blob: df9e7b5ae5f54c96e953b9a03844b0970d653eae [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "src/v8.h"
6
7#include "src/arm64/lithium-codegen-arm64.h"
8#include "src/arm64/lithium-gap-resolver-arm64.h"
9#include "src/base/bits.h"
10#include "src/code-factory.h"
11#include "src/code-stubs.h"
12#include "src/hydrogen-osr.h"
13#include "src/ic/ic.h"
14#include "src/ic/stub-cache.h"
15
16namespace v8 {
17namespace internal {
18
19
20class SafepointGenerator FINAL : public CallWrapper {
21 public:
22 SafepointGenerator(LCodeGen* codegen,
23 LPointerMap* pointers,
24 Safepoint::DeoptMode mode)
25 : codegen_(codegen),
26 pointers_(pointers),
27 deopt_mode_(mode) { }
28 virtual ~SafepointGenerator() { }
29
30 virtual void BeforeCall(int call_size) const { }
31
32 virtual void AfterCall() const {
33 codegen_->RecordSafepoint(pointers_, deopt_mode_);
34 }
35
36 private:
37 LCodeGen* codegen_;
38 LPointerMap* pointers_;
39 Safepoint::DeoptMode deopt_mode_;
40};
41
42
43#define __ masm()->
44
45// Emit code to branch if the given condition holds.
46// The code generated here doesn't modify the flags and they must have
47// been set by some prior instructions.
48//
49// The EmitInverted function simply inverts the condition.
50class BranchOnCondition : public BranchGenerator {
51 public:
52 BranchOnCondition(LCodeGen* codegen, Condition cond)
53 : BranchGenerator(codegen),
54 cond_(cond) { }
55
56 virtual void Emit(Label* label) const {
57 __ B(cond_, label);
58 }
59
60 virtual void EmitInverted(Label* label) const {
61 if (cond_ != al) {
62 __ B(NegateCondition(cond_), label);
63 }
64 }
65
66 private:
67 Condition cond_;
68};
69
70
71// Emit code to compare lhs and rhs and branch if the condition holds.
72// This uses MacroAssembler's CompareAndBranch function so it will handle
73// converting the comparison to Cbz/Cbnz if the right-hand side is 0.
74//
75// EmitInverted still compares the two operands but inverts the condition.
76class CompareAndBranch : public BranchGenerator {
77 public:
78 CompareAndBranch(LCodeGen* codegen,
79 Condition cond,
80 const Register& lhs,
81 const Operand& rhs)
82 : BranchGenerator(codegen),
83 cond_(cond),
84 lhs_(lhs),
85 rhs_(rhs) { }
86
87 virtual void Emit(Label* label) const {
88 __ CompareAndBranch(lhs_, rhs_, cond_, label);
89 }
90
91 virtual void EmitInverted(Label* label) const {
92 __ CompareAndBranch(lhs_, rhs_, NegateCondition(cond_), label);
93 }
94
95 private:
96 Condition cond_;
97 const Register& lhs_;
98 const Operand& rhs_;
99};
100
101
102// Test the input with the given mask and branch if the condition holds.
103// If the condition is 'eq' or 'ne' this will use MacroAssembler's
104// TestAndBranchIfAllClear and TestAndBranchIfAnySet so it will handle the
105// conversion to Tbz/Tbnz when possible.
106class TestAndBranch : public BranchGenerator {
107 public:
108 TestAndBranch(LCodeGen* codegen,
109 Condition cond,
110 const Register& value,
111 uint64_t mask)
112 : BranchGenerator(codegen),
113 cond_(cond),
114 value_(value),
115 mask_(mask) { }
116
117 virtual void Emit(Label* label) const {
118 switch (cond_) {
119 case eq:
120 __ TestAndBranchIfAllClear(value_, mask_, label);
121 break;
122 case ne:
123 __ TestAndBranchIfAnySet(value_, mask_, label);
124 break;
125 default:
126 __ Tst(value_, mask_);
127 __ B(cond_, label);
128 }
129 }
130
131 virtual void EmitInverted(Label* label) const {
132 // The inverse of "all clear" is "any set" and vice versa.
133 switch (cond_) {
134 case eq:
135 __ TestAndBranchIfAnySet(value_, mask_, label);
136 break;
137 case ne:
138 __ TestAndBranchIfAllClear(value_, mask_, label);
139 break;
140 default:
141 __ Tst(value_, mask_);
142 __ B(NegateCondition(cond_), label);
143 }
144 }
145
146 private:
147 Condition cond_;
148 const Register& value_;
149 uint64_t mask_;
150};
151
152
153// Test the input and branch if it is non-zero and not a NaN.
154class BranchIfNonZeroNumber : public BranchGenerator {
155 public:
156 BranchIfNonZeroNumber(LCodeGen* codegen, const FPRegister& value,
157 const FPRegister& scratch)
158 : BranchGenerator(codegen), value_(value), scratch_(scratch) { }
159
160 virtual void Emit(Label* label) const {
161 __ Fabs(scratch_, value_);
162 // Compare with 0.0. Because scratch_ is positive, the result can be one of
163 // nZCv (equal), nzCv (greater) or nzCV (unordered).
164 __ Fcmp(scratch_, 0.0);
165 __ B(gt, label);
166 }
167
168 virtual void EmitInverted(Label* label) const {
169 __ Fabs(scratch_, value_);
170 __ Fcmp(scratch_, 0.0);
171 __ B(le, label);
172 }
173
174 private:
175 const FPRegister& value_;
176 const FPRegister& scratch_;
177};
178
179
180// Test the input and branch if it is a heap number.
181class BranchIfHeapNumber : public BranchGenerator {
182 public:
183 BranchIfHeapNumber(LCodeGen* codegen, const Register& value)
184 : BranchGenerator(codegen), value_(value) { }
185
186 virtual void Emit(Label* label) const {
187 __ JumpIfHeapNumber(value_, label);
188 }
189
190 virtual void EmitInverted(Label* label) const {
191 __ JumpIfNotHeapNumber(value_, label);
192 }
193
194 private:
195 const Register& value_;
196};
197
198
199// Test the input and branch if it is the specified root value.
200class BranchIfRoot : public BranchGenerator {
201 public:
202 BranchIfRoot(LCodeGen* codegen, const Register& value,
203 Heap::RootListIndex index)
204 : BranchGenerator(codegen), value_(value), index_(index) { }
205
206 virtual void Emit(Label* label) const {
207 __ JumpIfRoot(value_, index_, label);
208 }
209
210 virtual void EmitInverted(Label* label) const {
211 __ JumpIfNotRoot(value_, index_, label);
212 }
213
214 private:
215 const Register& value_;
216 const Heap::RootListIndex index_;
217};
218
219
220void LCodeGen::WriteTranslation(LEnvironment* environment,
221 Translation* translation) {
222 if (environment == NULL) return;
223
224 // The translation includes one command per value in the environment.
225 int translation_size = environment->translation_size();
226 // The output frame height does not include the parameters.
227 int height = translation_size - environment->parameter_count();
228
229 WriteTranslation(environment->outer(), translation);
230 bool has_closure_id = !info()->closure().is_null() &&
231 !info()->closure().is_identical_to(environment->closure());
232 int closure_id = has_closure_id
233 ? DefineDeoptimizationLiteral(environment->closure())
234 : Translation::kSelfLiteralId;
235
236 switch (environment->frame_type()) {
237 case JS_FUNCTION:
238 translation->BeginJSFrame(environment->ast_id(), closure_id, height);
239 break;
240 case JS_CONSTRUCT:
241 translation->BeginConstructStubFrame(closure_id, translation_size);
242 break;
243 case JS_GETTER:
244 DCHECK(translation_size == 1);
245 DCHECK(height == 0);
246 translation->BeginGetterStubFrame(closure_id);
247 break;
248 case JS_SETTER:
249 DCHECK(translation_size == 2);
250 DCHECK(height == 0);
251 translation->BeginSetterStubFrame(closure_id);
252 break;
253 case STUB:
254 translation->BeginCompiledStubFrame();
255 break;
256 case ARGUMENTS_ADAPTOR:
257 translation->BeginArgumentsAdaptorFrame(closure_id, translation_size);
258 break;
259 default:
260 UNREACHABLE();
261 }
262
263 int object_index = 0;
264 int dematerialized_index = 0;
265 for (int i = 0; i < translation_size; ++i) {
266 LOperand* value = environment->values()->at(i);
267
268 AddToTranslation(environment,
269 translation,
270 value,
271 environment->HasTaggedValueAt(i),
272 environment->HasUint32ValueAt(i),
273 &object_index,
274 &dematerialized_index);
275 }
276}
277
278
279void LCodeGen::AddToTranslation(LEnvironment* environment,
280 Translation* translation,
281 LOperand* op,
282 bool is_tagged,
283 bool is_uint32,
284 int* object_index_pointer,
285 int* dematerialized_index_pointer) {
286 if (op == LEnvironment::materialization_marker()) {
287 int object_index = (*object_index_pointer)++;
288 if (environment->ObjectIsDuplicateAt(object_index)) {
289 int dupe_of = environment->ObjectDuplicateOfAt(object_index);
290 translation->DuplicateObject(dupe_of);
291 return;
292 }
293 int object_length = environment->ObjectLengthAt(object_index);
294 if (environment->ObjectIsArgumentsAt(object_index)) {
295 translation->BeginArgumentsObject(object_length);
296 } else {
297 translation->BeginCapturedObject(object_length);
298 }
299 int dematerialized_index = *dematerialized_index_pointer;
300 int env_offset = environment->translation_size() + dematerialized_index;
301 *dematerialized_index_pointer += object_length;
302 for (int i = 0; i < object_length; ++i) {
303 LOperand* value = environment->values()->at(env_offset + i);
304 AddToTranslation(environment,
305 translation,
306 value,
307 environment->HasTaggedValueAt(env_offset + i),
308 environment->HasUint32ValueAt(env_offset + i),
309 object_index_pointer,
310 dematerialized_index_pointer);
311 }
312 return;
313 }
314
315 if (op->IsStackSlot()) {
316 if (is_tagged) {
317 translation->StoreStackSlot(op->index());
318 } else if (is_uint32) {
319 translation->StoreUint32StackSlot(op->index());
320 } else {
321 translation->StoreInt32StackSlot(op->index());
322 }
323 } else if (op->IsDoubleStackSlot()) {
324 translation->StoreDoubleStackSlot(op->index());
325 } else if (op->IsRegister()) {
326 Register reg = ToRegister(op);
327 if (is_tagged) {
328 translation->StoreRegister(reg);
329 } else if (is_uint32) {
330 translation->StoreUint32Register(reg);
331 } else {
332 translation->StoreInt32Register(reg);
333 }
334 } else if (op->IsDoubleRegister()) {
335 DoubleRegister reg = ToDoubleRegister(op);
336 translation->StoreDoubleRegister(reg);
337 } else if (op->IsConstantOperand()) {
338 HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
339 int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
340 translation->StoreLiteral(src_index);
341 } else {
342 UNREACHABLE();
343 }
344}
345
346
347int LCodeGen::DefineDeoptimizationLiteral(Handle<Object> literal) {
348 int result = deoptimization_literals_.length();
349 for (int i = 0; i < deoptimization_literals_.length(); ++i) {
350 if (deoptimization_literals_[i].is_identical_to(literal)) return i;
351 }
352 deoptimization_literals_.Add(literal, zone());
353 return result;
354}
355
356
357void LCodeGen::RegisterEnvironmentForDeoptimization(LEnvironment* environment,
358 Safepoint::DeoptMode mode) {
359 environment->set_has_been_used();
360 if (!environment->HasBeenRegistered()) {
361 int frame_count = 0;
362 int jsframe_count = 0;
363 for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
364 ++frame_count;
365 if (e->frame_type() == JS_FUNCTION) {
366 ++jsframe_count;
367 }
368 }
369 Translation translation(&translations_, frame_count, jsframe_count, zone());
370 WriteTranslation(environment, &translation);
371 int deoptimization_index = deoptimizations_.length();
372 int pc_offset = masm()->pc_offset();
373 environment->Register(deoptimization_index,
374 translation.index(),
375 (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
376 deoptimizations_.Add(environment, zone());
377 }
378}
379
380
381void LCodeGen::CallCode(Handle<Code> code,
382 RelocInfo::Mode mode,
383 LInstruction* instr) {
384 CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
385}
386
387
388void LCodeGen::CallCodeGeneric(Handle<Code> code,
389 RelocInfo::Mode mode,
390 LInstruction* instr,
391 SafepointMode safepoint_mode) {
392 DCHECK(instr != NULL);
393
394 Assembler::BlockPoolsScope scope(masm_);
395 __ Call(code, mode);
396 RecordSafepointWithLazyDeopt(instr, safepoint_mode);
397
398 if ((code->kind() == Code::BINARY_OP_IC) ||
399 (code->kind() == Code::COMPARE_IC)) {
400 // Signal that we don't inline smi code before these stubs in the
401 // optimizing code generator.
402 InlineSmiCheckInfo::EmitNotInlined(masm());
403 }
404}
405
406
407void LCodeGen::DoCallFunction(LCallFunction* instr) {
408 DCHECK(ToRegister(instr->context()).is(cp));
409 DCHECK(ToRegister(instr->function()).Is(x1));
410 DCHECK(ToRegister(instr->result()).Is(x0));
411
412 int arity = instr->arity();
413 CallFunctionStub stub(isolate(), arity, instr->hydrogen()->function_flags());
414 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
415 after_push_argument_ = false;
416}
417
418
419void LCodeGen::DoCallNew(LCallNew* instr) {
420 DCHECK(ToRegister(instr->context()).is(cp));
421 DCHECK(instr->IsMarkedAsCall());
422 DCHECK(ToRegister(instr->constructor()).is(x1));
423
424 __ Mov(x0, instr->arity());
425 // No cell in x2 for construct type feedback in optimized code.
426 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
427
428 CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
429 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
430 after_push_argument_ = false;
431
432 DCHECK(ToRegister(instr->result()).is(x0));
433}
434
435
436void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
437 DCHECK(instr->IsMarkedAsCall());
438 DCHECK(ToRegister(instr->context()).is(cp));
439 DCHECK(ToRegister(instr->constructor()).is(x1));
440
441 __ Mov(x0, Operand(instr->arity()));
442 __ LoadRoot(x2, Heap::kUndefinedValueRootIndex);
443
444 ElementsKind kind = instr->hydrogen()->elements_kind();
445 AllocationSiteOverrideMode override_mode =
446 (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
447 ? DISABLE_ALLOCATION_SITES
448 : DONT_OVERRIDE;
449
450 if (instr->arity() == 0) {
451 ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
452 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
453 } else if (instr->arity() == 1) {
454 Label done;
455 if (IsFastPackedElementsKind(kind)) {
456 Label packed_case;
457
458 // We might need to create a holey array; look at the first argument.
459 __ Peek(x10, 0);
460 __ Cbz(x10, &packed_case);
461
462 ElementsKind holey_kind = GetHoleyElementsKind(kind);
463 ArraySingleArgumentConstructorStub stub(isolate(),
464 holey_kind,
465 override_mode);
466 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
467 __ B(&done);
468 __ Bind(&packed_case);
469 }
470
471 ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
472 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
473 __ Bind(&done);
474 } else {
475 ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
476 CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
477 }
478 after_push_argument_ = false;
479
480 DCHECK(ToRegister(instr->result()).is(x0));
481}
482
483
484void LCodeGen::CallRuntime(const Runtime::Function* function,
485 int num_arguments,
486 LInstruction* instr,
487 SaveFPRegsMode save_doubles) {
488 DCHECK(instr != NULL);
489
490 __ CallRuntime(function, num_arguments, save_doubles);
491
492 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
493}
494
495
496void LCodeGen::LoadContextFromDeferred(LOperand* context) {
497 if (context->IsRegister()) {
498 __ Mov(cp, ToRegister(context));
499 } else if (context->IsStackSlot()) {
500 __ Ldr(cp, ToMemOperand(context, kMustUseFramePointer));
501 } else if (context->IsConstantOperand()) {
502 HConstant* constant =
503 chunk_->LookupConstant(LConstantOperand::cast(context));
504 __ LoadHeapObject(cp,
505 Handle<HeapObject>::cast(constant->handle(isolate())));
506 } else {
507 UNREACHABLE();
508 }
509}
510
511
512void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
513 int argc,
514 LInstruction* instr,
515 LOperand* context) {
516 LoadContextFromDeferred(context);
517 __ CallRuntimeSaveDoubles(id);
518 RecordSafepointWithRegisters(
519 instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
520}
521
522
523void LCodeGen::RecordAndWritePosition(int position) {
524 if (position == RelocInfo::kNoPosition) return;
525 masm()->positions_recorder()->RecordPosition(position);
526 masm()->positions_recorder()->WriteRecordedPositions();
527}
528
529
530void LCodeGen::RecordSafepointWithLazyDeopt(LInstruction* instr,
531 SafepointMode safepoint_mode) {
532 if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
533 RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
534 } else {
535 DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
536 RecordSafepointWithRegisters(
537 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
538 }
539}
540
541
542void LCodeGen::RecordSafepoint(LPointerMap* pointers,
543 Safepoint::Kind kind,
544 int arguments,
545 Safepoint::DeoptMode deopt_mode) {
546 DCHECK(expected_safepoint_kind_ == kind);
547
548 const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
549 Safepoint safepoint = safepoints_.DefineSafepoint(
550 masm(), kind, arguments, deopt_mode);
551
552 for (int i = 0; i < operands->length(); i++) {
553 LOperand* pointer = operands->at(i);
554 if (pointer->IsStackSlot()) {
555 safepoint.DefinePointerSlot(pointer->index(), zone());
556 } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
557 safepoint.DefinePointerRegister(ToRegister(pointer), zone());
558 }
559 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +0000560}
561
562void LCodeGen::RecordSafepoint(LPointerMap* pointers,
563 Safepoint::DeoptMode deopt_mode) {
564 RecordSafepoint(pointers, Safepoint::kSimple, 0, deopt_mode);
565}
566
567
568void LCodeGen::RecordSafepoint(Safepoint::DeoptMode deopt_mode) {
569 LPointerMap empty_pointers(zone());
570 RecordSafepoint(&empty_pointers, deopt_mode);
571}
572
573
574void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
575 int arguments,
576 Safepoint::DeoptMode deopt_mode) {
577 RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, deopt_mode);
578}
579
580
581bool LCodeGen::GenerateCode() {
582 LPhase phase("Z_Code generation", chunk());
583 DCHECK(is_unused());
584 status_ = GENERATING;
585
586 // Open a frame scope to indicate that there is a frame on the stack. The
587 // NONE indicates that the scope shouldn't actually generate code to set up
588 // the frame (that is done in GeneratePrologue).
589 FrameScope frame_scope(masm_, StackFrame::NONE);
590
591 return GeneratePrologue() && GenerateBody() && GenerateDeferredCode() &&
592 GenerateJumpTable() && GenerateSafepointTable();
593}
594
595
596void LCodeGen::SaveCallerDoubles() {
597 DCHECK(info()->saves_caller_doubles());
598 DCHECK(NeedsEagerFrame());
599 Comment(";;; Save clobbered callee double registers");
600 BitVector* doubles = chunk()->allocated_double_registers();
601 BitVector::Iterator iterator(doubles);
602 int count = 0;
603 while (!iterator.Done()) {
604 // TODO(all): Is this supposed to save just the callee-saved doubles? It
605 // looks like it's saving all of them.
606 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
607 __ Poke(value, count * kDoubleSize);
608 iterator.Advance();
609 count++;
610 }
611}
612
613
614void LCodeGen::RestoreCallerDoubles() {
615 DCHECK(info()->saves_caller_doubles());
616 DCHECK(NeedsEagerFrame());
617 Comment(";;; Restore clobbered callee double registers");
618 BitVector* doubles = chunk()->allocated_double_registers();
619 BitVector::Iterator iterator(doubles);
620 int count = 0;
621 while (!iterator.Done()) {
622 // TODO(all): Is this supposed to restore just the callee-saved doubles? It
623 // looks like it's restoring all of them.
624 FPRegister value = FPRegister::FromAllocationIndex(iterator.Current());
625 __ Peek(value, count * kDoubleSize);
626 iterator.Advance();
627 count++;
628 }
629}
630
631
632bool LCodeGen::GeneratePrologue() {
633 DCHECK(is_generating());
634
635 if (info()->IsOptimizing()) {
636 ProfileEntryHookStub::MaybeCallEntryHook(masm_);
637
638 // TODO(all): Add support for stop_t FLAG in DEBUG mode.
639
640 // Sloppy mode functions and builtins need to replace the receiver with the
641 // global proxy when called as functions (without an explicit receiver
642 // object).
643 if (info_->this_has_uses() &&
644 info_->strict_mode() == SLOPPY &&
645 !info_->is_native()) {
646 Label ok;
647 int receiver_offset = info_->scope()->num_parameters() * kXRegSize;
648 __ Peek(x10, receiver_offset);
649 __ JumpIfNotRoot(x10, Heap::kUndefinedValueRootIndex, &ok);
650
651 __ Ldr(x10, GlobalObjectMemOperand());
652 __ Ldr(x10, FieldMemOperand(x10, GlobalObject::kGlobalProxyOffset));
653 __ Poke(x10, receiver_offset);
654
655 __ Bind(&ok);
656 }
657 }
658
659 DCHECK(__ StackPointer().Is(jssp));
660 info()->set_prologue_offset(masm_->pc_offset());
661 if (NeedsEagerFrame()) {
662 if (info()->IsStub()) {
663 __ StubPrologue();
664 } else {
665 __ Prologue(info()->IsCodePreAgingActive());
666 }
667 frame_is_built_ = true;
668 info_->AddNoFrameRange(0, masm_->pc_offset());
669 }
670
671 // Reserve space for the stack slots needed by the code.
672 int slots = GetStackSlotCount();
673 if (slots > 0) {
674 __ Claim(slots, kPointerSize);
675 }
676
677 if (info()->saves_caller_doubles()) {
678 SaveCallerDoubles();
679 }
680
681 // Allocate a local context if needed.
682 int heap_slots = info()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
683 if (heap_slots > 0) {
684 Comment(";;; Allocate local context");
685 bool need_write_barrier = true;
686 // Argument to NewContext is the function, which is in x1.
687 if (heap_slots <= FastNewContextStub::kMaximumSlots) {
688 FastNewContextStub stub(isolate(), heap_slots);
689 __ CallStub(&stub);
690 // Result of FastNewContextStub is always in new space.
691 need_write_barrier = false;
692 } else {
693 __ Push(x1);
694 __ CallRuntime(Runtime::kNewFunctionContext, 1);
695 }
696 RecordSafepoint(Safepoint::kNoLazyDeopt);
697 // Context is returned in x0. It replaces the context passed to us. It's
698 // saved in the stack and kept live in cp.
699 __ Mov(cp, x0);
700 __ Str(x0, MemOperand(fp, StandardFrameConstants::kContextOffset));
701 // Copy any necessary parameters into the context.
702 int num_parameters = scope()->num_parameters();
703 for (int i = 0; i < num_parameters; i++) {
704 Variable* var = scope()->parameter(i);
705 if (var->IsContextSlot()) {
706 Register value = x0;
707 Register scratch = x3;
708
709 int parameter_offset = StandardFrameConstants::kCallerSPOffset +
710 (num_parameters - 1 - i) * kPointerSize;
711 // Load parameter from stack.
712 __ Ldr(value, MemOperand(fp, parameter_offset));
713 // Store it in the context.
714 MemOperand target = ContextMemOperand(cp, var->index());
715 __ Str(value, target);
716 // Update the write barrier. This clobbers value and scratch.
717 if (need_write_barrier) {
718 __ RecordWriteContextSlot(cp, target.offset(), value, scratch,
719 GetLinkRegisterState(), kSaveFPRegs);
720 } else if (FLAG_debug_code) {
721 Label done;
722 __ JumpIfInNewSpace(cp, &done);
723 __ Abort(kExpectedNewSpaceObject);
724 __ bind(&done);
725 }
726 }
727 }
728 Comment(";;; End allocate local context");
729 }
730
731 // Trace the call.
732 if (FLAG_trace && info()->IsOptimizing()) {
733 // We have not executed any compiled code yet, so cp still holds the
734 // incoming context.
735 __ CallRuntime(Runtime::kTraceEnter, 0);
736 }
737
738 return !is_aborted();
739}
740
741
742void LCodeGen::GenerateOsrPrologue() {
743 // Generate the OSR entry prologue at the first unknown OSR value, or if there
744 // are none, at the OSR entrypoint instruction.
745 if (osr_pc_offset_ >= 0) return;
746
747 osr_pc_offset_ = masm()->pc_offset();
748
749 // Adjust the frame size, subsuming the unoptimized frame into the
750 // optimized frame.
