
4394 __ SmiToInteger32(rax, rax);
4395 __ StoreToSafepointRegisterSlot(result, rax);
4396}
4397
4398
4399void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
4400 class DeferredStringCharFromCode final : public LDeferredCode {
4401 public:
4402 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
4403 : LDeferredCode(codegen), instr_(instr) { }
4404 void Generate() override {
4405 codegen()->DoDeferredStringCharFromCode(instr_);
4406 }
4407 LInstruction* instr() override { return instr_; }
4408
4409 private:
4410 LStringCharFromCode* instr_;
4411 };
4412
4413 DeferredStringCharFromCode* deferred =
4414 new(zone()) DeferredStringCharFromCode(this, instr);
4415
4416 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
4417 Register char_code = ToRegister(instr->char_code());
4418 Register result = ToRegister(instr->result());
4419 DCHECK(!char_code.is(result));
4420
4421 __ cmpl(char_code, Immediate(String::kMaxOneByteCharCode));
4422 __ j(above, deferred->entry());
4423 __ movsxlq(char_code, char_code);
4424 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
4425 __ movp(result, FieldOperand(result,
4426 char_code, times_pointer_size,
4427 FixedArray::kHeaderSize));
4428 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
4429 __ j(equal, deferred->entry());
4430 __ bind(deferred->exit());
4431}
4432
4433
4434void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
4435 Register char_code = ToRegister(instr->char_code());
4436 Register result = ToRegister(instr->result());
4437
4438 // TODO(3095996): Get rid of this. For now, we need to make the
4439 // result register contain a valid pointer because it is already
4440 // contained in the register pointer map.
4441 __ Set(result, 0);
4442
4443 PushSafepointRegistersScope scope(this);
4444 __ Integer32ToSmi(char_code, char_code);
4445 __ Push(char_code);
4446 CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
4447 instr->context());
4448 __ StoreToSafepointRegisterSlot(result, rax);
4449}
4450
4451
4452void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
4453 LOperand* input = instr->value();
4454 DCHECK(input->IsRegister() || input->IsStackSlot());
4455 LOperand* output = instr->result();
4456 DCHECK(output->IsDoubleRegister());
4457 if (input->IsRegister()) {
4458 __ Cvtlsi2sd(ToDoubleRegister(output), ToRegister(input));
4459 } else {
4460 __ Cvtlsi2sd(ToDoubleRegister(output), ToOperand(input));
4461 }
4462}
4463
4464
4465void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
4466 LOperand* input = instr->value();
4467 LOperand* output = instr->result();
4468
4469 __ LoadUint32(ToDoubleRegister(output), ToRegister(input));
4470}
4471
4472
4473void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
4474 class DeferredNumberTagI final : public LDeferredCode {
4475 public:
4476 DeferredNumberTagI(LCodeGen* codegen, LNumberTagI* instr)
4477 : LDeferredCode(codegen), instr_(instr) { }
4478 void Generate() override {
4479 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4480 instr_->temp2(), SIGNED_INT32);
4481 }
4482 LInstruction* instr() override { return instr_; }
4483
4484 private:
4485 LNumberTagI* instr_;
4486 };
4487
4488 LOperand* input = instr->value();
4489 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4490 Register reg = ToRegister(input);
4491
4492 if (SmiValuesAre32Bits()) {
4493 __ Integer32ToSmi(reg, reg);
4494 } else {
4495 DCHECK(SmiValuesAre31Bits());
4496 DeferredNumberTagI* deferred = new(zone()) DeferredNumberTagI(this, instr);
4497 __ Integer32ToSmi(reg, reg);
4498 __ j(overflow, deferred->entry());
4499 __ bind(deferred->exit());
4500 }
4501}
4502
4503
4504void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4505 class DeferredNumberTagU final : public LDeferredCode {
4506 public:
4507 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4508 : LDeferredCode(codegen), instr_(instr) { }
4509 void Generate() override {
4510 codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp1(),
4511 instr_->temp2(), UNSIGNED_INT32);
4512 }
4513 LInstruction* instr() override { return instr_; }
4514
4515 private:
4516 LNumberTagU* instr_;
4517 };
4518
4519 LOperand* input = instr->value();
4520 DCHECK(input->IsRegister() && input->Equals(instr->result()));
4521 Register reg = ToRegister(input);
4522
4523 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4524 __ cmpl(reg, Immediate(Smi::kMaxValue));
4525 __ j(above, deferred->entry());
4526 __ Integer32ToSmi(reg, reg);
4527 __ bind(deferred->exit());
4528}
4529
4530
4531void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
4532 LOperand* value,
4533 LOperand* temp1,
4534 LOperand* temp2,
4535 IntegerSignedness signedness) {
4536 Label done, slow;
4537 Register reg = ToRegister(value);
4538 Register tmp = ToRegister(temp1);
4539 XMMRegister temp_xmm = ToDoubleRegister(temp2);
4540
4541 // Load value into temp_xmm which will be preserved across potential call to
4542 // runtime (MacroAssembler::EnterExitFrameEpilogue preserves only allocatable
4543 // XMM registers on x64).
4544 if (signedness == SIGNED_INT32) {
4545 DCHECK(SmiValuesAre31Bits());
4546 // There was overflow, so bits 30 and 31 of the original integer
4547 // disagree. Try to allocate a heap number in new space and store
4548 // the value in there. If that fails, call the runtime system.
