blob: f6b7a06aa2ca261edac503e8ebb8136292d971dd [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright (c) 1994-2006 Sun Microsystems Inc.
2// All Rights Reserved.
3//
4// Redistribution and use in source and binary forms, with or without
5// modification, are permitted provided that the following conditions
6// are met:
7//
8// - Redistributions of source code must retain the above copyright notice,
9// this list of conditions and the following disclaimer.
10//
11// - Redistribution in binary form must reproduce the above copyright
12// notice, this list of conditions and the following disclaimer in the
13// documentation and/or other materials provided with the
14// distribution.
15//
16// - Neither the name of Sun Microsystems or the names of contributors may
17// be used to endorse or promote products derived from this software without
18// specific prior written permission.
19//
20// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
23// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
24// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
25// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
26// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
27// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
29// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
31// OF THE POSSIBILITY OF SUCH DAMAGE.
32
Leon Clarked91b9f72010-01-27 17:25:45 +000033// The original source code covered by the above license above has been
34// modified significantly by Google Inc.
35// Copyright 2010 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +000036
37// A light-weight ARM Assembler
38// Generates user mode instructions for the ARM architecture up to version 5
39
40#ifndef V8_ARM_ASSEMBLER_ARM_H_
41#define V8_ARM_ASSEMBLER_ARM_H_
42#include <stdio.h>
43#include "assembler.h"
Steve Blockd0582a62009-12-15 09:54:21 +000044#include "serialize.h"
Steve Blocka7e24c12009-10-30 11:49:00 +000045
46namespace v8 {
47namespace internal {
48
49// CPU Registers.
50//
51// 1) We would prefer to use an enum, but enum values are assignment-
52// compatible with int, which has caused code-generation bugs.
53//
54// 2) We would prefer to use a class instead of a struct but we don't like
55// the register initialization to depend on the particular initialization
56// order (which appears to be different on OS X, Linux, and Windows for the
57// installed versions of C++ we tried). Using a struct permits C-style
58// "initialization". Also, the Register objects cannot be const as this
59// forces initialization stubs in MSVC, making us dependent on initialization
60// order.
61//
62// 3) By not using an enum, we are possibly preventing the compiler from
63// doing certain constant folds, which may significantly reduce the
64// code generated for some assembly instructions (because they boil down
65// to a few constants). If this is a problem, we could change the code
66// such that we use an enum in optimized mode, and the struct in debug
67// mode. This way we get the compile-time error checking in debug mode
68// and best performance in optimized code.
69//
70// Core register
71struct Register {
72 bool is_valid() const { return 0 <= code_ && code_ < 16; }
73 bool is(Register reg) const { return code_ == reg.code_; }
74 int code() const {
75 ASSERT(is_valid());
76 return code_;
77 }
78 int bit() const {
79 ASSERT(is_valid());
80 return 1 << code_;
81 }
82
Andrei Popescu31002712010-02-23 13:46:05 +000083 // Unfortunately we can't make this private in a struct.
Steve Blocka7e24c12009-10-30 11:49:00 +000084 int code_;
85};
86
87
88extern Register no_reg;
89extern Register r0;
90extern Register r1;
91extern Register r2;
92extern Register r3;
93extern Register r4;
94extern Register r5;
95extern Register r6;
96extern Register r7;
97extern Register r8;
98extern Register r9;
99extern Register r10;
100extern Register fp;
101extern Register ip;
102extern Register sp;
103extern Register lr;
104extern Register pc;
105
Steve Blockd0582a62009-12-15 09:54:21 +0000106
Leon Clarkee46be812010-01-19 14:06:41 +0000107// Single word VFP register.
108struct SwVfpRegister {
109 bool is_valid() const { return 0 <= code_ && code_ < 32; }
110 bool is(SwVfpRegister reg) const { return code_ == reg.code_; }
111 int code() const {
112 ASSERT(is_valid());
113 return code_;
114 }
115 int bit() const {
116 ASSERT(is_valid());
117 return 1 << code_;
118 }
119
120 int code_;
121};
122
123
124// Double word VFP register.
125struct DwVfpRegister {
126 // Supporting d0 to d15, can be later extended to d31.
127 bool is_valid() const { return 0 <= code_ && code_ < 16; }
128 bool is(DwVfpRegister reg) const { return code_ == reg.code_; }
129 int code() const {
130 ASSERT(is_valid());
131 return code_;
132 }
133 int bit() const {
134 ASSERT(is_valid());
135 return 1 << code_;
136 }
137
138 int code_;
139};
140
141
142// Support for VFP registers s0 to s31 (d0 to d15).
143// Note that "s(N):s(N+1)" is the same as "d(N/2)".