751 int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
752 DCHECK(slots >= 0);
753 __ Claim(slots);
754}
755
756
757void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
758 if (instr->IsCall()) {
759 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
760 }
761 if (!instr->IsLazyBailout() && !instr->IsGap()) {
762 safepoints_.BumpLastLazySafepointIndex();
763 }
764}
765
766
767bool LCodeGen::GenerateDeferredCode() {
768 DCHECK(is_generating());
769 if (deferred_.length() > 0) {
770 for (int i = 0; !is_aborted() && (i < deferred_.length()); i++) {
771 LDeferredCode* code = deferred_[i];
772
773 HValue* value =
774 instructions_->at(code->instruction_index())->hydrogen_value();
775 RecordAndWritePosition(
776 chunk()->graph()->SourcePositionToScriptPosition(value->position()));
777
778 Comment(";;; <@%d,#%d> "
779 "-------------------- Deferred %s --------------------",
780 code->instruction_index(),
781 code->instr()->hydrogen_value()->id(),
782 code->instr()->Mnemonic());
783
784 __ Bind(code->entry());
785
786 if (NeedsDeferredFrame()) {
787 Comment(";;; Build frame");
788 DCHECK(!frame_is_built_);
789 DCHECK(info()->IsStub());
790 frame_is_built_ = true;
791 __ Push(lr, fp, cp);
792 __ Mov(fp, Smi::FromInt(StackFrame::STUB));
793 __ Push(fp);
794 __ Add(fp, __ StackPointer(),
795 StandardFrameConstants::kFixedFrameSizeFromFp);
796 Comment(";;; Deferred code");
797 }
798
799 code->Generate();
800
801 if (NeedsDeferredFrame()) {
802 Comment(";;; Destroy frame");
803 DCHECK(frame_is_built_);
804 __ Pop(xzr, cp, fp, lr);
805 frame_is_built_ = false;
806 }
807
808 __ B(code->exit());
809 }
810 }
811
812 // Force constant pool emission at the end of the deferred code to make
813 // sure that no constant pools are emitted after deferred code because
814 // deferred code generation is the last step which generates code. The two
815 // following steps will only output data used by crakshaft.
816 masm()->CheckConstPool(true, false);
817
818 return !is_aborted();
819}
820
821
822bool LCodeGen::GenerateJumpTable() {
823 Label needs_frame, restore_caller_doubles, call_deopt_entry;
824
825 if (jump_table_.length() > 0) {
826 Comment(";;; -------------------- Jump table --------------------");
827 Address base = jump_table_[0]->address;
828
829 UseScratchRegisterScope temps(masm());
830 Register entry_offset = temps.AcquireX();
831
832 int length = jump_table_.length();
833 for (int i = 0; i < length; i++) {
834 Deoptimizer::JumpTableEntry* table_entry = jump_table_[i];
835 __ Bind(&table_entry->label);
836
837 Address entry = table_entry->address;
838 DeoptComment(table_entry->reason);
839
840 // Second-level deopt table entries are contiguous and small, so instead
841 // of loading the full, absolute address of each one, load the base
842 // address and add an immediate offset.
843 __ Mov(entry_offset, entry - base);
844
845 // The last entry can fall through into `call_deopt_entry`, avoiding a
846 // branch.
847 bool last_entry = (i + 1) == length;
848
849 if (table_entry->needs_frame) {
850 DCHECK(!info()->saves_caller_doubles());
851 if (!needs_frame.is_bound()) {
852 // This variant of deopt can only be used with stubs. Since we don't
853 // have a function pointer to install in the stack frame that we're
854 // building, install a special marker there instead.
855 DCHECK(info()->IsStub());
856
857 UseScratchRegisterScope temps(masm());
858 Register stub_marker = temps.AcquireX();
859 __ Bind(&needs_frame);
860 __ Mov(stub_marker, Smi::FromInt(StackFrame::STUB));
861 __ Push(lr, fp, cp, stub_marker);
862 __ Add(fp, __ StackPointer(), 2 * kPointerSize);
863 if (!last_entry) __ B(&call_deopt_entry);
864 } else {
865 // Reuse the existing needs_frame code.
866 __ B(&needs_frame);
867 }
868 } else if (info()->saves_caller_doubles()) {
869 DCHECK(info()->IsStub());
870 if (!restore_caller_doubles.is_bound()) {
871 __ Bind(&restore_caller_doubles);
872 RestoreCallerDoubles();
873 if (!last_entry) __ B(&call_deopt_entry);
874 } else {
875 // Reuse the existing restore_caller_doubles code.
876 __ B(&restore_caller_doubles);
877 }
878 } else {
879 // There is nothing special to do, so just continue to the second-level
880 // table.
881 if (!last_entry) __ B(&call_deopt_entry);
882 }
883
884 masm()->CheckConstPool(false, last_entry);
885 }
886
887 // Generate common code for calling the second-level deopt table.
888 Register deopt_entry = temps.AcquireX();
889 __ Bind(&call_deopt_entry);
890 __ Mov(deopt_entry, Operand(reinterpret_cast<uint64_t>(base),
891 RelocInfo::RUNTIME_ENTRY));
892 __ Add(deopt_entry, deopt_entry, entry_offset);
893 __ Call(deopt_entry);
894 }
895
896 // Force constant pool emission at the end of the deopt jump table to make
897 // sure that no constant pools are emitted after.
898 masm()->CheckConstPool(true, false);
899
900 // The deoptimization jump table is the last part of the instruction
901 // sequence. Mark the generated code as done unless we bailed out.
902 if (!is_aborted()) status_ = DONE;
903 return !is_aborted();
904}
905
906
907bool LCodeGen::GenerateSafepointTable() {
908 DCHECK(is_done());
909 // We do not know how much data will be emitted for the safepoint table, so
910 // force emission of the veneer pool.
911 masm()->CheckVeneerPool(true, true);
912 safepoints_.Emit(masm(), GetStackSlotCount());
913 return !is_aborted();
914}
915
916
917void LCodeGen::FinishCode(Handle<Code> code) {
918 DCHECK(is_done());
919 code->set_stack_slots(GetStackSlotCount());
920 code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
921 if (code->is_optimized_code()) RegisterWeakObjectsInOptimizedCode(code);
922 PopulateDeoptimizationData(code);
923}
924
925
926void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
927 int length = deoptimizations_.length();
928 if (length == 0) return;
929
930 Handle<DeoptimizationInputData> data =
931 DeoptimizationInputData::New(isolate(), length, TENURED);
932
933 Handle<ByteArray> translations =
934 translations_.CreateByteArray(isolate()->factory());
935 data->SetTranslationByteArray(*translations);
936 data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
937 data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
938 if (info_->IsOptimizing()) {
939 // Reference to shared function info does not change between phases.
940 AllowDeferredHandleDereference allow_handle_dereference;
941 data->SetSharedFunctionInfo(*info_->shared_info());
942 } else {
943 data->SetSharedFunctionInfo(Smi::FromInt(0));
944 }
945
946 Handle<FixedArray> literals =
947 factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
948 { AllowDeferredHandleDereference copy_handles;
949 for (int i = 0; i < deoptimization_literals_.length(); i++) {
950 literals->set(i, *deoptimization_literals_[i]);
951 }
952 data->SetLiteralArray(*literals);
953 }
954
955 data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
956 data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
957
958 // Populate the deoptimization entries.
959 for (int i = 0; i < length; i++) {
960 LEnvironment* env = deoptimizations_[i];
961 data->SetAstId(i, env->ast_id());
962 data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
963 data->SetArgumentsStackHeight(i,
964 Smi::FromInt(env->arguments_stack_height()));
965 data->SetPc(i, Smi::FromInt(env->pc_offset()));
966 }
967
968 code->set_deoptimization_data(*data);
969}
970
971
972void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
973 DCHECK(deoptimization_literals_.length() == 0);
974
975 const ZoneList<Handle<JSFunction> >* inlined_closures =
976 chunk()->inlined_closures();
977
978 for (int i = 0, length = inlined_closures->length(); i < length; i++) {
979 DefineDeoptimizationLiteral(inlined_closures->at(i));
980 }
981
982 inlined_function_count_ = deoptimization_literals_.length();
983}
984
985
986void LCodeGen::DeoptimizeBranch(
987 LInstruction* instr, const char* detail, BranchType branch_type,
988 Register reg, int bit, Deoptimizer::BailoutType* override_bailout_type) {
989 LEnvironment* environment = instr->environment();
990 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
991 Deoptimizer::BailoutType bailout_type =
992 info()->IsStub() ? Deoptimizer::LAZY : Deoptimizer::EAGER;
993
994 if (override_bailout_type != NULL) {
995 bailout_type = *override_bailout_type;
996 }
997
998 DCHECK(environment->HasBeenRegistered());
999 DCHECK(info()->IsOptimizing() || info()->IsStub());
1000 int id = environment->deoptimization_index();
1001 Address entry =
1002 Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
1003
1004 if (entry == NULL) {
1005 Abort(kBailoutWasNotPrepared);
1006 }
1007
1008 if (FLAG_deopt_every_n_times != 0 && !info()->IsStub()) {
1009 Label not_zero;
1010 ExternalReference count = ExternalReference::stress_deopt_count(isolate());
1011
1012 __ Push(x0, x1, x2);
1013 __ Mrs(x2, NZCV);
1014 __ Mov(x0, count);
1015 __ Ldr(w1, MemOperand(x0));
1016 __ Subs(x1, x1, 1);
1017 __ B(gt, &not_zero);
1018 __ Mov(w1, FLAG_deopt_every_n_times);
1019 __ Str(w1, MemOperand(x0));
1020 __ Pop(x2, x1, x0);
1021 DCHECK(frame_is_built_);
1022 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1023 __ Unreachable();
1024
1025 __ Bind(&not_zero);
1026 __ Str(w1, MemOperand(x0));
1027 __ Msr(NZCV, x2);
1028 __ Pop(x2, x1, x0);
1029 }
1030
1031 if (info()->ShouldTrapOnDeopt()) {
1032 Label dont_trap;
1033 __ B(&dont_trap, InvertBranchType(branch_type), reg, bit);
1034 __ Debug("trap_on_deopt", __LINE__, BREAK);
1035 __ Bind(&dont_trap);
1036 }
1037
1038 Deoptimizer::Reason reason(instr->hydrogen_value()->position().raw(),
1039 instr->Mnemonic(), detail);
1040 DCHECK(info()->IsStub() || frame_is_built_);
1041 // Go through jump table if we need to build frame, or restore caller doubles.
1042 if (branch_type == always &&
1043 frame_is_built_ && !info()->saves_caller_doubles()) {
1044 DeoptComment(reason);
1045 __ Call(entry, RelocInfo::RUNTIME_ENTRY);
1046 } else {
1047 Deoptimizer::JumpTableEntry* table_entry =
1048 new (zone()) Deoptimizer::JumpTableEntry(entry, reason, bailout_type,
1049 !frame_is_built_);
1050 // We often have several deopts to the same entry, reuse the last
1051 // jump entry if this is the case.
1052 if (jump_table_.is_empty() ||
1053 !table_entry->IsEquivalentTo(*jump_table_.last())) {
1054 jump_table_.Add(table_entry, zone());
1055 }
1056 __ B(&jump_table_.last()->label, branch_type, reg, bit);
1057 }
1058}
1059
1060
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001061void LCodeGen::Deoptimize(LInstruction* instr, const char* detail,
1062 Deoptimizer::BailoutType* override_bailout_type) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001063 DeoptimizeBranch(instr, detail, always, NoReg, -1, override_bailout_type);
1064}
1065
1066
1067void LCodeGen::DeoptimizeIf(Condition cond, LInstruction* instr,
1068 const char* detail) {
1069 DeoptimizeBranch(instr, detail, static_cast<BranchType>(cond));
1070}
1071
1072
1073void LCodeGen::DeoptimizeIfZero(Register rt, LInstruction* instr,
1074 const char* detail) {
1075 DeoptimizeBranch(instr, detail, reg_zero, rt);
1076}
1077
1078
1079void LCodeGen::DeoptimizeIfNotZero(Register rt, LInstruction* instr,
1080 const char* detail) {
1081 DeoptimizeBranch(instr, detail, reg_not_zero, rt);
1082}
1083
1084
1085void LCodeGen::DeoptimizeIfNegative(Register rt, LInstruction* instr,
1086 const char* detail) {
1087 int sign_bit = rt.Is64Bits() ? kXSignBit : kWSignBit;
1088 DeoptimizeIfBitSet(rt, sign_bit, instr, detail);
1089}
1090
1091
1092void LCodeGen::DeoptimizeIfSmi(Register rt, LInstruction* instr,
1093 const char* detail) {
1094 DeoptimizeIfBitClear(rt, MaskToBit(kSmiTagMask), instr, detail);
1095}
1096
1097
1098void LCodeGen::DeoptimizeIfNotSmi(Register rt, LInstruction* instr,
1099 const char* detail) {
1100 DeoptimizeIfBitSet(rt, MaskToBit(kSmiTagMask), instr, detail);
1101}
1102
1103
1104void LCodeGen::DeoptimizeIfRoot(Register rt, Heap::RootListIndex index,
1105 LInstruction* instr, const char* detail) {
1106 __ CompareRoot(rt, index);
1107 DeoptimizeIf(eq, instr, detail);
1108}
1109
1110
1111void LCodeGen::DeoptimizeIfNotRoot(Register rt, Heap::RootListIndex index,
1112 LInstruction* instr, const char* detail) {
1113 __ CompareRoot(rt, index);
1114 DeoptimizeIf(ne, instr, detail);
1115}
1116
1117
1118void LCodeGen::DeoptimizeIfMinusZero(DoubleRegister input, LInstruction* instr,
1119 const char* detail) {
1120 __ TestForMinusZero(input);
1121 DeoptimizeIf(vs, instr, detail);
1122}
1123
1124
1125void LCodeGen::DeoptimizeIfNotHeapNumber(Register object, LInstruction* instr) {
1126 __ CompareObjectMap(object, Heap::kHeapNumberMapRootIndex);
1127 DeoptimizeIf(ne, instr, "not heap number");
1128}
1129
1130
1131void LCodeGen::DeoptimizeIfBitSet(Register rt, int bit, LInstruction* instr,
1132 const char* detail) {
1133 DeoptimizeBranch(instr, detail, reg_bit_set, rt, bit);
1134}
1135
1136
1137void LCodeGen::DeoptimizeIfBitClear(Register rt, int bit, LInstruction* instr,
1138 const char* detail) {
1139 DeoptimizeBranch(instr, detail, reg_bit_clear, rt, bit);
1140}
1141
1142
1143void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
1144 if (!info()->IsStub()) {
1145 // Ensure that we have enough space after the previous lazy-bailout
1146 // instruction for patching the code here.
1147 intptr_t current_pc = masm()->pc_offset();
1148
1149 if (current_pc < (last_lazy_deopt_pc_ + space_needed)) {
1150 ptrdiff_t padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
1151 DCHECK((padding_size % kInstructionSize) == 0);
1152 InstructionAccurateScope instruction_accurate(
1153 masm(), padding_size / kInstructionSize);
1154
1155 while (padding_size > 0) {
1156 __ nop();
1157 padding_size -= kInstructionSize;
1158 }
1159 }
1160 }
1161 last_lazy_deopt_pc_ = masm()->pc_offset();
1162}
1163
1164
1165Register LCodeGen::ToRegister(LOperand* op) const {
1166 // TODO(all): support zero register results, as ToRegister32.
1167 DCHECK((op != NULL) && op->IsRegister());
1168 return Register::FromAllocationIndex(op->index());
1169}
1170
1171
1172Register LCodeGen::ToRegister32(LOperand* op) const {
1173 DCHECK(op != NULL);
1174 if (op->IsConstantOperand()) {
1175 // If this is a constant operand, the result must be the zero register.
1176 DCHECK(ToInteger32(LConstantOperand::cast(op)) == 0);
1177 return wzr;
1178 } else {
1179 return ToRegister(op).W();
1180 }
1181}
1182
1183
1184Smi* LCodeGen::ToSmi(LConstantOperand* op) const {
1185 HConstant* constant = chunk_->LookupConstant(op);
1186 return Smi::FromInt(constant->Integer32Value());
1187}
1188
1189
1190DoubleRegister LCodeGen::ToDoubleRegister(LOperand* op) const {
1191 DCHECK((op != NULL) && op->IsDoubleRegister());
1192 return DoubleRegister::FromAllocationIndex(op->index());
1193}
1194
1195
1196Operand LCodeGen::ToOperand(LOperand* op) {
1197 DCHECK(op != NULL);
1198 if (op->IsConstantOperand()) {
1199 LConstantOperand* const_op = LConstantOperand::cast(op);
1200 HConstant* constant = chunk()->LookupConstant(const_op);
1201 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1202 if (r.IsSmi()) {
1203 DCHECK(constant->HasSmiValue());
1204 return Operand(Smi::FromInt(constant->Integer32Value()));
1205 } else if (r.IsInteger32()) {
1206 DCHECK(constant->HasInteger32Value());
1207 return Operand(constant->Integer32Value());
1208 } else if (r.IsDouble()) {
1209 Abort(kToOperandUnsupportedDoubleImmediate);
1210 }
1211 DCHECK(r.IsTagged());
1212 return Operand(constant->handle(isolate()));
1213 } else if (op->IsRegister()) {
1214 return Operand(ToRegister(op));
1215 } else if (op->IsDoubleRegister()) {
1216 Abort(kToOperandIsDoubleRegisterUnimplemented);
1217 return Operand(0);
1218 }
1219 // Stack slots not implemented, use ToMemOperand instead.
1220 UNREACHABLE();
1221 return Operand(0);
1222}
1223
1224
1225Operand LCodeGen::ToOperand32(LOperand* op) {
1226 DCHECK(op != NULL);
1227 if (op->IsRegister()) {
1228 return Operand(ToRegister32(op));
1229 } else if (op->IsConstantOperand()) {
1230 LConstantOperand* const_op = LConstantOperand::cast(op);
1231 HConstant* constant = chunk()->LookupConstant(const_op);
1232 Representation r = chunk_->LookupLiteralRepresentation(const_op);
1233 if (r.IsInteger32()) {
1234 return Operand(constant->Integer32Value());
1235 } else {
1236 // Other constants not implemented.
1237 Abort(kToOperand32UnsupportedImmediate);
1238 }
1239 }
1240 // Other cases are not implemented.
1241 UNREACHABLE();
1242 return Operand(0);
1243}
1244
1245
1246static int64_t ArgumentsOffsetWithoutFrame(int index) {
1247 DCHECK(index < 0);
1248 return -(index + 1) * kPointerSize;
1249}
1250
1251
1252MemOperand LCodeGen::ToMemOperand(LOperand* op, StackMode stack_mode) const {
1253 DCHECK(op != NULL);
1254 DCHECK(!op->IsRegister());
1255 DCHECK(!op->IsDoubleRegister());
1256 DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
1257 if (NeedsEagerFrame()) {
1258 int fp_offset = StackSlotOffset(op->index());
1259 if (op->index() >= 0) {
1260 // Loads and stores have a bigger reach in positive offset than negative.
1261 // When the load or the store can't be done in one instruction via fp
1262 // (too big negative offset), we try to access via jssp (positive offset).
1263 // We can reference a stack slot from jssp only if jssp references the end
1264 // of the stack slots. It's not the case when:
1265 // - stack_mode != kCanUseStackPointer: this is the case when a deferred
1266 // code saved the registers.
1267 // - after_push_argument_: arguments has been pushed for a call.
1268 // - inlined_arguments_: inlined arguments have been pushed once. All the
1269 // remainder of the function cannot trust jssp any longer.
1270 // - saves_caller_doubles: some double registers have been pushed, jssp
1271 // references the end of the double registers and not the end of the
1272 // stack slots.
1273 // Also, if the offset from fp is small enough to make a load/store in
1274 // one instruction, we use a fp access.
1275 if ((stack_mode == kCanUseStackPointer) && !after_push_argument_ &&
1276 !inlined_arguments_ && !is_int9(fp_offset) &&
1277 !info()->saves_caller_doubles()) {
1278 int jssp_offset =
1279 (GetStackSlotCount() - op->index() - 1) * kPointerSize;
1280 return MemOperand(masm()->StackPointer(), jssp_offset);
1281 }
1282 }
1283 return MemOperand(fp, fp_offset);
1284 } else {
1285 // Retrieve parameter without eager stack-frame relative to the
1286 // stack-pointer.
1287 return MemOperand(masm()->StackPointer(),
1288 ArgumentsOffsetWithoutFrame(op->index()));
1289 }
1290}
1291
1292
1293Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
1294 HConstant* constant = chunk_->LookupConstant(op);
1295 DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
1296 return constant->handle(isolate());
1297}
1298
1299
1300template <class LI>
1301Operand LCodeGen::ToShiftedRightOperand32(LOperand* right, LI* shift_info) {
1302 if (shift_info->shift() == NO_SHIFT) {
1303 return ToOperand32(right);
1304 } else {
1305 return Operand(
1306 ToRegister32(right),
1307 shift_info->shift(),
1308 JSShiftAmountFromLConstant(shift_info->shift_amount()));
1309 }
1310}
1311
1312
1313bool LCodeGen::IsSmi(LConstantOperand* op) const {
1314 return chunk_->LookupLiteralRepresentation(op).IsSmi();
1315}
1316
1317
1318bool LCodeGen::IsInteger32Constant(LConstantOperand* op) const {
1319 return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
1320}
1321
1322
1323int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
1324 HConstant* constant = chunk_->LookupConstant(op);
1325 return constant->Integer32Value();
1326}
1327
1328
1329double LCodeGen::ToDouble(LConstantOperand* op) const {
1330 HConstant* constant = chunk_->LookupConstant(op);
1331 DCHECK(constant->HasDoubleValue());
1332 return constant->DoubleValue();
1333}
1334
1335
1336Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
1337 Condition cond = nv;
1338 switch (op) {
1339 case Token::EQ:
1340 case Token::EQ_STRICT:
1341 cond = eq;
1342 break;
1343 case Token::NE:
1344 case Token::NE_STRICT:
1345 cond = ne;
1346 break;
1347 case Token::LT:
1348 cond = is_unsigned ? lo : lt;
1349 break;
1350 case Token::GT:
1351 cond = is_unsigned ? hi : gt;
1352 break;
1353 case Token::LTE:
1354 cond = is_unsigned ? ls : le;
1355 break;
1356 case Token::GTE:
1357 cond = is_unsigned ? hs : ge;
1358 break;
1359 case Token::IN:
1360 case Token::INSTANCEOF:
1361 default:
1362 UNREACHABLE();
1363 }
1364 return cond;
1365}
1366
1367
1368template<class InstrType>
1369void LCodeGen::EmitBranchGeneric(InstrType instr,
1370 const BranchGenerator& branch) {
1371 int left_block = instr->TrueDestination(chunk_);
1372 int right_block = instr->FalseDestination(chunk_);
1373
1374 int next_block = GetNextEmittedBlock();
1375
1376 if (right_block == left_block) {
1377 EmitGoto(left_block);
1378 } else if (left_block == next_block) {
1379 branch.EmitInverted(chunk_->GetAssemblyLabel(right_block));
1380 } else {
1381 branch.Emit(chunk_->GetAssemblyLabel(left_block));
1382 if (right_block != next_block) {
1383 __ B(chunk_->GetAssemblyLabel(right_block));
1384 }
1385 }
1386}
1387
1388
1389template<class InstrType>
1390void LCodeGen::EmitBranch(InstrType instr, Condition condition) {
1391 DCHECK((condition != al) && (condition != nv));
1392 BranchOnCondition branch(this, condition);
1393 EmitBranchGeneric(instr, branch);
1394}
1395
1396
1397template<class InstrType>
1398void LCodeGen::EmitCompareAndBranch(InstrType instr,
1399 Condition condition,
1400 const Register& lhs,
1401 const Operand& rhs) {
1402 DCHECK((condition != al) && (condition != nv));
1403 CompareAndBranch branch(this, condition, lhs, rhs);
1404 EmitBranchGeneric(instr, branch);
1405}
1406
1407
1408template<class InstrType>
1409void LCodeGen::EmitTestAndBranch(InstrType instr,
1410 Condition condition,
1411 const Register& value,
1412 uint64_t mask) {
1413 DCHECK((condition != al) && (condition != nv));
1414 TestAndBranch branch(this, condition, value, mask);
1415 EmitBranchGeneric(instr, branch);
1416}
1417
1418
1419template<class InstrType>
1420void LCodeGen::EmitBranchIfNonZeroNumber(InstrType instr,
1421 const FPRegister& value,
1422 const FPRegister& scratch) {
1423 BranchIfNonZeroNumber branch(this, value, scratch);
1424 EmitBranchGeneric(instr, branch);
1425}
1426
1427
1428template<class InstrType>
1429void LCodeGen::EmitBranchIfHeapNumber(InstrType instr,
1430 const Register& value) {
1431 BranchIfHeapNumber branch(this, value);
1432 EmitBranchGeneric(instr, branch);
1433}
1434
1435
1436template<class InstrType>
1437void LCodeGen::EmitBranchIfRoot(InstrType instr,
1438 const Register& value,
1439 Heap::RootListIndex index) {
1440 BranchIfRoot branch(this, value, index);
1441 EmitBranchGeneric(instr, branch);
1442}
1443
1444
1445void LCodeGen::DoGap(LGap* gap) {
1446 for (int i = LGap::FIRST_INNER_POSITION;
1447 i <= LGap::LAST_INNER_POSITION;
1448 i++) {
1449 LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
1450 LParallelMove* move = gap->GetParallelMove(inner_pos);
1451 if (move != NULL) {
1452 resolver_.Resolve(move);
1453 }
1454 }
1455}
1456
1457
1458void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
1459 Register arguments = ToRegister(instr->arguments());
1460 Register result = ToRegister(instr->result());
1461
1462 // The pointer to the arguments array come from DoArgumentsElements.
1463 // It does not point directly to the arguments and there is an offest of
1464 // two words that we must take into account when accessing an argument.
1465 // Subtracting the index from length accounts for one, so we add one more.
