blob: bf95a9c97ff70e141990c4eab47edd9d71cad813 [file] [log] [blame]
Ben Murdoch4a90d5f2016-03-22 12:00:34 +00001// Copyright 2012 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#if V8_TARGET_ARCH_MIPS64
6
7#include "src/regexp/mips64/regexp-macro-assembler-mips64.h"
8
9#include "src/code-stubs.h"
10#include "src/log.h"
11#include "src/macro-assembler.h"
12#include "src/regexp/regexp-macro-assembler.h"
13#include "src/regexp/regexp-stack.h"
14#include "src/unicode.h"
15
16namespace v8 {
17namespace internal {
18
19#ifndef V8_INTERPRETED_REGEXP
20/*
21 * This assembler uses the following register assignment convention
22 * - t3 : Temporarily stores the index of capture start after a matching pass
23 * for a global regexp.
24 * - a5 : Pointer to current code object (Code*) including heap object tag.
25 * - a6 : Current position in input, as negative offset from end of string.
26 * Please notice that this is the byte offset, not the character offset!
27 * - a7 : Currently loaded character. Must be loaded using
28 * LoadCurrentCharacter before using any of the dispatch methods.
29 * - t0 : Points to tip of backtrack stack
30 * - t1 : Unused.
31 * - t2 : End of input (points to byte after last character in input).
32 * - fp : Frame pointer. Used to access arguments, local variables and
33 * RegExp registers.
34 * - sp : Points to tip of C stack.
35 *
36 * The remaining registers are free for computations.
37 * Each call to a public method should retain this convention.
38 *
39 * TODO(plind): O32 documented here with intent of having single 32/64 codebase
40 * in the future.
41 *
42 * The O32 stack will have the following structure:
43 *
44 * - fp[76] Isolate* isolate (address of the current isolate)
45 * - fp[72] direct_call (if 1, direct call from JavaScript code,
46 * if 0, call through the runtime system).
47 * - fp[68] stack_area_base (High end of the memory area to use as
48 * backtracking stack).
49 * - fp[64] capture array size (may fit multiple sets of matches)
50 * - fp[60] int* capture_array (int[num_saved_registers_], for output).
51 * - fp[44..59] MIPS O32 four argument slots
52 * - fp[40] secondary link/return address used by native call.
53 * --- sp when called ---
54 * - fp[36] return address (lr).
55 * - fp[32] old frame pointer (r11).
56 * - fp[0..31] backup of registers s0..s7.
57 * --- frame pointer ----
58 * - fp[-4] end of input (address of end of string).
59 * - fp[-8] start of input (address of first character in string).
60 * - fp[-12] start index (character index of start).
61 * - fp[-16] void* input_string (location of a handle containing the string).
62 * - fp[-20] success counter (only for global regexps to count matches).
63 * - fp[-24] Offset of location before start of input (effectively character
64 * string start - 1). Used to initialize capture registers to a
65 * non-position.
66 * - fp[-28] At start (if 1, we are starting at the start of the
67 * string, otherwise 0)
68 * - fp[-32] register 0 (Only positions must be stored in the first
69 * - register 1 num_saved_registers_ registers)
70 * - ...
71 * - register num_registers-1
72 * --- sp ---
73 *
74 *
75 * The N64 stack will have the following structure:
76 *
77 * - fp[88] Isolate* isolate (address of the current isolate) kIsolate
78 * - fp[80] secondary link/return address used by exit frame on native call. kSecondaryReturnAddress
79 kStackFrameHeader
80 * --- sp when called ---
81 * - fp[72] ra Return from RegExp code (ra). kReturnAddress
82 * - fp[64] s9, old-fp Old fp, callee saved(s9).
83 * - fp[0..63] s0..s7 Callee-saved registers s0..s7.
84 * --- frame pointer ----
85 * - fp[-8] direct_call (1 = direct call from JS, 0 = from runtime) kDirectCall
86 * - fp[-16] stack_base (Top of backtracking stack). kStackHighEnd
87 * - fp[-24] capture array size (may fit multiple sets of matches) kNumOutputRegisters
88 * - fp[-32] int* capture_array (int[num_saved_registers_], for output). kRegisterOutput
89 * - fp[-40] end of input (address of end of string). kInputEnd
90 * - fp[-48] start of input (address of first character in string). kInputStart
91 * - fp[-56] start index (character index of start). kStartIndex
92 * - fp[-64] void* input_string (location of a handle containing the string). kInputString
93 * - fp[-72] success counter (only for global regexps to count matches). kSuccessfulCaptures
94 * - fp[-80] Offset of location before start of input (effectively character kStringStartMinusOne
95 * position -1). Used to initialize capture registers to a
96 * non-position.
97 * --------- The following output registers are 32-bit values. ---------
98 * - fp[-88] register 0 (Only positions must be stored in the first kRegisterZero
99 * - register 1 num_saved_registers_ registers)
100 * - ...
101 * - register num_registers-1
102 * --- sp ---
103 *
104 * The first num_saved_registers_ registers are initialized to point to
105 * "character -1" in the string (i.e., char_size() bytes before the first
106 * character of the string). The remaining registers start out as garbage.
107 *
108 * The data up to the return address must be placed there by the calling
109 * code and the remaining arguments are passed in registers, e.g. by calling the
110 * code entry as cast to a function with the signature:
111 * int (*match)(String* input_string,
112 * int start_index,
113 * Address start,
114 * Address end,
115 * Address secondary_return_address, // Only used by native call.
116 * int* capture_output_array,
117 * byte* stack_area_base,
118 * bool direct_call = false,
119 * void* return_address,
120 * Isolate* isolate);
121 * The call is performed by NativeRegExpMacroAssembler::Execute()
122 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
123 * in mips/simulator-mips.h.
124 * When calling as a non-direct call (i.e., from C++ code), the return address
125 * area is overwritten with the ra register by the RegExp code. When doing a
126 * direct call from generated code, the return address is placed there by
127 * the calling code, as in a normal exit frame.
128 */
129
130#define __ ACCESS_MASM(masm_)
131
132RegExpMacroAssemblerMIPS::RegExpMacroAssemblerMIPS(Isolate* isolate, Zone* zone,
133 Mode mode,
134 int registers_to_save)
135 : NativeRegExpMacroAssembler(isolate, zone),
136 masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize,
137 CodeObjectRequired::kYes)),
138 mode_(mode),
139 num_registers_(registers_to_save),
140 num_saved_registers_(registers_to_save),
141 entry_label_(),
142 start_label_(),
143 success_label_(),
144 backtrack_label_(),
145 exit_label_(),
146 internal_failure_label_() {
147 DCHECK_EQ(0, registers_to_save % 2);
148 __ jmp(&entry_label_); // We'll write the entry code later.
149 // If the code gets too big or corrupted, an internal exception will be
150 // raised, and we will exit right away.