4549 __ SmiToInteger32(reg, reg);
4550 __ xorl(reg, Immediate(0x80000000));
4551 __ Cvtlsi2sd(temp_xmm, reg);
4552 } else {
4553 DCHECK(signedness == UNSIGNED_INT32);
4554 __ LoadUint32(temp_xmm, reg);
4555 }
4556
4557 if (FLAG_inline_new) {
4558 __ AllocateHeapNumber(reg, tmp, &slow);
4559 __ jmp(&done, kPointerSize == kInt64Size ? Label::kNear : Label::kFar);
4560 }
4561
4562 // Slow case: Call the runtime system to do the number allocation.
4563 __ bind(&slow);
4564 {
4565 // Put a valid pointer value in the stack slot where the result
4566 // register is stored, as this register is in the pointer map, but contains
4567 // an integer value.
4568 __ Set(reg, 0);
4569
4570 // Preserve the value of all registers.
4571 PushSafepointRegistersScope scope(this);
4572
4573 // NumberTagIU uses the context from the frame, rather than
4574 // the environment's HContext or HInlinedContext value.
4575 // They only call Runtime::kAllocateHeapNumber.
4576 // The corresponding HChange instructions are added in a phase that does
4577 // not have easy access to the local context.
4578 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4579 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4580 RecordSafepointWithRegisters(
4581 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4582 __ StoreToSafepointRegisterSlot(reg, rax);
4583 }
4584
4585 // Done. Put the value in temp_xmm into the value of the allocated heap
4586 // number.
4587 __ bind(&done);
4588 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), temp_xmm);
4589}
4590
4591
4592void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4593 class DeferredNumberTagD final : public LDeferredCode {
4594 public:
4595 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4596 : LDeferredCode(codegen), instr_(instr) { }
4597 void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
4598 LInstruction* instr() override { return instr_; }
4599
4600 private:
4601 LNumberTagD* instr_;
4602 };
4603
4604 XMMRegister input_reg = ToDoubleRegister(instr->value());
4605 Register reg = ToRegister(instr->result());
4606 Register tmp = ToRegister(instr->temp());
4607
4608 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4609 if (FLAG_inline_new) {
4610 __ AllocateHeapNumber(reg, tmp, deferred->entry());
4611 } else {
4612 __ jmp(deferred->entry());
4613 }
4614 __ bind(deferred->exit());
4615 __ Movsd(FieldOperand(reg, HeapNumber::kValueOffset), input_reg);
4616}
4617
4618
4619void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4620 // TODO(3095996): Get rid of this. For now, we need to make the
4621 // result register contain a valid pointer because it is already
4622 // contained in the register pointer map.
4623 Register reg = ToRegister(instr->result());
4624 __ Move(reg, Smi::FromInt(0));
4625
4626 {
4627 PushSafepointRegistersScope scope(this);
4628 // NumberTagD uses the context from the frame, rather than
4629 // the environment's HContext or HInlinedContext value.
4630 // They only call Runtime::kAllocateHeapNumber.
4631 // The corresponding HChange instructions are added in a phase that does
4632 // not have easy access to the local context.
4633 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
4634 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4635 RecordSafepointWithRegisters(
4636 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4637 __ movp(kScratchRegister, rax);
4638 }
4639 __ movp(reg, kScratchRegister);
4640}
4641
4642
4643void LCodeGen::DoSmiTag(LSmiTag* instr) {
4644 HChange* hchange = instr->hydrogen();
4645 Register input = ToRegister(instr->value());
4646 Register output = ToRegister(instr->result());
4647 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4648 hchange->value()->CheckFlag(HValue::kUint32)) {
4649 Condition is_smi = __ CheckUInteger32ValidSmiValue(input);
4650 DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kOverflow);
4651 }
4652 __ Integer32ToSmi(output, input);
4653 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4654 !hchange->value()->CheckFlag(HValue::kUint32)) {
4655 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
4656 }
4657}
4658
4659
4660void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4661 DCHECK(instr->value()->Equals(instr->result()));
4662 Register input = ToRegister(instr->value());
4663 if (instr->needs_check()) {
4664 Condition is_smi = __ CheckSmi(input);
4665 DeoptimizeIf(NegateCondition(is_smi), instr, Deoptimizer::kNotASmi);
4666 } else {
4667 __ AssertSmi(input);
4668 }
4669 __ SmiToInteger32(input, input);
4670}
4671
4672
4673void LCodeGen::EmitNumberUntagD(LNumberUntagD* instr, Register input_reg,
4674 XMMRegister result_reg, NumberUntagDMode mode) {
4675 bool can_convert_undefined_to_nan =
4676 instr->hydrogen()->can_convert_undefined_to_nan();
4677 bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
4678
4679 Label convert, load_smi, done;
4680
4681 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4682 // Smi check.
4683 __ JumpIfSmi(input_reg, &load_smi, Label::kNear);
4684
4685 // Heap number map check.
4686 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4687 Heap::kHeapNumberMapRootIndex);
4688
4689 // On x64 it is safe to load at heap number offset before evaluating the map
4690 // check, since all heap objects are at least two words long.