1466
1467 if (instr->length()->IsConstantOperand() &&
1468 instr->index()->IsConstantOperand()) {
1469 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1470 int length = ToInteger32(LConstantOperand::cast(instr->length()));
1471 int offset = ((length - index) + 1) * kPointerSize;
1472 __ Ldr(result, MemOperand(arguments, offset));
1473 } else if (instr->index()->IsConstantOperand()) {
1474 Register length = ToRegister32(instr->length());
1475 int index = ToInteger32(LConstantOperand::cast(instr->index()));
1476 int loc = index - 1;
1477 if (loc != 0) {
1478 __ Sub(result.W(), length, loc);
1479 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1480 } else {
1481 __ Ldr(result, MemOperand(arguments, length, UXTW, kPointerSizeLog2));
1482 }
1483 } else {
1484 Register length = ToRegister32(instr->length());
1485 Operand index = ToOperand32(instr->index());
1486 __ Sub(result.W(), length, index);
1487 __ Add(result.W(), result.W(), 1);
1488 __ Ldr(result, MemOperand(arguments, result, UXTW, kPointerSizeLog2));
1489 }
1490}
1491
1492
1493void LCodeGen::DoAddE(LAddE* instr) {
1494 Register result = ToRegister(instr->result());
1495 Register left = ToRegister(instr->left());
1496 Operand right = (instr->right()->IsConstantOperand())
1497 ? ToInteger32(LConstantOperand::cast(instr->right()))
1498 : Operand(ToRegister32(instr->right()), SXTW);
1499
1500 DCHECK(!instr->hydrogen()->CheckFlag(HValue::kCanOverflow));
1501 __ Add(result, left, right);
1502}
1503
1504
1505void LCodeGen::DoAddI(LAddI* instr) {
1506 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1507 Register result = ToRegister32(instr->result());
1508 Register left = ToRegister32(instr->left());
1509 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1510
1511 if (can_overflow) {
1512 __ Adds(result, left, right);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001513 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001514 } else {
1515 __ Add(result, left, right);
1516 }
1517}
1518
1519
1520void LCodeGen::DoAddS(LAddS* instr) {
1521 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
1522 Register result = ToRegister(instr->result());
1523 Register left = ToRegister(instr->left());
1524 Operand right = ToOperand(instr->right());
1525 if (can_overflow) {
1526 __ Adds(result, left, right);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001527 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001528 } else {
1529 __ Add(result, left, right);
1530 }
1531}
1532
1533
1534void LCodeGen::DoAllocate(LAllocate* instr) {
1535 class DeferredAllocate: public LDeferredCode {
1536 public:
1537 DeferredAllocate(LCodeGen* codegen, LAllocate* instr)
1538 : LDeferredCode(codegen), instr_(instr) { }
1539 virtual void Generate() { codegen()->DoDeferredAllocate(instr_); }
1540 virtual LInstruction* instr() { return instr_; }
1541 private:
1542 LAllocate* instr_;
1543 };
1544
1545 DeferredAllocate* deferred = new(zone()) DeferredAllocate(this, instr);
1546
1547 Register result = ToRegister(instr->result());
1548 Register temp1 = ToRegister(instr->temp1());
1549 Register temp2 = ToRegister(instr->temp2());
1550
1551 // Allocate memory for the object.
1552 AllocationFlags flags = TAG_OBJECT;
1553 if (instr->hydrogen()->MustAllocateDoubleAligned()) {
1554 flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
1555 }
1556
1557 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
1558 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
1559 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1560 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_POINTER_SPACE);
1561 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
1562 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1563 flags = static_cast<AllocationFlags>(flags | PRETENURE_OLD_DATA_SPACE);
1564 }
1565
1566 if (instr->size()->IsConstantOperand()) {
1567 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1568 if (size <= Page::kMaxRegularHeapObjectSize) {
1569 __ Allocate(size, result, temp1, temp2, deferred->entry(), flags);
1570 } else {
1571 __ B(deferred->entry());
1572 }
1573 } else {
1574 Register size = ToRegister32(instr->size());
1575 __ Sxtw(size.X(), size);
1576 __ Allocate(size.X(), result, temp1, temp2, deferred->entry(), flags);
1577 }
1578
1579 __ Bind(deferred->exit());
1580
1581 if (instr->hydrogen()->MustPrefillWithFiller()) {
1582 Register filler_count = temp1;
1583 Register filler = temp2;
1584 Register untagged_result = ToRegister(instr->temp3());
1585
1586 if (instr->size()->IsConstantOperand()) {
1587 int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
1588 __ Mov(filler_count, size / kPointerSize);
1589 } else {
1590 __ Lsr(filler_count.W(), ToRegister32(instr->size()), kPointerSizeLog2);
1591 }
1592
1593 __ Sub(untagged_result, result, kHeapObjectTag);
1594 __ Mov(filler, Operand(isolate()->factory()->one_pointer_filler_map()));
1595 __ FillFields(untagged_result, filler_count, filler);
1596 } else {
1597 DCHECK(instr->temp3() == NULL);
1598 }
1599}
1600
1601
1602void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
1603 // TODO(3095996): Get rid of this. For now, we need to make the
1604 // result register contain a valid pointer because it is already
1605 // contained in the register pointer map.
1606 __ Mov(ToRegister(instr->result()), Smi::FromInt(0));
1607
1608 PushSafepointRegistersScope scope(this);
1609 // We're in a SafepointRegistersScope so we can use any scratch registers.
1610 Register size = x0;
1611 if (instr->size()->IsConstantOperand()) {
1612 __ Mov(size, ToSmi(LConstantOperand::cast(instr->size())));
1613 } else {
1614 __ SmiTag(size, ToRegister32(instr->size()).X());
1615 }
1616 int flags = AllocateDoubleAlignFlag::encode(
1617 instr->hydrogen()->MustAllocateDoubleAligned());
1618 if (instr->hydrogen()->IsOldPointerSpaceAllocation()) {
1619 DCHECK(!instr->hydrogen()->IsOldDataSpaceAllocation());
1620 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1621 flags = AllocateTargetSpace::update(flags, OLD_POINTER_SPACE);
1622 } else if (instr->hydrogen()->IsOldDataSpaceAllocation()) {
1623 DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
1624 flags = AllocateTargetSpace::update(flags, OLD_DATA_SPACE);
1625 } else {
1626 flags = AllocateTargetSpace::update(flags, NEW_SPACE);
1627 }
1628 __ Mov(x10, Smi::FromInt(flags));
1629 __ Push(size, x10);
1630
1631 CallRuntimeFromDeferred(
1632 Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
1633 __ StoreToSafepointRegisterSlot(x0, ToRegister(instr->result()));
1634}
1635
1636
1637void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
1638 Register receiver = ToRegister(instr->receiver());
1639 Register function = ToRegister(instr->function());
1640 Register length = ToRegister32(instr->length());
1641
1642 Register elements = ToRegister(instr->elements());
1643 Register scratch = x5;
1644 DCHECK(receiver.Is(x0)); // Used for parameter count.
1645 DCHECK(function.Is(x1)); // Required by InvokeFunction.
1646 DCHECK(ToRegister(instr->result()).Is(x0));
1647 DCHECK(instr->IsMarkedAsCall());
1648
1649 // Copy the arguments to this function possibly from the
1650 // adaptor frame below it.
1651 const uint32_t kArgumentsLimit = 1 * KB;
1652 __ Cmp(length, kArgumentsLimit);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001653 DeoptimizeIf(hi, instr, "too many arguments");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001654
1655 // Push the receiver and use the register to keep the original
1656 // number of arguments.
1657 __ Push(receiver);
1658 Register argc = receiver;
1659 receiver = NoReg;
1660 __ Sxtw(argc, length);
1661 // The arguments are at a one pointer size offset from elements.
1662 __ Add(elements, elements, 1 * kPointerSize);
1663
1664 // Loop through the arguments pushing them onto the execution
1665 // stack.
1666 Label invoke, loop;
1667 // length is a small non-negative integer, due to the test above.
1668 __ Cbz(length, &invoke);
1669 __ Bind(&loop);
1670 __ Ldr(scratch, MemOperand(elements, length, SXTW, kPointerSizeLog2));
1671 __ Push(scratch);
1672 __ Subs(length, length, 1);
1673 __ B(ne, &loop);
1674
1675 __ Bind(&invoke);
1676 DCHECK(instr->HasPointerMap());
1677 LPointerMap* pointers = instr->pointer_map();
1678 SafepointGenerator safepoint_generator(this, pointers, Safepoint::kLazyDeopt);
1679 // The number of arguments is stored in argc (receiver) which is x0, as
1680 // expected by InvokeFunction.
1681 ParameterCount actual(argc);
1682 __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
1683}
1684
1685
1686void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
1687 // We push some arguments and they will be pop in an other block. We can't
1688 // trust that jssp references the end of the stack slots until the end of
1689 // the function.
1690 inlined_arguments_ = true;
1691 Register result = ToRegister(instr->result());
1692
1693 if (instr->hydrogen()->from_inlined()) {
1694 // When we are inside an inlined function, the arguments are the last things
1695 // that have been pushed on the stack. Therefore the arguments array can be
1696 // accessed directly from jssp.
1697 // However in the normal case, it is accessed via fp but there are two words
1698 // on the stack between fp and the arguments (the saved lr and fp) and the
1699 // LAccessArgumentsAt implementation take that into account.
1700 // In the inlined case we need to subtract the size of 2 words to jssp to
1701 // get a pointer which will work well with LAccessArgumentsAt.
1702 DCHECK(masm()->StackPointer().Is(jssp));
1703 __ Sub(result, jssp, 2 * kPointerSize);
1704 } else {
1705 DCHECK(instr->temp() != NULL);
1706 Register previous_fp = ToRegister(instr->temp());
1707
1708 __ Ldr(previous_fp,
1709 MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1710 __ Ldr(result,
1711 MemOperand(previous_fp, StandardFrameConstants::kContextOffset));
1712 __ Cmp(result, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
1713 __ Csel(result, fp, previous_fp, ne);
1714 }
1715}
1716
1717
1718void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
1719 Register elements = ToRegister(instr->elements());
1720 Register result = ToRegister32(instr->result());
1721 Label done;
1722
1723 // If no arguments adaptor frame the number of arguments is fixed.
1724 __ Cmp(fp, elements);
1725 __ Mov(result, scope()->num_parameters());
1726 __ B(eq, &done);
1727
1728 // Arguments adaptor frame present. Get argument length from there.
1729 __ Ldr(result.X(), MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
1730 __ Ldr(result,
1731 UntagSmiMemOperand(result.X(),
1732 ArgumentsAdaptorFrameConstants::kLengthOffset));
1733
1734 // Argument length is in result register.
1735 __ Bind(&done);
1736}
1737
1738
1739void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
1740 DoubleRegister left = ToDoubleRegister(instr->left());
1741 DoubleRegister right = ToDoubleRegister(instr->right());
1742 DoubleRegister result = ToDoubleRegister(instr->result());
1743
1744 switch (instr->op()) {
1745 case Token::ADD: __ Fadd(result, left, right); break;
1746 case Token::SUB: __ Fsub(result, left, right); break;
1747 case Token::MUL: __ Fmul(result, left, right); break;
1748 case Token::DIV: __ Fdiv(result, left, right); break;
1749 case Token::MOD: {
1750 // The ECMA-262 remainder operator is the remainder from a truncating
1751 // (round-towards-zero) division. Note that this differs from IEEE-754.
1752 //
1753 // TODO(jbramley): See if it's possible to do this inline, rather than by
1754 // calling a helper function. With frintz (to produce the intermediate
1755 // quotient) and fmsub (to calculate the remainder without loss of
1756 // precision), it should be possible. However, we would need support for
1757 // fdiv in round-towards-zero mode, and the ARM64 simulator doesn't
1758 // support that yet.
1759 DCHECK(left.Is(d0));
1760 DCHECK(right.Is(d1));
1761 __ CallCFunction(
1762 ExternalReference::mod_two_doubles_operation(isolate()),
1763 0, 2);
1764 DCHECK(result.Is(d0));
1765 break;
1766 }
1767 default:
1768 UNREACHABLE();
1769 break;
1770 }
1771}
1772
1773
1774void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
1775 DCHECK(ToRegister(instr->context()).is(cp));
1776 DCHECK(ToRegister(instr->left()).is(x1));
1777 DCHECK(ToRegister(instr->right()).is(x0));
1778 DCHECK(ToRegister(instr->result()).is(x0));
1779
1780 Handle<Code> code =
1781 CodeFactory::BinaryOpIC(isolate(), instr->op(), NO_OVERWRITE).code();
1782 CallCode(code, RelocInfo::CODE_TARGET, instr);
1783}
1784
1785
1786void LCodeGen::DoBitI(LBitI* instr) {
1787 Register result = ToRegister32(instr->result());
1788 Register left = ToRegister32(instr->left());
1789 Operand right = ToShiftedRightOperand32(instr->right(), instr);
1790
1791 switch (instr->op()) {
1792 case Token::BIT_AND: __ And(result, left, right); break;
1793 case Token::BIT_OR: __ Orr(result, left, right); break;
1794 case Token::BIT_XOR: __ Eor(result, left, right); break;
1795 default:
1796 UNREACHABLE();
1797 break;
1798 }
1799}
1800
1801
1802void LCodeGen::DoBitS(LBitS* instr) {
1803 Register result = ToRegister(instr->result());
1804 Register left = ToRegister(instr->left());
1805 Operand right = ToOperand(instr->right());
1806
1807 switch (instr->op()) {
1808 case Token::BIT_AND: __ And(result, left, right); break;
1809 case Token::BIT_OR: __ Orr(result, left, right); break;
1810 case Token::BIT_XOR: __ Eor(result, left, right); break;
1811 default:
1812 UNREACHABLE();
1813 break;
1814 }
1815}
1816
1817
1818void LCodeGen::DoBoundsCheck(LBoundsCheck *instr) {
1819 Condition cond = instr->hydrogen()->allow_equality() ? hi : hs;
1820 DCHECK(instr->hydrogen()->index()->representation().IsInteger32());
1821 DCHECK(instr->hydrogen()->length()->representation().IsInteger32());
1822 if (instr->index()->IsConstantOperand()) {
1823 Operand index = ToOperand32(instr->index());
1824 Register length = ToRegister32(instr->length());
1825 __ Cmp(length, index);
1826 cond = CommuteCondition(cond);
1827 } else {
1828 Register index = ToRegister32(instr->index());
1829 Operand length = ToOperand32(instr->length());
1830 __ Cmp(index, length);
1831 }
1832 if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
1833 __ Assert(NegateCondition(cond), kEliminatedBoundsCheckFailed);
1834 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001835 DeoptimizeIf(cond, instr, "out of bounds");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001836 }
1837}
1838
1839
1840void LCodeGen::DoBranch(LBranch* instr) {
1841 Representation r = instr->hydrogen()->value()->representation();
1842 Label* true_label = instr->TrueLabel(chunk_);
1843 Label* false_label = instr->FalseLabel(chunk_);
1844
1845 if (r.IsInteger32()) {
1846 DCHECK(!info()->IsStub());
1847 EmitCompareAndBranch(instr, ne, ToRegister32(instr->value()), 0);
1848 } else if (r.IsSmi()) {
1849 DCHECK(!info()->IsStub());
1850 STATIC_ASSERT(kSmiTag == 0);
1851 EmitCompareAndBranch(instr, ne, ToRegister(instr->value()), 0);
1852 } else if (r.IsDouble()) {
1853 DoubleRegister value = ToDoubleRegister(instr->value());
1854 // Test the double value. Zero and NaN are false.
1855 EmitBranchIfNonZeroNumber(instr, value, double_scratch());
1856 } else {
1857 DCHECK(r.IsTagged());
1858 Register value = ToRegister(instr->value());
1859 HType type = instr->hydrogen()->value()->type();
1860
1861 if (type.IsBoolean()) {
1862 DCHECK(!info()->IsStub());
1863 __ CompareRoot(value, Heap::kTrueValueRootIndex);
1864 EmitBranch(instr, eq);
1865 } else if (type.IsSmi()) {
1866 DCHECK(!info()->IsStub());
1867 EmitCompareAndBranch(instr, ne, value, Smi::FromInt(0));
1868 } else if (type.IsJSArray()) {
1869 DCHECK(!info()->IsStub());
1870 EmitGoto(instr->TrueDestination(chunk()));
1871 } else if (type.IsHeapNumber()) {
1872 DCHECK(!info()->IsStub());
1873 __ Ldr(double_scratch(), FieldMemOperand(value,
1874 HeapNumber::kValueOffset));
1875 // Test the double value. Zero and NaN are false.
1876 EmitBranchIfNonZeroNumber(instr, double_scratch(), double_scratch());
1877 } else if (type.IsString()) {
1878 DCHECK(!info()->IsStub());
1879 Register temp = ToRegister(instr->temp1());
1880 __ Ldr(temp, FieldMemOperand(value, String::kLengthOffset));
1881 EmitCompareAndBranch(instr, ne, temp, 0);
1882 } else {
1883 ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
1884 // Avoid deopts in the case where we've never executed this path before.
1885 if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
1886
1887 if (expected.Contains(ToBooleanStub::UNDEFINED)) {
1888 // undefined -> false.
1889 __ JumpIfRoot(
1890 value, Heap::kUndefinedValueRootIndex, false_label);
1891 }
1892
1893 if (expected.Contains(ToBooleanStub::BOOLEAN)) {
1894 // Boolean -> its value.
1895 __ JumpIfRoot(
1896 value, Heap::kTrueValueRootIndex, true_label);
1897 __ JumpIfRoot(
1898 value, Heap::kFalseValueRootIndex, false_label);
1899 }
1900
1901 if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
1902 // 'null' -> false.
1903 __ JumpIfRoot(
1904 value, Heap::kNullValueRootIndex, false_label);
1905 }
1906
1907 if (expected.Contains(ToBooleanStub::SMI)) {
1908 // Smis: 0 -> false, all other -> true.
1909 DCHECK(Smi::FromInt(0) == 0);
1910 __ Cbz(value, false_label);
1911 __ JumpIfSmi(value, true_label);
1912 } else if (expected.NeedsMap()) {
1913 // If we need a map later and have a smi, deopt.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001914 DeoptimizeIfSmi(value, instr, "Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001915 }
1916
1917 Register map = NoReg;
1918 Register scratch = NoReg;
1919
1920 if (expected.NeedsMap()) {
1921 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
1922 map = ToRegister(instr->temp1());
1923 scratch = ToRegister(instr->temp2());
1924
1925 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
1926
1927 if (expected.CanBeUndetectable()) {
1928 // Undetectable -> false.
1929 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
1930 __ TestAndBranchIfAnySet(
1931 scratch, 1 << Map::kIsUndetectable, false_label);
1932 }
1933 }
1934
1935 if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
1936 // spec object -> true.
1937 __ CompareInstanceType(map, scratch, FIRST_SPEC_OBJECT_TYPE);
1938 __ B(ge, true_label);
1939 }
1940
1941 if (expected.Contains(ToBooleanStub::STRING)) {
1942 // String value -> false iff empty.
1943 Label not_string;
1944 __ CompareInstanceType(map, scratch, FIRST_NONSTRING_TYPE);
1945 __ B(ge, &not_string);
1946 __ Ldr(scratch, FieldMemOperand(value, String::kLengthOffset));
1947 __ Cbz(scratch, false_label);
1948 __ B(true_label);
1949 __ Bind(&not_string);
1950 }
1951
1952 if (expected.Contains(ToBooleanStub::SYMBOL)) {
1953 // Symbol value -> true.
1954 __ CompareInstanceType(map, scratch, SYMBOL_TYPE);
1955 __ B(eq, true_label);
1956 }
1957
1958 if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
1959 Label not_heap_number;
1960 __ JumpIfNotRoot(map, Heap::kHeapNumberMapRootIndex, &not_heap_number);
1961
1962 __ Ldr(double_scratch(),
1963 FieldMemOperand(value, HeapNumber::kValueOffset));
1964 __ Fcmp(double_scratch(), 0.0);
1965 // If we got a NaN (overflow bit is set), jump to the false branch.
1966 __ B(vs, false_label);
1967 __ B(eq, false_label);
1968 __ B(true_label);
1969 __ Bind(&not_heap_number);
1970 }
1971
1972 if (!expected.IsGeneric()) {
1973 // We've seen something for the first time -> deopt.
1974 // This can only happen if we are not generic already.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04001975 Deoptimize(instr, "unexpected object");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001976 }
1977 }
1978 }
1979}
1980
1981
1982void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
1983 int formal_parameter_count,
1984 int arity,
1985 LInstruction* instr,
1986 Register function_reg) {
1987 bool dont_adapt_arguments =
1988 formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
1989 bool can_invoke_directly =
1990 dont_adapt_arguments || formal_parameter_count == arity;
1991
1992 // The function interface relies on the following register assignments.
1993 DCHECK(function_reg.Is(x1) || function_reg.IsNone());
1994 Register arity_reg = x0;
1995
1996 LPointerMap* pointers = instr->pointer_map();
1997
1998 // If necessary, load the function object.
1999 if (function_reg.IsNone()) {
2000 function_reg = x1;
2001 __ LoadObject(function_reg, function);
2002 }
2003
2004 if (FLAG_debug_code) {
2005 Label is_not_smi;
2006 // Try to confirm that function_reg (x1) is a tagged pointer.
2007 __ JumpIfNotSmi(function_reg, &is_not_smi);
2008 __ Abort(kExpectedFunctionObject);
2009 __ Bind(&is_not_smi);
2010 }
2011
2012 if (can_invoke_directly) {
2013 // Change context.
2014 __ Ldr(cp, FieldMemOperand(function_reg, JSFunction::kContextOffset));
2015
2016 // Set the arguments count if adaption is not needed. Assumes that x0 is
2017 // available to write to at this point.
2018 if (dont_adapt_arguments) {
2019 __ Mov(arity_reg, arity);
2020 }
2021
2022 // Invoke function.
2023 __ Ldr(x10, FieldMemOperand(function_reg, JSFunction::kCodeEntryOffset));
2024 __ Call(x10);
2025
2026 // Set up deoptimization.
2027 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2028 } else {
2029 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2030 ParameterCount count(arity);
2031 ParameterCount expected(formal_parameter_count);
2032 __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
2033 }
2034}
2035
2036
2037void LCodeGen::DoTailCallThroughMegamorphicCache(
2038 LTailCallThroughMegamorphicCache* instr) {
2039 Register receiver = ToRegister(instr->receiver());
2040 Register name = ToRegister(instr->name());
2041 DCHECK(receiver.is(LoadDescriptor::ReceiverRegister()));
2042 DCHECK(name.is(LoadDescriptor::NameRegister()));
2043 DCHECK(receiver.is(x1));
2044 DCHECK(name.is(x2));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002045 Register scratch = x4;
2046 Register extra = x5;
2047 Register extra2 = x6;
2048 Register extra3 = x7;
2049 DCHECK(!FLAG_vector_ics ||
2050 !AreAliased(ToRegister(instr->slot()), ToRegister(instr->vector()),
2051 scratch, extra, extra2, extra3));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002052
2053 // Important for the tail-call.
2054 bool must_teardown_frame = NeedsEagerFrame();
2055
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002056 if (!instr->hydrogen()->is_just_miss()) {
2057 DCHECK(!instr->hydrogen()->is_keyed_load());
2058
2059 // The probe will tail call to a handler if found.
2060 isolate()->stub_cache()->GenerateProbe(
2061 masm(), Code::LOAD_IC, instr->hydrogen()->flags(), must_teardown_frame,
2062 receiver, name, scratch, extra, extra2, extra3);
2063 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002064
2065 // Tail call to miss if we ended up here.
2066 if (must_teardown_frame) __ LeaveFrame(StackFrame::INTERNAL);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002067 if (instr->hydrogen()->is_keyed_load()) {
2068 KeyedLoadIC::GenerateMiss(masm());
2069 } else {
2070 LoadIC::GenerateMiss(masm());
2071 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002072}
2073
2074
2075void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
2076 DCHECK(instr->IsMarkedAsCall());
2077 DCHECK(ToRegister(instr->result()).Is(x0));
2078
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002079 if (instr->hydrogen()->IsTailCall()) {
2080 if (NeedsEagerFrame()) __ LeaveFrame(StackFrame::INTERNAL);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002081
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002082 if (instr->target()->IsConstantOperand()) {
2083 LConstantOperand* target = LConstantOperand::cast(instr->target());
2084 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
2085 // TODO(all): on ARM we use a call descriptor to specify a storage mode
2086 // but on ARM64 we only have one storage mode so it isn't necessary. Check
2087 // this understanding is correct.
2088 __ Jump(code, RelocInfo::CODE_TARGET);
2089 } else {
2090 DCHECK(instr->target()->IsRegister());
2091 Register target = ToRegister(instr->target());
2092 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
2093 __ Br(target);
2094 }
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002095 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002096 LPointerMap* pointers = instr->pointer_map();
2097 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
2098
2099 if (instr->target()->IsConstantOperand()) {
2100 LConstantOperand* target = LConstantOperand::cast(instr->target());
2101 Handle<Code> code = Handle<Code>::cast(ToHandle(target));
2102 generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
2103 // TODO(all): on ARM we use a call descriptor to specify a storage mode
2104 // but on ARM64 we only have one storage mode so it isn't necessary. Check
2105 // this understanding is correct.