151 __ bind(&internal_failure_label_);
152 __ li(v0, Operand(FAILURE));
153 __ Ret();
154 __ bind(&start_label_); // And then continue from here.
155}
156
157
158RegExpMacroAssemblerMIPS::~RegExpMacroAssemblerMIPS() {
159 delete masm_;
160 // Unuse labels in case we throw away the assembler without calling GetCode.
161 entry_label_.Unuse();
162 start_label_.Unuse();
163 success_label_.Unuse();
164 backtrack_label_.Unuse();
165 exit_label_.Unuse();
166 check_preempt_label_.Unuse();
167 stack_overflow_label_.Unuse();
168 internal_failure_label_.Unuse();
169}
170
171
172int RegExpMacroAssemblerMIPS::stack_limit_slack() {
173 return RegExpStack::kStackLimitSlack;
174}
175
176
177void RegExpMacroAssemblerMIPS::AdvanceCurrentPosition(int by) {
178 if (by != 0) {
179 __ Daddu(current_input_offset(),
180 current_input_offset(), Operand(by * char_size()));
181 }
182}
183
184
185void RegExpMacroAssemblerMIPS::AdvanceRegister(int reg, int by) {
186 DCHECK(reg >= 0);
187 DCHECK(reg < num_registers_);
188 if (by != 0) {
189 __ ld(a0, register_location(reg));
190 __ Daddu(a0, a0, Operand(by));
191 __ sd(a0, register_location(reg));
192 }
193}
194
195
196void RegExpMacroAssemblerMIPS::Backtrack() {
197 CheckPreemption();
198 // Pop Code* offset from backtrack stack, add Code* and jump to location.
199 Pop(a0);
200 __ Daddu(a0, a0, code_pointer());
201 __ Jump(a0);
202}
203
204
205void RegExpMacroAssemblerMIPS::Bind(Label* label) {
206 __ bind(label);
207}
208
209
210void RegExpMacroAssemblerMIPS::CheckCharacter(uint32_t c, Label* on_equal) {
211 BranchOrBacktrack(on_equal, eq, current_character(), Operand(c));
212}
213
214
215void RegExpMacroAssemblerMIPS::CheckCharacterGT(uc16 limit, Label* on_greater) {
216 BranchOrBacktrack(on_greater, gt, current_character(), Operand(limit));
217}
218
219
220void RegExpMacroAssemblerMIPS::CheckAtStart(Label* on_at_start) {
221 __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
222 __ Daddu(a0, current_input_offset(), Operand(-char_size()));
223 BranchOrBacktrack(on_at_start, eq, a0, Operand(a1));
224}
225
226
227void RegExpMacroAssemblerMIPS::CheckNotAtStart(int cp_offset,
228 Label* on_not_at_start) {
229 __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
230 __ Daddu(a0, current_input_offset(),
231 Operand(-char_size() + cp_offset * char_size()));
232 BranchOrBacktrack(on_not_at_start, ne, a0, Operand(a1));
233}
234
235
236void RegExpMacroAssemblerMIPS::CheckCharacterLT(uc16 limit, Label* on_less) {
237 BranchOrBacktrack(on_less, lt, current_character(), Operand(limit));
238}
239
240
241void RegExpMacroAssemblerMIPS::CheckGreedyLoop(Label* on_equal) {
242 Label backtrack_non_equal;
243 __ lw(a0, MemOperand(backtrack_stackpointer(), 0));
244 __ Branch(&backtrack_non_equal, ne, current_input_offset(), Operand(a0));
245 __ Daddu(backtrack_stackpointer(),
246 backtrack_stackpointer(),
247 Operand(kIntSize));
248 __ bind(&backtrack_non_equal);
249 BranchOrBacktrack(on_equal, eq, current_input_offset(), Operand(a0));
250}
251
252
253void RegExpMacroAssemblerMIPS::CheckNotBackReferenceIgnoreCase(
Ben Murdoch097c5b22016-05-18 11:27:45 +0100254 int start_reg, bool read_backward, bool unicode, Label* on_no_match) {
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000255 Label fallthrough;
256 __ ld(a0, register_location(start_reg)); // Index of start of capture.
257 __ ld(a1, register_location(start_reg + 1)); // Index of end of capture.
258 __ Dsubu(a1, a1, a0); // Length of capture.
259
260 // At this point, the capture registers are either both set or both cleared.
261 // If the capture length is zero, then the capture is either empty or cleared.
262 // Fall through in both cases.
263 __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
264
265 if (read_backward) {
266 __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
267 __ Daddu(t1, t1, a1);
268 BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
269 } else {
270 __ Daddu(t1, a1, current_input_offset());
271 // Check that there are enough characters left in the input.
272 BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
273 }
274
275 if (mode_ == LATIN1) {
276 Label success;
277 Label fail;
278 Label loop_check;
279
280 // a0 - offset of start of capture.
281 // a1 - length of capture.
282 __ Daddu(a0, a0, Operand(end_of_input_address()));
283 __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
284 if (read_backward) {
285 __ Dsubu(a2, a2, Operand(a1));
286 }
287 __ Daddu(a1, a0, Operand(a1));
288
289 // a0 - Address of start of capture.
290 // a1 - Address of end of capture.
291 // a2 - Address of current input position.
292
293 Label loop;
294 __ bind(&loop);
295 __ lbu(a3, MemOperand(a0, 0));
296 __ daddiu(a0, a0, char_size());
297 __ lbu(a4, MemOperand(a2, 0));
298 __ daddiu(a2, a2, char_size());
299
300 __ Branch(&loop_check, eq, a4, Operand(a3));
301
302 // Mismatch, try case-insensitive match (converting letters to lower-case).
303 __ Or(a3, a3, Operand(0x20)); // Convert capture character to lower-case.
304 __ Or(a4, a4, Operand(0x20)); // Also convert input character.
305 __ Branch(&fail, ne, a4, Operand(a3));
306 __ Dsubu(a3, a3, Operand('a'));
307 __ Branch(&loop_check, ls, a3, Operand('z' - 'a'));
308 // Latin-1: Check for values in range [224,254] but not 247.
309 __ Dsubu(a3, a3, Operand(224 - 'a'));
310 // Weren't Latin-1 letters.
311 __ Branch(&fail, hi, a3, Operand(254 - 224));
312 // Check for 247.
313 __ Branch(&fail, eq, a3, Operand(247 - 224));
314
315 __ bind(&loop_check);
316 __ Branch(&loop, lt, a0, Operand(a1));
317 __ jmp(&success);
318
319 __ bind(&fail);
320 GoTo(on_no_match);
321
322 __ bind(&success);
323 // Compute new value of character position after the matched part.
324 __ Dsubu(current_input_offset(), a2, end_of_input_address());
325 if (read_backward) {
326 __ ld(t1, register_location(start_reg)); // Index of start of capture.