4691 __ Movsd(result_reg, FieldOperand(input_reg, HeapNumber::kValueOffset));
4692
4693 if (can_convert_undefined_to_nan) {
4694 __ j(not_equal, &convert, Label::kNear);
4695 } else {
4696 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
4697 }
4698
4699 if (deoptimize_on_minus_zero) {
4700 XMMRegister xmm_scratch = double_scratch0();
4701 __ Xorpd(xmm_scratch, xmm_scratch);
4702 __ Ucomisd(xmm_scratch, result_reg);
4703 __ j(not_equal, &done, Label::kNear);
4704 __ Movmskpd(kScratchRegister, result_reg);
4705 __ testl(kScratchRegister, Immediate(1));
4706 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
4707 }
4708 __ jmp(&done, Label::kNear);
4709
4710 if (can_convert_undefined_to_nan) {
4711 __ bind(&convert);
4712
4713 // Convert undefined (and hole) to NaN. Compute NaN as 0/0.
4714 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4715 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
4716
4717 __ Pcmpeqd(result_reg, result_reg);
4718 __ jmp(&done, Label::kNear);
4719 }
4720 } else {
4721 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4722 }
4723
4724 // Smi to XMM conversion
4725 __ bind(&load_smi);
4726 __ SmiToInteger32(kScratchRegister, input_reg);
4727 __ Cvtlsi2sd(result_reg, kScratchRegister);
4728 __ bind(&done);
4729}
4730
4731
4732void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
4733 Register input_reg = ToRegister(instr->value());
4734
4735 if (instr->truncating()) {
4736 Label no_heap_number, check_bools, check_false;
4737
4738 // Heap number map check.
4739 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4740 Heap::kHeapNumberMapRootIndex);
4741 __ j(not_equal, &no_heap_number, Label::kNear);
4742 __ TruncateHeapNumberToI(input_reg, input_reg);
4743 __ jmp(done);
4744
4745 __ bind(&no_heap_number);
4746 // Check for Oddballs. Undefined/False is converted to zero and True to one
4747 // for truncating conversions.
4748 __ CompareRoot(input_reg, Heap::kUndefinedValueRootIndex);
4749 __ j(not_equal, &check_bools, Label::kNear);
4750 __ Set(input_reg, 0);
4751 __ jmp(done);
4752
4753 __ bind(&check_bools);
4754 __ CompareRoot(input_reg, Heap::kTrueValueRootIndex);
4755 __ j(not_equal, &check_false, Label::kNear);
4756 __ Set(input_reg, 1);
4757 __ jmp(done);
4758
4759 __ bind(&check_false);
4760 __ CompareRoot(input_reg, Heap::kFalseValueRootIndex);
4761 DeoptimizeIf(not_equal, instr,
4762 Deoptimizer::kNotAHeapNumberUndefinedBoolean);
4763 __ Set(input_reg, 0);
4764 } else {
4765 XMMRegister scratch = ToDoubleRegister(instr->temp());
4766 DCHECK(!scratch.is(xmm0));
4767 __ CompareRoot(FieldOperand(input_reg, HeapObject::kMapOffset),
4768 Heap::kHeapNumberMapRootIndex);
4769 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
4770 __ Movsd(xmm0, FieldOperand(input_reg, HeapNumber::kValueOffset));
4771 __ Cvttsd2si(input_reg, xmm0);
4772 __ Cvtlsi2sd(scratch, input_reg);
4773 __ Ucomisd(xmm0, scratch);
4774 DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
4775 DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
4776 if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
4777 __ testl(input_reg, input_reg);
4778 __ j(not_zero, done);
4779 __ Movmskpd(input_reg, xmm0);
4780 __ andl(input_reg, Immediate(1));
4781 DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
4782 }
4783 }
4784}
4785
4786
4787void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
4788 class DeferredTaggedToI final : public LDeferredCode {
4789 public:
4790 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
4791 : LDeferredCode(codegen), instr_(instr) { }
4792 void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
4793 LInstruction* instr() override { return instr_; }
4794
4795 private:
4796 LTaggedToI* instr_;
4797 };
4798
4799 LOperand* input = instr->value();
4800 DCHECK(input->IsRegister());
4801 DCHECK(input->Equals(instr->result()));
4802 Register input_reg = ToRegister(input);
4803
4804 if (instr->hydrogen()->value()->representation().IsSmi()) {
4805 __ SmiToInteger32(input_reg, input_reg);
4806 } else {
4807 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
4808 __ JumpIfNotSmi(input_reg, deferred->entry());
4809 __ SmiToInteger32(input_reg, input_reg);
4810 __ bind(deferred->exit());
4811 }
4812}
4813
4814
4815void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4816 LOperand* input = instr->value();
4817 DCHECK(input->IsRegister());
4818 LOperand* result = instr->result();
4819 DCHECK(result->IsDoubleRegister());
4820
4821 Register input_reg = ToRegister(input);
4822 XMMRegister result_reg = ToDoubleRegister(result);
4823
4824 HValue* value = instr->hydrogen()->value();
4825 NumberUntagDMode mode = value->representation().IsSmi()
4826 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4827
4828 EmitNumberUntagD(instr, input_reg, result_reg, mode);
4829}
4830
4831
4832void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
4833 LOperand* input = instr->value();
4834 DCHECK(input->IsDoubleRegister());
4835 LOperand* result = instr->result();
4836 DCHECK(result->IsRegister());
4837
4838 XMMRegister input_reg = ToDoubleRegister(input);