2106 __ Call(code, RelocInfo::CODE_TARGET, TypeFeedbackId::None());
2107 } else {
2108 DCHECK(instr->target()->IsRegister());
2109 Register target = ToRegister(instr->target());
2110 generator.BeforeCall(__ CallSize(target));
2111 __ Add(target, target, Code::kHeaderSize - kHeapObjectTag);
2112 __ Call(target);
2113 }
2114 generator.AfterCall();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002115 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002116
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002117 after_push_argument_ = false;
2118}
2119
2120
2121void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
2122 DCHECK(instr->IsMarkedAsCall());
2123 DCHECK(ToRegister(instr->function()).is(x1));
2124
2125 if (instr->hydrogen()->pass_argument_count()) {
2126 __ Mov(x0, Operand(instr->arity()));
2127 }
2128
2129 // Change context.
2130 __ Ldr(cp, FieldMemOperand(x1, JSFunction::kContextOffset));
2131
2132 // Load the code entry address
2133 __ Ldr(x10, FieldMemOperand(x1, JSFunction::kCodeEntryOffset));
2134 __ Call(x10);
2135
2136 RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
2137 after_push_argument_ = false;
2138}
2139
2140
2141void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
2142 CallRuntime(instr->function(), instr->arity(), instr);
2143 after_push_argument_ = false;
2144}
2145
2146
2147void LCodeGen::DoCallStub(LCallStub* instr) {
2148 DCHECK(ToRegister(instr->context()).is(cp));
2149 DCHECK(ToRegister(instr->result()).is(x0));
2150 switch (instr->hydrogen()->major_key()) {
2151 case CodeStub::RegExpExec: {
2152 RegExpExecStub stub(isolate());
2153 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2154 break;
2155 }
2156 case CodeStub::SubString: {
2157 SubStringStub stub(isolate());
2158 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2159 break;
2160 }
2161 case CodeStub::StringCompare: {
2162 StringCompareStub stub(isolate());
2163 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2164 break;
2165 }
2166 default:
2167 UNREACHABLE();
2168 }
2169 after_push_argument_ = false;
2170}
2171
2172
2173void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
2174 GenerateOsrPrologue();
2175}
2176
2177
2178void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
2179 Register temp = ToRegister(instr->temp());
2180 {
2181 PushSafepointRegistersScope scope(this);
2182 __ Push(object);
2183 __ Mov(cp, 0);
2184 __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
2185 RecordSafepointWithRegisters(
2186 instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
2187 __ StoreToSafepointRegisterSlot(x0, temp);
2188 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002189 DeoptimizeIfSmi(temp, instr, "instance migration failed");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002190}
2191
2192
2193void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
2194 class DeferredCheckMaps: public LDeferredCode {
2195 public:
2196 DeferredCheckMaps(LCodeGen* codegen, LCheckMaps* instr, Register object)
2197 : LDeferredCode(codegen), instr_(instr), object_(object) {
2198 SetExit(check_maps());
2199 }
2200 virtual void Generate() {
2201 codegen()->DoDeferredInstanceMigration(instr_, object_);
2202 }
2203 Label* check_maps() { return &check_maps_; }
2204 virtual LInstruction* instr() { return instr_; }
2205 private:
2206 LCheckMaps* instr_;
2207 Label check_maps_;
2208 Register object_;
2209 };
2210
2211 if (instr->hydrogen()->IsStabilityCheck()) {
2212 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2213 for (int i = 0; i < maps->size(); ++i) {
2214 AddStabilityDependency(maps->at(i).handle());
2215 }
2216 return;
2217 }
2218
2219 Register object = ToRegister(instr->value());
2220 Register map_reg = ToRegister(instr->temp());
2221
2222 __ Ldr(map_reg, FieldMemOperand(object, HeapObject::kMapOffset));
2223
2224 DeferredCheckMaps* deferred = NULL;
2225 if (instr->hydrogen()->HasMigrationTarget()) {
2226 deferred = new(zone()) DeferredCheckMaps(this, instr, object);
2227 __ Bind(deferred->check_maps());
2228 }
2229
2230 const UniqueSet<Map>* maps = instr->hydrogen()->maps();
2231 Label success;
2232 for (int i = 0; i < maps->size() - 1; i++) {
2233 Handle<Map> map = maps->at(i).handle();
2234 __ CompareMap(map_reg, map);
2235 __ B(eq, &success);
2236 }
2237 Handle<Map> map = maps->at(maps->size() - 1).handle();
2238 __ CompareMap(map_reg, map);
2239
2240 // We didn't match a map.
2241 if (instr->hydrogen()->HasMigrationTarget()) {
2242 __ B(ne, deferred->entry());
2243 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002244 DeoptimizeIf(ne, instr, "wrong map");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002245 }
2246
2247 __ Bind(&success);
2248}
2249
2250
2251void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
2252 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002253 DeoptimizeIfSmi(ToRegister(instr->value()), instr, "Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002254 }
2255}
2256
2257
2258void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
2259 Register value = ToRegister(instr->value());
2260 DCHECK(!instr->result() || ToRegister(instr->result()).Is(value));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002261 DeoptimizeIfNotSmi(value, instr, "not a Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002262}
2263
2264
2265void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
2266 Register input = ToRegister(instr->value());
2267 Register scratch = ToRegister(instr->temp());
2268
2269 __ Ldr(scratch, FieldMemOperand(input, HeapObject::kMapOffset));
2270 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2271
2272 if (instr->hydrogen()->is_interval_check()) {
2273 InstanceType first, last;
2274 instr->hydrogen()->GetCheckInterval(&first, &last);
2275
2276 __ Cmp(scratch, first);
2277 if (first == last) {
2278 // If there is only one type in the interval check for equality.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002279 DeoptimizeIf(ne, instr, "wrong instance type");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002280 } else if (last == LAST_TYPE) {
2281 // We don't need to compare with the higher bound of the interval.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002282 DeoptimizeIf(lo, instr, "wrong instance type");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002283 } else {
2284 // If we are below the lower bound, set the C flag and clear the Z flag
2285 // to force a deopt.
2286 __ Ccmp(scratch, last, CFlag, hs);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002287 DeoptimizeIf(hi, instr, "wrong instance type");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002288 }
2289 } else {
2290 uint8_t mask;
2291 uint8_t tag;
2292 instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
2293
2294 if (base::bits::IsPowerOfTwo32(mask)) {
2295 DCHECK((tag == 0) || (tag == mask));
2296 if (tag == 0) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002297 DeoptimizeIfBitSet(scratch, MaskToBit(mask), instr,
2298 "wrong instance type");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002299 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002300 DeoptimizeIfBitClear(scratch, MaskToBit(mask), instr,
2301 "wrong instance type");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002302 }
2303 } else {
2304 if (tag == 0) {
2305 __ Tst(scratch, mask);
2306 } else {
2307 __ And(scratch, scratch, mask);
2308 __ Cmp(scratch, tag);
2309 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002310 DeoptimizeIf(ne, instr, "wrong instance type");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002311 }
2312 }
2313}
2314
2315
2316void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
2317 DoubleRegister input = ToDoubleRegister(instr->unclamped());
2318 Register result = ToRegister32(instr->result());
2319 __ ClampDoubleToUint8(result, input, double_scratch());
2320}
2321
2322
2323void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
2324 Register input = ToRegister32(instr->unclamped());
2325 Register result = ToRegister32(instr->result());
2326 __ ClampInt32ToUint8(result, input);
2327}
2328
2329
2330void LCodeGen::DoClampTToUint8(LClampTToUint8* instr) {
2331 Register input = ToRegister(instr->unclamped());
2332 Register result = ToRegister32(instr->result());
2333 Label done;
2334
2335 // Both smi and heap number cases are handled.
2336 Label is_not_smi;
2337 __ JumpIfNotSmi(input, &is_not_smi);
2338 __ SmiUntag(result.X(), input);
2339 __ ClampInt32ToUint8(result);
2340 __ B(&done);
2341
2342 __ Bind(&is_not_smi);
2343
2344 // Check for heap number.
2345 Label is_heap_number;
2346 __ JumpIfHeapNumber(input, &is_heap_number);
2347
2348 // Check for undefined. Undefined is coverted to zero for clamping conversion.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002349 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
2350 "not a heap number/undefined");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002351 __ Mov(result, 0);
2352 __ B(&done);
2353
2354 // Heap number case.
2355 __ Bind(&is_heap_number);
2356 DoubleRegister dbl_scratch = double_scratch();
2357 DoubleRegister dbl_scratch2 = ToDoubleRegister(instr->temp1());
2358 __ Ldr(dbl_scratch, FieldMemOperand(input, HeapNumber::kValueOffset));
2359 __ ClampDoubleToUint8(result, dbl_scratch, dbl_scratch2);
2360
2361 __ Bind(&done);
2362}
2363
2364
2365void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
2366 DoubleRegister value_reg = ToDoubleRegister(instr->value());
2367 Register result_reg = ToRegister(instr->result());
2368 if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
2369 __ Fmov(result_reg, value_reg);
2370 __ Lsr(result_reg, result_reg, 32);
2371 } else {
2372 __ Fmov(result_reg.W(), value_reg.S());
2373 }
2374}
2375
2376
2377void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
2378 Register hi_reg = ToRegister(instr->hi());
2379 Register lo_reg = ToRegister(instr->lo());
2380 DoubleRegister result_reg = ToDoubleRegister(instr->result());
2381
2382 // Insert the least significant 32 bits of hi_reg into the most significant
2383 // 32 bits of lo_reg, and move to a floating point register.
2384 __ Bfi(lo_reg, hi_reg, 32, 32);
2385 __ Fmov(result_reg, lo_reg);
2386}
2387
2388
2389void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
2390 Handle<String> class_name = instr->hydrogen()->class_name();
2391 Label* true_label = instr->TrueLabel(chunk_);
2392 Label* false_label = instr->FalseLabel(chunk_);
2393 Register input = ToRegister(instr->value());
2394 Register scratch1 = ToRegister(instr->temp1());
2395 Register scratch2 = ToRegister(instr->temp2());
2396
2397 __ JumpIfSmi(input, false_label);
2398
2399 Register map = scratch2;
2400 if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
2401 // Assuming the following assertions, we can use the same compares to test
2402 // for both being a function type and being in the object type range.
2403 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
2404 STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2405 FIRST_SPEC_OBJECT_TYPE + 1);
2406 STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
2407 LAST_SPEC_OBJECT_TYPE - 1);
2408 STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
2409
2410 // We expect CompareObjectType to load the object instance type in scratch1.
2411 __ CompareObjectType(input, map, scratch1, FIRST_SPEC_OBJECT_TYPE);
2412 __ B(lt, false_label);
2413 __ B(eq, true_label);
2414 __ Cmp(scratch1, LAST_SPEC_OBJECT_TYPE);
2415 __ B(eq, true_label);
2416 } else {
2417 __ IsObjectJSObjectType(input, map, scratch1, false_label);
2418 }
2419
2420 // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
2421 // Check if the constructor in the map is a function.
2422 __ Ldr(scratch1, FieldMemOperand(map, Map::kConstructorOffset));
2423
2424 // Objects with a non-function constructor have class 'Object'.
2425 if (String::Equals(class_name, isolate()->factory()->Object_string())) {
2426 __ JumpIfNotObjectType(
2427 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, true_label);
2428 } else {
2429 __ JumpIfNotObjectType(
2430 scratch1, scratch2, scratch2, JS_FUNCTION_TYPE, false_label);
2431 }
2432
2433 // The constructor function is in scratch1. Get its instance class name.
2434 __ Ldr(scratch1,
2435 FieldMemOperand(scratch1, JSFunction::kSharedFunctionInfoOffset));
2436 __ Ldr(scratch1,
2437 FieldMemOperand(scratch1,
2438 SharedFunctionInfo::kInstanceClassNameOffset));
2439
2440 // The class name we are testing against is internalized since it's a literal.
2441 // The name in the constructor is internalized because of the way the context
2442 // is booted. This routine isn't expected to work for random API-created
2443 // classes and it doesn't have to because you can't access it with natives
2444 // syntax. Since both sides are internalized it is sufficient to use an
2445 // identity comparison.
2446 EmitCompareAndBranch(instr, eq, scratch1, Operand(class_name));
2447}
2448
2449
2450void LCodeGen::DoCmpHoleAndBranchD(LCmpHoleAndBranchD* instr) {
2451 DCHECK(instr->hydrogen()->representation().IsDouble());
2452 FPRegister object = ToDoubleRegister(instr->object());
2453 Register temp = ToRegister(instr->temp());
2454
2455 // If we don't have a NaN, we don't have the hole, so branch now to avoid the
2456 // (relatively expensive) hole-NaN check.
2457 __ Fcmp(object, object);
2458 __ B(vc, instr->FalseLabel(chunk_));
2459
2460 // We have a NaN, but is it the hole?
2461 __ Fmov(temp, object);
2462 EmitCompareAndBranch(instr, eq, temp, kHoleNanInt64);
2463}
2464
2465
2466void LCodeGen::DoCmpHoleAndBranchT(LCmpHoleAndBranchT* instr) {
2467 DCHECK(instr->hydrogen()->representation().IsTagged());
2468 Register object = ToRegister(instr->object());
2469
2470 EmitBranchIfRoot(instr, object, Heap::kTheHoleValueRootIndex);
2471}
2472
2473
2474void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
2475 Register value = ToRegister(instr->value());
2476 Register map = ToRegister(instr->temp());
2477
2478 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
2479 EmitCompareAndBranch(instr, eq, map, Operand(instr->map()));
2480}
2481
2482
2483void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
2484 Representation rep = instr->hydrogen()->value()->representation();
2485 DCHECK(!rep.IsInteger32());
2486 Register scratch = ToRegister(instr->temp());
2487
2488 if (rep.IsDouble()) {
2489 __ JumpIfMinusZero(ToDoubleRegister(instr->value()),
2490 instr->TrueLabel(chunk()));
2491 } else {
2492 Register value = ToRegister(instr->value());
2493 __ JumpIfNotHeapNumber(value, instr->FalseLabel(chunk()), DO_SMI_CHECK);
2494 __ Ldr(scratch, FieldMemOperand(value, HeapNumber::kValueOffset));
2495 __ JumpIfMinusZero(scratch, instr->TrueLabel(chunk()));
2496 }
2497 EmitGoto(instr->FalseDestination(chunk()));
2498}
2499
2500
2501void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
2502 LOperand* left = instr->left();
2503 LOperand* right = instr->right();
2504 bool is_unsigned =
2505 instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
2506 instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
2507 Condition cond = TokenToCondition(instr->op(), is_unsigned);
2508
2509 if (left->IsConstantOperand() && right->IsConstantOperand()) {
2510 // We can statically evaluate the comparison.
2511 double left_val = ToDouble(LConstantOperand::cast(left));
2512 double right_val = ToDouble(LConstantOperand::cast(right));
2513 int next_block = EvalComparison(instr->op(), left_val, right_val) ?
2514 instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
2515 EmitGoto(next_block);
2516 } else {
2517 if (instr->is_double()) {
2518 __ Fcmp(ToDoubleRegister(left), ToDoubleRegister(right));
2519
2520 // If a NaN is involved, i.e. the result is unordered (V set),
2521 // jump to false block label.
2522 __ B(vs, instr->FalseLabel(chunk_));
2523 EmitBranch(instr, cond);
2524 } else {
2525 if (instr->hydrogen_value()->representation().IsInteger32()) {
2526 if (right->IsConstantOperand()) {
2527 EmitCompareAndBranch(instr, cond, ToRegister32(left),
2528 ToOperand32(right));
2529 } else {
2530 // Commute the operands and the condition.
2531 EmitCompareAndBranch(instr, CommuteCondition(cond),
2532 ToRegister32(right), ToOperand32(left));
2533 }
2534 } else {
2535 DCHECK(instr->hydrogen_value()->representation().IsSmi());
2536 if (right->IsConstantOperand()) {
2537 int32_t value = ToInteger32(LConstantOperand::cast(right));
2538 EmitCompareAndBranch(instr,
2539 cond,
2540 ToRegister(left),
2541 Operand(Smi::FromInt(value)));
2542 } else if (left->IsConstantOperand()) {
2543 // Commute the operands and the condition.
2544 int32_t value = ToInteger32(LConstantOperand::cast(left));
2545 EmitCompareAndBranch(instr,
2546 CommuteCondition(cond),
2547 ToRegister(right),
2548 Operand(Smi::FromInt(value)));
2549 } else {
2550 EmitCompareAndBranch(instr,
2551 cond,
2552 ToRegister(left),
2553 ToRegister(right));
2554 }
2555 }
2556 }
2557 }
2558}
2559
2560
2561void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
2562 Register left = ToRegister(instr->left());
2563 Register right = ToRegister(instr->right());
2564 EmitCompareAndBranch(instr, eq, left, right);
2565}
2566
2567
2568void LCodeGen::DoCmpT(LCmpT* instr) {
2569 DCHECK(ToRegister(instr->context()).is(cp));
2570 Token::Value op = instr->op();
2571 Condition cond = TokenToCondition(op, false);
2572
2573 DCHECK(ToRegister(instr->left()).Is(x1));
2574 DCHECK(ToRegister(instr->right()).Is(x0));
2575 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
2576 CallCode(ic, RelocInfo::CODE_TARGET, instr);
2577 // Signal that we don't inline smi code before this stub.
2578 InlineSmiCheckInfo::EmitNotInlined(masm());
2579
2580 // Return true or false depending on CompareIC result.
2581 // This instruction is marked as call. We can clobber any register.
2582 DCHECK(instr->IsMarkedAsCall());
2583 __ LoadTrueFalseRoots(x1, x2);
2584 __ Cmp(x0, 0);
2585 __ Csel(ToRegister(instr->result()), x1, x2, cond);
2586}
2587
2588
2589void LCodeGen::DoConstantD(LConstantD* instr) {
2590 DCHECK(instr->result()->IsDoubleRegister());
2591 DoubleRegister result = ToDoubleRegister(instr->result());
2592 if (instr->value() == 0) {
2593 if (copysign(1.0, instr->value()) == 1.0) {
2594 __ Fmov(result, fp_zero);
2595 } else {
2596 __ Fneg(result, fp_zero);
2597 }
2598 } else {
2599 __ Fmov(result, instr->value());
2600 }
2601}
2602
2603
2604void LCodeGen::DoConstantE(LConstantE* instr) {
2605 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2606}
2607
2608
2609void LCodeGen::DoConstantI(LConstantI* instr) {
2610 DCHECK(is_int32(instr->value()));
2611 // Cast the value here to ensure that the value isn't sign extended by the
2612 // implicit Operand constructor.
2613 __ Mov(ToRegister32(instr->result()), static_cast<uint32_t>(instr->value()));
2614}
2615
2616
2617void LCodeGen::DoConstantS(LConstantS* instr) {
2618 __ Mov(ToRegister(instr->result()), Operand(instr->value()));
2619}
2620
2621
2622void LCodeGen::DoConstantT(LConstantT* instr) {
2623 Handle<Object> object = instr->value(isolate());
2624 AllowDeferredHandleDereference smi_check;
2625 __ LoadObject(ToRegister(instr->result()), object);
2626}
2627
2628
2629void LCodeGen::DoContext(LContext* instr) {
2630 // If there is a non-return use, the context must be moved to a register.
2631 Register result = ToRegister(instr->result());
2632 if (info()->IsOptimizing()) {
2633 __ Ldr(result, MemOperand(fp, StandardFrameConstants::kContextOffset));
2634 } else {
2635 // If there is no frame, the context must be in cp.
2636 DCHECK(result.is(cp));
2637 }
2638}
2639
2640
2641void LCodeGen::DoCheckValue(LCheckValue* instr) {
2642 Register reg = ToRegister(instr->value());
2643 Handle<HeapObject> object = instr->hydrogen()->object().handle();
2644 AllowDeferredHandleDereference smi_check;
2645 if (isolate()->heap()->InNewSpace(*object)) {
2646 UseScratchRegisterScope temps(masm());
2647 Register temp = temps.AcquireX();
2648 Handle<Cell> cell = isolate()->factory()->NewCell(object);
2649 __ Mov(temp, Operand(Handle<Object>(cell)));
2650 __ Ldr(temp, FieldMemOperand(temp, Cell::kValueOffset));
2651 __ Cmp(reg, temp);
2652 } else {
2653 __ Cmp(reg, Operand(object));
2654 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002655 DeoptimizeIf(ne, instr, "value mismatch");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002656}
2657
2658
2659void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
2660 last_lazy_deopt_pc_ = masm()->pc_offset();
2661 DCHECK(instr->HasEnvironment());
2662 LEnvironment* env = instr->environment();
2663 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
2664 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
2665}
2666
2667
2668void LCodeGen::DoDateField(LDateField* instr) {
2669 Register object = ToRegister(instr->date());
2670 Register result = ToRegister(instr->result());
2671 Register temp1 = x10;
2672 Register temp2 = x11;
2673 Smi* index = instr->index();
2674 Label runtime, done;
2675
2676 DCHECK(object.is(result) && object.Is(x0));
2677 DCHECK(instr->IsMarkedAsCall());
2678
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002679 DeoptimizeIfSmi(object, instr, "Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002680 __ CompareObjectType(object, temp1, temp1, JS_DATE_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002681 DeoptimizeIf(ne, instr, "not a date object");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002682
2683 if (index->value() == 0) {
2684 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset));
2685 } else {
2686 if (index->value() < JSDate::kFirstUncachedField) {
2687 ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
2688 __ Mov(temp1, Operand(stamp));
2689 __ Ldr(temp1, MemOperand(temp1));
2690 __ Ldr(temp2, FieldMemOperand(object, JSDate::kCacheStampOffset));
2691 __ Cmp(temp1, temp2);
2692 __ B(ne, &runtime);
2693 __ Ldr(result, FieldMemOperand(object, JSDate::kValueOffset +
2694 kPointerSize * index->value()));
2695 __ B(&done);
2696 }
2697
2698 __ Bind(&runtime);
2699 __ Mov(x1, Operand(index));
2700 __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
2701 }
2702
2703 __ Bind(&done);
2704}
2705
2706
2707void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
2708 Deoptimizer::BailoutType type = instr->hydrogen()->type();
2709 // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
2710 // needed return address), even though the implementation of LAZY and EAGER is
2711 // now identical. When LAZY is eventually completely folded into EAGER, remove
2712 // the special case below.
2713 if (info()->IsStub() && (type == Deoptimizer::EAGER)) {
2714 type = Deoptimizer::LAZY;
2715 }
2716
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002717 Deoptimize(instr, instr->hydrogen()->reason(), &type);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002718}
2719
2720
2721void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
2722 Register dividend = ToRegister32(instr->dividend());
2723 int32_t divisor = instr->divisor();
2724 Register result = ToRegister32(instr->result());
2725 DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
2726 DCHECK(!result.is(dividend));
2727
2728 // Check for (0 / -x) that will produce negative zero.
2729 HDiv* hdiv = instr->hydrogen();
2730 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002731 DeoptimizeIfZero(dividend, instr, "division by zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002732 }
2733 // Check for (kMinInt / -1).
2734 if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
2735 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2736 // overflow.
2737 __ Cmp(dividend, 1);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002738 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002739 }
2740 // Deoptimize if remainder will not be 0.
2741 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
2742 divisor != 1 && divisor != -1) {
2743 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
2744 __ Tst(dividend, mask);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002745 DeoptimizeIf(ne, instr, "lost precision");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002746 }
2747
2748 if (divisor == -1) { // Nice shortcut, not needed for correctness.
2749 __ Neg(result, dividend);
2750 return;
2751 }
2752 int32_t shift = WhichPowerOf2Abs(divisor);
2753 if (shift == 0) {
2754 __ Mov(result, dividend);
2755 } else if (shift == 1) {
2756 __ Add(result, dividend, Operand(dividend, LSR, 31));
2757 } else {
2758 __ Mov(result, Operand(dividend, ASR, 31));
2759 __ Add(result, dividend, Operand(result, LSR, 32 - shift));
2760 }
2761 if (shift > 0) __ Mov(result, Operand(result, ASR, shift));
2762 if (divisor < 0) __ Neg(result, result);
2763}
2764
2765
2766void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
2767 Register dividend = ToRegister32(instr->dividend());
2768 int32_t divisor = instr->divisor();
2769 Register result = ToRegister32(instr->result());
2770 DCHECK(!AreAliased(dividend, result));
2771
2772 if (divisor == 0) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002773 Deoptimize(instr, "division by zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002774 return;
2775 }
2776
2777 // Check for (0 / -x) that will produce negative zero.
2778 HDiv* hdiv = instr->hydrogen();
2779 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002780 DeoptimizeIfZero(dividend, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002781 }
2782
2783 __ TruncatingDiv(result, dividend, Abs(divisor));
2784 if (divisor < 0) __ Neg(result, result);
2785
2786 if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
2787 Register temp = ToRegister32(instr->temp());
2788 DCHECK(!AreAliased(dividend, result, temp));
2789 __ Sxtw(dividend.X(), dividend);
2790 __ Mov(temp, divisor);
2791 __ Smsubl(temp.X(), result, temp, dividend.X());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002792 DeoptimizeIfNotZero(temp, instr, "lost precision");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002793 }
2794}
2795
2796
2797// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
2798void LCodeGen::DoDivI(LDivI* instr) {
2799 HBinaryOperation* hdiv = instr->hydrogen();
2800 Register dividend = ToRegister32(instr->dividend());
2801 Register divisor = ToRegister32(instr->divisor());
2802 Register result = ToRegister32(instr->result());
2803
2804 // Issue the division first, and then check for any deopt cases whilst the
2805 // result is computed.
2806 __ Sdiv(result, dividend, divisor);
2807
2808 if (hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
2809 DCHECK_EQ(NULL, instr->temp());
2810 return;
2811 }
2812
2813 // Check for x / 0.