327 __ ld(a2, register_location(start_reg + 1)); // Index of end of capture.
328 __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
329 __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
330 }
331 } else {
332 DCHECK(mode_ == UC16);
333 // Put regexp engine registers on stack.
334 RegList regexp_registers_to_retain = current_input_offset().bit() |
335 current_character().bit() | backtrack_stackpointer().bit();
336 __ MultiPush(regexp_registers_to_retain);
337
338 int argument_count = 4;
339 __ PrepareCallCFunction(argument_count, a2);
340
341 // a0 - offset of start of capture.
342 // a1 - length of capture.
343
344 // Put arguments into arguments registers.
345 // Parameters are
346 // a0: Address byte_offset1 - Address captured substring's start.
347 // a1: Address byte_offset2 - Address of current character position.
348 // a2: size_t byte_length - length of capture in bytes(!).
Ben Murdoch097c5b22016-05-18 11:27:45 +0100349 // a3: Isolate* isolate or 0 if unicode flag.
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000350
351 // Address of start of capture.
352 __ Daddu(a0, a0, Operand(end_of_input_address()));
353 // Length of capture.
354 __ mov(a2, a1);
355 // Save length in callee-save register for use on return.
356 __ mov(s3, a1);
357 // Address of current input position.
358 __ Daddu(a1, current_input_offset(), Operand(end_of_input_address()));
359 if (read_backward) {
360 __ Dsubu(a1, a1, Operand(s3));
361 }
362 // Isolate.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100363#ifdef V8_I18N_SUPPORT
364 if (unicode) {
365 __ mov(a3, zero_reg);
366 } else // NOLINT
367#endif // V8_I18N_SUPPORT
368 {
369 __ li(a3, Operand(ExternalReference::isolate_address(masm_->isolate())));
370 }
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000371
372 {
373 AllowExternalCallThatCantCauseGC scope(masm_);
374 ExternalReference function =
375 ExternalReference::re_case_insensitive_compare_uc16(masm_->isolate());
376 __ CallCFunction(function, argument_count);
377 }
378
379 // Restore regexp engine registers.
380 __ MultiPop(regexp_registers_to_retain);
381 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
382 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
383
384 // Check if function returned non-zero for success or zero for failure.
385 BranchOrBacktrack(on_no_match, eq, v0, Operand(zero_reg));
386 // On success, increment position by length of capture.
387 if (read_backward) {
388 __ Dsubu(current_input_offset(), current_input_offset(), Operand(s3));
389 } else {
390 __ Daddu(current_input_offset(), current_input_offset(), Operand(s3));
391 }
392 }
393
394 __ bind(&fallthrough);
395}
396
397
398void RegExpMacroAssemblerMIPS::CheckNotBackReference(int start_reg,
399 bool read_backward,
400 Label* on_no_match) {
401 Label fallthrough;
402 Label success;
403
404 // Find length of back-referenced capture.
405 __ ld(a0, register_location(start_reg));
406 __ ld(a1, register_location(start_reg + 1));
407 __ Dsubu(a1, a1, a0); // Length to check.
408
409 // At this point, the capture registers are either both set or both cleared.
410 // If the capture length is zero, then the capture is either empty or cleared.
411 // Fall through in both cases.
412 __ Branch(&fallthrough, eq, a1, Operand(zero_reg));
413
414 if (read_backward) {
415 __ ld(t1, MemOperand(frame_pointer(), kStringStartMinusOne));
416 __ Daddu(t1, t1, a1);
417 BranchOrBacktrack(on_no_match, le, current_input_offset(), Operand(t1));
418 } else {
419 __ Daddu(t1, a1, current_input_offset());
420 // Check that there are enough characters left in the input.
421 BranchOrBacktrack(on_no_match, gt, t1, Operand(zero_reg));
422 }
423
424 // Compute pointers to match string and capture string.
425 __ Daddu(a0, a0, Operand(end_of_input_address()));
426 __ Daddu(a2, end_of_input_address(), Operand(current_input_offset()));
427 if (read_backward) {
428 __ Dsubu(a2, a2, Operand(a1));
429 }
430 __ Daddu(a1, a1, Operand(a0));
431
432 Label loop;
433 __ bind(&loop);
434 if (mode_ == LATIN1) {
435 __ lbu(a3, MemOperand(a0, 0));
436 __ daddiu(a0, a0, char_size());
437 __ lbu(a4, MemOperand(a2, 0));
438 __ daddiu(a2, a2, char_size());
439 } else {
440 DCHECK(mode_ == UC16);
441 __ lhu(a3, MemOperand(a0, 0));
442 __ daddiu(a0, a0, char_size());
443 __ lhu(a4, MemOperand(a2, 0));
444 __ daddiu(a2, a2, char_size());
445 }
446 BranchOrBacktrack(on_no_match, ne, a3, Operand(a4));
447 __ Branch(&loop, lt, a0, Operand(a1));
448
449 // Move current character position to position after match.
450 __ Dsubu(current_input_offset(), a2, end_of_input_address());
451 if (read_backward) {
452 __ ld(t1, register_location(start_reg)); // Index of start of capture.
453 __ ld(a2, register_location(start_reg + 1)); // Index of end of capture.
454 __ Daddu(current_input_offset(), current_input_offset(), Operand(t1));
455 __ Dsubu(current_input_offset(), current_input_offset(), Operand(a2));
456 }
457 __ bind(&fallthrough);
458}
459
460
461void RegExpMacroAssemblerMIPS::CheckNotCharacter(uint32_t c,
462 Label* on_not_equal) {
463 BranchOrBacktrack(on_not_equal, ne, current_character(), Operand(c));
464}
465
466
467void RegExpMacroAssemblerMIPS::CheckCharacterAfterAnd(uint32_t c,
468 uint32_t mask,
469 Label* on_equal) {
470 __ And(a0, current_character(), Operand(mask));
471 Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
472 BranchOrBacktrack(on_equal, eq, a0, rhs);
473}
474
475
476void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterAnd(uint32_t c,
477 uint32_t mask,
478 Label* on_not_equal) {
479 __ And(a0, current_character(), Operand(mask));
480 Operand rhs = (c == 0) ? Operand(zero_reg) : Operand(c);
481 BranchOrBacktrack(on_not_equal, ne, a0, rhs);
482}
483
484
485void RegExpMacroAssemblerMIPS::CheckNotCharacterAfterMinusAnd(
486 uc16 c,
487 uc16 minus,
488 uc16 mask,
489 Label* on_not_equal) {
490 DCHECK(minus < String::kMaxUtf16CodeUnit);
491 __ Dsubu(a0, current_character(), Operand(minus));
492 __ And(a0, a0, Operand(mask));
493 BranchOrBacktrack(on_not_equal, ne, a0, Operand(c));
494}
495
496
497void RegExpMacroAssemblerMIPS::CheckCharacterInRange(
498 uc16 from,
499 uc16 to,
500 Label* on_in_range) {
501 __ Dsubu(a0, current_character(), Operand(from));
502 // Unsigned lower-or-same condition.