4839 Register result_reg = ToRegister(result);
4840
4841 if (instr->truncating()) {
4842 __ TruncateDoubleToI(result_reg, input_reg);
4843 } else {
4844 Label lost_precision, is_nan, minus_zero, done;
4845 XMMRegister xmm_scratch = double_scratch0();
4846 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4847 __ DoubleToI(result_reg, input_reg, xmm_scratch,
4848 instr->hydrogen()->GetMinusZeroMode(), &lost_precision,
4849 &is_nan, &minus_zero, dist);
4850 __ jmp(&done, dist);
4851 __ bind(&lost_precision);
4852 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
4853 __ bind(&is_nan);
4854 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
4855 __ bind(&minus_zero);
4856 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
4857 __ bind(&done);
4858 }
4859}
4860
4861
4862void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
4863 LOperand* input = instr->value();
4864 DCHECK(input->IsDoubleRegister());
4865 LOperand* result = instr->result();
4866 DCHECK(result->IsRegister());
4867
4868 XMMRegister input_reg = ToDoubleRegister(input);
4869 Register result_reg = ToRegister(result);
4870
4871 Label lost_precision, is_nan, minus_zero, done;
4872 XMMRegister xmm_scratch = double_scratch0();
4873 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
4874 __ DoubleToI(result_reg, input_reg, xmm_scratch,
4875 instr->hydrogen()->GetMinusZeroMode(), &lost_precision, &is_nan,
4876 &minus_zero, dist);
4877 __ jmp(&done, dist);
4878 __ bind(&lost_precision);
4879 DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
4880 __ bind(&is_nan);
4881 DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
4882 __ bind(&minus_zero);
4883 DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
4884 __ bind(&done);
4885 __ Integer32ToSmi(result_reg, result_reg);
4886 DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
4887}
4888
4889
4890void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
4891 LOperand* input = instr->value();
4892 Condition cc = masm()->CheckSmi(ToRegister(input));
4893 DeoptimizeIf(NegateCondition(cc), instr, Deoptimizer::kNotASmi);
4894}
4895
4896
4897void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
4898 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
4899 LOperand* input = instr->value();
4900 Condition cc = masm()->CheckSmi(ToRegister(input));
4901 DeoptimizeIf(cc, instr, Deoptimizer::kSmi);
4902 }
4903}
4904
4905
4906void LCodeGen::DoCheckArrayBufferNotNeutered(
4907 LCheckArrayBufferNotNeutered* instr) {
4908 Register view = ToRegister(instr->view());
4909
4910 __ movp(kScratchRegister,
4911 FieldOperand(view, JSArrayBufferView::kBufferOffset));
4912 __ testb(FieldOperand(kScratchRegister, JSArrayBuffer::kBitFieldOffset),
4913 Immediate(1 << JSArrayBuffer::WasNeutered::kShift));
4914 DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds);
4915}
4916
4917
4918void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
4919 Register input = ToRegister(instr->value());
4920
4921 __ movp(kScratchRegister, FieldOperand(input, HeapObject::kMapOffset));
4922
4923 if (instr->hydrogen()->is_interval_check()) {
4924 InstanceType first;
4925 InstanceType last;
4926 instr->hydrogen()->GetCheckInterval(&first, &last);
4927
4928 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4929 Immediate(static_cast<int8_t>(first)));
4930
4931 // If there is only one type in the interval check for equality.
4932 if (first == last) {
4933 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
4934 } else {
4935 DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType);
4936 // Omit check for the last type.
4937 if (last != LAST_TYPE) {
4938 __ cmpb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4939 Immediate(static_cast<int8_t>(last)));
4940 DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType);
4941 }
4942 }
4943 } else {
4944 uint8_t mask;
4945 uint8_t tag;
4946 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
4947
4948 if (base::bits::IsPowerOfTwo32(mask)) {
4949 DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
4950 __ testb(FieldOperand(kScratchRegister, Map::kInstanceTypeOffset),
4951 Immediate(mask));
4952 DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
4953 Deoptimizer::kWrongInstanceType);
4954 } else {
4955 __ movzxbl(kScratchRegister,
4956 FieldOperand(kScratchRegister, Map::kInstanceTypeOffset));
4957 __ andb(kScratchRegister, Immediate(mask));
4958 __ cmpb(kScratchRegister, Immediate(tag));
4959 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
4960 }
4961 }
4962}
4963
4964
4965void LCodeGen::DoCheckValue(LCheckValue* instr) {
4966 Register reg = ToRegister(instr->value());
4967 __ Cmp(reg, instr->hydrogen()->object().handle());
4968 DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch);
4969}
4970
4971
4972void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
4973 {
4974 PushSafepointRegistersScope scope(this);
4975 __ Push(object);
4976 __ Set(rsi, 0);
4977 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
4978 RecordSafepointWithRegisters(
4979 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
4980
4981 __ testp(rax, Immediate(kSmiTagMask));
4982 }