2814 if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002815 DeoptimizeIfZero(divisor, instr, "division by zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002816 }
2817
2818 // Check for (0 / -x) as that will produce negative zero.
2819 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
2820 __ Cmp(divisor, 0);
2821
2822 // If the divisor < 0 (mi), compare the dividend, and deopt if it is
2823 // zero, ie. zero dividend with negative divisor deopts.
2824 // If the divisor >= 0 (pl, the opposite of mi) set the flags to
2825 // condition ne, so we don't deopt, ie. positive divisor doesn't deopt.
2826 __ Ccmp(dividend, 0, NoFlag, mi);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002827 DeoptimizeIf(eq, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002828 }
2829
2830 // Check for (kMinInt / -1).
2831 if (hdiv->CheckFlag(HValue::kCanOverflow)) {
2832 // Test dividend for kMinInt by subtracting one (cmp) and checking for
2833 // overflow.
2834 __ Cmp(dividend, 1);
2835 // If overflow is set, ie. dividend = kMinInt, compare the divisor with
2836 // -1. If overflow is clear, set the flags for condition ne, as the
2837 // dividend isn't -1, and thus we shouldn't deopt.
2838 __ Ccmp(divisor, -1, NoFlag, vs);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002839 DeoptimizeIf(eq, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002840 }
2841
2842 // Compute remainder and deopt if it's not zero.
2843 Register remainder = ToRegister32(instr->temp());
2844 __ Msub(remainder, result, divisor, dividend);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002845 DeoptimizeIfNotZero(remainder, instr, "lost precision");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002846}
2847
2848
2849void LCodeGen::DoDoubleToIntOrSmi(LDoubleToIntOrSmi* instr) {
2850 DoubleRegister input = ToDoubleRegister(instr->value());
2851 Register result = ToRegister32(instr->result());
2852
2853 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002854 DeoptimizeIfMinusZero(input, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002855 }
2856
2857 __ TryRepresentDoubleAsInt32(result, input, double_scratch());
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002858 DeoptimizeIf(ne, instr, "lost precision or NaN");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002859
2860 if (instr->tag_result()) {
2861 __ SmiTag(result.X());
2862 }
2863}
2864
2865
2866void LCodeGen::DoDrop(LDrop* instr) {
2867 __ Drop(instr->count());
2868}
2869
2870
2871void LCodeGen::DoDummy(LDummy* instr) {
2872 // Nothing to see here, move on!
2873}
2874
2875
2876void LCodeGen::DoDummyUse(LDummyUse* instr) {
2877 // Nothing to see here, move on!
2878}
2879
2880
2881void LCodeGen::DoFunctionLiteral(LFunctionLiteral* instr) {
2882 DCHECK(ToRegister(instr->context()).is(cp));
2883 // FunctionLiteral instruction is marked as call, we can trash any register.
2884 DCHECK(instr->IsMarkedAsCall());
2885
2886 // Use the fast case closure allocation code that allocates in new
2887 // space for nested functions that don't need literals cloning.
2888 bool pretenure = instr->hydrogen()->pretenure();
2889 if (!pretenure && instr->hydrogen()->has_no_literals()) {
2890 FastNewClosureStub stub(isolate(), instr->hydrogen()->strict_mode(),
2891 instr->hydrogen()->kind());
2892 __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
2893 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
2894 } else {
2895 __ Mov(x2, Operand(instr->hydrogen()->shared_info()));
2896 __ Mov(x1, Operand(pretenure ? factory()->true_value()
2897 : factory()->false_value()));
2898 __ Push(cp, x2, x1);
2899 CallRuntime(Runtime::kNewClosure, 3, instr);
2900 }
2901}
2902
2903
2904void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
2905 Register map = ToRegister(instr->map());
2906 Register result = ToRegister(instr->result());
2907 Label load_cache, done;
2908
2909 __ EnumLengthUntagged(result, map);
2910 __ Cbnz(result, &load_cache);
2911
2912 __ Mov(result, Operand(isolate()->factory()->empty_fixed_array()));
2913 __ B(&done);
2914
2915 __ Bind(&load_cache);
2916 __ LoadInstanceDescriptors(map, result);
2917 __ Ldr(result, FieldMemOperand(result, DescriptorArray::kEnumCacheOffset));
2918 __ Ldr(result, FieldMemOperand(result, FixedArray::SizeFor(instr->idx())));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002919 DeoptimizeIfZero(result, instr, "no cache");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002920
2921 __ Bind(&done);
2922}
2923
2924
2925void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
2926 Register object = ToRegister(instr->object());
2927 Register null_value = x5;
2928
2929 DCHECK(instr->IsMarkedAsCall());
2930 DCHECK(object.Is(x0));
2931
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002932 DeoptimizeIfRoot(object, Heap::kUndefinedValueRootIndex, instr, "undefined");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002933
2934 __ LoadRoot(null_value, Heap::kNullValueRootIndex);
2935 __ Cmp(object, null_value);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002936 DeoptimizeIf(eq, instr, "null");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002937
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002938 DeoptimizeIfSmi(object, instr, "Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002939
2940 STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
2941 __ CompareObjectType(object, x1, x1, LAST_JS_PROXY_TYPE);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002942 DeoptimizeIf(le, instr, "not a JavaScript object");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002943
2944 Label use_cache, call_runtime;
2945 __ CheckEnumCache(object, null_value, x1, x2, x3, x4, &call_runtime);
2946
2947 __ Ldr(object, FieldMemOperand(object, HeapObject::kMapOffset));
2948 __ B(&use_cache);
2949
2950 // Get the set of properties to enumerate.
2951 __ Bind(&call_runtime);
2952 __ Push(object);
2953 CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
2954
2955 __ Ldr(x1, FieldMemOperand(object, HeapObject::kMapOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04002956 DeoptimizeIfNotRoot(x1, Heap::kMetaMapRootIndex, instr, "wrong map");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00002957
2958 __ Bind(&use_cache);
2959}
2960
2961
2962void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
2963 Register input = ToRegister(instr->value());
2964 Register result = ToRegister(instr->result());
2965
2966 __ AssertString(input);
2967
2968 // Assert that we can use a W register load to get the hash.
2969 DCHECK((String::kHashShift + String::kArrayIndexValueBits) < kWRegSizeInBits);
2970 __ Ldr(result.W(), FieldMemOperand(input, String::kHashFieldOffset));
2971 __ IndexFromHash(result, result);
2972}
2973
2974
2975void LCodeGen::EmitGoto(int block) {
2976 // Do not emit jump if we are emitting a goto to the next block.
2977 if (!IsNextEmittedBlock(block)) {
2978 __ B(chunk_->GetAssemblyLabel(LookupDestination(block)));
2979 }
2980}
2981
2982
2983void LCodeGen::DoGoto(LGoto* instr) {
2984 EmitGoto(instr->block_id());
2985}
2986
2987
2988void LCodeGen::DoHasCachedArrayIndexAndBranch(
2989 LHasCachedArrayIndexAndBranch* instr) {
2990 Register input = ToRegister(instr->value());
2991 Register temp = ToRegister32(instr->temp());
2992
2993 // Assert that the cache status bits fit in a W register.
2994 DCHECK(is_uint32(String::kContainsCachedArrayIndexMask));
2995 __ Ldr(temp, FieldMemOperand(input, String::kHashFieldOffset));
2996 __ Tst(temp, String::kContainsCachedArrayIndexMask);
2997 EmitBranch(instr, eq);
2998}
2999
3000
3001// HHasInstanceTypeAndBranch instruction is built with an interval of type
3002// to test but is only used in very restricted ways. The only possible kinds
3003// of intervals are:
3004// - [ FIRST_TYPE, instr->to() ]
3005// - [ instr->form(), LAST_TYPE ]
3006// - instr->from() == instr->to()
3007//
3008// These kinds of intervals can be check with only one compare instruction
3009// providing the correct value and test condition are used.
3010//
3011// TestType() will return the value to use in the compare instruction and
3012// BranchCondition() will return the condition to use depending on the kind
3013// of interval actually specified in the instruction.
3014static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
3015 InstanceType from = instr->from();
3016 InstanceType to = instr->to();
3017 if (from == FIRST_TYPE) return to;
3018 DCHECK((from == to) || (to == LAST_TYPE));
3019 return from;
3020}
3021
3022
3023// See comment above TestType function for what this function does.
3024static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
3025 InstanceType from = instr->from();
3026 InstanceType to = instr->to();
3027 if (from == to) return eq;
3028 if (to == LAST_TYPE) return hs;
3029 if (from == FIRST_TYPE) return ls;
3030 UNREACHABLE();
3031 return eq;
3032}
3033
3034
3035void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
3036 Register input = ToRegister(instr->value());
3037 Register scratch = ToRegister(instr->temp());
3038
3039 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
3040 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
3041 }
3042 __ CompareObjectType(input, scratch, scratch, TestType(instr->hydrogen()));
3043 EmitBranch(instr, BranchCondition(instr->hydrogen()));
3044}
3045
3046
3047void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
3048 Register result = ToRegister(instr->result());
3049 Register base = ToRegister(instr->base_object());
3050 if (instr->offset()->IsConstantOperand()) {
3051 __ Add(result, base, ToOperand32(instr->offset()));
3052 } else {
3053 __ Add(result, base, Operand(ToRegister32(instr->offset()), SXTW));
3054 }
3055}
3056
3057
3058void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
3059 DCHECK(ToRegister(instr->context()).is(cp));
3060 // Assert that the arguments are in the registers expected by InstanceofStub.
3061 DCHECK(ToRegister(instr->left()).Is(InstanceofStub::left()));
3062 DCHECK(ToRegister(instr->right()).Is(InstanceofStub::right()));
3063
3064 InstanceofStub stub(isolate(), InstanceofStub::kArgsInRegisters);
3065 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
3066
3067 // InstanceofStub returns a result in x0:
3068 // 0 => not an instance
3069 // smi 1 => instance.
3070 __ Cmp(x0, 0);
3071 __ LoadTrueFalseRoots(x0, x1);
3072 __ Csel(x0, x0, x1, eq);
3073}
3074
3075
3076void LCodeGen::DoInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
3077 class DeferredInstanceOfKnownGlobal: public LDeferredCode {
3078 public:
3079 DeferredInstanceOfKnownGlobal(LCodeGen* codegen,
3080 LInstanceOfKnownGlobal* instr)
3081 : LDeferredCode(codegen), instr_(instr) { }
3082 virtual void Generate() {
3083 codegen()->DoDeferredInstanceOfKnownGlobal(instr_);
3084 }
3085 virtual LInstruction* instr() { return instr_; }
3086 private:
3087 LInstanceOfKnownGlobal* instr_;
3088 };
3089
3090 DeferredInstanceOfKnownGlobal* deferred =
3091 new(zone()) DeferredInstanceOfKnownGlobal(this, instr);
3092
3093 Label map_check, return_false, cache_miss, done;
3094 Register object = ToRegister(instr->value());
3095 Register result = ToRegister(instr->result());
3096 // x4 is expected in the associated deferred code and stub.
3097 Register map_check_site = x4;
3098 Register map = x5;
3099
3100 // This instruction is marked as call. We can clobber any register.
3101 DCHECK(instr->IsMarkedAsCall());
3102
3103 // We must take into account that object is in x11.
3104 DCHECK(object.Is(x11));
3105 Register scratch = x10;
3106
3107 // A Smi is not instance of anything.
3108 __ JumpIfSmi(object, &return_false);
3109
3110 // This is the inlined call site instanceof cache. The two occurences of the
3111 // hole value will be patched to the last map/result pair generated by the
3112 // instanceof stub.
3113 __ Ldr(map, FieldMemOperand(object, HeapObject::kMapOffset));
3114 {
3115 // Below we use Factory::the_hole_value() on purpose instead of loading from
3116 // the root array to force relocation and later be able to patch with a
3117 // custom value.
3118 InstructionAccurateScope scope(masm(), 5);
3119 __ bind(&map_check);
3120 // Will be patched with the cached map.
3121 Handle<Cell> cell = factory()->NewCell(factory()->the_hole_value());
3122 __ ldr(scratch, Immediate(Handle<Object>(cell)));
3123 __ ldr(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
3124 __ cmp(map, scratch);
3125 __ b(&cache_miss, ne);
3126 // The address of this instruction is computed relative to the map check
3127 // above, so check the size of the code generated.
3128 DCHECK(masm()->InstructionsGeneratedSince(&map_check) == 4);
3129 // Will be patched with the cached result.
3130 __ ldr(result, Immediate(factory()->the_hole_value()));
3131 }
3132 __ B(&done);
3133
3134 // The inlined call site cache did not match.
3135 // Check null and string before calling the deferred code.
3136 __ Bind(&cache_miss);
3137 // Compute the address of the map check. It must not be clobbered until the
3138 // InstanceOfStub has used it.
3139 __ Adr(map_check_site, &map_check);
3140 // Null is not instance of anything.
3141 __ JumpIfRoot(object, Heap::kNullValueRootIndex, &return_false);
3142
3143 // String values are not instances of anything.
3144 // Return false if the object is a string. Otherwise, jump to the deferred
3145 // code.
3146 // Note that we can't jump directly to deferred code from
3147 // IsObjectJSStringType, because it uses tbz for the jump and the deferred
3148 // code can be out of range.
3149 __ IsObjectJSStringType(object, scratch, NULL, &return_false);
3150 __ B(deferred->entry());
3151
3152 __ Bind(&return_false);
3153 __ LoadRoot(result, Heap::kFalseValueRootIndex);
3154
3155 // Here result is either true or false.
3156 __ Bind(deferred->exit());
3157 __ Bind(&done);
3158}
3159
3160
3161void LCodeGen::DoDeferredInstanceOfKnownGlobal(LInstanceOfKnownGlobal* instr) {
3162 Register result = ToRegister(instr->result());
3163 DCHECK(result.Is(x0)); // InstanceofStub returns its result in x0.
3164 InstanceofStub::Flags flags = InstanceofStub::kNoFlags;
3165 flags = static_cast<InstanceofStub::Flags>(
3166 flags | InstanceofStub::kArgsInRegisters);
3167 flags = static_cast<InstanceofStub::Flags>(
3168 flags | InstanceofStub::kReturnTrueFalseObject);
3169 flags = static_cast<InstanceofStub::Flags>(
3170 flags | InstanceofStub::kCallSiteInlineCheck);
3171
3172 PushSafepointRegistersScope scope(this);
3173 LoadContextFromDeferred(instr->context());
3174
3175 // Prepare InstanceofStub arguments.
3176 DCHECK(ToRegister(instr->value()).Is(InstanceofStub::left()));
3177 __ LoadObject(InstanceofStub::right(), instr->function());
3178
3179 InstanceofStub stub(isolate(), flags);
3180 CallCodeGeneric(stub.GetCode(),
3181 RelocInfo::CODE_TARGET,
3182 instr,
3183 RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
3184 LEnvironment* env = instr->GetDeferredLazyDeoptimizationEnvironment();
3185 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
3186
3187 // Put the result value into the result register slot.
3188 __ StoreToSafepointRegisterSlot(result, result);
3189}
3190
3191
3192void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
3193 DoGap(instr);
3194}
3195
3196
3197void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
3198 Register value = ToRegister32(instr->value());
3199 DoubleRegister result = ToDoubleRegister(instr->result());
3200 __ Scvtf(result, value);
3201}
3202
3203
3204void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
3205 DCHECK(ToRegister(instr->context()).is(cp));
3206 // The function is required to be in x1.
3207 DCHECK(ToRegister(instr->function()).is(x1));
3208 DCHECK(instr->HasPointerMap());
3209
3210 Handle<JSFunction> known_function = instr->hydrogen()->known_function();
3211 if (known_function.is_null()) {
3212 LPointerMap* pointers = instr->pointer_map();
3213 SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
3214 ParameterCount count(instr->arity());
3215 __ InvokeFunction(x1, count, CALL_FUNCTION, generator);
3216 } else {
3217 CallKnownFunction(known_function,
3218 instr->hydrogen()->formal_parameter_count(),
3219 instr->arity(),
3220 instr,
3221 x1);
3222 }
3223 after_push_argument_ = false;
3224}
3225
3226
3227void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
3228 Register temp1 = ToRegister(instr->temp1());
3229 Register temp2 = ToRegister(instr->temp2());
3230
3231 // Get the frame pointer for the calling frame.
3232 __ Ldr(temp1, MemOperand(fp, StandardFrameConstants::kCallerFPOffset));
3233
3234 // Skip the arguments adaptor frame if it exists.
3235 Label check_frame_marker;
3236 __ Ldr(temp2, MemOperand(temp1, StandardFrameConstants::kContextOffset));
3237 __ Cmp(temp2, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR));
3238 __ B(ne, &check_frame_marker);
3239 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kCallerFPOffset));
3240
3241 // Check the marker in the calling frame.
3242 __ Bind(&check_frame_marker);
3243 __ Ldr(temp1, MemOperand(temp1, StandardFrameConstants::kMarkerOffset));
3244
3245 EmitCompareAndBranch(
3246 instr, eq, temp1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)));
3247}
3248
3249
3250void LCodeGen::DoIsObjectAndBranch(LIsObjectAndBranch* instr) {
3251 Label* is_object = instr->TrueLabel(chunk_);
3252 Label* is_not_object = instr->FalseLabel(chunk_);
3253 Register value = ToRegister(instr->value());
3254 Register map = ToRegister(instr->temp1());
3255 Register scratch = ToRegister(instr->temp2());
3256
3257 __ JumpIfSmi(value, is_not_object);
3258 __ JumpIfRoot(value, Heap::kNullValueRootIndex, is_object);
3259
3260 __ Ldr(map, FieldMemOperand(value, HeapObject::kMapOffset));
3261
3262 // Check for undetectable objects.
3263 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
3264 __ TestAndBranchIfAnySet(scratch, 1 << Map::kIsUndetectable, is_not_object);
3265
3266 // Check that instance type is in object type range.
3267 __ IsInstanceJSObjectType(map, scratch, NULL);
3268 // Flags have been updated by IsInstanceJSObjectType. We can now test the
3269 // flags for "le" condition to check if the object's type is a valid
3270 // JS object type.
3271 EmitBranch(instr, le);
3272}
3273
3274
3275Condition LCodeGen::EmitIsString(Register input,
3276 Register temp1,
3277 Label* is_not_string,
3278 SmiCheck check_needed = INLINE_SMI_CHECK) {
3279 if (check_needed == INLINE_SMI_CHECK) {
3280 __ JumpIfSmi(input, is_not_string);
3281 }
3282 __ CompareObjectType(input, temp1, temp1, FIRST_NONSTRING_TYPE);
3283
3284 return lt;
3285}
3286
3287
3288void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
3289 Register val = ToRegister(instr->value());
3290 Register scratch = ToRegister(instr->temp());
3291
3292 SmiCheck check_needed =
3293 instr->hydrogen()->value()->type().IsHeapObject()
3294 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
3295 Condition true_cond =
3296 EmitIsString(val, scratch, instr->FalseLabel(chunk_), check_needed);
3297
3298 EmitBranch(instr, true_cond);
3299}
3300
3301
3302void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
3303 Register value = ToRegister(instr->value());
3304 STATIC_ASSERT(kSmiTag == 0);
3305 EmitTestAndBranch(instr, eq, value, kSmiTagMask);
3306}
3307
3308
3309void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
3310 Register input = ToRegister(instr->value());
3311 Register temp = ToRegister(instr->temp());
3312
3313 if (!instr->hydrogen()->value()->type().IsHeapObject()) {
3314 __ JumpIfSmi(input, instr->FalseLabel(chunk_));
3315 }
3316 __ Ldr(temp, FieldMemOperand(input, HeapObject::kMapOffset));
3317 __ Ldrb(temp, FieldMemOperand(temp, Map::kBitFieldOffset));
3318
3319 EmitTestAndBranch(instr, ne, temp, 1 << Map::kIsUndetectable);
3320}
3321
3322
3323static const char* LabelType(LLabel* label) {
3324 if (label->is_loop_header()) return " (loop header)";
3325 if (label->is_osr_entry()) return " (OSR entry)";
3326 return "";
3327}
3328
3329
3330void LCodeGen::DoLabel(LLabel* label) {
3331 Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
3332 current_instruction_,
3333 label->hydrogen_value()->id(),
3334 label->block_id(),
3335 LabelType(label));
3336
3337 __ Bind(label->label());
3338 current_block_ = label->block_id();
3339 DoGap(label);
3340}
3341
3342
3343void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
3344 Register context = ToRegister(instr->context());
3345 Register result = ToRegister(instr->result());
3346 __ Ldr(result, ContextMemOperand(context, instr->slot_index()));
3347 if (instr->hydrogen()->RequiresHoleCheck()) {
3348 if (instr->hydrogen()->DeoptimizesOnHole()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003349 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, "hole");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003350 } else {
3351 Label not_the_hole;
3352 __ JumpIfNotRoot(result, Heap::kTheHoleValueRootIndex, &not_the_hole);
3353 __ LoadRoot(result, Heap::kUndefinedValueRootIndex);
3354 __ Bind(&not_the_hole);
3355 }
3356 }
3357}
3358
3359
3360void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
3361 Register function = ToRegister(instr->function());
3362 Register result = ToRegister(instr->result());
3363 Register temp = ToRegister(instr->temp());
3364
3365 // Get the prototype or initial map from the function.
3366 __ Ldr(result, FieldMemOperand(function,
3367 JSFunction::kPrototypeOrInitialMapOffset));
3368
3369 // Check that the function has a prototype or an initial map.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003370 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, "hole");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003371
3372 // If the function does not have an initial map, we're done.
3373 Label done;
3374 __ CompareObjectType(result, temp, temp, MAP_TYPE);
3375 __ B(ne, &done);
3376
3377 // Get the prototype from the initial map.
3378 __ Ldr(result, FieldMemOperand(result, Map::kPrototypeOffset));
3379
3380 // All done.
3381 __ Bind(&done);
3382}
3383
3384
3385void LCodeGen::DoLoadGlobalCell(LLoadGlobalCell* instr) {
3386 Register result = ToRegister(instr->result());
3387 __ Mov(result, Operand(Handle<Object>(instr->hydrogen()->cell().handle())));
3388 __ Ldr(result, FieldMemOperand(result, Cell::kValueOffset));
3389 if (instr->hydrogen()->RequiresHoleCheck()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003390 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, "hole");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003391 }
3392}
3393
3394
3395template <class T>
3396void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
3397 DCHECK(FLAG_vector_ics);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003398 Register vector_register = ToRegister(instr->temp_vector());
3399 Register slot_register = VectorLoadICDescriptor::SlotRegister();
3400 DCHECK(vector_register.is(VectorLoadICDescriptor::VectorRegister()));
3401 DCHECK(slot_register.is(x0));
3402
3403 AllowDeferredHandleDereference vector_structure_check;
3404 Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
3405 __ Mov(vector_register, vector);
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003406 // No need to allocate this register.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003407 FeedbackVectorICSlot slot = instr->hydrogen()->slot();
3408 int index = vector->GetIndex(slot);
3409 __ Mov(slot_register, Smi::FromInt(index));
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003410}
3411
3412
3413void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
3414 DCHECK(ToRegister(instr->context()).is(cp));
3415 DCHECK(ToRegister(instr->global_object())
3416 .is(LoadDescriptor::ReceiverRegister()));
3417 DCHECK(ToRegister(instr->result()).Is(x0));
3418 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3419 if (FLAG_vector_ics) {
3420 EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
3421 }
3422 ContextualMode mode = instr->for_typeof() ? NOT_CONTEXTUAL : CONTEXTUAL;
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003423 Handle<Code> ic = CodeFactory::LoadICInOptimizedCode(isolate(), mode).code();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003424 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3425}
3426
3427
3428MemOperand LCodeGen::PrepareKeyedExternalArrayOperand(
3429 Register key,
3430 Register base,
3431 Register scratch,
3432 bool key_is_smi,
3433 bool key_is_constant,
3434 int constant_key,
3435 ElementsKind elements_kind,
3436 int base_offset) {
3437 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3438
3439 if (key_is_constant) {
3440 int key_offset = constant_key << element_size_shift;
3441 return MemOperand(base, key_offset + base_offset);
3442 }
3443
3444 if (key_is_smi) {
3445 __ Add(scratch, base, Operand::UntagSmiAndScale(key, element_size_shift));
3446 return MemOperand(scratch, base_offset);
3447 }
3448
3449 if (base_offset == 0) {
3450 return MemOperand(base, key, SXTW, element_size_shift);
3451 }
3452
3453 DCHECK(!AreAliased(scratch, key));
3454 __ Add(scratch, base, base_offset);
3455 return MemOperand(scratch, key, SXTW, element_size_shift);
3456}
3457
3458
3459void LCodeGen::DoLoadKeyedExternal(LLoadKeyedExternal* instr) {
3460 Register ext_ptr = ToRegister(instr->elements());
3461 Register scratch;
3462 ElementsKind elements_kind = instr->elements_kind();
3463
3464 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
3465 bool key_is_constant = instr->key()->IsConstantOperand();
3466 Register key = no_reg;
3467 int constant_key = 0;
3468 if (key_is_constant) {
3469 DCHECK(instr->temp() == NULL);
3470 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3471 if (constant_key & 0xf0000000) {
3472 Abort(kArrayIndexConstantValueTooBig);
3473 }
3474 } else {
3475 scratch = ToRegister(instr->temp());
3476 key = ToRegister(instr->key());
3477 }
3478
3479 MemOperand mem_op =
3480 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
3481 key_is_constant, constant_key,
3482 elements_kind,
3483 instr->base_offset());
3484
3485 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
3486 (elements_kind == FLOAT32_ELEMENTS)) {
3487 DoubleRegister result = ToDoubleRegister(instr->result());
3488 __ Ldr(result.S(), mem_op);
3489 __ Fcvt(result, result.S());
3490 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
3491 (elements_kind == FLOAT64_ELEMENTS)) {
3492 DoubleRegister result = ToDoubleRegister(instr->result());
3493 __ Ldr(result, mem_op);
3494 } else {
3495 Register result = ToRegister(instr->result());
3496
3497 switch (elements_kind) {
3498 case EXTERNAL_INT8_ELEMENTS:
3499 case INT8_ELEMENTS:
3500 __ Ldrsb(result, mem_op);
3501 break;
3502 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
3503 case EXTERNAL_UINT8_ELEMENTS:
3504 case UINT8_ELEMENTS:
3505 case UINT8_CLAMPED_ELEMENTS:
3506 __ Ldrb(result, mem_op);
3507 break;
3508 case EXTERNAL_INT16_ELEMENTS:
3509 case INT16_ELEMENTS:
3510 __ Ldrsh(result, mem_op);
3511 break;
3512 case EXTERNAL_UINT16_ELEMENTS:
3513 case UINT16_ELEMENTS:
3514 __ Ldrh(result, mem_op);
3515 break;
3516 case EXTERNAL_INT32_ELEMENTS:
3517 case INT32_ELEMENTS:
3518 __ Ldrsw(result, mem_op);
3519 break;
3520 case EXTERNAL_UINT32_ELEMENTS:
3521 case UINT32_ELEMENTS:
3522 __ Ldr(result.W(), mem_op);
3523 if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
3524 // Deopt if value > 0x80000000.