503 BranchOrBacktrack(on_in_range, ls, a0, Operand(to - from));
504}
505
506
507void RegExpMacroAssemblerMIPS::CheckCharacterNotInRange(
508 uc16 from,
509 uc16 to,
510 Label* on_not_in_range) {
511 __ Dsubu(a0, current_character(), Operand(from));
512 // Unsigned higher condition.
513 BranchOrBacktrack(on_not_in_range, hi, a0, Operand(to - from));
514}
515
516
517void RegExpMacroAssemblerMIPS::CheckBitInTable(
518 Handle<ByteArray> table,
519 Label* on_bit_set) {
520 __ li(a0, Operand(table));
521 if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
522 __ And(a1, current_character(), Operand(kTableSize - 1));
523 __ Daddu(a0, a0, a1);
524 } else {
525 __ Daddu(a0, a0, current_character());
526 }
527
528 __ lbu(a0, FieldMemOperand(a0, ByteArray::kHeaderSize));
529 BranchOrBacktrack(on_bit_set, ne, a0, Operand(zero_reg));
530}
531
532
533bool RegExpMacroAssemblerMIPS::CheckSpecialCharacterClass(uc16 type,
534 Label* on_no_match) {
535 // Range checks (c in min..max) are generally implemented by an unsigned
536 // (c - min) <= (max - min) check.
537 switch (type) {
538 case 's':
539 // Match space-characters.
540 if (mode_ == LATIN1) {
541 // One byte space characters are '\t'..'\r', ' ' and \u00a0.
542 Label success;
543 __ Branch(&success, eq, current_character(), Operand(' '));
544 // Check range 0x09..0x0d.
545 __ Dsubu(a0, current_character(), Operand('\t'));
546 __ Branch(&success, ls, a0, Operand('\r' - '\t'));
547 // \u00a0 (NBSP).
548 BranchOrBacktrack(on_no_match, ne, a0, Operand(0x00a0 - '\t'));
549 __ bind(&success);
550 return true;
551 }
552 return false;
553 case 'S':
554 // The emitted code for generic character classes is good enough.
555 return false;
556 case 'd':
557 // Match Latin1 digits ('0'..'9').
558 __ Dsubu(a0, current_character(), Operand('0'));
559 BranchOrBacktrack(on_no_match, hi, a0, Operand('9' - '0'));
560 return true;
561 case 'D':
562 // Match non Latin1-digits.
563 __ Dsubu(a0, current_character(), Operand('0'));
564 BranchOrBacktrack(on_no_match, ls, a0, Operand('9' - '0'));
565 return true;
566 case '.': {
567 // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
568 __ Xor(a0, current_character(), Operand(0x01));
569 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
570 __ Dsubu(a0, a0, Operand(0x0b));
571 BranchOrBacktrack(on_no_match, ls, a0, Operand(0x0c - 0x0b));
572 if (mode_ == UC16) {
573 // Compare original value to 0x2028 and 0x2029, using the already
574 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
575 // 0x201d (0x2028 - 0x0b) or 0x201e.
576 __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
577 BranchOrBacktrack(on_no_match, ls, a0, Operand(1));
578 }
579 return true;
580 }
581 case 'n': {
582 // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029).
583 __ Xor(a0, current_character(), Operand(0x01));
584 // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c.
585 __ Dsubu(a0, a0, Operand(0x0b));
586 if (mode_ == LATIN1) {
587 BranchOrBacktrack(on_no_match, hi, a0, Operand(0x0c - 0x0b));
588 } else {
589 Label done;
590 BranchOrBacktrack(&done, ls, a0, Operand(0x0c - 0x0b));
591 // Compare original value to 0x2028 and 0x2029, using the already
592 // computed (current_char ^ 0x01 - 0x0b). I.e., check for
593 // 0x201d (0x2028 - 0x0b) or 0x201e.
594 __ Dsubu(a0, a0, Operand(0x2028 - 0x0b));
595 BranchOrBacktrack(on_no_match, hi, a0, Operand(1));
596 __ bind(&done);
597 }
598 return true;
599 }
600 case 'w': {
601 if (mode_ != LATIN1) {
602 // Table is 256 entries, so all Latin1 characters can be tested.
603 BranchOrBacktrack(on_no_match, hi, current_character(), Operand('z'));
604 }
605 ExternalReference map = ExternalReference::re_word_character_map();
606 __ li(a0, Operand(map));
607 __ Daddu(a0, a0, current_character());
608 __ lbu(a0, MemOperand(a0, 0));
609 BranchOrBacktrack(on_no_match, eq, a0, Operand(zero_reg));
610 return true;
611 }
612 case 'W': {
613 Label done;
614 if (mode_ != LATIN1) {
615 // Table is 256 entries, so all Latin1 characters can be tested.
616 __ Branch(&done, hi, current_character(), Operand('z'));
617 }
618 ExternalReference map = ExternalReference::re_word_character_map();
619 __ li(a0, Operand(map));
620 __ Daddu(a0, a0, current_character());
621 __ lbu(a0, MemOperand(a0, 0));
622 BranchOrBacktrack(on_no_match, ne, a0, Operand(zero_reg));
623 if (mode_ != LATIN1) {
624 __ bind(&done);
625 }
626 return true;
627 }
628 case '*':
629 // Match any character.
630 return true;
631 // No custom implementation (yet): s(UC16), S(UC16).
632 default:
633 return false;
634 }
635}
636
637
638void RegExpMacroAssemblerMIPS::Fail() {
639 __ li(v0, Operand(FAILURE));
640 __ jmp(&exit_label_);
641}
642
643
644Handle<HeapObject> RegExpMacroAssemblerMIPS::GetCode(Handle<String> source) {
645 Label return_v0;
646 if (masm_->has_exception()) {
647 // If the code gets corrupted due to long regular expressions and lack of
648 // space on trampolines, an internal exception flag is set. If this case
649 // is detected, we will jump into exit sequence right away.
650 __ bind_to(&entry_label_, internal_failure_label_.pos());
651 } else {
652 // Finalize code - write the entry point code now we know how many
653 // registers we need.
654
655 // Entry code:
656 __ bind(&entry_label_);
657
658 // Tell the system that we have a stack frame. Because the type is MANUAL,
659 // no is generated.
660 FrameScope scope(masm_, StackFrame::MANUAL);
661
662 // Actually emit code to start a new stack frame.
663 // Push arguments
664 // Save callee-save registers.
665 // Start new stack frame.
666 // Store link register in existing stack-cell.
667 // Order here should correspond to order of offset constants in header file.
668 // TODO(plind): we save s0..s7, but ONLY use s3 here - use the regs
669 // or dont save.