4983 DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed);
4984}
4985
4986
4987void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
4988 class DeferredCheckMaps final : public LDeferredCode {
4989 public:
4990 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
4991 : LDeferredCode(codegen), instr_(instr), object_(object) {
4992 SetExit(check_maps());
4993 }
4994 void Generate() override {
4995 codegen()->DoDeferredInstanceMigration(instr_, object_);
4996 }
4997 Label* check_maps() { return &check_maps_; }
4998 LInstruction* instr() override { return instr_; }
4999
5000 private:
5001 LCheckMaps* instr_;
5002 Label check_maps_;
5003 Register object_;
5004 };
5005
5006 if (instr->hydrogen()->IsStabilityCheck()) {
5007 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5008 for (int i = 0; i < maps->size(); ++i) {
5009 AddStabilityDependency(maps->at(i).handle());
5010 }
5011 return;
5012 }
5013
5014 LOperand* input = instr->value();
5015 DCHECK(input->IsRegister());
5016 Register reg = ToRegister(input);
5017
5018 DeferredCheckMaps* deferred = NULL;
5019 if (instr->hydrogen()->HasMigrationTarget()) {
5020 deferred = new(zone()) DeferredCheckMaps(this, instr, reg);
5021 __ bind(deferred->check_maps());
5022 }
5023
5024 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
5025 Label success;
5026 for (int i = 0; i < maps->size() - 1; i++) {
5027 Handle<Map> map = maps->at(i).handle();
5028 __ CompareMap(reg, map);
5029 __ j(equal, &success, Label::kNear);
5030 }
5031
5032 Handle<Map> map = maps->at(maps->size() - 1).handle();
5033 __ CompareMap(reg, map);
5034 if (instr->hydrogen()->HasMigrationTarget()) {
5035 __ j(not_equal, deferred->entry());
5036 } else {
5037 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
5038 }
5039
5040 __ bind(&success);
5041}
5042
5043
5044void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
5045 XMMRegister value_reg = ToDoubleRegister(instr->unclamped());
5046 XMMRegister xmm_scratch = double_scratch0();
5047 Register result_reg = ToRegister(instr->result());
5048 __ ClampDoubleToUint8(value_reg, xmm_scratch, result_reg);
5049}
5050
5051
5052void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
5053 DCHECK(instr->unclamped()->Equals(instr->result()));
5054 Register value_reg = ToRegister(instr->result());
5055 __ ClampUint8(value_reg);
5056}
5057
5058
5059void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
5060 DCHECK(instr->unclamped()->Equals(instr->result()));
5061 Register input_reg = ToRegister(instr->unclamped());
5062 XMMRegister temp_xmm_reg = ToDoubleRegister(instr->temp_xmm());
5063 XMMRegister xmm_scratch = double_scratch0();
5064 Label is_smi, done, heap_number;
5065 Label::Distance dist = DeoptEveryNTimes() ? Label::kFar : Label::kNear;
5066 __ JumpIfSmi(input_reg, &is_smi, dist);
5067
5068 // Check for heap number
5069 __ Cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
5070 factory()->heap_number_map());
5071 __ j(equal, &heap_number, Label::kNear);
5072
5073 // Check for undefined. Undefined is converted to zero for clamping
5074 // conversions.
5075 __ Cmp(input_reg, factory()->undefined_value());
5076 DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
5077 __ xorl(input_reg, input_reg);
5078 __ jmp(&done, Label::kNear);
5079
5080 // Heap number
5081 __ bind(&heap_number);
5082 __ Movsd(xmm_scratch, FieldOperand(input_reg, HeapNumber::kValueOffset));
5083 __ ClampDoubleToUint8(xmm_scratch, temp_xmm_reg, input_reg);
5084 __ jmp(&done, Label::kNear);
5085
5086 // smi
5087 __ bind(&is_smi);
5088 __ SmiToInteger32(input_reg, input_reg);
5089 __ ClampUint8(input_reg);
5090
5091 __ bind(&done);
5092}
5093
5094
5095void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
5096 XMMRegister value_reg = ToDoubleRegister(instr->value());
5097 Register result_reg = ToRegister(instr->result());
5098 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
5099 __ Movq(result_reg, value_reg);
5100 __ shrq(result_reg, Immediate(32));
5101 } else {
5102 __ Movd(result_reg, value_reg);
5103 }
5104}
5105
5106
5107void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
5108 Register hi_reg = ToRegister(instr->hi());
5109 Register lo_reg = ToRegister(instr->lo());
5110 XMMRegister result_reg = ToDoubleRegister(instr->result());
5111 __ movl(kScratchRegister, hi_reg);
5112 __ shlq(kScratchRegister, Immediate(32));
5113 __ orq(kScratchRegister, lo_reg);
5114 __ Movq(result_reg, kScratchRegister);
5115}
5116
5117
5118void LCodeGen::DoAllocate(LAllocate* instr) {
5119 class DeferredAllocate final : public LDeferredCode {
5120 public:
5121 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
5122 : LDeferredCode(codegen), instr_(instr) { }
5123 void Generate() override { codegen()->DoDeferredAllocate(instr_); }
5124 LInstruction* instr() override { return instr_; }
5125
5126 private:
5127 LAllocate* instr_;
5128 };
5129
5130 DeferredAllocate* deferred =
5131 new(zone()) DeferredAllocate(this, instr);
5132
5133 Register result = ToRegister(instr->result());
5134 Register temp = ToRegister(instr->temp());
5135
5136 // Allocate memory for the object.