144extern SwVfpRegister s0;
145extern SwVfpRegister s1;
146extern SwVfpRegister s2;
147extern SwVfpRegister s3;
148extern SwVfpRegister s4;
149extern SwVfpRegister s5;
150extern SwVfpRegister s6;
151extern SwVfpRegister s7;
152extern SwVfpRegister s8;
153extern SwVfpRegister s9;
154extern SwVfpRegister s10;
155extern SwVfpRegister s11;
156extern SwVfpRegister s12;
157extern SwVfpRegister s13;
158extern SwVfpRegister s14;
159extern SwVfpRegister s15;
160extern SwVfpRegister s16;
161extern SwVfpRegister s17;
162extern SwVfpRegister s18;
163extern SwVfpRegister s19;
164extern SwVfpRegister s20;
165extern SwVfpRegister s21;
166extern SwVfpRegister s22;
167extern SwVfpRegister s23;
168extern SwVfpRegister s24;
169extern SwVfpRegister s25;
170extern SwVfpRegister s26;
171extern SwVfpRegister s27;
172extern SwVfpRegister s28;
173extern SwVfpRegister s29;
174extern SwVfpRegister s30;
175extern SwVfpRegister s31;
176
177extern DwVfpRegister d0;
178extern DwVfpRegister d1;
179extern DwVfpRegister d2;
180extern DwVfpRegister d3;
181extern DwVfpRegister d4;
182extern DwVfpRegister d5;
183extern DwVfpRegister d6;
184extern DwVfpRegister d7;
185extern DwVfpRegister d8;
186extern DwVfpRegister d9;
187extern DwVfpRegister d10;
188extern DwVfpRegister d11;
189extern DwVfpRegister d12;
190extern DwVfpRegister d13;
191extern DwVfpRegister d14;
192extern DwVfpRegister d15;
193
Steve Blocka7e24c12009-10-30 11:49:00 +0000194
195// Coprocessor register
196struct CRegister {
197 bool is_valid() const { return 0 <= code_ && code_ < 16; }
198 bool is(CRegister creg) const { return code_ == creg.code_; }
199 int code() const {
200 ASSERT(is_valid());
201 return code_;
202 }
203 int bit() const {
204 ASSERT(is_valid());
205 return 1 << code_;
206 }
207
Andrei Popescu31002712010-02-23 13:46:05 +0000208 // Unfortunately we can't make this private in a struct.
Steve Blocka7e24c12009-10-30 11:49:00 +0000209 int code_;
210};
211
212
213extern CRegister no_creg;
214extern CRegister cr0;
215extern CRegister cr1;
216extern CRegister cr2;
217extern CRegister cr3;
218extern CRegister cr4;
219extern CRegister cr5;
220extern CRegister cr6;
221extern CRegister cr7;
222extern CRegister cr8;
223extern CRegister cr9;
224extern CRegister cr10;
225extern CRegister cr11;
226extern CRegister cr12;
227extern CRegister cr13;
228extern CRegister cr14;
229extern CRegister cr15;
230
231
232// Coprocessor number
233enum Coprocessor {
234 p0 = 0,
235 p1 = 1,
236 p2 = 2,
237 p3 = 3,
238 p4 = 4,
239 p5 = 5,
240 p6 = 6,
241 p7 = 7,
242 p8 = 8,
243 p9 = 9,
244 p10 = 10,
245 p11 = 11,
246 p12 = 12,
247 p13 = 13,
248 p14 = 14,
249 p15 = 15
250};
251
252
Andrei Popescu31002712010-02-23 13:46:05 +0000253// Condition field in instructions.
Steve Blocka7e24c12009-10-30 11:49:00 +0000254enum Condition {
255 eq = 0 << 28, // Z set equal.
256 ne = 1 << 28, // Z clear not equal.
257 nz = 1 << 28, // Z clear not zero.
258 cs = 2 << 28, // C set carry set.
259 hs = 2 << 28, // C set unsigned higher or same.
260 cc = 3 << 28, // C clear carry clear.
261 lo = 3 << 28, // C clear unsigned lower.
262 mi = 4 << 28, // N set negative.
263 pl = 5 << 28, // N clear positive or zero.
264 vs = 6 << 28, // V set overflow.
265 vc = 7 << 28, // V clear no overflow.
266 hi = 8 << 28, // C set, Z clear unsigned higher.
267 ls = 9 << 28, // C clear or Z set unsigned lower or same.
268 ge = 10 << 28, // N == V greater or equal.
269 lt = 11 << 28, // N != V less than.
270 gt = 12 << 28, // Z clear, N == V greater than.
271 le = 13 << 28, // Z set or N != V less then or equal
272 al = 14 << 28 // always.
273};
274
275
276// Returns the equivalent of !cc.
277INLINE(Condition NegateCondition(Condition cc));
278
279
280// Corresponds to transposing the operands of a comparison.
281inline Condition ReverseCondition(Condition cc) {
282 switch (cc) {
283 case lo:
284 return hi;
285 case hi:
286 return lo;
287 case hs:
288 return ls;
289 case ls:
290 return hs;
291 case lt:
292 return gt;
293 case gt:
294 return lt;
295 case ge:
296 return le;
297 case le:
298 return ge;
299 default:
300 return cc;
301 };
302}
303
304
305// Branch hints are not used on the ARM. They are defined so that they can
306// appear in shared function signatures, but will be ignored in ARM
307// implementations.