670 RegList registers_to_retain = s0.bit() | s1.bit() | s2.bit() |
671 s3.bit() | s4.bit() | s5.bit() | s6.bit() | s7.bit() | fp.bit();
672 RegList argument_registers = a0.bit() | a1.bit() | a2.bit() | a3.bit();
673
Ben Murdoch097c5b22016-05-18 11:27:45 +0100674 argument_registers |= a4.bit() | a5.bit() | a6.bit() | a7.bit();
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000675
676 __ MultiPush(argument_registers | registers_to_retain | ra.bit());
677 // Set frame pointer in space for it if this is not a direct call
678 // from generated code.
679 // TODO(plind): this 8 is the # of argument regs, should have definition.
680 __ Daddu(frame_pointer(), sp, Operand(8 * kPointerSize));
681 __ mov(a0, zero_reg);
682 __ push(a0); // Make room for success counter and initialize it to 0.
683 __ push(a0); // Make room for "string start - 1" constant.
684
685 // Check if we have space on the stack for registers.
686 Label stack_limit_hit;
687 Label stack_ok;
688
689 ExternalReference stack_limit =
690 ExternalReference::address_of_stack_limit(masm_->isolate());
691 __ li(a0, Operand(stack_limit));
692 __ ld(a0, MemOperand(a0));
693 __ Dsubu(a0, sp, a0);
694 // Handle it if the stack pointer is already below the stack limit.
695 __ Branch(&stack_limit_hit, le, a0, Operand(zero_reg));
696 // Check if there is room for the variable number of registers above
697 // the stack limit.
698 __ Branch(&stack_ok, hs, a0, Operand(num_registers_ * kPointerSize));
699 // Exit with OutOfMemory exception. There is not enough space on the stack
700 // for our working registers.
701 __ li(v0, Operand(EXCEPTION));
702 __ jmp(&return_v0);
703
704 __ bind(&stack_limit_hit);
705 CallCheckStackGuardState(a0);
706 // If returned value is non-zero, we exit with the returned value as result.
707 __ Branch(&return_v0, ne, v0, Operand(zero_reg));
708
709 __ bind(&stack_ok);
710 // Allocate space on stack for registers.
711 __ Dsubu(sp, sp, Operand(num_registers_ * kPointerSize));
712 // Load string end.
713 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
714 // Load input start.
715 __ ld(a0, MemOperand(frame_pointer(), kInputStart));
716 // Find negative length (offset of start relative to end).
717 __ Dsubu(current_input_offset(), a0, end_of_input_address());
718 // Set a0 to address of char before start of the input string
719 // (effectively string position -1).
720 __ ld(a1, MemOperand(frame_pointer(), kStartIndex));
721 __ Dsubu(a0, current_input_offset(), Operand(char_size()));
722 __ dsll(t1, a1, (mode_ == UC16) ? 1 : 0);
723 __ Dsubu(a0, a0, t1);
724 // Store this value in a local variable, for use when clearing
725 // position registers.
726 __ sd(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
727
728 // Initialize code pointer register
729 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
730
731 Label load_char_start_regexp, start_regexp;
732 // Load newline if index is at start, previous character otherwise.
733 __ Branch(&load_char_start_regexp, ne, a1, Operand(zero_reg));
734 __ li(current_character(), Operand('\n'));
735 __ jmp(&start_regexp);
736
737 // Global regexp restarts matching here.
738 __ bind(&load_char_start_regexp);
739 // Load previous char as initial value of current character register.
740 LoadCurrentCharacterUnchecked(-1, 1);
741 __ bind(&start_regexp);
742
743 // Initialize on-stack registers.
744 if (num_saved_registers_ > 0) { // Always is, if generated from a regexp.
745 // Fill saved registers with initial value = start offset - 1.
746 if (num_saved_registers_ > 8) {
747 // Address of register 0.
748 __ Daddu(a1, frame_pointer(), Operand(kRegisterZero));
749 __ li(a2, Operand(num_saved_registers_));
750 Label init_loop;
751 __ bind(&init_loop);
752 __ sd(a0, MemOperand(a1));
753 __ Daddu(a1, a1, Operand(-kPointerSize));
754 __ Dsubu(a2, a2, Operand(1));
755 __ Branch(&init_loop, ne, a2, Operand(zero_reg));
756 } else {
757 for (int i = 0; i < num_saved_registers_; i++) {
758 __ sd(a0, register_location(i));
759 }
760 }
761 }
762
763 // Initialize backtrack stack pointer.
764 __ ld(backtrack_stackpointer(), MemOperand(frame_pointer(), kStackHighEnd));
765
766 __ jmp(&start_label_);
767
768
769 // Exit code:
770 if (success_label_.is_linked()) {
771 // Save captures when successful.
772 __ bind(&success_label_);
773 if (num_saved_registers_ > 0) {
774 // Copy captures to output.
775 __ ld(a1, MemOperand(frame_pointer(), kInputStart));
776 __ ld(a0, MemOperand(frame_pointer(), kRegisterOutput));
777 __ ld(a2, MemOperand(frame_pointer(), kStartIndex));
778 __ Dsubu(a1, end_of_input_address(), a1);
779 // a1 is length of input in bytes.
780 if (mode_ == UC16) {
781 __ dsrl(a1, a1, 1);
782 }
783 // a1 is length of input in characters.
784 __ Daddu(a1, a1, Operand(a2));
785 // a1 is length of string in characters.
786
787 DCHECK_EQ(0, num_saved_registers_ % 2);
788 // Always an even number of capture registers. This allows us to
789 // unroll the loop once to add an operation between a load of a register
790 // and the following use of that register.
791 for (int i = 0; i < num_saved_registers_; i += 2) {
792 __ ld(a2, register_location(i));
793 __ ld(a3, register_location(i + 1));
794 if (i == 0 && global_with_zero_length_check()) {
795 // Keep capture start in a4 for the zero-length check later.
796 __ mov(t3, a2);
797 }
798 if (mode_ == UC16) {
799 __ dsra(a2, a2, 1);
800 __ Daddu(a2, a2, a1);
801 __ dsra(a3, a3, 1);
802 __ Daddu(a3, a3, a1);
803 } else {
804 __ Daddu(a2, a1, Operand(a2));
805 __ Daddu(a3, a1, Operand(a3));
806 }
807 // V8 expects the output to be an int32_t array.
808 __ sw(a2, MemOperand(a0));
809 __ Daddu(a0, a0, kIntSize);
810 __ sw(a3, MemOperand(a0));
811 __ Daddu(a0, a0, kIntSize);
812 }
813 }
814
815 if (global()) {
816 // Restart matching if the regular expression is flagged as global.
817 __ ld(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
818 __ ld(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
819 __ ld(a2, MemOperand(frame_pointer(), kRegisterOutput));
820 // Increment success counter.
821 __ Daddu(a0, a0, 1);
822 __ sd(a0, MemOperand(frame_pointer(), kSuccessfulCaptures));
823 // Capture results have been stored, so the number of remaining global
824 // output registers is reduced by the number of stored captures.