5137 AllocationFlags flags = TAG_OBJECT;
5138 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
5139 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
5140 }
5141 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5142 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5143 flags = static_cast<AllocationFlags>(flags | PRETENURE);
5144 }
5145
5146 if (instr->size()->IsConstantOperand()) {
5147 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5148 CHECK(size <= Page::kMaxRegularHeapObjectSize);
5149 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5150 } else {
5151 Register size = ToRegister(instr->size());
5152 __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
5153 }
5154
5155 __ bind(deferred->exit());
5156
5157 if (instr->hydrogen()->MustPrefillWithFiller()) {
5158 if (instr->size()->IsConstantOperand()) {
5159 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5160 __ movl(temp, Immediate((size / kPointerSize) - 1));
5161 } else {
5162 temp = ToRegister(instr->size());
5163 __ sarp(temp, Immediate(kPointerSizeLog2));
5164 __ decl(temp);
5165 }
5166 Label loop;
5167 __ bind(&loop);
5168 __ Move(FieldOperand(result, temp, times_pointer_size, 0),
5169 isolate()->factory()->one_pointer_filler_map());
5170 __ decl(temp);
5171 __ j(not_zero, &loop);
5172 }
5173}
5174
5175
5176void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
5177 Register result = ToRegister(instr->result());
5178
5179 // TODO(3095996): Get rid of this. For now, we need to make the
5180 // result register contain a valid pointer because it is already
5181 // contained in the register pointer map.
5182 __ Move(result, Smi::FromInt(0));
5183
5184 PushSafepointRegistersScope scope(this);
5185 if (instr->size()->IsRegister()) {
5186 Register size = ToRegister(instr->size());
5187 DCHECK(!size.is(result));
5188 __ Integer32ToSmi(size, size);
5189 __ Push(size);
5190 } else {
5191 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
5192 __ Push(Smi::FromInt(size));
5193 }
5194
5195 int flags = 0;
5196 if (instr->hydrogen()->IsOldSpaceAllocation()) {
5197 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
5198 flags = AllocateTargetSpace::update(flags, OLD_SPACE);
5199 } else {
5200 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
5201 }
5202 __ Push(Smi::FromInt(flags));
5203
5204 CallRuntimeFromDeferred(
5205 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
5206 __ StoreToSafepointRegisterSlot(result, rax);
5207}
5208
5209
5210void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5211 DCHECK(ToRegister(instr->value()).is(rax));
5212 __ Push(rax);
5213 CallRuntime(Runtime::kToFastProperties, 1, instr);
5214}
5215
5216
5217void LCodeGen::DoTypeof(LTypeof* instr) {
5218 DCHECK(ToRegister(instr->context()).is(rsi));
5219 DCHECK(ToRegister(instr->value()).is(rbx));
5220 Label end, do_call;
5221 Register value_register = ToRegister(instr->value());
5222 __ JumpIfNotSmi(value_register, &do_call);
5223 __ Move(rax, isolate()->factory()->number_string());
5224 __ jmp(&end);
5225 __ bind(&do_call);
5226 TypeofStub stub(isolate());
5227 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5228 __ bind(&end);
5229}
5230
5231
5232void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
5233 DCHECK(!operand->IsDoubleRegister());
5234 if (operand->IsConstantOperand()) {
5235 __ Push(ToHandle(LConstantOperand::cast(operand)));
5236 } else if (operand->IsRegister()) {
5237 __ Push(ToRegister(operand));
5238 } else {
5239 __ Push(ToOperand(operand));
5240 }
5241}
5242
5243
5244void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5245 Register input = ToRegister(instr->value());
5246 Condition final_branch_condition = EmitTypeofIs(instr, input);
5247 if (final_branch_condition != no_condition) {
5248 EmitBranch(instr, final_branch_condition);
5249 }
5250}
5251
5252
5253Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
5254 Label* true_label = instr->TrueLabel(chunk_);
5255 Label* false_label = instr->FalseLabel(chunk_);
5256 Handle<String> type_name = instr->type_literal();
5257 int left_block = instr->TrueDestination(chunk_);
5258 int right_block = instr->FalseDestination(chunk_);
5259 int next_block = GetNextEmittedBlock();
5260
5261 Label::Distance true_distance = left_block == next_block ? Label::kNear
5262 : Label::kFar;
5263 Label::Distance false_distance = right_block == next_block ? Label::kNear
5264 : Label::kFar;
5265 Condition final_branch_condition = no_condition;
5266 Factory* factory = isolate()->factory();
5267 if (String::Equals(type_name, factory->number_string())) {
5268 __ JumpIfSmi(input, true_label, true_distance);
5269 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset),
5270 Heap::kHeapNumberMapRootIndex);
5271
5272 final_branch_condition = equal;
5273
5274 } else if (String::Equals(type_name, factory->string_string())) {
5275 __ JumpIfSmi(input, false_label, false_distance);
5276 __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
5277 final_branch_condition = below;
5278
5279 } else if (String::Equals(type_name, factory->symbol_string())) {
5280 __ JumpIfSmi(input, false_label, false_distance);
5281 __ CmpObjectType(input, SYMBOL_TYPE, input);
5282 final_branch_condition = equal;
5283
5284 } else if (String::Equals(type_name, factory->boolean_string())) {
5285 __ CompareRoot(input, Heap::kTrueValueRootIndex);
5286 __ j(equal, true_label, true_distance);
5287 __ CompareRoot(input, Heap::kFalseValueRootIndex);
5288 final_branch_condition = equal;
5289
5290 } else if (String::Equals(type_name, factory->undefined_string())) {
Ben Murdoch097c5b22016-05-18 11:27:45 +01005291 __ CompareRoot(input, Heap::kNullValueRootIndex);
5292 __ j(equal, false_label, false_distance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005293 __ JumpIfSmi(input, false_label, false_distance);
5294 // Check for undetectable objects => true.