308enum Hint { no_hint };
309
310// Hints are not used on the arm. Negating is trivial.
311inline Hint NegateHint(Hint ignored) { return no_hint; }
312
313
314// -----------------------------------------------------------------------------
315// Addressing modes and instruction variants
316
317// Shifter operand shift operation
318enum ShiftOp {
319 LSL = 0 << 5,
320 LSR = 1 << 5,
321 ASR = 2 << 5,
322 ROR = 3 << 5,
323 RRX = -1
324};
325
326
327// Condition code updating mode
328enum SBit {
329 SetCC = 1 << 20, // set condition code
330 LeaveCC = 0 << 20 // leave condition code unchanged
331};
332
333
334// Status register selection
335enum SRegister {
336 CPSR = 0 << 22,
337 SPSR = 1 << 22
338};
339
340
341// Status register fields
342enum SRegisterField {
343 CPSR_c = CPSR | 1 << 16,
344 CPSR_x = CPSR | 1 << 17,
345 CPSR_s = CPSR | 1 << 18,
346 CPSR_f = CPSR | 1 << 19,
347 SPSR_c = SPSR | 1 << 16,
348 SPSR_x = SPSR | 1 << 17,
349 SPSR_s = SPSR | 1 << 18,
350 SPSR_f = SPSR | 1 << 19
351};
352
353// Status register field mask (or'ed SRegisterField enum values)
354typedef uint32_t SRegisterFieldMask;
355
356
357// Memory operand addressing mode
358enum AddrMode {
359 // bit encoding P U W
360 Offset = (8|4|0) << 21, // offset (without writeback to base)
361 PreIndex = (8|4|1) << 21, // pre-indexed addressing with writeback
362 PostIndex = (0|4|0) << 21, // post-indexed addressing with writeback
363 NegOffset = (8|0|0) << 21, // negative offset (without writeback to base)
364 NegPreIndex = (8|0|1) << 21, // negative pre-indexed with writeback
365 NegPostIndex = (0|0|0) << 21 // negative post-indexed with writeback
366};
367
368
369// Load/store multiple addressing mode
370enum BlockAddrMode {
371 // bit encoding P U W
372 da = (0|0|0) << 21, // decrement after
373 ia = (0|4|0) << 21, // increment after
374 db = (8|0|0) << 21, // decrement before
375 ib = (8|4|0) << 21, // increment before
376 da_w = (0|0|1) << 21, // decrement after with writeback to base
377 ia_w = (0|4|1) << 21, // increment after with writeback to base
378 db_w = (8|0|1) << 21, // decrement before with writeback to base
379 ib_w = (8|4|1) << 21 // increment before with writeback to base
380};
381
382
383// Coprocessor load/store operand size
384enum LFlag {
385 Long = 1 << 22, // long load/store coprocessor
386 Short = 0 << 22 // short load/store coprocessor
387};
388
389
390// -----------------------------------------------------------------------------
391// Machine instruction Operands
392
393// Class Operand represents a shifter operand in data processing instructions
394class Operand BASE_EMBEDDED {
395 public:
396 // immediate
397 INLINE(explicit Operand(int32_t immediate,
398 RelocInfo::Mode rmode = RelocInfo::NONE));
399 INLINE(explicit Operand(const ExternalReference& f));
400 INLINE(explicit Operand(const char* s));
Steve Blocka7e24c12009-10-30 11:49:00 +0000401 explicit Operand(Handle<Object> handle);
402 INLINE(explicit Operand(Smi* value));
403
404 // rm
405 INLINE(explicit Operand(Register rm));
406
407 // rm <shift_op> shift_imm
408 explicit Operand(Register rm, ShiftOp shift_op, int shift_imm);
409
410 // rm <shift_op> rs
411 explicit Operand(Register rm, ShiftOp shift_op, Register rs);
412
413 // Return true if this is a register operand.
414 INLINE(bool is_reg() const);
415
416 Register rm() const { return rm_; }
417
418 private:
419 Register rm_;
420 Register rs_;
421 ShiftOp shift_op_;
422 int shift_imm_; // valid if rm_ != no_reg && rs_ == no_reg
423 int32_t imm32_; // valid if rm_ == no_reg
424 RelocInfo::Mode rmode_;
425
426 friend class Assembler;
427};
428
429
430// Class MemOperand represents a memory operand in load and store instructions
431class MemOperand BASE_EMBEDDED {
432 public:
433 // [rn +/- offset] Offset/NegOffset
434 // [rn +/- offset]! PreIndex/NegPreIndex
435 // [rn], +/- offset PostIndex/NegPostIndex
436 // offset is any signed 32-bit value; offset is first loaded to register ip if
437 // it does not fit the addressing mode (12-bit unsigned and sign bit)
438 explicit MemOperand(Register rn, int32_t offset = 0, AddrMode am = Offset);
439
440 // [rn +/- rm] Offset/NegOffset
441 // [rn +/- rm]! PreIndex/NegPreIndex
442 // [rn], +/- rm PostIndex/NegPostIndex
443 explicit MemOperand(Register rn, Register rm, AddrMode am = Offset);
444
445 // [rn +/- rm <shift_op> shift_imm] Offset/NegOffset
446 // [rn +/- rm <shift_op> shift_imm]! PreIndex/NegPreIndex
447 // [rn], +/- rm <shift_op> shift_imm PostIndex/NegPostIndex
448 explicit MemOperand(Register rn, Register rm,
449 ShiftOp shift_op, int shift_imm, AddrMode am = Offset);
450
451 private:
452 Register rn_; // base
453 Register rm_; // register offset
454 int32_t offset_; // valid if rm_ == no_reg
455 ShiftOp shift_op_;
456 int shift_imm_; // valid if rm_ != no_reg && rs_ == no_reg
457 AddrMode am_; // bits P, U, and W
458
459 friend class Assembler;
460};
461
Steve Blockd0582a62009-12-15 09:54:21 +0000462// CpuFeatures keeps track of which features are supported by the target CPU.