3525 __ Tst(result, 0xFFFFFFFF80000000);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003526 DeoptimizeIf(ne, instr, "negative value");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003527 }
3528 break;
3529 case FLOAT32_ELEMENTS:
3530 case FLOAT64_ELEMENTS:
3531 case EXTERNAL_FLOAT32_ELEMENTS:
3532 case EXTERNAL_FLOAT64_ELEMENTS:
3533 case FAST_HOLEY_DOUBLE_ELEMENTS:
3534 case FAST_HOLEY_ELEMENTS:
3535 case FAST_HOLEY_SMI_ELEMENTS:
3536 case FAST_DOUBLE_ELEMENTS:
3537 case FAST_ELEMENTS:
3538 case FAST_SMI_ELEMENTS:
3539 case DICTIONARY_ELEMENTS:
3540 case SLOPPY_ARGUMENTS_ELEMENTS:
3541 UNREACHABLE();
3542 break;
3543 }
3544 }
3545}
3546
3547
3548MemOperand LCodeGen::PrepareKeyedArrayOperand(Register base,
3549 Register elements,
3550 Register key,
3551 bool key_is_tagged,
3552 ElementsKind elements_kind,
3553 Representation representation,
3554 int base_offset) {
3555 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3556 STATIC_ASSERT(kSmiTag == 0);
3557 int element_size_shift = ElementsKindToShiftSize(elements_kind);
3558
3559 // Even though the HLoad/StoreKeyed instructions force the input
3560 // representation for the key to be an integer, the input gets replaced during
3561 // bounds check elimination with the index argument to the bounds check, which
3562 // can be tagged, so that case must be handled here, too.
3563 if (key_is_tagged) {
3564 __ Add(base, elements, Operand::UntagSmiAndScale(key, element_size_shift));
3565 if (representation.IsInteger32()) {
3566 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3567 // Read or write only the smi payload in the case of fast smi arrays.
3568 return UntagSmiMemOperand(base, base_offset);
3569 } else {
3570 return MemOperand(base, base_offset);
3571 }
3572 } else {
3573 // Sign extend key because it could be a 32-bit negative value or contain
3574 // garbage in the top 32-bits. The address computation happens in 64-bit.
3575 DCHECK((element_size_shift >= 0) && (element_size_shift <= 4));
3576 if (representation.IsInteger32()) {
3577 DCHECK(elements_kind == FAST_SMI_ELEMENTS);
3578 // Read or write only the smi payload in the case of fast smi arrays.
3579 __ Add(base, elements, Operand(key, SXTW, element_size_shift));
3580 return UntagSmiMemOperand(base, base_offset);
3581 } else {
3582 __ Add(base, elements, base_offset);
3583 return MemOperand(base, key, SXTW, element_size_shift);
3584 }
3585 }
3586}
3587
3588
3589void LCodeGen::DoLoadKeyedFixedDouble(LLoadKeyedFixedDouble* instr) {
3590 Register elements = ToRegister(instr->elements());
3591 DoubleRegister result = ToDoubleRegister(instr->result());
3592 MemOperand mem_op;
3593
3594 if (instr->key()->IsConstantOperand()) {
3595 DCHECK(instr->hydrogen()->RequiresHoleCheck() ||
3596 (instr->temp() == NULL));
3597
3598 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
3599 if (constant_key & 0xf0000000) {
3600 Abort(kArrayIndexConstantValueTooBig);
3601 }
3602 int offset = instr->base_offset() + constant_key * kDoubleSize;
3603 mem_op = MemOperand(elements, offset);
3604 } else {
3605 Register load_base = ToRegister(instr->temp());
3606 Register key = ToRegister(instr->key());
3607 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3608 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3609 instr->hydrogen()->elements_kind(),
3610 instr->hydrogen()->representation(),
3611 instr->base_offset());
3612 }
3613
3614 __ Ldr(result, mem_op);
3615
3616 if (instr->hydrogen()->RequiresHoleCheck()) {
3617 Register scratch = ToRegister(instr->temp());
3618 // Detect the hole NaN by adding one to the integer representation of the
3619 // result, and checking for overflow.
3620 STATIC_ASSERT(kHoleNanInt64 == 0x7fffffffffffffff);
3621 __ Ldr(scratch, mem_op);
3622 __ Cmn(scratch, 1);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003623 DeoptimizeIf(vs, instr, "hole");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003624 }
3625}
3626
3627
3628void LCodeGen::DoLoadKeyedFixed(LLoadKeyedFixed* instr) {
3629 Register elements = ToRegister(instr->elements());
3630 Register result = ToRegister(instr->result());
3631 MemOperand mem_op;
3632
3633 Representation representation = instr->hydrogen()->representation();
3634 if (instr->key()->IsConstantOperand()) {
3635 DCHECK(instr->temp() == NULL);
3636 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
3637 int offset = instr->base_offset() +
3638 ToInteger32(const_operand) * kPointerSize;
3639 if (representation.IsInteger32()) {
3640 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
3641 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3642 STATIC_ASSERT(kSmiTag == 0);
3643 mem_op = UntagSmiMemOperand(elements, offset);
3644 } else {
3645 mem_op = MemOperand(elements, offset);
3646 }
3647 } else {
3648 Register load_base = ToRegister(instr->temp());
3649 Register key = ToRegister(instr->key());
3650 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
3651
3652 mem_op = PrepareKeyedArrayOperand(load_base, elements, key, key_is_tagged,
3653 instr->hydrogen()->elements_kind(),
3654 representation, instr->base_offset());
3655 }
3656
3657 __ Load(result, mem_op, representation);
3658
3659 if (instr->hydrogen()->RequiresHoleCheck()) {
3660 if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003661 DeoptimizeIfNotSmi(result, instr, "not a Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003662 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003663 DeoptimizeIfRoot(result, Heap::kTheHoleValueRootIndex, instr, "hole");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003664 }
3665 }
3666}
3667
3668
3669void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
3670 DCHECK(ToRegister(instr->context()).is(cp));
3671 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3672 DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
3673 if (FLAG_vector_ics) {
3674 EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
3675 }
3676
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003677 Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(isolate()).code();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003678 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3679
3680 DCHECK(ToRegister(instr->result()).Is(x0));
3681}
3682
3683
3684void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
3685 HObjectAccess access = instr->hydrogen()->access();
3686 int offset = access.offset();
3687 Register object = ToRegister(instr->object());
3688
3689 if (access.IsExternalMemory()) {
3690 Register result = ToRegister(instr->result());
3691 __ Load(result, MemOperand(object, offset), access.representation());
3692 return;
3693 }
3694
3695 if (instr->hydrogen()->representation().IsDouble()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003696 DCHECK(access.IsInobject());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003697 FPRegister result = ToDoubleRegister(instr->result());
3698 __ Ldr(result, FieldMemOperand(object, offset));
3699 return;
3700 }
3701
3702 Register result = ToRegister(instr->result());
3703 Register source;
3704 if (access.IsInobject()) {
3705 source = object;
3706 } else {
3707 // Load the properties array, using result as a scratch register.
3708 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
3709 source = result;
3710 }
3711
3712 if (access.representation().IsSmi() &&
3713 instr->hydrogen()->representation().IsInteger32()) {
3714 // Read int value directly from upper half of the smi.
3715 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
3716 STATIC_ASSERT(kSmiTag == 0);
3717 __ Load(result, UntagSmiFieldMemOperand(source, offset),
3718 Representation::Integer32());
3719 } else {
3720 __ Load(result, FieldMemOperand(source, offset), access.representation());
3721 }
3722}
3723
3724
3725void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
3726 DCHECK(ToRegister(instr->context()).is(cp));
3727 // LoadIC expects name and receiver in registers.
3728 DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
3729 __ Mov(LoadDescriptor::NameRegister(), Operand(instr->name()));
3730 if (FLAG_vector_ics) {
3731 EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
3732 }
3733
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003734 Handle<Code> ic =
3735 CodeFactory::LoadICInOptimizedCode(isolate(), NOT_CONTEXTUAL).code();
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003736 CallCode(ic, RelocInfo::CODE_TARGET, instr);
3737
3738 DCHECK(ToRegister(instr->result()).is(x0));
3739}
3740
3741
3742void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
3743 Register result = ToRegister(instr->result());
3744 __ LoadRoot(result, instr->index());
3745}
3746
3747
3748void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
3749 Register result = ToRegister(instr->result());
3750 Register map = ToRegister(instr->value());
3751 __ EnumLengthSmi(result, map);
3752}
3753
3754
3755void LCodeGen::DoMathAbs(LMathAbs* instr) {
3756 Representation r = instr->hydrogen()->value()->representation();
3757 if (r.IsDouble()) {
3758 DoubleRegister input = ToDoubleRegister(instr->value());
3759 DoubleRegister result = ToDoubleRegister(instr->result());
3760 __ Fabs(result, input);
3761 } else if (r.IsSmi() || r.IsInteger32()) {
3762 Register input = r.IsSmi() ? ToRegister(instr->value())
3763 : ToRegister32(instr->value());
3764 Register result = r.IsSmi() ? ToRegister(instr->result())
3765 : ToRegister32(instr->result());
3766 __ Abs(result, input);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003767 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003768 }
3769}
3770
3771
3772void LCodeGen::DoDeferredMathAbsTagged(LMathAbsTagged* instr,
3773 Label* exit,
3774 Label* allocation_entry) {
3775 // Handle the tricky cases of MathAbsTagged:
3776 // - HeapNumber inputs.
3777 // - Negative inputs produce a positive result, so a new HeapNumber is
3778 // allocated to hold it.
3779 // - Positive inputs are returned as-is, since there is no need to allocate
3780 // a new HeapNumber for the result.
3781 // - The (smi) input -0x80000000, produces +0x80000000, which does not fit
3782 // a smi. In this case, the inline code sets the result and jumps directly
3783 // to the allocation_entry label.
3784 DCHECK(instr->context() != NULL);
3785 DCHECK(ToRegister(instr->context()).is(cp));
3786 Register input = ToRegister(instr->value());
3787 Register temp1 = ToRegister(instr->temp1());
3788 Register temp2 = ToRegister(instr->temp2());
3789 Register result_bits = ToRegister(instr->temp3());
3790 Register result = ToRegister(instr->result());
3791
3792 Label runtime_allocation;
3793
3794 // Deoptimize if the input is not a HeapNumber.
3795 DeoptimizeIfNotHeapNumber(input, instr);
3796
3797 // If the argument is positive, we can return it as-is, without any need to
3798 // allocate a new HeapNumber for the result. We have to do this in integer
3799 // registers (rather than with fabs) because we need to be able to distinguish
3800 // the two zeroes.
3801 __ Ldr(result_bits, FieldMemOperand(input, HeapNumber::kValueOffset));
3802 __ Mov(result, input);
3803 __ Tbz(result_bits, kXSignBit, exit);
3804
3805 // Calculate abs(input) by clearing the sign bit.
3806 __ Bic(result_bits, result_bits, kXSignMask);
3807
3808 // Allocate a new HeapNumber to hold the result.
3809 // result_bits The bit representation of the (double) result.
3810 __ Bind(allocation_entry);
3811 __ AllocateHeapNumber(result, &runtime_allocation, temp1, temp2);
3812 // The inline (non-deferred) code will store result_bits into result.
3813 __ B(exit);
3814
3815 __ Bind(&runtime_allocation);
3816 if (FLAG_debug_code) {
3817 // Because result is in the pointer map, we need to make sure it has a valid
3818 // tagged value before we call the runtime. We speculatively set it to the
3819 // input (for abs(+x)) or to a smi (for abs(-SMI_MIN)), so it should already
3820 // be valid.
3821 Label result_ok;
3822 Register input = ToRegister(instr->value());
3823 __ JumpIfSmi(result, &result_ok);
3824 __ Cmp(input, result);
3825 __ Assert(eq, kUnexpectedValue);
3826 __ Bind(&result_ok);
3827 }
3828
3829 { PushSafepointRegistersScope scope(this);
3830 CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0, instr,
3831 instr->context());
3832 __ StoreToSafepointRegisterSlot(x0, result);
3833 }
3834 // The inline (non-deferred) code will store result_bits into result.
3835}
3836
3837
3838void LCodeGen::DoMathAbsTagged(LMathAbsTagged* instr) {
3839 // Class for deferred case.
3840 class DeferredMathAbsTagged: public LDeferredCode {
3841 public:
3842 DeferredMathAbsTagged(LCodeGen* codegen, LMathAbsTagged* instr)
3843 : LDeferredCode(codegen), instr_(instr) { }
3844 virtual void Generate() {
3845 codegen()->DoDeferredMathAbsTagged(instr_, exit(),
3846 allocation_entry());
3847 }
3848 virtual LInstruction* instr() { return instr_; }
3849 Label* allocation_entry() { return &allocation; }
3850 private:
3851 LMathAbsTagged* instr_;
3852 Label allocation;
3853 };
3854
3855 // TODO(jbramley): The early-exit mechanism would skip the new frame handling
3856 // in GenerateDeferredCode. Tidy this up.
3857 DCHECK(!NeedsDeferredFrame());
3858
3859 DeferredMathAbsTagged* deferred =
3860 new(zone()) DeferredMathAbsTagged(this, instr);
3861
3862 DCHECK(instr->hydrogen()->value()->representation().IsTagged() ||
3863 instr->hydrogen()->value()->representation().IsSmi());
3864 Register input = ToRegister(instr->value());
3865 Register result_bits = ToRegister(instr->temp3());
3866 Register result = ToRegister(instr->result());
3867 Label done;
3868
3869 // Handle smis inline.
3870 // We can treat smis as 64-bit integers, since the (low-order) tag bits will
3871 // never get set by the negation. This is therefore the same as the Integer32
3872 // case in DoMathAbs, except that it operates on 64-bit values.
3873 STATIC_ASSERT((kSmiValueSize == 32) && (kSmiShift == 32) && (kSmiTag == 0));
3874
3875 __ JumpIfNotSmi(input, deferred->entry());
3876
3877 __ Abs(result, input, NULL, &done);
3878
3879 // The result is the magnitude (abs) of the smallest value a smi can
3880 // represent, encoded as a double.
3881 __ Mov(result_bits, double_to_rawbits(0x80000000));
3882 __ B(deferred->allocation_entry());
3883
3884 __ Bind(deferred->exit());
3885 __ Str(result_bits, FieldMemOperand(result, HeapNumber::kValueOffset));
3886
3887 __ Bind(&done);
3888}
3889
3890
3891void LCodeGen::DoMathExp(LMathExp* instr) {
3892 DoubleRegister input = ToDoubleRegister(instr->value());
3893 DoubleRegister result = ToDoubleRegister(instr->result());
3894 DoubleRegister double_temp1 = ToDoubleRegister(instr->double_temp1());
3895 DoubleRegister double_temp2 = double_scratch();
3896 Register temp1 = ToRegister(instr->temp1());
3897 Register temp2 = ToRegister(instr->temp2());
3898 Register temp3 = ToRegister(instr->temp3());
3899
3900 MathExpGenerator::EmitMathExp(masm(), input, result,
3901 double_temp1, double_temp2,
3902 temp1, temp2, temp3);
3903}
3904
3905
3906void LCodeGen::DoMathFloorD(LMathFloorD* instr) {
3907 DoubleRegister input = ToDoubleRegister(instr->value());
3908 DoubleRegister result = ToDoubleRegister(instr->result());
3909
3910 __ Frintm(result, input);
3911}
3912
3913
3914void LCodeGen::DoMathFloorI(LMathFloorI* instr) {
3915 DoubleRegister input = ToDoubleRegister(instr->value());
3916 Register result = ToRegister(instr->result());
3917
3918 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003919 DeoptimizeIfMinusZero(input, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003920 }
3921
3922 __ Fcvtms(result, input);
3923
3924 // Check that the result fits into a 32-bit integer.
3925 // - The result did not overflow.
3926 __ Cmp(result, Operand(result, SXTW));
3927 // - The input was not NaN.
3928 __ Fccmp(input, input, NoFlag, eq);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003929 DeoptimizeIf(ne, instr, "lost precision or NaN");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003930}
3931
3932
3933void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
3934 Register dividend = ToRegister32(instr->dividend());
3935 Register result = ToRegister32(instr->result());
3936 int32_t divisor = instr->divisor();
3937
3938 // If the divisor is 1, return the dividend.
3939 if (divisor == 1) {
3940 __ Mov(result, dividend, kDiscardForSameWReg);
3941 return;
3942 }
3943
3944 // If the divisor is positive, things are easy: There can be no deopts and we
3945 // can simply do an arithmetic right shift.
3946 int32_t shift = WhichPowerOf2Abs(divisor);
3947 if (divisor > 1) {
3948 __ Mov(result, Operand(dividend, ASR, shift));
3949 return;
3950 }
3951
3952 // If the divisor is negative, we have to negate and handle edge cases.
3953 __ Negs(result, dividend);
3954 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003955 DeoptimizeIf(eq, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003956 }
3957
3958 // Dividing by -1 is basically negation, unless we overflow.
3959 if (divisor == -1) {
3960 if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003961 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003962 }
3963 return;
3964 }
3965
3966 // If the negation could not overflow, simply shifting is OK.
3967 if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
3968 __ Mov(result, Operand(dividend, ASR, shift));
3969 return;
3970 }
3971
3972 __ Asr(result, result, shift);
3973 __ Csel(result, result, kMinInt / divisor, vc);
3974}
3975
3976
3977void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
3978 Register dividend = ToRegister32(instr->dividend());
3979 int32_t divisor = instr->divisor();
3980 Register result = ToRegister32(instr->result());
3981 DCHECK(!AreAliased(dividend, result));
3982
3983 if (divisor == 0) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003984 Deoptimize(instr, "division by zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003985 return;
3986 }
3987
3988 // Check for (0 / -x) that will produce negative zero.
3989 HMathFloorOfDiv* hdiv = instr->hydrogen();
3990 if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04003991 DeoptimizeIfZero(dividend, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00003992 }
3993
3994 // Easy case: We need no dynamic check for the dividend and the flooring
3995 // division is the same as the truncating division.
3996 if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
3997 (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
3998 __ TruncatingDiv(result, dividend, Abs(divisor));
3999 if (divisor < 0) __ Neg(result, result);
4000 return;
4001 }
4002
4003 // In the general case we may need to adjust before and after the truncating
4004 // division to get a flooring division.
4005 Register temp = ToRegister32(instr->temp());
4006 DCHECK(!AreAliased(temp, dividend, result));
4007 Label needs_adjustment, done;
4008 __ Cmp(dividend, 0);
4009 __ B(divisor > 0 ? lt : gt, &needs_adjustment);
4010 __ TruncatingDiv(result, dividend, Abs(divisor));
4011 if (divisor < 0) __ Neg(result, result);
4012 __ B(&done);
4013 __ Bind(&needs_adjustment);
4014 __ Add(temp, dividend, Operand(divisor > 0 ? 1 : -1));
4015 __ TruncatingDiv(result, temp, Abs(divisor));
4016 if (divisor < 0) __ Neg(result, result);
4017 __ Sub(result, result, Operand(1));
4018 __ Bind(&done);
4019}
4020
4021
4022// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
4023void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
4024 Register dividend = ToRegister32(instr->dividend());
4025 Register divisor = ToRegister32(instr->divisor());
4026 Register remainder = ToRegister32(instr->temp());
4027 Register result = ToRegister32(instr->result());
4028
4029 // This can't cause an exception on ARM, so we can speculatively
4030 // execute it already now.
4031 __ Sdiv(result, dividend, divisor);
4032
4033 // Check for x / 0.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004034 DeoptimizeIfZero(divisor, instr, "division by zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004035
4036 // Check for (kMinInt / -1).
4037 if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
4038 // The V flag will be set iff dividend == kMinInt.
4039 __ Cmp(dividend, 1);
4040 __ Ccmp(divisor, -1, NoFlag, vs);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004041 DeoptimizeIf(eq, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004042 }
4043
4044 // Check for (0 / -x) that will produce negative zero.
4045 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4046 __ Cmp(divisor, 0);
4047 __ Ccmp(dividend, 0, ZFlag, mi);
4048 // "divisor" can't be null because the code would have already been
4049 // deoptimized. The Z flag is set only if (divisor < 0) and (dividend == 0).
4050 // In this case we need to deoptimize to produce a -0.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004051 DeoptimizeIf(eq, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004052 }
4053
4054 Label done;
4055 // If both operands have the same sign then we are done.
4056 __ Eor(remainder, dividend, divisor);
4057 __ Tbz(remainder, kWSignBit, &done);
4058
4059 // Check if the result needs to be corrected.
4060 __ Msub(remainder, result, divisor, dividend);
4061 __ Cbz(remainder, &done);
4062 __ Sub(result, result, 1);
4063
4064 __ Bind(&done);
4065}
4066
4067
4068void LCodeGen::DoMathLog(LMathLog* instr) {
4069 DCHECK(instr->IsMarkedAsCall());
4070 DCHECK(ToDoubleRegister(instr->value()).is(d0));
4071 __ CallCFunction(ExternalReference::math_log_double_function(isolate()),
4072 0, 1);
4073 DCHECK(ToDoubleRegister(instr->result()).Is(d0));
4074}
4075
4076
4077void LCodeGen::DoMathClz32(LMathClz32* instr) {
4078 Register input = ToRegister32(instr->value());
4079 Register result = ToRegister32(instr->result());
4080 __ Clz(result, input);
4081}
4082
4083
4084void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
4085 DoubleRegister input = ToDoubleRegister(instr->value());
4086 DoubleRegister result = ToDoubleRegister(instr->result());
4087 Label done;
4088
4089 // Math.pow(x, 0.5) differs from fsqrt(x) in the following cases:
4090 // Math.pow(-Infinity, 0.5) == +Infinity
4091 // Math.pow(-0.0, 0.5) == +0.0
4092
4093 // Catch -infinity inputs first.
4094 // TODO(jbramley): A constant infinity register would be helpful here.
4095 __ Fmov(double_scratch(), kFP64NegativeInfinity);
4096 __ Fcmp(double_scratch(), input);
4097 __ Fabs(result, input);
4098 __ B(&done, eq);
4099
4100 // Add +0.0 to convert -0.0 to +0.0.
4101 __ Fadd(double_scratch(), input, fp_zero);
4102 __ Fsqrt(result, double_scratch());
4103
4104 __ Bind(&done);
4105}
4106
4107
4108void LCodeGen::DoPower(LPower* instr) {
4109 Representation exponent_type = instr->hydrogen()->right()->representation();
4110 // Having marked this as a call, we can use any registers.
4111 // Just make sure that the input/output registers are the expected ones.
4112 Register tagged_exponent = MathPowTaggedDescriptor::exponent();
4113 Register integer_exponent = MathPowIntegerDescriptor::exponent();
4114 DCHECK(!instr->right()->IsDoubleRegister() ||
4115 ToDoubleRegister(instr->right()).is(d1));
4116 DCHECK(exponent_type.IsInteger32() || !instr->right()->IsRegister() ||
4117 ToRegister(instr->right()).is(tagged_exponent));
4118 DCHECK(!exponent_type.IsInteger32() ||
4119 ToRegister(instr->right()).is(integer_exponent));
4120 DCHECK(ToDoubleRegister(instr->left()).is(d0));
4121 DCHECK(ToDoubleRegister(instr->result()).is(d0));
4122
4123 if (exponent_type.IsSmi()) {
4124 MathPowStub stub(isolate(), MathPowStub::TAGGED);
4125 __ CallStub(&stub);
4126 } else if (exponent_type.IsTagged()) {
4127 Label no_deopt;
4128 __ JumpIfSmi(tagged_exponent, &no_deopt);
4129 DeoptimizeIfNotHeapNumber(tagged_exponent, instr);
4130 __ Bind(&no_deopt);
4131 MathPowStub stub(isolate(), MathPowStub::TAGGED);
4132 __ CallStub(&stub);
4133 } else if (exponent_type.IsInteger32()) {
4134 // Ensure integer exponent has no garbage in top 32-bits, as MathPowStub
4135 // supports large integer exponents.