825 __ Dsubu(a1, a1, num_saved_registers_);
826 // Check whether we have enough room for another set of capture results.
827 __ mov(v0, a0);
828 __ Branch(&return_v0, lt, a1, Operand(num_saved_registers_));
829
830 __ sd(a1, MemOperand(frame_pointer(), kNumOutputRegisters));
831 // Advance the location for output.
832 __ Daddu(a2, a2, num_saved_registers_ * kIntSize);
833 __ sd(a2, MemOperand(frame_pointer(), kRegisterOutput));
834
835 // Prepare a0 to initialize registers with its value in the next run.
836 __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
837
838 if (global_with_zero_length_check()) {
839 // Special case for zero-length matches.
840 // t3: capture start index
841 // Not a zero-length match, restart.
842 __ Branch(
843 &load_char_start_regexp, ne, current_input_offset(), Operand(t3));
844 // Offset from the end is zero if we already reached the end.
845 __ Branch(&exit_label_, eq, current_input_offset(),
846 Operand(zero_reg));
847 // Advance current position after a zero-length match.
Ben Murdoch097c5b22016-05-18 11:27:45 +0100848 Label advance;
849 __ bind(&advance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000850 __ Daddu(current_input_offset(),
851 current_input_offset(),
852 Operand((mode_ == UC16) ? 2 : 1));
Ben Murdoch097c5b22016-05-18 11:27:45 +0100853 if (global_unicode()) CheckNotInSurrogatePair(0, &advance);
Ben Murdoch4a90d5f2016-03-22 12:00:34 +0000854 }
855
856 __ Branch(&load_char_start_regexp);
857 } else {
858 __ li(v0, Operand(SUCCESS));
859 }
860 }
861 // Exit and return v0.
862 __ bind(&exit_label_);
863 if (global()) {
864 __ ld(v0, MemOperand(frame_pointer(), kSuccessfulCaptures));
865 }
866
867 __ bind(&return_v0);
868 // Skip sp past regexp registers and local variables..
869 __ mov(sp, frame_pointer());
870 // Restore registers s0..s7 and return (restoring ra to pc).
871 __ MultiPop(registers_to_retain | ra.bit());
872 __ Ret();
873
874 // Backtrack code (branch target for conditional backtracks).
875 if (backtrack_label_.is_linked()) {
876 __ bind(&backtrack_label_);
877 Backtrack();
878 }
879
880 Label exit_with_exception;
881
882 // Preempt-code.
883 if (check_preempt_label_.is_linked()) {
884 SafeCallTarget(&check_preempt_label_);
885 // Put regexp engine registers on stack.
886 RegList regexp_registers_to_retain = current_input_offset().bit() |
887 current_character().bit() | backtrack_stackpointer().bit();
888 __ MultiPush(regexp_registers_to_retain);
889 CallCheckStackGuardState(a0);
890 __ MultiPop(regexp_registers_to_retain);
891 // If returning non-zero, we should end execution with the given
892 // result as return value.
893 __ Branch(&return_v0, ne, v0, Operand(zero_reg));
894
895 // String might have moved: Reload end of string from frame.
896 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
897 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
898 SafeReturn();
899 }
900
901 // Backtrack stack overflow code.
902 if (stack_overflow_label_.is_linked()) {
903 SafeCallTarget(&stack_overflow_label_);
904 // Reached if the backtrack-stack limit has been hit.
905 // Put regexp engine registers on stack first.
906 RegList regexp_registers = current_input_offset().bit() |
907 current_character().bit();
908 __ MultiPush(regexp_registers);
909 Label grow_failed;
910 // Call GrowStack(backtrack_stackpointer(), &stack_base)
911 static const int num_arguments = 3;
912 __ PrepareCallCFunction(num_arguments, a0);
913 __ mov(a0, backtrack_stackpointer());
914 __ Daddu(a1, frame_pointer(), Operand(kStackHighEnd));
915 __ li(a2, Operand(ExternalReference::isolate_address(masm_->isolate())));
916 ExternalReference grow_stack =
917 ExternalReference::re_grow_stack(masm_->isolate());
918 __ CallCFunction(grow_stack, num_arguments);
919 // Restore regexp registers.
920 __ MultiPop(regexp_registers);
921 // If return NULL, we have failed to grow the stack, and
922 // must exit with a stack-overflow exception.
923 __ Branch(&exit_with_exception, eq, v0, Operand(zero_reg));
924 // Otherwise use return value as new stack pointer.
925 __ mov(backtrack_stackpointer(), v0);
926 // Restore saved registers and continue.
927 __ li(code_pointer(), Operand(masm_->CodeObject()), CONSTANT_SIZE);
928 __ ld(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
929 SafeReturn();
930 }
931
932 if (exit_with_exception.is_linked()) {
933 // If any of the code above needed to exit with an exception.
934 __ bind(&exit_with_exception);
935 // Exit with Result EXCEPTION(-1) to signal thrown exception.
936 __ li(v0, Operand(EXCEPTION));
937 __ jmp(&return_v0);
938 }
939 }
940
941 CodeDesc code_desc;
942 masm_->GetCode(&code_desc);
943 Handle<Code> code = isolate()->factory()->NewCode(
944 code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
945 LOG(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
946 return Handle<HeapObject>::cast(code);
947}
948
949
950void RegExpMacroAssemblerMIPS::GoTo(Label* to) {
951 if (to == NULL) {
952 Backtrack();
953 return;
954 }
955 __ jmp(to);
956 return;
957}
958
959
960void RegExpMacroAssemblerMIPS::IfRegisterGE(int reg,
961 int comparand,
962 Label* if_ge) {
963 __ ld(a0, register_location(reg));
964 BranchOrBacktrack(if_ge, ge, a0, Operand(comparand));
965}
966
967
968void RegExpMacroAssemblerMIPS::IfRegisterLT(int reg,
969 int comparand,
970 Label* if_lt) {
971 __ ld(a0, register_location(reg));
972 BranchOrBacktrack(if_lt, lt, a0, Operand(comparand));
973}
974
975
976void RegExpMacroAssemblerMIPS::IfRegisterEqPos(int reg,
977 Label* if_eq) {
978 __ ld(a0, register_location(reg));
979 BranchOrBacktrack(if_eq, eq, a0, Operand(current_input_offset()));
980}
981
982
983RegExpMacroAssembler::IrregexpImplementation
984 RegExpMacroAssemblerMIPS::Implementation() {
985 return kMIPSImplementation;