463// Supported features must be enabled by a Scope before use.
464class CpuFeatures : public AllStatic {
465 public:
466 // Detect features of the target CPU. Set safe defaults if the serializer
467 // is enabled (snapshots must be portable).
468 static void Probe();
469
470 // Check whether a feature is supported by the target CPU.
471 static bool IsSupported(CpuFeature f) {
472 if (f == VFP3 && !FLAG_enable_vfp3) return false;
473 return (supported_ & (1u << f)) != 0;
474 }
475
476 // Check whether a feature is currently enabled.
477 static bool IsEnabled(CpuFeature f) {
478 return (enabled_ & (1u << f)) != 0;
479 }
480
481 // Enable a specified feature within a scope.
482 class Scope BASE_EMBEDDED {
483#ifdef DEBUG
484 public:
485 explicit Scope(CpuFeature f) {
486 ASSERT(CpuFeatures::IsSupported(f));
487 ASSERT(!Serializer::enabled() ||
488 (found_by_runtime_probing_ & (1u << f)) == 0);
489 old_enabled_ = CpuFeatures::enabled_;
490 CpuFeatures::enabled_ |= 1u << f;
491 }
492 ~Scope() { CpuFeatures::enabled_ = old_enabled_; }
493 private:
494 unsigned old_enabled_;
495#else
496 public:
497 explicit Scope(CpuFeature f) {}
498#endif
499 };
500
501 private:
502 static unsigned supported_;
503 static unsigned enabled_;
504 static unsigned found_by_runtime_probing_;
505};
506
Steve Blocka7e24c12009-10-30 11:49:00 +0000507
508typedef int32_t Instr;
509
510
511extern const Instr kMovLrPc;
512extern const Instr kLdrPCPattern;
513
514
515class Assembler : public Malloced {
516 public:
517 // Create an assembler. Instructions and relocation information are emitted
518 // into a buffer, with the instructions starting from the beginning and the
519 // relocation information starting from the end of the buffer. See CodeDesc
520 // for a detailed comment on the layout (globals.h).
521 //
522 // If the provided buffer is NULL, the assembler allocates and grows its own
523 // buffer, and buffer_size determines the initial buffer size. The buffer is
524 // owned by the assembler and deallocated upon destruction of the assembler.
525 //
526 // If the provided buffer is not NULL, the assembler uses the provided buffer
527 // for code generation and assumes its size to be buffer_size. If the buffer
528 // is too small, a fatal error occurs. No deallocation of the buffer is done
529 // upon destruction of the assembler.
530 Assembler(void* buffer, int buffer_size);
531 ~Assembler();
532
533 // GetCode emits any pending (non-emitted) code and fills the descriptor
534 // desc. GetCode() is idempotent; it returns the same result if no other
535 // Assembler functions are invoked in between GetCode() calls.
536 void GetCode(CodeDesc* desc);
537
538 // Label operations & relative jumps (PPUM Appendix D)
539 //
540 // Takes a branch opcode (cc) and a label (L) and generates
541 // either a backward branch or a forward branch and links it
542 // to the label fixup chain. Usage:
543 //
544 // Label L; // unbound label
545 // j(cc, &L); // forward branch to unbound label
546 // bind(&L); // bind label to the current pc
547 // j(cc, &L); // backward branch to bound label
548 // bind(&L); // illegal: a label may be bound only once
549 //
550 // Note: The same Label can be used for forward and backward branches
551 // but it may be bound only once.
552
553 void bind(Label* L); // binds an unbound label L to the current code position
554
555 // Returns the branch offset to the given label from the current code position
556 // Links the label to the current position if it is still unbound
557 // Manages the jump elimination optimization if the second parameter is true.
558 int branch_offset(Label* L, bool jump_elimination_allowed);
559
560 // Puts a labels target address at the given position.
561 // The high 8 bits are set to zero.
562 void label_at_put(Label* L, int at_offset);
563
564 // Return the address in the constant pool of the code target address used by
565 // the branch/call instruction at pc.