4136 __ Sxtw(integer_exponent, integer_exponent);
4137 MathPowStub stub(isolate(), MathPowStub::INTEGER);
4138 __ CallStub(&stub);
4139 } else {
4140 DCHECK(exponent_type.IsDouble());
4141 MathPowStub stub(isolate(), MathPowStub::DOUBLE);
4142 __ CallStub(&stub);
4143 }
4144}
4145
4146
4147void LCodeGen::DoMathRoundD(LMathRoundD* instr) {
4148 DoubleRegister input = ToDoubleRegister(instr->value());
4149 DoubleRegister result = ToDoubleRegister(instr->result());
4150 DoubleRegister scratch_d = double_scratch();
4151
4152 DCHECK(!AreAliased(input, result, scratch_d));
4153
4154 Label done;
4155
4156 __ Frinta(result, input);
4157 __ Fcmp(input, 0.0);
4158 __ Fccmp(result, input, ZFlag, lt);
4159 // The result is correct if the input was in [-0, +infinity], or was a
4160 // negative integral value.
4161 __ B(eq, &done);
4162
4163 // Here the input is negative, non integral, with an exponent lower than 52.
4164 // We do not have to worry about the 0.49999999999999994 (0x3fdfffffffffffff)
4165 // case. So we can safely add 0.5.
4166 __ Fmov(scratch_d, 0.5);
4167 __ Fadd(result, input, scratch_d);
4168 __ Frintm(result, result);
4169 // The range [-0.5, -0.0[ yielded +0.0. Force the sign to negative.
4170 __ Fabs(result, result);
4171 __ Fneg(result, result);
4172
4173 __ Bind(&done);
4174}
4175
4176
4177void LCodeGen::DoMathRoundI(LMathRoundI* instr) {
4178 DoubleRegister input = ToDoubleRegister(instr->value());
4179 DoubleRegister temp = ToDoubleRegister(instr->temp1());
4180 DoubleRegister dot_five = double_scratch();
4181 Register result = ToRegister(instr->result());
4182 Label done;
4183
4184 // Math.round() rounds to the nearest integer, with ties going towards
4185 // +infinity. This does not match any IEEE-754 rounding mode.
4186 // - Infinities and NaNs are propagated unchanged, but cause deopts because
4187 // they can't be represented as integers.
4188 // - The sign of the result is the same as the sign of the input. This means
4189 // that -0.0 rounds to itself, and values -0.5 <= input < 0 also produce a
4190 // result of -0.0.
4191
4192 // Add 0.5 and round towards -infinity.
4193 __ Fmov(dot_five, 0.5);
4194 __ Fadd(temp, input, dot_five);
4195 __ Fcvtms(result, temp);
4196
4197 // The result is correct if:
4198 // result is not 0, as the input could be NaN or [-0.5, -0.0].
4199 // result is not 1, as 0.499...94 will wrongly map to 1.
4200 // result fits in 32 bits.
4201 __ Cmp(result, Operand(result.W(), SXTW));
4202 __ Ccmp(result, 1, ZFlag, eq);
4203 __ B(hi, &done);
4204
4205 // At this point, we have to handle possible inputs of NaN or numbers in the
4206 // range [-0.5, 1.5[, or numbers larger than 32 bits.
4207
4208 // Deoptimize if the result > 1, as it must be larger than 32 bits.
4209 __ Cmp(result, 1);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004210 DeoptimizeIf(hi, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004211
4212 // Deoptimize for negative inputs, which at this point are only numbers in
4213 // the range [-0.5, -0.0]
4214 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4215 __ Fmov(result, input);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004216 DeoptimizeIfNegative(result, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004217 }
4218
4219 // Deoptimize if the input was NaN.
4220 __ Fcmp(input, dot_five);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004221 DeoptimizeIf(vs, instr, "NaN");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004222
4223 // Now, the only unhandled inputs are in the range [0.0, 1.5[ (or [-0.5, 1.5[
4224 // if we didn't generate a -0.0 bailout). If input >= 0.5 then return 1,
4225 // else 0; we avoid dealing with 0.499...94 directly.
4226 __ Cset(result, ge);
4227 __ Bind(&done);
4228}
4229
4230
4231void LCodeGen::DoMathFround(LMathFround* instr) {
4232 DoubleRegister input = ToDoubleRegister(instr->value());
4233 DoubleRegister result = ToDoubleRegister(instr->result());
4234 __ Fcvt(result.S(), input);
4235 __ Fcvt(result, result.S());
4236}
4237
4238
4239void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
4240 DoubleRegister input = ToDoubleRegister(instr->value());
4241 DoubleRegister result = ToDoubleRegister(instr->result());
4242 __ Fsqrt(result, input);
4243}
4244
4245
4246void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
4247 HMathMinMax::Operation op = instr->hydrogen()->operation();
4248 if (instr->hydrogen()->representation().IsInteger32()) {
4249 Register result = ToRegister32(instr->result());
4250 Register left = ToRegister32(instr->left());
4251 Operand right = ToOperand32(instr->right());
4252
4253 __ Cmp(left, right);
4254 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4255 } else if (instr->hydrogen()->representation().IsSmi()) {
4256 Register result = ToRegister(instr->result());
4257 Register left = ToRegister(instr->left());
4258 Operand right = ToOperand(instr->right());
4259
4260 __ Cmp(left, right);
4261 __ Csel(result, left, right, (op == HMathMinMax::kMathMax) ? ge : le);
4262 } else {
4263 DCHECK(instr->hydrogen()->representation().IsDouble());
4264 DoubleRegister result = ToDoubleRegister(instr->result());
4265 DoubleRegister left = ToDoubleRegister(instr->left());
4266 DoubleRegister right = ToDoubleRegister(instr->right());
4267
4268 if (op == HMathMinMax::kMathMax) {
4269 __ Fmax(result, left, right);
4270 } else {
4271 DCHECK(op == HMathMinMax::kMathMin);
4272 __ Fmin(result, left, right);
4273 }
4274 }
4275}
4276
4277
4278void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
4279 Register dividend = ToRegister32(instr->dividend());
4280 int32_t divisor = instr->divisor();
4281 DCHECK(dividend.is(ToRegister32(instr->result())));
4282
4283 // Theoretically, a variation of the branch-free code for integer division by
4284 // a power of 2 (calculating the remainder via an additional multiplication
4285 // (which gets simplified to an 'and') and subtraction) should be faster, and
4286 // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
4287 // indicate that positive dividends are heavily favored, so the branching
4288 // version performs better.
4289 HMod* hmod = instr->hydrogen();
4290 int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
4291 Label dividend_is_not_negative, done;
4292 if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
4293 __ Tbz(dividend, kWSignBit, &dividend_is_not_negative);
4294 // Note that this is correct even for kMinInt operands.
4295 __ Neg(dividend, dividend);
4296 __ And(dividend, dividend, mask);
4297 __ Negs(dividend, dividend);
4298 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004299 DeoptimizeIf(eq, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004300 }
4301 __ B(&done);
4302 }
4303
4304 __ bind(&dividend_is_not_negative);
4305 __ And(dividend, dividend, mask);
4306 __ bind(&done);
4307}
4308
4309
4310void LCodeGen::DoModByConstI(LModByConstI* instr) {
4311 Register dividend = ToRegister32(instr->dividend());
4312 int32_t divisor = instr->divisor();
4313 Register result = ToRegister32(instr->result());
4314 Register temp = ToRegister32(instr->temp());
4315 DCHECK(!AreAliased(dividend, result, temp));
4316
4317 if (divisor == 0) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004318 Deoptimize(instr, "division by zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004319 return;
4320 }
4321
4322 __ TruncatingDiv(result, dividend, Abs(divisor));
4323 __ Sxtw(dividend.X(), dividend);
4324 __ Mov(temp, Abs(divisor));
4325 __ Smsubl(result.X(), result, temp, dividend.X());
4326
4327 // Check for negative zero.
4328 HMod* hmod = instr->hydrogen();
4329 if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
4330 Label remainder_not_zero;
4331 __ Cbnz(result, &remainder_not_zero);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004332 DeoptimizeIfNegative(dividend, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004333 __ bind(&remainder_not_zero);
4334 }
4335}
4336
4337
4338void LCodeGen::DoModI(LModI* instr) {
4339 Register dividend = ToRegister32(instr->left());
4340 Register divisor = ToRegister32(instr->right());
4341 Register result = ToRegister32(instr->result());
4342
4343 Label done;
4344 // modulo = dividend - quotient * divisor
4345 __ Sdiv(result, dividend, divisor);
4346 if (instr->hydrogen()->CheckFlag(HValue::kCanBeDivByZero)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004347 DeoptimizeIfZero(divisor, instr, "division by zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004348 }
4349 __ Msub(result, result, divisor, dividend);
4350 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
4351 __ Cbnz(result, &done);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004352 DeoptimizeIfNegative(dividend, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004353 }
4354 __ Bind(&done);
4355}
4356
4357
4358void LCodeGen::DoMulConstIS(LMulConstIS* instr) {
4359 DCHECK(instr->hydrogen()->representation().IsSmiOrInteger32());
4360 bool is_smi = instr->hydrogen()->representation().IsSmi();
4361 Register result =
4362 is_smi ? ToRegister(instr->result()) : ToRegister32(instr->result());
4363 Register left =
4364 is_smi ? ToRegister(instr->left()) : ToRegister32(instr->left()) ;
4365 int32_t right = ToInteger32(instr->right());
4366 DCHECK((right > -kMaxInt) || (right < kMaxInt));
4367
4368 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4369 bool bailout_on_minus_zero =
4370 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4371
4372 if (bailout_on_minus_zero) {
4373 if (right < 0) {
4374 // The result is -0 if right is negative and left is zero.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004375 DeoptimizeIfZero(left, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004376 } else if (right == 0) {
4377 // The result is -0 if the right is zero and the left is negative.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004378 DeoptimizeIfNegative(left, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004379 }
4380 }
4381
4382 switch (right) {
4383 // Cases which can detect overflow.
4384 case -1:
4385 if (can_overflow) {
4386 // Only 0x80000000 can overflow here.
4387 __ Negs(result, left);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004388 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004389 } else {
4390 __ Neg(result, left);
4391 }
4392 break;
4393 case 0:
4394 // This case can never overflow.
4395 __ Mov(result, 0);
4396 break;
4397 case 1:
4398 // This case can never overflow.
4399 __ Mov(result, left, kDiscardForSameWReg);
4400 break;
4401 case 2:
4402 if (can_overflow) {
4403 __ Adds(result, left, left);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004404 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004405 } else {
4406 __ Add(result, left, left);
4407 }
4408 break;
4409
4410 default:
4411 // Multiplication by constant powers of two (and some related values)
4412 // can be done efficiently with shifted operands.
4413 int32_t right_abs = Abs(right);
4414
4415 if (base::bits::IsPowerOfTwo32(right_abs)) {
4416 int right_log2 = WhichPowerOf2(right_abs);
4417
4418 if (can_overflow) {
4419 Register scratch = result;
4420 DCHECK(!AreAliased(scratch, left));
4421 __ Cls(scratch, left);
4422 __ Cmp(scratch, right_log2);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004423 DeoptimizeIf(lt, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004424 }
4425
4426 if (right >= 0) {
4427 // result = left << log2(right)
4428 __ Lsl(result, left, right_log2);
4429 } else {
4430 // result = -left << log2(-right)
4431 if (can_overflow) {
4432 __ Negs(result, Operand(left, LSL, right_log2));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004433 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004434 } else {
4435 __ Neg(result, Operand(left, LSL, right_log2));
4436 }
4437 }
4438 return;
4439 }
4440
4441
4442 // For the following cases, we could perform a conservative overflow check
4443 // with CLS as above. However the few cycles saved are likely not worth
4444 // the risk of deoptimizing more often than required.
4445 DCHECK(!can_overflow);
4446
4447 if (right >= 0) {
4448 if (base::bits::IsPowerOfTwo32(right - 1)) {
4449 // result = left + left << log2(right - 1)
4450 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(right - 1)));
4451 } else if (base::bits::IsPowerOfTwo32(right + 1)) {
4452 // result = -left + left << log2(right + 1)
4453 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(right + 1)));
4454 __ Neg(result, result);
4455 } else {
4456 UNREACHABLE();
4457 }
4458 } else {
4459 if (base::bits::IsPowerOfTwo32(-right + 1)) {
4460 // result = left - left << log2(-right + 1)
4461 __ Sub(result, left, Operand(left, LSL, WhichPowerOf2(-right + 1)));
4462 } else if (base::bits::IsPowerOfTwo32(-right - 1)) {
4463 // result = -left - left << log2(-right - 1)
4464 __ Add(result, left, Operand(left, LSL, WhichPowerOf2(-right - 1)));
4465 __ Neg(result, result);
4466 } else {
4467 UNREACHABLE();
4468 }
4469 }
4470 }
4471}
4472
4473
4474void LCodeGen::DoMulI(LMulI* instr) {
4475 Register result = ToRegister32(instr->result());
4476 Register left = ToRegister32(instr->left());
4477 Register right = ToRegister32(instr->right());
4478
4479 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4480 bool bailout_on_minus_zero =
4481 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4482
4483 if (bailout_on_minus_zero && !left.Is(right)) {
4484 // If one operand is zero and the other is negative, the result is -0.
4485 // - Set Z (eq) if either left or right, or both, are 0.
4486 __ Cmp(left, 0);
4487 __ Ccmp(right, 0, ZFlag, ne);
4488 // - If so (eq), set N (mi) if left + right is negative.
4489 // - Otherwise, clear N.
4490 __ Ccmn(left, right, NoFlag, eq);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004491 DeoptimizeIf(mi, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004492 }
4493
4494 if (can_overflow) {
4495 __ Smull(result.X(), left, right);
4496 __ Cmp(result.X(), Operand(result, SXTW));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004497 DeoptimizeIf(ne, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004498 } else {
4499 __ Mul(result, left, right);
4500 }
4501}
4502
4503
4504void LCodeGen::DoMulS(LMulS* instr) {
4505 Register result = ToRegister(instr->result());
4506 Register left = ToRegister(instr->left());
4507 Register right = ToRegister(instr->right());
4508
4509 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
4510 bool bailout_on_minus_zero =
4511 instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero);
4512
4513 if (bailout_on_minus_zero && !left.Is(right)) {
4514 // If one operand is zero and the other is negative, the result is -0.
4515 // - Set Z (eq) if either left or right, or both, are 0.
4516 __ Cmp(left, 0);
4517 __ Ccmp(right, 0, ZFlag, ne);
4518 // - If so (eq), set N (mi) if left + right is negative.
4519 // - Otherwise, clear N.
4520 __ Ccmn(left, right, NoFlag, eq);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004521 DeoptimizeIf(mi, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004522 }
4523
4524 STATIC_ASSERT((kSmiShift == 32) && (kSmiTag == 0));
4525 if (can_overflow) {
4526 __ Smulh(result, left, right);
4527 __ Cmp(result, Operand(result.W(), SXTW));
4528 __ SmiTag(result);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004529 DeoptimizeIf(ne, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004530 } else {
4531 if (AreAliased(result, left, right)) {
4532 // All three registers are the same: half untag the input and then
4533 // multiply, giving a tagged result.
4534 STATIC_ASSERT((kSmiShift % 2) == 0);
4535 __ Asr(result, left, kSmiShift / 2);
4536 __ Mul(result, result, result);
4537 } else if (result.Is(left) && !left.Is(right)) {
4538 // Registers result and left alias, right is distinct: untag left into
4539 // result, and then multiply by right, giving a tagged result.
4540 __ SmiUntag(result, left);
4541 __ Mul(result, result, right);
4542 } else {
4543 DCHECK(!left.Is(result));
4544 // Registers result and right alias, left is distinct, or all registers
4545 // are distinct: untag right into result, and then multiply by left,
4546 // giving a tagged result.
4547 __ SmiUntag(result, right);
4548 __ Mul(result, left, result);
4549 }
4550 }
4551}
4552
4553
4554void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
4555 // TODO(3095996): Get rid of this. For now, we need to make the
4556 // result register contain a valid pointer because it is already
4557 // contained in the register pointer map.
4558 Register result = ToRegister(instr->result());
4559 __ Mov(result, 0);
4560
4561 PushSafepointRegistersScope scope(this);
4562 // NumberTagU and NumberTagD use the context from the frame, rather than
4563 // the environment's HContext or HInlinedContext value.
4564 // They only call Runtime::kAllocateHeapNumber.
4565 // The corresponding HChange instructions are added in a phase that does
4566 // not have easy access to the local context.
4567 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4568 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4569 RecordSafepointWithRegisters(
4570 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4571 __ StoreToSafepointRegisterSlot(x0, result);
4572}
4573
4574
4575void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
4576 class DeferredNumberTagD: public LDeferredCode {
4577 public:
4578 DeferredNumberTagD(LCodeGen* codegen, LNumberTagD* instr)
4579 : LDeferredCode(codegen), instr_(instr) { }
4580 virtual void Generate() { codegen()->DoDeferredNumberTagD(instr_); }
4581 virtual LInstruction* instr() { return instr_; }
4582 private:
4583 LNumberTagD* instr_;
4584 };
4585
4586 DoubleRegister input = ToDoubleRegister(instr->value());
4587 Register result = ToRegister(instr->result());
4588 Register temp1 = ToRegister(instr->temp1());
4589 Register temp2 = ToRegister(instr->temp2());
4590
4591 DeferredNumberTagD* deferred = new(zone()) DeferredNumberTagD(this, instr);
4592 if (FLAG_inline_new) {
4593 __ AllocateHeapNumber(result, deferred->entry(), temp1, temp2);
4594 } else {
4595 __ B(deferred->entry());
4596 }
4597
4598 __ Bind(deferred->exit());
4599 __ Str(input, FieldMemOperand(result, HeapNumber::kValueOffset));
4600}
4601
4602
4603void LCodeGen::DoDeferredNumberTagU(LInstruction* instr,
4604 LOperand* value,
4605 LOperand* temp1,
4606 LOperand* temp2) {
4607 Label slow, convert_and_store;
4608 Register src = ToRegister32(value);
4609 Register dst = ToRegister(instr->result());
4610 Register scratch1 = ToRegister(temp1);
4611
4612 if (FLAG_inline_new) {
4613 Register scratch2 = ToRegister(temp2);
4614 __ AllocateHeapNumber(dst, &slow, scratch1, scratch2);
4615 __ B(&convert_and_store);
4616 }
4617
4618 // Slow case: call the runtime system to do the number allocation.
4619 __ Bind(&slow);
4620 // TODO(3095996): Put a valid pointer value in the stack slot where the result
4621 // register is stored, as this register is in the pointer map, but contains an
4622 // integer value.
4623 __ Mov(dst, 0);
4624 {
4625 // Preserve the value of all registers.
4626 PushSafepointRegistersScope scope(this);
4627
4628 // NumberTagU and NumberTagD use the context from the frame, rather than
4629 // the environment's HContext or HInlinedContext value.
4630 // They only call Runtime::kAllocateHeapNumber.
4631 // The corresponding HChange instructions are added in a phase that does
4632 // not have easy access to the local context.
4633 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4634 __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
4635 RecordSafepointWithRegisters(
4636 instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
4637 __ StoreToSafepointRegisterSlot(x0, dst);
4638 }
4639
4640 // Convert number to floating point and store in the newly allocated heap
4641 // number.
4642 __ Bind(&convert_and_store);
4643 DoubleRegister dbl_scratch = double_scratch();
4644 __ Ucvtf(dbl_scratch, src);
4645 __ Str(dbl_scratch, FieldMemOperand(dst, HeapNumber::kValueOffset));
4646}
4647
4648
4649void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
4650 class DeferredNumberTagU: public LDeferredCode {
4651 public:
4652 DeferredNumberTagU(LCodeGen* codegen, LNumberTagU* instr)
4653 : LDeferredCode(codegen), instr_(instr) { }
4654 virtual void Generate() {
4655 codegen()->DoDeferredNumberTagU(instr_,
4656 instr_->value(),
4657 instr_->temp1(),
4658 instr_->temp2());
4659 }
4660 virtual LInstruction* instr() { return instr_; }
4661 private:
4662 LNumberTagU* instr_;
4663 };
4664
4665 Register value = ToRegister32(instr->value());
4666 Register result = ToRegister(instr->result());
4667
4668 DeferredNumberTagU* deferred = new(zone()) DeferredNumberTagU(this, instr);
4669 __ Cmp(value, Smi::kMaxValue);
4670 __ B(hi, deferred->entry());
4671 __ SmiTag(result, value.X());
4672 __ Bind(deferred->exit());
4673}
4674
4675
4676void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
4677 Register input = ToRegister(instr->value());
4678 Register scratch = ToRegister(instr->temp());
4679 DoubleRegister result = ToDoubleRegister(instr->result());
4680 bool can_convert_undefined_to_nan =
4681 instr->hydrogen()->can_convert_undefined_to_nan();
4682
4683 Label done, load_smi;
4684
4685 // Work out what untag mode we're working with.
4686 HValue* value = instr->hydrogen()->value();
4687 NumberUntagDMode mode = value->representation().IsSmi()
4688 ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
4689
4690 if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
4691 __ JumpIfSmi(input, &load_smi);
4692
4693 Label convert_undefined;
4694
4695 // Heap number map check.
4696 if (can_convert_undefined_to_nan) {
4697 __ JumpIfNotHeapNumber(input, &convert_undefined);
4698 } else {
4699 DeoptimizeIfNotHeapNumber(input, instr);
4700 }
4701
4702 // Load heap number.
4703 __ Ldr(result, FieldMemOperand(input, HeapNumber::kValueOffset));
4704 if (instr->hydrogen()->deoptimize_on_minus_zero()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004705 DeoptimizeIfMinusZero(result, instr, "minus zero");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004706 }
4707 __ B(&done);
4708
4709 if (can_convert_undefined_to_nan) {
4710 __ Bind(&convert_undefined);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004711 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
4712 "not a heap number/undefined");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004713
4714 __ LoadRoot(scratch, Heap::kNanValueRootIndex);
4715 __ Ldr(result, FieldMemOperand(scratch, HeapNumber::kValueOffset));
4716 __ B(&done);
4717 }
4718
4719 } else {
4720 DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
4721 // Fall through to load_smi.
4722 }
4723
4724 // Smi to double register conversion.
4725 __ Bind(&load_smi);
4726 __ SmiUntagToDouble(result, input);
4727
4728 __ Bind(&done);
4729}
4730
4731
4732void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
4733 // This is a pseudo-instruction that ensures that the environment here is
4734 // properly registered for deoptimization and records the assembler's PC
4735 // offset.
4736 LEnvironment* environment = instr->environment();
4737
4738 // If the environment were already registered, we would have no way of
4739 // backpatching it with the spill slot operands.
4740 DCHECK(!environment->HasBeenRegistered());
4741 RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
4742
4743 GenerateOsrPrologue();
4744}
4745
4746
4747void LCodeGen::DoParameter(LParameter* instr) {
4748 // Nothing to do.
4749}
4750
4751
4752void LCodeGen::DoPreparePushArguments(LPreparePushArguments* instr) {
4753 __ PushPreamble(instr->argc(), kPointerSize);
4754}
4755
4756
4757void LCodeGen::DoPushArguments(LPushArguments* instr) {
4758 MacroAssembler::PushPopQueue args(masm());
4759
4760 for (int i = 0; i < instr->ArgumentCount(); ++i) {
4761 LOperand* arg = instr->argument(i);
4762 if (arg->IsDoubleRegister() || arg->IsDoubleStackSlot()) {
4763 Abort(kDoPushArgumentNotImplementedForDoubleType);
4764 return;
4765 }
4766 args.Queue(ToRegister(arg));
4767 }
4768
4769 // The preamble was done by LPreparePushArguments.
4770 args.PushQueued(MacroAssembler::PushPopQueue::SKIP_PREAMBLE);
4771
4772 after_push_argument_ = true;
4773}
4774
4775
4776void LCodeGen::DoReturn(LReturn* instr) {
4777 if (FLAG_trace && info()->IsOptimizing()) {
4778 // Push the return value on the stack as the parameter.
4779 // Runtime::TraceExit returns its parameter in x0. We're leaving the code
4780 // managed by the register allocator and tearing down the frame, it's
4781 // safe to write to the context register.
4782 __ Push(x0);
4783 __ Ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
4784 __ CallRuntime(Runtime::kTraceExit, 1);
4785 }
4786
4787 if (info()->saves_caller_doubles()) {
4788 RestoreCallerDoubles();
4789 }
4790
4791 int no_frame_start = -1;
4792 if (NeedsEagerFrame()) {
4793 Register stack_pointer = masm()->StackPointer();
4794 __ Mov(stack_pointer, fp);
4795 no_frame_start = masm_->pc_offset();
4796 __ Pop(fp, lr);
4797 }
4798
4799 if (instr->has_constant_parameter_count()) {
4800 int parameter_count = ToInteger32(instr->constant_parameter_count());
4801 __ Drop(parameter_count + 1);
4802 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004803 DCHECK(info()->IsStub()); // Functions would need to drop one more value.