986}
987
988
989void RegExpMacroAssemblerMIPS::LoadCurrentCharacter(int cp_offset,
990 Label* on_end_of_input,
991 bool check_bounds,
992 int characters) {
993 DCHECK(cp_offset < (1<<30)); // Be sane! (And ensure negation works).
994 if (check_bounds) {
995 if (cp_offset >= 0) {
996 CheckPosition(cp_offset + characters - 1, on_end_of_input);
997 } else {
998 CheckPosition(cp_offset, on_end_of_input);
999 }
1000 }
1001 LoadCurrentCharacterUnchecked(cp_offset, characters);
1002}
1003
1004
1005void RegExpMacroAssemblerMIPS::PopCurrentPosition() {
1006 Pop(current_input_offset());
1007}
1008
1009
1010void RegExpMacroAssemblerMIPS::PopRegister(int register_index) {
1011 Pop(a0);
1012 __ sd(a0, register_location(register_index));
1013}
1014
1015
1016void RegExpMacroAssemblerMIPS::PushBacktrack(Label* label) {
1017 if (label->is_bound()) {
1018 int target = label->pos();
1019 __ li(a0, Operand(target + Code::kHeaderSize - kHeapObjectTag));
1020 } else {
1021 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_);
1022 Label after_constant;
1023 __ Branch(&after_constant);
1024 int offset = masm_->pc_offset();
1025 int cp_offset = offset + Code::kHeaderSize - kHeapObjectTag;
1026 __ emit(0);
1027 masm_->label_at_put(label, offset);
1028 __ bind(&after_constant);
1029 if (is_int16(cp_offset)) {
1030 __ lwu(a0, MemOperand(code_pointer(), cp_offset));
1031 } else {
1032 __ Daddu(a0, code_pointer(), cp_offset);
1033 __ lwu(a0, MemOperand(a0, 0));
1034 }
1035 }
1036 Push(a0);
1037 CheckStackLimit();
1038}
1039
1040
1041void RegExpMacroAssemblerMIPS::PushCurrentPosition() {
1042 Push(current_input_offset());
1043}
1044
1045
1046void RegExpMacroAssemblerMIPS::PushRegister(int register_index,
1047 StackCheckFlag check_stack_limit) {
1048 __ ld(a0, register_location(register_index));
1049 Push(a0);
1050 if (check_stack_limit) CheckStackLimit();
1051}
1052
1053
1054void RegExpMacroAssemblerMIPS::ReadCurrentPositionFromRegister(int reg) {
1055 __ ld(current_input_offset(), register_location(reg));
1056}
1057
1058
1059void RegExpMacroAssemblerMIPS::ReadStackPointerFromRegister(int reg) {
1060 __ ld(backtrack_stackpointer(), register_location(reg));
1061 __ ld(a0, MemOperand(frame_pointer(), kStackHighEnd));
1062 __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), Operand(a0));
1063}
1064
1065
1066void RegExpMacroAssemblerMIPS::SetCurrentPositionFromEnd(int by) {
1067 Label after_position;
1068 __ Branch(&after_position,
1069 ge,
1070 current_input_offset(),
1071 Operand(-by * char_size()));
1072 __ li(current_input_offset(), -by * char_size());
1073 // On RegExp code entry (where this operation is used), the character before
1074 // the current position is expected to be already loaded.
1075 // We have advanced the position, so it's safe to read backwards.
1076 LoadCurrentCharacterUnchecked(-1, 1);
1077 __ bind(&after_position);
1078}
1079
1080
1081void RegExpMacroAssemblerMIPS::SetRegister(int register_index, int to) {
1082 DCHECK(register_index >= num_saved_registers_); // Reserved for positions!
1083 __ li(a0, Operand(to));
1084 __ sd(a0, register_location(register_index));
1085}
1086
1087
1088bool RegExpMacroAssemblerMIPS::Succeed() {
1089 __ jmp(&success_label_);
1090 return global();
1091}
1092
1093
1094void RegExpMacroAssemblerMIPS::WriteCurrentPositionToRegister(int reg,
1095 int cp_offset) {
1096 if (cp_offset == 0) {
1097 __ sd(current_input_offset(), register_location(reg));
1098 } else {
1099 __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1100 __ sd(a0, register_location(reg));
1101 }
1102}
1103
1104
1105void RegExpMacroAssemblerMIPS::ClearRegisters(int reg_from, int reg_to) {
1106 DCHECK(reg_from <= reg_to);
1107 __ ld(a0, MemOperand(frame_pointer(), kStringStartMinusOne));
1108 for (int reg = reg_from; reg <= reg_to; reg++) {
1109 __ sd(a0, register_location(reg));
1110 }
1111}
1112
1113
1114void RegExpMacroAssemblerMIPS::WriteStackPointerToRegister(int reg) {
1115 __ ld(a1, MemOperand(frame_pointer(), kStackHighEnd));
1116 __ Dsubu(a0, backtrack_stackpointer(), a1);
1117 __ sd(a0, register_location(reg));
1118}
1119
1120
1121bool RegExpMacroAssemblerMIPS::CanReadUnaligned() {
1122 return false;
1123}
1124
1125
1126// Private methods:
1127
1128void RegExpMacroAssemblerMIPS::CallCheckStackGuardState(Register scratch) {
1129 int stack_alignment = base::OS::ActivationFrameAlignment();
1130
1131 // Align the stack pointer and save the original sp value on the stack.
1132 __ mov(scratch, sp);
1133 __ Dsubu(sp, sp, Operand(kPointerSize));
1134 DCHECK(base::bits::IsPowerOfTwo32(stack_alignment));
1135 __ And(sp, sp, Operand(-stack_alignment));
1136 __ sd(scratch, MemOperand(sp));
1137
1138 __ mov(a2, frame_pointer());
1139 // Code* of self.
1140 __ li(a1, Operand(masm_->CodeObject()), CONSTANT_SIZE);
1141
1142 // We need to make room for the return address on the stack.
1143 DCHECK(IsAligned(stack_alignment, kPointerSize));
1144 __ Dsubu(sp, sp, Operand(stack_alignment));
1145
1146 // Stack pointer now points to cell where return address is to be written.
1147 // Arguments are in registers, meaning we teat the return address as
1148 // argument 5. Since DirectCEntryStub will handleallocating space for the C
1149 // argument slots, we don't need to care about that here. This is how the
1150 // stack will look (sp meaning the value of sp at this moment):
1151 // [sp + 3] - empty slot if needed for alignment.
1152 // [sp + 2] - saved sp.
1153 // [sp + 1] - second word reserved for return value.
1154 // [sp + 0] - first word reserved for return value.
1155
1156 // a0 will point to the return address, placed by DirectCEntry.
1157 __ mov(a0, sp);
1158
1159 ExternalReference stack_guard_check =
1160 ExternalReference::re_check_stack_guard_state(masm_->isolate());
1161 __ li(t9, Operand(stack_guard_check));
1162 DirectCEntryStub stub(isolate());
1163 stub.GenerateCall(masm_, t9);
1164
1165 // DirectCEntryStub allocated space for the C argument slots so we have to
1166 // drop them with the return address from the stack with loading saved sp.