566 INLINE(static Address target_address_address_at(Address pc));
567
568 // Read/Modify the code target address in the branch/call instruction at pc.
569 INLINE(static Address target_address_at(Address pc));
570 INLINE(static void set_target_address_at(Address pc, Address target));
571
Steve Blockd0582a62009-12-15 09:54:21 +0000572 // This sets the branch destination (which is in the constant pool on ARM).
573 // This is for calls and branches within generated code.
574 inline static void set_target_at(Address constant_pool_entry, Address target);
575
576 // This sets the branch destination (which is in the constant pool on ARM).
577 // This is for calls and branches to runtime code.
578 inline static void set_external_target_at(Address constant_pool_entry,
579 Address target) {
580 set_target_at(constant_pool_entry, target);
581 }
582
583 // Here we are patching the address in the constant pool, not the actual call
584 // instruction. The address in the constant pool is the same size as a
585 // pointer.
586 static const int kCallTargetSize = kPointerSize;
587 static const int kExternalTargetSize = kPointerSize;
588
Steve Blocka7e24c12009-10-30 11:49:00 +0000589 // Size of an instruction.
590 static const int kInstrSize = sizeof(Instr);
591
592 // Distance between the instruction referring to the address of the call
593 // target (ldr pc, [target addr in const pool]) and the return address
594 static const int kCallTargetAddressOffset = kInstrSize;
595
596 // Distance between start of patched return sequence and the emitted address
597 // to jump to.
598 static const int kPatchReturnSequenceAddressOffset = kInstrSize;
599
600 // Difference between address of current opcode and value read from pc
601 // register.
602 static const int kPcLoadDelta = 8;
603
Steve Blockd0582a62009-12-15 09:54:21 +0000604 static const int kJSReturnSequenceLength = 4;
Steve Blocka7e24c12009-10-30 11:49:00 +0000605
606 // ---------------------------------------------------------------------------
607 // Code generation
608
609 // Insert the smallest number of nop instructions
610 // possible to align the pc offset to a multiple
611 // of m. m must be a power of 2 (>= 4).
612 void Align(int m);
613
614 // Branch instructions
615 void b(int branch_offset, Condition cond = al);
616 void bl(int branch_offset, Condition cond = al);
617 void blx(int branch_offset); // v5 and above
618 void blx(Register target, Condition cond = al); // v5 and above
619 void bx(Register target, Condition cond = al); // v5 and above, plus v4t
620
621 // Convenience branch instructions using labels
622 void b(Label* L, Condition cond = al) {
623 b(branch_offset(L, cond == al), cond);
624 }
625 void b(Condition cond, Label* L) { b(branch_offset(L, cond == al), cond); }
626 void bl(Label* L, Condition cond = al) { bl(branch_offset(L, false), cond); }
627 void bl(Condition cond, Label* L) { bl(branch_offset(L, false), cond); }
628 void blx(Label* L) { blx(branch_offset(L, false)); } // v5 and above
629
630 // Data-processing instructions
Andrei Popescu31002712010-02-23 13:46:05 +0000631 void ubfx(Register dst, Register src1, const Operand& src2,
632 const Operand& src3, Condition cond = al);
633
Steve Blocka7e24c12009-10-30 11:49:00 +0000634 void and_(Register dst, Register src1, const Operand& src2,
635 SBit s = LeaveCC, Condition cond = al);
636
637 void eor(Register dst, Register src1, const Operand& src2,
638 SBit s = LeaveCC, Condition cond = al);
639
640 void sub(Register dst, Register src1, const Operand& src2,
641 SBit s = LeaveCC, Condition cond = al);
642 void sub(Register dst, Register src1, Register src2,
643 SBit s = LeaveCC, Condition cond = al) {
644 sub(dst, src1, Operand(src2), s, cond);
645 }
646
647 void rsb(Register dst, Register src1, const Operand& src2,
648 SBit s = LeaveCC, Condition cond = al);
649
650 void add(Register dst, Register src1, const Operand& src2,
651 SBit s = LeaveCC, Condition cond = al);
652
653 void adc(Register dst, Register src1, const Operand& src2,
654 SBit s = LeaveCC, Condition cond = al);
655
656 void sbc(Register dst, Register src1, const Operand& src2,
657 SBit s = LeaveCC, Condition cond = al);
658
659 void rsc(Register dst, Register src1, const Operand& src2,
660 SBit s = LeaveCC, Condition cond = al);
661
662 void tst(Register src1, const Operand& src2, Condition cond = al);
663 void tst(Register src1, Register src2, Condition cond = al) {
664 tst(src1, Operand(src2), cond);
665 }
666
667 void teq(Register src1, const Operand& src2, Condition cond = al);
668
669 void cmp(Register src1, const Operand& src2, Condition cond = al);
670 void cmp(Register src1, Register src2, Condition cond = al) {
671 cmp(src1, Operand(src2), cond);
672 }
673
674 void cmn(Register src1, const Operand& src2, Condition cond = al);
675