5295 __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5296 __ testb(FieldOperand(input, Map::kBitFieldOffset),
5297 Immediate(1 << Map::kIsUndetectable));
5298 final_branch_condition = not_zero;
5299
5300 } else if (String::Equals(type_name, factory->function_string())) {
5301 __ JumpIfSmi(input, false_label, false_distance);
5302 // Check for callable and not undetectable objects => true.
5303 __ movp(input, FieldOperand(input, HeapObject::kMapOffset));
5304 __ movzxbl(input, FieldOperand(input, Map::kBitFieldOffset));
5305 __ andb(input,
5306 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5307 __ cmpb(input, Immediate(1 << Map::kIsCallable));
5308 final_branch_condition = equal;
5309
5310 } else if (String::Equals(type_name, factory->object_string())) {
5311 __ JumpIfSmi(input, false_label, false_distance);
5312 __ CompareRoot(input, Heap::kNullValueRootIndex);
5313 __ j(equal, true_label, true_distance);
5314 STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
5315 __ CmpObjectType(input, FIRST_JS_RECEIVER_TYPE, input);
5316 __ j(below, false_label, false_distance);
5317 // Check for callable or undetectable objects => false.
5318 __ testb(FieldOperand(input, Map::kBitFieldOffset),
5319 Immediate((1 << Map::kIsCallable) | (1 << Map::kIsUndetectable)));
5320 final_branch_condition = zero;
5321
5322// clang-format off
5323#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
5324 } else if (String::Equals(type_name, factory->type##_string())) { \
5325 __ JumpIfSmi(input, false_label, false_distance); \
5326 __ CompareRoot(FieldOperand(input, HeapObject::kMapOffset), \
5327 Heap::k##Type##MapRootIndex); \
5328 final_branch_condition = equal;
5329 SIMD128_TYPES(SIMD128_TYPE)
5330#undef SIMD128_TYPE
5331 // clang-format on
5332
5333 } else {
5334 __ jmp(false_label, false_distance);
5335 }
5336
5337 return final_branch_condition;
5338}
5339
5340
5341void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
5342 if (info()->ShouldEnsureSpaceForLazyDeopt()) {
5343 // Ensure that we have enough space after the previous lazy-bailout
5344 // instruction for patching the code here.
5345 int current_pc = masm()->pc_offset();
5346 if (current_pc < last_lazy_deopt_pc_ + space_needed) {
5347 int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
5348 __ Nop(padding_size);
5349 }
5350 }
5351 last_lazy_deopt_pc_ = masm()->pc_offset();
5352}
5353
5354
5355void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
5356 last_lazy_deopt_pc_ = masm()->pc_offset();
5357 DCHECK(instr->HasEnvironment());
5358 LEnvironment* env = instr->environment();
5359 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5360 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5361}
5362
5363
5364void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
5365 Deoptimizer::BailoutType type = instr->hydrogen()->type();
5366 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
5367 // needed return address), even though the implementation of LAZY and EAGER is
5368 // now identical. When LAZY is eventually completely folded into EAGER, remove
5369 // the special case below.
5370 if (info()->IsStub() && type == Deoptimizer::EAGER) {
5371 type = Deoptimizer::LAZY;
5372 }
5373 DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
5374}
5375
5376
5377void LCodeGen::DoDummy(LDummy* instr) {
5378 // Nothing to see here, move on!
5379}
5380
5381
5382void LCodeGen::DoDummyUse(LDummyUse* instr) {
5383 // Nothing to see here, move on!
5384}
5385
5386
5387void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5388 PushSafepointRegistersScope scope(this);
5389 __ movp(rsi, Operand(rbp, StandardFrameConstants::kContextOffset));
5390 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5391 RecordSafepointWithLazyDeopt(instr, RECORD_SAFEPOINT_WITH_REGISTERS, 0);
5392 DCHECK(instr->HasEnvironment());
5393 LEnvironment* env = instr->environment();
5394 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5395}
5396
5397
5398void LCodeGen::DoStackCheck(LStackCheck* instr) {
5399 class DeferredStackCheck final : public LDeferredCode {
5400 public:
5401 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5402 : LDeferredCode(codegen), instr_(instr) { }
5403 void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
5404 LInstruction* instr() override { return instr_; }
5405
5406 private:
5407 LStackCheck* instr_;
5408 };
5409
5410 DCHECK(instr->HasEnvironment());
5411 LEnvironment* env = instr->environment();
5412 // There is no LLazyBailout instruction for stack-checks. We have to
5413 // prepare for lazy deoptimization explicitly here.
5414 if (instr->hydrogen()->is_function_entry()) {
5415 // Perform stack overflow check.
5416 Label done;
5417 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5418 __ j(above_equal, &done, Label::kNear);
5419
5420 DCHECK(instr->context()->IsRegister());
5421 DCHECK(ToRegister(instr->context()).is(rsi));
5422 CallCode(isolate()->builtins()->StackCheck(),
5423 RelocInfo::CODE_TARGET,
5424 instr);
5425 __ bind(&done);
5426 } else {
5427 DCHECK(instr->hydrogen()->is_backwards_branch());
5428 // Perform stack overflow check if this goto needs it before jumping.