1167 // At this point stack must look:
1168 // [sp + 7] - empty slot if needed for alignment.
1169 // [sp + 6] - saved sp.
1170 // [sp + 5] - second word reserved for return value.
1171 // [sp + 4] - first word reserved for return value.
1172 // [sp + 3] - C argument slot.
1173 // [sp + 2] - C argument slot.
1174 // [sp + 1] - C argument slot.
1175 // [sp + 0] - C argument slot.
1176 __ ld(sp, MemOperand(sp, stack_alignment + kCArgsSlotsSize));
1177
1178 __ li(code_pointer(), Operand(masm_->CodeObject()));
1179}
1180
1181
1182// Helper function for reading a value out of a stack frame.
1183template <typename T>
1184static T& frame_entry(Address re_frame, int frame_offset) {
1185 return reinterpret_cast<T&>(Memory::int32_at(re_frame + frame_offset));
1186}
1187
1188
1189template <typename T>
1190static T* frame_entry_address(Address re_frame, int frame_offset) {
1191 return reinterpret_cast<T*>(re_frame + frame_offset);
1192}
1193
1194
1195int64_t RegExpMacroAssemblerMIPS::CheckStackGuardState(Address* return_address,
1196 Code* re_code,
1197 Address re_frame) {
1198 return NativeRegExpMacroAssembler::CheckStackGuardState(
1199 frame_entry<Isolate*>(re_frame, kIsolate),
1200 static_cast<int>(frame_entry<int64_t>(re_frame, kStartIndex)),
1201 frame_entry<int64_t>(re_frame, kDirectCall) == 1, return_address, re_code,
1202 frame_entry_address<String*>(re_frame, kInputString),
1203 frame_entry_address<const byte*>(re_frame, kInputStart),
1204 frame_entry_address<const byte*>(re_frame, kInputEnd));
1205}
1206
1207
1208MemOperand RegExpMacroAssemblerMIPS::register_location(int register_index) {
1209 DCHECK(register_index < (1<<30));
1210 if (num_registers_ <= register_index) {
1211 num_registers_ = register_index + 1;
1212 }
1213 return MemOperand(frame_pointer(),
1214 kRegisterZero - register_index * kPointerSize);
1215}
1216
1217
1218void RegExpMacroAssemblerMIPS::CheckPosition(int cp_offset,
1219 Label* on_outside_input) {
1220 if (cp_offset >= 0) {
1221 BranchOrBacktrack(on_outside_input, ge, current_input_offset(),
1222 Operand(-cp_offset * char_size()));
1223 } else {
1224 __ ld(a1, MemOperand(frame_pointer(), kStringStartMinusOne));
1225 __ Daddu(a0, current_input_offset(), Operand(cp_offset * char_size()));
1226 BranchOrBacktrack(on_outside_input, le, a0, Operand(a1));
1227 }
1228}
1229
1230
1231void RegExpMacroAssemblerMIPS::BranchOrBacktrack(Label* to,
1232 Condition condition,
1233 Register rs,
1234 const Operand& rt) {
1235 if (condition == al) { // Unconditional.
1236 if (to == NULL) {
1237 Backtrack();
1238 return;
1239 }
1240 __ jmp(to);
1241 return;
1242 }
1243 if (to == NULL) {
1244 __ Branch(&backtrack_label_, condition, rs, rt);
1245 return;
1246 }
1247 __ Branch(to, condition, rs, rt);
1248}
1249
1250
1251void RegExpMacroAssemblerMIPS::SafeCall(Label* to,
1252 Condition cond,
1253 Register rs,
1254 const Operand& rt) {
1255 __ BranchAndLink(to, cond, rs, rt);
1256}
1257
1258
1259void RegExpMacroAssemblerMIPS::SafeReturn() {
1260 __ pop(ra);
1261 __ Daddu(t1, ra, Operand(masm_->CodeObject()));
1262 __ Jump(t1);
1263}
1264
1265
1266void RegExpMacroAssemblerMIPS::SafeCallTarget(Label* name) {
1267 __ bind(name);
1268 __ Dsubu(ra, ra, Operand(masm_->CodeObject()));
1269 __ push(ra);
1270}
1271
1272
1273void RegExpMacroAssemblerMIPS::Push(Register source) {
1274 DCHECK(!source.is(backtrack_stackpointer()));
1275 __ Daddu(backtrack_stackpointer(),
1276 backtrack_stackpointer(),
1277 Operand(-kIntSize));
1278 __ sw(source, MemOperand(backtrack_stackpointer()));
1279}
1280
1281
1282void RegExpMacroAssemblerMIPS::Pop(Register target) {
1283 DCHECK(!target.is(backtrack_stackpointer()));
1284 __ lw(target, MemOperand(backtrack_stackpointer()));
1285 __ Daddu(backtrack_stackpointer(), backtrack_stackpointer(), kIntSize);
1286}
1287
1288
1289void RegExpMacroAssemblerMIPS::CheckPreemption() {
1290 // Check for preemption.
1291 ExternalReference stack_limit =
1292 ExternalReference::address_of_stack_limit(masm_->isolate());
1293 __ li(a0, Operand(stack_limit));
1294 __ ld(a0, MemOperand(a0));
1295 SafeCall(&check_preempt_label_, ls, sp, Operand(a0));
1296}
1297
1298
1299void RegExpMacroAssemblerMIPS::CheckStackLimit() {
1300 ExternalReference stack_limit =
1301 ExternalReference::address_of_regexp_stack_limit(masm_->isolate());
1302
1303 __ li(a0, Operand(stack_limit));
1304 __ ld(a0, MemOperand(a0));
1305 SafeCall(&stack_overflow_label_, ls, backtrack_stackpointer(), Operand(a0));
1306}
1307
1308
1309void RegExpMacroAssemblerMIPS::LoadCurrentCharacterUnchecked(int cp_offset,
1310 int characters) {
1311 Register offset = current_input_offset();
1312 if (cp_offset != 0) {
1313 // t3 is not being used to store the capture start index at this point.
1314 __ Daddu(t3, current_input_offset(), Operand(cp_offset * char_size()));
1315 offset = t3;
1316 }
1317 // We assume that we cannot do unaligned loads on MIPS, so this function
1318 // must only be used to load a single character at a time.
1319 DCHECK(characters == 1);
1320 __ Daddu(t1, end_of_input_address(), Operand(offset));
1321 if (mode_ == LATIN1) {
1322 __ lbu(current_character(), MemOperand(t1, 0));
1323 } else {
1324 DCHECK(mode_ == UC16);
1325 __ lhu(current_character(), MemOperand(t1, 0));
1326 }
1327}
1328
1329#undef __
1330
1331#endif // V8_INTERPRETED_REGEXP
1332
1333} // namespace internal
1334} // namespace v8
1335
1336#endif // V8_TARGET_ARCH_MIPS64