676 void orr(Register dst, Register src1, const Operand& src2,
677 SBit s = LeaveCC, Condition cond = al);
678 void orr(Register dst, Register src1, Register src2,
679 SBit s = LeaveCC, Condition cond = al) {
680 orr(dst, src1, Operand(src2), s, cond);
681 }
682
683 void mov(Register dst, const Operand& src,
684 SBit s = LeaveCC, Condition cond = al);
685 void mov(Register dst, Register src, SBit s = LeaveCC, Condition cond = al) {
686 mov(dst, Operand(src), s, cond);
687 }
688
689 void bic(Register dst, Register src1, const Operand& src2,
690 SBit s = LeaveCC, Condition cond = al);
691
692 void mvn(Register dst, const Operand& src,
693 SBit s = LeaveCC, Condition cond = al);
694
695 // Multiply instructions
696
697 void mla(Register dst, Register src1, Register src2, Register srcA,
698 SBit s = LeaveCC, Condition cond = al);
699
700 void mul(Register dst, Register src1, Register src2,
701 SBit s = LeaveCC, Condition cond = al);
702
703 void smlal(Register dstL, Register dstH, Register src1, Register src2,
704 SBit s = LeaveCC, Condition cond = al);
705
706 void smull(Register dstL, Register dstH, Register src1, Register src2,
707 SBit s = LeaveCC, Condition cond = al);
708
709 void umlal(Register dstL, Register dstH, Register src1, Register src2,
710 SBit s = LeaveCC, Condition cond = al);
711
712 void umull(Register dstL, Register dstH, Register src1, Register src2,
713 SBit s = LeaveCC, Condition cond = al);
714
715 // Miscellaneous arithmetic instructions
716
717 void clz(Register dst, Register src, Condition cond = al); // v5 and above
718
719 // Status register access instructions
720
721 void mrs(Register dst, SRegister s, Condition cond = al);
722 void msr(SRegisterFieldMask fields, const Operand& src, Condition cond = al);
723
724 // Load/Store instructions
725 void ldr(Register dst, const MemOperand& src, Condition cond = al);
726 void str(Register src, const MemOperand& dst, Condition cond = al);
727 void ldrb(Register dst, const MemOperand& src, Condition cond = al);
728 void strb(Register src, const MemOperand& dst, Condition cond = al);
729 void ldrh(Register dst, const MemOperand& src, Condition cond = al);
730 void strh(Register src, const MemOperand& dst, Condition cond = al);
731 void ldrsb(Register dst, const MemOperand& src, Condition cond = al);
732 void ldrsh(Register dst, const MemOperand& src, Condition cond = al);
733
734 // Load/Store multiple instructions
735 void ldm(BlockAddrMode am, Register base, RegList dst, Condition cond = al);
736 void stm(BlockAddrMode am, Register base, RegList src, Condition cond = al);
737
738 // Semaphore instructions
739 void swp(Register dst, Register src, Register base, Condition cond = al);
740 void swpb(Register dst, Register src, Register base, Condition cond = al);
741
742 // Exception-generating instructions and debugging support
743 void stop(const char* msg);
744
745 void bkpt(uint32_t imm16); // v5 and above
746 void swi(uint32_t imm24, Condition cond = al);
747
748 // Coprocessor instructions
749
750 void cdp(Coprocessor coproc, int opcode_1,
751 CRegister crd, CRegister crn, CRegister crm,
752 int opcode_2, Condition cond = al);
753
754 void cdp2(Coprocessor coproc, int opcode_1,
755 CRegister crd, CRegister crn, CRegister crm,
756 int opcode_2); // v5 and above
757
758 void mcr(Coprocessor coproc, int opcode_1,
759 Register rd, CRegister crn, CRegister crm,
760 int opcode_2 = 0, Condition cond = al);
761
762 void mcr2(Coprocessor coproc, int opcode_1,
763 Register rd, CRegister crn, CRegister crm,
764 int opcode_2 = 0); // v5 and above
765
766 void mrc(Coprocessor coproc, int opcode_1,
767 Register rd, CRegister crn, CRegister crm,
768 int opcode_2 = 0, Condition cond = al);
769
770 void mrc2(Coprocessor coproc, int opcode_1,
771 Register rd, CRegister crn, CRegister crm,
772 int opcode_2 = 0); // v5 and above
773
774 void ldc(Coprocessor coproc, CRegister crd, const MemOperand& src,
775 LFlag l = Short, Condition cond = al);
776 void ldc(Coprocessor coproc, CRegister crd, Register base, int option,
777 LFlag l = Short, Condition cond = al);
778
779 void ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src,
780 LFlag l = Short); // v5 and above
781 void ldc2(Coprocessor coproc, CRegister crd, Register base, int option,
782 LFlag l = Short); // v5 and above
783
784 void stc(Coprocessor coproc, CRegister crd, const MemOperand& dst,
785 LFlag l = Short, Condition cond = al);
786 void stc(Coprocessor coproc, CRegister crd, Register base, int option,
787 LFlag l = Short, Condition cond = al);
788
789 void stc2(Coprocessor coproc, CRegister crd, const MemOperand& dst,
790 LFlag l = Short); // v5 and above
791 void stc2(Coprocessor coproc, CRegister crd, Register base, int option,
792 LFlag l = Short); // v5 and above
793
Steve Blockd0582a62009-12-15 09:54:21 +0000794 // Support for VFP.