5429 DeferredStackCheck* deferred_stack_check =
5430 new(zone()) DeferredStackCheck(this, instr);
5431 __ CompareRoot(rsp, Heap::kStackLimitRootIndex);
5432 __ j(below, deferred_stack_check->entry());
5433 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5434 __ bind(instr->done_label());
5435 deferred_stack_check->SetExit(instr->done_label());
5436 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5437 // Don't record a deoptimization index for the safepoint here.
5438 // This will be done explicitly when emitting call and the safepoint in
5439 // the deferred code.
5440 }
5441}
5442
5443
5444void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
5445 // This is a pseudo-instruction that ensures that the environment here is
5446 // properly registered for deoptimization and records the assembler's PC
5447 // offset.
5448 LEnvironment* environment = instr->environment();
5449
5450 // If the environment were already registered, we would have no way of
5451 // backpatching it with the spill slot operands.
5452 DCHECK(!environment->HasBeenRegistered());
5453 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
5454
5455 GenerateOsrPrologue();
5456}
5457
5458
5459void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
5460 DCHECK(ToRegister(instr->context()).is(rsi));
5461
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005462 Label use_cache, call_runtime;
Ben Murdoch097c5b22016-05-18 11:27:45 +01005463 __ CheckEnumCache(&call_runtime);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005464
5465 __ movp(rax, FieldOperand(rax, HeapObject::kMapOffset));
5466 __ jmp(&use_cache, Label::kNear);
5467
5468 // Get the set of properties to enumerate.
5469 __ bind(&call_runtime);
5470 __ Push(rax);
Ben Murdoch097c5b22016-05-18 11:27:45 +01005471 CallRuntime(Runtime::kForInEnumerate, instr);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005472 __ bind(&use_cache);
5473}
5474
5475
5476void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
5477 Register map = ToRegister(instr->map());
5478 Register result = ToRegister(instr->result());
5479 Label load_cache, done;
5480 __ EnumLength(result, map);
5481 __ Cmp(result, Smi::FromInt(0));
5482 __ j(not_equal, &load_cache, Label::kNear);
5483 __ LoadRoot(result, Heap::kEmptyFixedArrayRootIndex);
5484 __ jmp(&done, Label::kNear);
5485 __ bind(&load_cache);
5486 __ LoadInstanceDescriptors(map, result);
5487 __ movp(result,
5488 FieldOperand(result, DescriptorArray::kEnumCacheOffset));
5489 __ movp(result,
5490 FieldOperand(result, FixedArray::SizeFor(instr->idx())));
5491 __ bind(&done);
5492 Condition cc = masm()->CheckSmi(result);
5493 DeoptimizeIf(cc, instr, Deoptimizer::kNoCache);
5494}
5495
5496
5497void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5498 Register object = ToRegister(instr->value());
5499 __ cmpp(ToRegister(instr->map()),
5500 FieldOperand(object, HeapObject::kMapOffset));
5501 DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
5502}
5503
5504
5505void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5506 Register object,
5507 Register index) {
5508 PushSafepointRegistersScope scope(this);
5509 __ Push(object);
5510 __ Push(index);
5511 __ xorp(rsi, rsi);
5512 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
5513 RecordSafepointWithRegisters(
5514 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
5515 __ StoreToSafepointRegisterSlot(object, rax);
5516}
5517
5518
5519void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
5520 class DeferredLoadMutableDouble final : public LDeferredCode {
5521 public:
5522 DeferredLoadMutableDouble(LCodeGen* codegen,
5523 LLoadFieldByIndex* instr,
5524 Register object,
5525 Register index)
5526 : LDeferredCode(codegen),
5527 instr_(instr),
5528 object_(object),
5529 index_(index) {
5530 }
5531 void Generate() override {
5532 codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
5533 }
5534 LInstruction* instr() override { return instr_; }
5535
5536 private:
5537 LLoadFieldByIndex* instr_;
5538 Register object_;
5539 Register index_;
5540 };
5541
5542 Register object = ToRegister(instr->object());
5543 Register index = ToRegister(instr->index());
5544
5545 DeferredLoadMutableDouble* deferred;
5546 deferred = new(zone()) DeferredLoadMutableDouble(this, instr, object, index);
5547
5548 Label out_of_object, done;
5549 __ Move(kScratchRegister, Smi::FromInt(1));
5550 __ testp(index, kScratchRegister);
5551 __ j(not_zero, deferred->entry());
5552
5553 __ sarp(index, Immediate(1));
5554
5555 __ SmiToInteger32(index, index);
5556 __ cmpl(index, Immediate(0));
5557 __ j(less, &out_of_object, Label::kNear);
5558 __ movp(object, FieldOperand(object,
5559 index,
5560 times_pointer_size,
5561 JSObject::kHeaderSize));
5562 __ jmp(&done, Label::kNear);
5563
5564 __ bind(&out_of_object);
5565 __ movp(object, FieldOperand(object, JSObject::kPropertiesOffset));
5566 __ negl(index);
5567 // Index is now equal to out of object property index plus 1.
5568 __ movp(object, FieldOperand(object,
5569 index,
5570 times_pointer_size,
5571 FixedArray::kHeaderSize - kPointerSize));
5572 __ bind(deferred->exit());
5573 __ bind(&done);
5574}
5575
5576
5577void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
5578 Register context = ToRegister(instr->context());
5579 __ movp(Operand(rbp, StandardFrameConstants::kContextOffset), context);
5580}
5581
5582
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00005583#undef __
5584
5585} // namespace internal
5586} // namespace v8
5587
5588#endif // V8_TARGET_ARCH_X64