795 // All these APIs support S0 to S31 and D0 to D15.
796 // Currently these APIs do not support extended D registers, i.e, D16 to D31.
797 // However, some simple modifications can allow
798 // these APIs to support D16 to D31.
799
Leon Clarked91b9f72010-01-27 17:25:45 +0000800 void vldr(const DwVfpRegister dst,
801 const Register base,
802 int offset, // Offset must be a multiple of 4.
803 const Condition cond = al);
804 void vstr(const DwVfpRegister src,
805 const Register base,
806 int offset, // Offset must be a multiple of 4.
807 const Condition cond = al);
Leon Clarkee46be812010-01-19 14:06:41 +0000808 void vmov(const DwVfpRegister dst,
809 const Register src1,
Steve Blockd0582a62009-12-15 09:54:21 +0000810 const Register src2,
Leon Clarkee46be812010-01-19 14:06:41 +0000811 const Condition cond = al);
812 void vmov(const Register dst1,
813 const Register dst2,
814 const DwVfpRegister src,
815 const Condition cond = al);
816 void vmov(const SwVfpRegister dst,
817 const Register src,
818 const Condition cond = al);
819 void vmov(const Register dst,
820 const SwVfpRegister src,
821 const Condition cond = al);
822 void vcvt(const DwVfpRegister dst,
823 const SwVfpRegister src,
824 const Condition cond = al);
825 void vcvt(const SwVfpRegister dst,
826 const DwVfpRegister src,
827 const Condition cond = al);
828
829 void vadd(const DwVfpRegister dst,
830 const DwVfpRegister src1,
831 const DwVfpRegister src2,
832 const Condition cond = al);
833 void vsub(const DwVfpRegister dst,
834 const DwVfpRegister src1,
835 const DwVfpRegister src2,
836 const Condition cond = al);
837 void vmul(const DwVfpRegister dst,
838 const DwVfpRegister src1,
839 const DwVfpRegister src2,
840 const Condition cond = al);
841 void vdiv(const DwVfpRegister dst,
842 const DwVfpRegister src1,
843 const DwVfpRegister src2,
844 const Condition cond = al);
845 void vcmp(const DwVfpRegister src1,
846 const DwVfpRegister src2,
Steve Blockd0582a62009-12-15 09:54:21 +0000847 const SBit s = LeaveCC,
848 const Condition cond = al);
849 void vmrs(const Register dst,
850 const Condition cond = al);
851
Steve Blocka7e24c12009-10-30 11:49:00 +0000852 // Pseudo instructions
853 void nop() { mov(r0, Operand(r0)); }
854
855 void push(Register src, Condition cond = al) {
856 str(src, MemOperand(sp, 4, NegPreIndex), cond);
857 }
858
859 void pop(Register dst, Condition cond = al) {
860 ldr(dst, MemOperand(sp, 4, PostIndex), cond);
861 }
862
863 void pop() {
864 add(sp, sp, Operand(kPointerSize));
865 }
866
867 // Load effective address of memory operand x into register dst
868 void lea(Register dst, const MemOperand& x,
869 SBit s = LeaveCC, Condition cond = al);
870
871 // Jump unconditionally to given label.
872 void jmp(Label* L) { b(L, al); }
873
874 // Check the code size generated from label to here.
875 int InstructionsGeneratedSince(Label* l) {
876 return (pc_offset() - l->pos()) / kInstrSize;
877 }
878
Steve Blockd0582a62009-12-15 09:54:21 +0000879 // Check whether an immediate fits an addressing mode 1 instruction.
880 bool ImmediateFitsAddrMode1Instruction(int32_t imm32);
881
882 // Postpone the generation of the constant pool for the specified number of
883 // instructions.
884 void BlockConstPoolFor(int instructions);
885
Steve Blocka7e24c12009-10-30 11:49:00 +0000886 // Debugging
887
888 // Mark address of the ExitJSFrame code.
889 void RecordJSReturn();
890
891 // Record a comment relocation entry that can be used by a disassembler.
892 // Use --debug_code to enable.
893 void RecordComment(const char* msg);
894
895 void RecordPosition(int pos);
896 void RecordStatementPosition(int pos);
897 void WriteRecordedPositions();
898
899 int pc_offset() const { return pc_ - buffer_; }
900 int current_position() const { return current_position_; }
901 int current_statement_position() const { return current_position_; }
902
903 protected:
904 int buffer_space() const { return reloc_info_writer.pos() - pc_; }
905
906 // Read/patch instructions
907 static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
908 void instr_at_put(byte* pc, Instr instr) {
909 *reinterpret_cast<Instr*>(pc) = instr;
910 }
911 Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
912 void instr_at_put(int pos, Instr instr) {
913 *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
914 }
915
916 // Decode branch instruction at pos and return branch target pos
917 int target_at(int pos);
918
919 // Patch branch instruction at pos to branch to given branch target pos
920 void target_at_put(int pos, int target_pos);
921
922 // Check if is time to emit a constant pool for pending reloc info entries
923 void CheckConstPool(bool force_emit, bool require_jump);
924
925 // Block the emission of the constant pool before pc_offset
926 void BlockConstPoolBefore(int pc_offset) {
927 if (no_const_pool_before_ < pc_offset) no_const_pool_before_ = pc_offset;
928 }
929
930 private:
931 // Code buffer:
932 // The buffer into which code and relocation info are generated.
933 byte* buffer_;
934 int buffer_size_;
935 // True if the assembler owns the buffer, false if buffer is external.
936 bool own_buffer_;
937
938 // Buffer size and constant pool distance are checked together at regular
939 // intervals of kBufferCheckInterval emitted bytes
940 static const int kBufferCheckInterval = 1*KB/2;
941 int next_buffer_check_; // pc offset of next buffer check
942
943 // Code generation
944 // The relocation writer's position is at least kGap bytes below the end of
945 // the generated instructions. This is so that multi-instruction sequences do
946 // not have to check for overflow. The same is true for writes of large
947 // relocation info entries.
948 static const int kGap = 32;
949 byte* pc_; // the program counter; moves forward
950
951 // Constant pool generation
952 // Pools are emitted in the instruction stream, preferably after unconditional
953 // jumps or after returns from functions (in dead code locations).
954 // If a long code sequence does not contain unconditional jumps, it is
955 // necessary to emit the constant pool before the pool gets too far from the
956 // location it is accessed from. In this case, we emit a jump over the emitted
957 // constant pool.
958 // Constants in the pool may be addresses of functions that gets relocated;
959 // if so, a relocation info entry is associated to the constant pool entry.
960
961 // Repeated checking whether the constant pool should be emitted is rather
962 // expensive. By default we only check again once a number of instructions
963 // has been generated. That also means that the sizing of the buffers is not
964 // an exact science, and that we rely on some slop to not overrun buffers.
965 static const int kCheckConstIntervalInst = 32;
966 static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
967
968
969 // Pools are emitted after function return and in dead code at (more or less)
970 // regular intervals of kDistBetweenPools bytes
971 static const int kDistBetweenPools = 1*KB;
972
973 // Constants in pools are accessed via pc relative addressing, which can
974 // reach +/-4KB thereby defining a maximum distance between the instruction
975 // and the accessed constant. We satisfy this constraint by limiting the
976 // distance between pools.
977 static const int kMaxDistBetweenPools = 4*KB - 2*kBufferCheckInterval;
978
979 // Emission of the constant pool may be blocked in some code sequences
980 int no_const_pool_before_; // block emission before this pc offset
981
982 // Keep track of the last emitted pool to guarantee a maximal distance
983 int last_const_pool_end_; // pc offset following the last constant pool
984
985 // Relocation info generation
986 // Each relocation is encoded as a variable size value
987 static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
988 RelocInfoWriter reloc_info_writer;
989 // Relocation info records are also used during code generation as temporary
990 // containers for constants and code target addresses until they are emitted
991 // to the constant pool. These pending relocation info records are temporarily
992 // stored in a separate buffer until a constant pool is emitted.
993 // If every instruction in a long sequence is accessing the pool, we need one
994 // pending relocation entry per instruction.
995 static const int kMaxNumPRInfo = kMaxDistBetweenPools/kInstrSize;
996 RelocInfo prinfo_[kMaxNumPRInfo]; // the buffer of pending relocation info
997 int num_prinfo_; // number of pending reloc info entries in the buffer
998
999 // The bound position, before this we cannot do instruction elimination.
1000 int last_bound_pos_;
1001
1002 // source position information
1003 int current_position_;
1004 int current_statement_position_;
1005 int written_position_;
1006 int written_statement_position_;
1007
1008 // Code emission
1009 inline void CheckBuffer();
1010 void GrowBuffer();
1011 inline void emit(Instr x);
1012
1013 // Instruction generation
1014 void addrmod1(Instr instr, Register rn, Register rd, const Operand& x);
1015 void addrmod2(Instr instr, Register rd, const MemOperand& x);
1016 void addrmod3(Instr instr, Register rd, const MemOperand& x);
1017 void addrmod4(Instr instr, Register rn, RegList rl);
1018 void addrmod5(Instr instr, CRegister crd, const MemOperand& x);
1019
1020 // Labels
1021 void print(Label* L);
1022 void bind_to(Label* L, int pos);
1023 void link_to(Label* L, Label* appendix);
1024 void next(Label* L);
1025
1026 // Record reloc info for current pc_
1027 void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
1028
1029 friend class RegExpMacroAssemblerARM;
1030 friend class RelocInfo;
1031 friend class CodePatcher;
1032};
1033
1034} } // namespace v8::internal
1035
1036#endif // V8_ARM_ASSEMBLER_ARM_H_