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004804 Register parameter_count = ToRegister(instr->parameter_count());
4805 __ DropBySMI(parameter_count);
4806 }
4807 __ Ret();
4808
4809 if (no_frame_start != -1) {
4810 info_->AddNoFrameRange(no_frame_start, masm_->pc_offset());
4811 }
4812}
4813
4814
4815MemOperand LCodeGen::BuildSeqStringOperand(Register string,
4816 Register temp,
4817 LOperand* index,
4818 String::Encoding encoding) {
4819 if (index->IsConstantOperand()) {
4820 int offset = ToInteger32(LConstantOperand::cast(index));
4821 if (encoding == String::TWO_BYTE_ENCODING) {
4822 offset *= kUC16Size;
4823 }
4824 STATIC_ASSERT(kCharSize == 1);
4825 return FieldMemOperand(string, SeqString::kHeaderSize + offset);
4826 }
4827
4828 __ Add(temp, string, SeqString::kHeaderSize - kHeapObjectTag);
4829 if (encoding == String::ONE_BYTE_ENCODING) {
4830 return MemOperand(temp, ToRegister32(index), SXTW);
4831 } else {
4832 STATIC_ASSERT(kUC16Size == 2);
4833 return MemOperand(temp, ToRegister32(index), SXTW, 1);
4834 }
4835}
4836
4837
4838void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
4839 String::Encoding encoding = instr->hydrogen()->encoding();
4840 Register string = ToRegister(instr->string());
4841 Register result = ToRegister(instr->result());
4842 Register temp = ToRegister(instr->temp());
4843
4844 if (FLAG_debug_code) {
4845 // Even though this lithium instruction comes with a temp register, we
4846 // can't use it here because we want to use "AtStart" constraints on the
4847 // inputs and the debug code here needs a scratch register.
4848 UseScratchRegisterScope temps(masm());
4849 Register dbg_temp = temps.AcquireX();
4850
4851 __ Ldr(dbg_temp, FieldMemOperand(string, HeapObject::kMapOffset));
4852 __ Ldrb(dbg_temp, FieldMemOperand(dbg_temp, Map::kInstanceTypeOffset));
4853
4854 __ And(dbg_temp, dbg_temp,
4855 Operand(kStringRepresentationMask | kStringEncodingMask));
4856 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4857 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4858 __ Cmp(dbg_temp, Operand(encoding == String::ONE_BYTE_ENCODING
4859 ? one_byte_seq_type : two_byte_seq_type));
4860 __ Check(eq, kUnexpectedStringType);
4861 }
4862
4863 MemOperand operand =
4864 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4865 if (encoding == String::ONE_BYTE_ENCODING) {
4866 __ Ldrb(result, operand);
4867 } else {
4868 __ Ldrh(result, operand);
4869 }
4870}
4871
4872
4873void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
4874 String::Encoding encoding = instr->hydrogen()->encoding();
4875 Register string = ToRegister(instr->string());
4876 Register value = ToRegister(instr->value());
4877 Register temp = ToRegister(instr->temp());
4878
4879 if (FLAG_debug_code) {
4880 DCHECK(ToRegister(instr->context()).is(cp));
4881 Register index = ToRegister(instr->index());
4882 static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
4883 static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
4884 int encoding_mask =
4885 instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
4886 ? one_byte_seq_type : two_byte_seq_type;
4887 __ EmitSeqStringSetCharCheck(string, index, kIndexIsInteger32, temp,
4888 encoding_mask);
4889 }
4890 MemOperand operand =
4891 BuildSeqStringOperand(string, temp, instr->index(), encoding);
4892 if (encoding == String::ONE_BYTE_ENCODING) {
4893 __ Strb(value, operand);
4894 } else {
4895 __ Strh(value, operand);
4896 }
4897}
4898
4899
4900void LCodeGen::DoSmiTag(LSmiTag* instr) {
4901 HChange* hchange = instr->hydrogen();
4902 Register input = ToRegister(instr->value());
4903 Register output = ToRegister(instr->result());
4904 if (hchange->CheckFlag(HValue::kCanOverflow) &&
4905 hchange->value()->CheckFlag(HValue::kUint32)) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004906 DeoptimizeIfNegative(input.W(), instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004907 }
4908 __ SmiTag(output, input);
4909}
4910
4911
4912void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
4913 Register input = ToRegister(instr->value());
4914 Register result = ToRegister(instr->result());
4915 Label done, untag;
4916
4917 if (instr->needs_check()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004918 DeoptimizeIfNotSmi(input, instr, "not a Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004919 }
4920
4921 __ Bind(&untag);
4922 __ SmiUntag(result, input);
4923 __ Bind(&done);
4924}
4925
4926
4927void LCodeGen::DoShiftI(LShiftI* instr) {
4928 LOperand* right_op = instr->right();
4929 Register left = ToRegister32(instr->left());
4930 Register result = ToRegister32(instr->result());
4931
4932 if (right_op->IsRegister()) {
4933 Register right = ToRegister32(instr->right());
4934 switch (instr->op()) {
4935 case Token::ROR: __ Ror(result, left, right); break;
4936 case Token::SAR: __ Asr(result, left, right); break;
4937 case Token::SHL: __ Lsl(result, left, right); break;
4938 case Token::SHR:
4939 __ Lsr(result, left, right);
4940 if (instr->can_deopt()) {
4941 // If `left >>> right` >= 0x80000000, the result is not representable
4942 // in a signed 32-bit smi.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004943 DeoptimizeIfNegative(result, instr, "negative value");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004944 }
4945 break;
4946 default: UNREACHABLE();
4947 }
4948 } else {
4949 DCHECK(right_op->IsConstantOperand());
4950 int shift_count = JSShiftAmountFromLConstant(right_op);
4951 if (shift_count == 0) {
4952 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04004953 DeoptimizeIfNegative(left, instr, "negative value");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00004954 }
4955 __ Mov(result, left, kDiscardForSameWReg);
4956 } else {
4957 switch (instr->op()) {
4958 case Token::ROR: __ Ror(result, left, shift_count); break;
4959 case Token::SAR: __ Asr(result, left, shift_count); break;
4960 case Token::SHL: __ Lsl(result, left, shift_count); break;
4961 case Token::SHR: __ Lsr(result, left, shift_count); break;
4962 default: UNREACHABLE();
4963 }
4964 }
4965 }
4966}
4967
4968
4969void LCodeGen::DoShiftS(LShiftS* instr) {
4970 LOperand* right_op = instr->right();
4971 Register left = ToRegister(instr->left());
4972 Register result = ToRegister(instr->result());
4973
4974 if (right_op->IsRegister()) {
4975 Register right = ToRegister(instr->right());
4976
4977 // JavaScript shifts only look at the bottom 5 bits of the 'right' operand.
4978 // Since we're handling smis in X registers, we have to extract these bits
4979 // explicitly.
4980 __ Ubfx(result, right, kSmiShift, 5);
4981
4982 switch (instr->op()) {
4983 case Token::ROR: {
4984 // This is the only case that needs a scratch register. To keep things
4985 // simple for the other cases, borrow a MacroAssembler scratch register.
4986 UseScratchRegisterScope temps(masm());
4987 Register temp = temps.AcquireW();
4988 __ SmiUntag(temp, left);
4989 __ Ror(result.W(), temp.W(), result.W());
4990 __ SmiTag(result);
4991 break;
4992 }
4993 case Token::SAR:
4994 __ Asr(result, left, result);
4995 __ Bic(result, result, kSmiShiftMask);
4996 break;
4997 case Token::SHL:
4998 __ Lsl(result, left, result);
4999 break;
5000 case Token::SHR:
5001 __ Lsr(result, left, result);
5002 __ Bic(result, result, kSmiShiftMask);
5003 if (instr->can_deopt()) {
5004 // If `left >>> right` >= 0x80000000, the result is not representable
5005 // in a signed 32-bit smi.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005006 DeoptimizeIfNegative(result, instr, "negative value");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005007 }
5008 break;
5009 default: UNREACHABLE();
5010 }
5011 } else {
5012 DCHECK(right_op->IsConstantOperand());
5013 int shift_count = JSShiftAmountFromLConstant(right_op);
5014 if (shift_count == 0) {
5015 if ((instr->op() == Token::SHR) && instr->can_deopt()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005016 DeoptimizeIfNegative(left, instr, "negative value");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005017 }
5018 __ Mov(result, left);
5019 } else {
5020 switch (instr->op()) {
5021 case Token::ROR:
5022 __ SmiUntag(result, left);
5023 __ Ror(result.W(), result.W(), shift_count);
5024 __ SmiTag(result);
5025 break;
5026 case Token::SAR:
5027 __ Asr(result, left, shift_count);
5028 __ Bic(result, result, kSmiShiftMask);
5029 break;
5030 case Token::SHL:
5031 __ Lsl(result, left, shift_count);
5032 break;
5033 case Token::SHR:
5034 __ Lsr(result, left, shift_count);
5035 __ Bic(result, result, kSmiShiftMask);
5036 break;
5037 default: UNREACHABLE();
5038 }
5039 }
5040 }
5041}
5042
5043
5044void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
5045 __ Debug("LDebugBreak", 0, BREAK);
5046}
5047
5048
5049void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
5050 DCHECK(ToRegister(instr->context()).is(cp));
5051 Register scratch1 = x5;
5052 Register scratch2 = x6;
5053 DCHECK(instr->IsMarkedAsCall());
5054
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005055 // TODO(all): if Mov could handle object in new space then it could be used
5056 // here.
5057 __ LoadHeapObject(scratch1, instr->hydrogen()->pairs());
5058 __ Mov(scratch2, Smi::FromInt(instr->hydrogen()->flags()));
5059 __ Push(cp, scratch1, scratch2); // The context is the first argument.
5060 CallRuntime(Runtime::kDeclareGlobals, 3, instr);
5061}
5062
5063
5064void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
5065 PushSafepointRegistersScope scope(this);
5066 LoadContextFromDeferred(instr->context());
5067 __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
5068 RecordSafepointWithLazyDeopt(
5069 instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
5070 DCHECK(instr->HasEnvironment());
5071 LEnvironment* env = instr->environment();
5072 safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
5073}
5074
5075
5076void LCodeGen::DoStackCheck(LStackCheck* instr) {
5077 class DeferredStackCheck: public LDeferredCode {
5078 public:
5079 DeferredStackCheck(LCodeGen* codegen, LStackCheck* instr)
5080 : LDeferredCode(codegen), instr_(instr) { }
5081 virtual void Generate() { codegen()->DoDeferredStackCheck(instr_); }
5082 virtual LInstruction* instr() { return instr_; }
5083 private:
5084 LStackCheck* instr_;
5085 };
5086
5087 DCHECK(instr->HasEnvironment());
5088 LEnvironment* env = instr->environment();
5089 // There is no LLazyBailout instruction for stack-checks. We have to
5090 // prepare for lazy deoptimization explicitly here.
5091 if (instr->hydrogen()->is_function_entry()) {
5092 // Perform stack overflow check.
5093 Label done;
5094 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
5095 __ B(hs, &done);
5096
5097 PredictableCodeSizeScope predictable(masm_,
5098 Assembler::kCallSizeWithRelocation);
5099 DCHECK(instr->context()->IsRegister());
5100 DCHECK(ToRegister(instr->context()).is(cp));
5101 CallCode(isolate()->builtins()->StackCheck(),
5102 RelocInfo::CODE_TARGET,
5103 instr);
5104 __ Bind(&done);
5105 } else {
5106 DCHECK(instr->hydrogen()->is_backwards_branch());
5107 // Perform stack overflow check if this goto needs it before jumping.
5108 DeferredStackCheck* deferred_stack_check =
5109 new(zone()) DeferredStackCheck(this, instr);
5110 __ CompareRoot(masm()->StackPointer(), Heap::kStackLimitRootIndex);
5111 __ B(lo, deferred_stack_check->entry());
5112
5113 EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
5114 __ Bind(instr->done_label());
5115 deferred_stack_check->SetExit(instr->done_label());
5116 RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
5117 // Don't record a deoptimization index for the safepoint here.
5118 // This will be done explicitly when emitting call and the safepoint in
5119 // the deferred code.
5120 }
5121}
5122
5123
5124void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
5125 Register function = ToRegister(instr->function());
5126 Register code_object = ToRegister(instr->code_object());
5127 Register temp = ToRegister(instr->temp());
5128 __ Add(temp, code_object, Code::kHeaderSize - kHeapObjectTag);
5129 __ Str(temp, FieldMemOperand(function, JSFunction::kCodeEntryOffset));
5130}
5131
5132
5133void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
5134 Register context = ToRegister(instr->context());
5135 Register value = ToRegister(instr->value());
5136 Register scratch = ToRegister(instr->temp());
5137 MemOperand target = ContextMemOperand(context, instr->slot_index());
5138
5139 Label skip_assignment;
5140
5141 if (instr->hydrogen()->RequiresHoleCheck()) {
5142 __ Ldr(scratch, target);
5143 if (instr->hydrogen()->DeoptimizesOnHole()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005144 DeoptimizeIfRoot(scratch, Heap::kTheHoleValueRootIndex, instr, "hole");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005145 } else {
5146 __ JumpIfNotRoot(scratch, Heap::kTheHoleValueRootIndex, &skip_assignment);
5147 }
5148 }
5149
5150 __ Str(value, target);
5151 if (instr->hydrogen()->NeedsWriteBarrier()) {
5152 SmiCheck check_needed =
5153 instr->hydrogen()->value()->type().IsHeapObject()
5154 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5155 __ RecordWriteContextSlot(context,
5156 target.offset(),
5157 value,
5158 scratch,
5159 GetLinkRegisterState(),
5160 kSaveFPRegs,
5161 EMIT_REMEMBERED_SET,
5162 check_needed);
5163 }
5164 __ Bind(&skip_assignment);
5165}
5166
5167
5168void LCodeGen::DoStoreGlobalCell(LStoreGlobalCell* instr) {
5169 Register value = ToRegister(instr->value());
5170 Register cell = ToRegister(instr->temp1());
5171
5172 // Load the cell.
5173 __ Mov(cell, Operand(instr->hydrogen()->cell().handle()));
5174
5175 // If the cell we are storing to contains the hole it could have
5176 // been deleted from the property dictionary. In that case, we need
5177 // to update the property details in the property dictionary to mark
5178 // it as no longer deleted. We deoptimize in that case.
5179 if (instr->hydrogen()->RequiresHoleCheck()) {
5180 Register payload = ToRegister(instr->temp2());
5181 __ Ldr(payload, FieldMemOperand(cell, Cell::kValueOffset));
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005182 DeoptimizeIfRoot(payload, Heap::kTheHoleValueRootIndex, instr, "hole");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005183 }
5184
5185 // Store the value.
5186 __ Str(value, FieldMemOperand(cell, Cell::kValueOffset));
5187 // Cells are always rescanned, so no write barrier here.
5188}
5189
5190
5191void LCodeGen::DoStoreKeyedExternal(LStoreKeyedExternal* instr) {
5192 Register ext_ptr = ToRegister(instr->elements());
5193 Register key = no_reg;
5194 Register scratch;
5195 ElementsKind elements_kind = instr->elements_kind();
5196
5197 bool key_is_smi = instr->hydrogen()->key()->representation().IsSmi();
5198 bool key_is_constant = instr->key()->IsConstantOperand();
5199 int constant_key = 0;
5200 if (key_is_constant) {
5201 DCHECK(instr->temp() == NULL);
5202 constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5203 if (constant_key & 0xf0000000) {
5204 Abort(kArrayIndexConstantValueTooBig);
5205 }
5206 } else {
5207 key = ToRegister(instr->key());
5208 scratch = ToRegister(instr->temp());
5209 }
5210
5211 MemOperand dst =
5212 PrepareKeyedExternalArrayOperand(key, ext_ptr, scratch, key_is_smi,
5213 key_is_constant, constant_key,
5214 elements_kind,
5215 instr->base_offset());
5216
5217 if ((elements_kind == EXTERNAL_FLOAT32_ELEMENTS) ||
5218 (elements_kind == FLOAT32_ELEMENTS)) {
5219 DoubleRegister value = ToDoubleRegister(instr->value());
5220 DoubleRegister dbl_scratch = double_scratch();
5221 __ Fcvt(dbl_scratch.S(), value);
5222 __ Str(dbl_scratch.S(), dst);
5223 } else if ((elements_kind == EXTERNAL_FLOAT64_ELEMENTS) ||
5224 (elements_kind == FLOAT64_ELEMENTS)) {
5225 DoubleRegister value = ToDoubleRegister(instr->value());
5226 __ Str(value, dst);
5227 } else {
5228 Register value = ToRegister(instr->value());
5229
5230 switch (elements_kind) {
5231 case EXTERNAL_UINT8_CLAMPED_ELEMENTS:
5232 case EXTERNAL_INT8_ELEMENTS:
5233 case EXTERNAL_UINT8_ELEMENTS:
5234 case UINT8_ELEMENTS:
5235 case UINT8_CLAMPED_ELEMENTS:
5236 case INT8_ELEMENTS:
5237 __ Strb(value, dst);
5238 break;
5239 case EXTERNAL_INT16_ELEMENTS:
5240 case EXTERNAL_UINT16_ELEMENTS:
5241 case INT16_ELEMENTS:
5242 case UINT16_ELEMENTS:
5243 __ Strh(value, dst);
5244 break;
5245 case EXTERNAL_INT32_ELEMENTS:
5246 case EXTERNAL_UINT32_ELEMENTS:
5247 case INT32_ELEMENTS:
5248 case UINT32_ELEMENTS:
5249 __ Str(value.W(), dst);
5250 break;
5251 case FLOAT32_ELEMENTS:
5252 case FLOAT64_ELEMENTS:
5253 case EXTERNAL_FLOAT32_ELEMENTS:
5254 case EXTERNAL_FLOAT64_ELEMENTS:
5255 case FAST_DOUBLE_ELEMENTS:
5256 case FAST_ELEMENTS:
5257 case FAST_SMI_ELEMENTS:
5258 case FAST_HOLEY_DOUBLE_ELEMENTS:
5259 case FAST_HOLEY_ELEMENTS:
5260 case FAST_HOLEY_SMI_ELEMENTS:
5261 case DICTIONARY_ELEMENTS:
5262 case SLOPPY_ARGUMENTS_ELEMENTS:
5263 UNREACHABLE();
5264 break;
5265 }
5266 }
5267}
5268
5269
5270void LCodeGen::DoStoreKeyedFixedDouble(LStoreKeyedFixedDouble* instr) {
5271 Register elements = ToRegister(instr->elements());
5272 DoubleRegister value = ToDoubleRegister(instr->value());
5273 MemOperand mem_op;
5274
5275 if (instr->key()->IsConstantOperand()) {
5276 int constant_key = ToInteger32(LConstantOperand::cast(instr->key()));
5277 if (constant_key & 0xf0000000) {
5278 Abort(kArrayIndexConstantValueTooBig);
5279 }
5280 int offset = instr->base_offset() + constant_key * kDoubleSize;
5281 mem_op = MemOperand(elements, offset);
5282 } else {
5283 Register store_base = ToRegister(instr->temp());
5284 Register key = ToRegister(instr->key());
5285 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5286 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
5287 instr->hydrogen()->elements_kind(),
5288 instr->hydrogen()->representation(),
5289 instr->base_offset());
5290 }
5291
5292 if (instr->NeedsCanonicalization()) {
5293 __ CanonicalizeNaN(double_scratch(), value);
5294 __ Str(double_scratch(), mem_op);
5295 } else {
5296 __ Str(value, mem_op);
5297 }
5298}
5299
5300
5301void LCodeGen::DoStoreKeyedFixed(LStoreKeyedFixed* instr) {
5302 Register value = ToRegister(instr->value());
5303 Register elements = ToRegister(instr->elements());
5304 Register scratch = no_reg;
5305 Register store_base = no_reg;
5306 Register key = no_reg;
5307 MemOperand mem_op;
5308
5309 if (!instr->key()->IsConstantOperand() ||
5310 instr->hydrogen()->NeedsWriteBarrier()) {
5311 scratch = ToRegister(instr->temp());
5312 }
5313
5314 Representation representation = instr->hydrogen()->value()->representation();
5315 if (instr->key()->IsConstantOperand()) {
5316 LConstantOperand* const_operand = LConstantOperand::cast(instr->key());
5317 int offset = instr->base_offset() +
5318 ToInteger32(const_operand) * kPointerSize;
5319 store_base = elements;
5320 if (representation.IsInteger32()) {
5321 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5322 DCHECK(instr->hydrogen()->elements_kind() == FAST_SMI_ELEMENTS);
5323 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5324 STATIC_ASSERT(kSmiTag == 0);
5325 mem_op = UntagSmiMemOperand(store_base, offset);
5326 } else {
5327 mem_op = MemOperand(store_base, offset);
5328 }
5329 } else {
5330 store_base = scratch;
5331 key = ToRegister(instr->key());
5332 bool key_is_tagged = instr->hydrogen()->key()->representation().IsSmi();
5333
5334 mem_op = PrepareKeyedArrayOperand(store_base, elements, key, key_is_tagged,
5335 instr->hydrogen()->elements_kind(),
5336 representation, instr->base_offset());
5337 }
5338
5339 __ Store(value, mem_op, representation);
5340
5341 if (instr->hydrogen()->NeedsWriteBarrier()) {
5342 DCHECK(representation.IsTagged());
5343 // This assignment may cause element_addr to alias store_base.
5344 Register element_addr = scratch;
5345 SmiCheck check_needed =
5346 instr->hydrogen()->value()->type().IsHeapObject()
5347 ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
5348 // Compute address of modified element and store it into key register.
5349 __ Add(element_addr, mem_op.base(), mem_op.OffsetAsOperand());
5350 __ RecordWrite(elements, element_addr, value, GetLinkRegisterState(),
5351 kSaveFPRegs, EMIT_REMEMBERED_SET, check_needed,
5352 instr->hydrogen()->PointersToHereCheckForValue());
5353 }
5354}
5355
5356
5357void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
5358 DCHECK(ToRegister(instr->context()).is(cp));
5359 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
5360 DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
5361 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
5362
5363 Handle<Code> ic =
5364 CodeFactory::KeyedStoreIC(isolate(), instr->strict_mode()).code();
5365 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5366}
5367
5368
5369void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
5370 Representation representation = instr->representation();
5371
5372 Register object = ToRegister(instr->object());
5373 HObjectAccess access = instr->hydrogen()->access();
5374 int offset = access.offset();
5375
5376 if (access.IsExternalMemory()) {
5377 DCHECK(!instr->hydrogen()->has_transition());
5378 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5379 Register value = ToRegister(instr->value());
5380 __ Store(value, MemOperand(object, offset), representation);
5381 return;
5382 }
5383
5384 __ AssertNotSmi(object);
5385
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005386 if (!FLAG_unbox_double_fields && representation.IsDouble()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005387 DCHECK(access.IsInobject());
5388 DCHECK(!instr->hydrogen()->has_transition());
5389 DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
5390 FPRegister value = ToDoubleRegister(instr->value());
5391 __ Str(value, FieldMemOperand(object, offset));
5392 return;
5393 }
5394
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005395 DCHECK(!representation.IsSmi() ||
5396 !instr->value()->IsConstantOperand() ||
5397 IsInteger32Constant(LConstantOperand::cast(instr->value())));
5398
5399 if (instr->hydrogen()->has_transition()) {
5400 Handle<Map> transition = instr->hydrogen()->transition_map();
5401 AddDeprecationDependency(transition);
5402 // Store the new map value.
5403 Register new_map_value = ToRegister(instr->temp0());
5404 __ Mov(new_map_value, Operand(transition));
5405 __ Str(new_map_value, FieldMemOperand(object, HeapObject::kMapOffset));
5406 if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
5407 // Update the write barrier for the map field.
5408 __ RecordWriteForMap(object,
5409 new_map_value,
5410 ToRegister(instr->temp1()),
5411 GetLinkRegisterState(),
5412 kSaveFPRegs);
5413 }
5414 }
5415
5416 // Do the store.
5417 Register destination;
5418 if (access.IsInobject()) {
5419 destination = object;
5420 } else {
5421 Register temp0 = ToRegister(instr->temp0());
5422 __ Ldr(temp0, FieldMemOperand(object, JSObject::kPropertiesOffset));
5423 destination = temp0;
5424 }
5425
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005426 if (FLAG_unbox_double_fields && representation.IsDouble()) {
5427 DCHECK(access.IsInobject());
5428 FPRegister value = ToDoubleRegister(instr->value());
5429 __ Str(value, FieldMemOperand(object, offset));
5430 } else if (representation.IsSmi() &&
5431 instr->hydrogen()->value()->representation().IsInteger32()) {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005432 DCHECK(instr->hydrogen()->store_mode() == STORE_TO_INITIALIZED_ENTRY);
5433#ifdef DEBUG
5434 Register temp0 = ToRegister(instr->temp0());
5435 __ Ldr(temp0, FieldMemOperand(destination, offset));
5436 __ AssertSmi(temp0);
5437 // If destination aliased temp0, restore it to the address calculated
5438 // earlier.
5439 if (destination.Is(temp0)) {
5440 DCHECK(!access.IsInobject());
5441 __ Ldr(destination, FieldMemOperand(object, JSObject::kPropertiesOffset));
5442 }
5443#endif
5444 STATIC_ASSERT(static_cast<unsigned>(kSmiValueSize) == kWRegSizeInBits);
5445 STATIC_ASSERT(kSmiTag == 0);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005446 Register value = ToRegister(instr->value());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005447 __ Store(value, UntagSmiFieldMemOperand(destination, offset),
5448 Representation::Integer32());
5449 } else {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005450 Register value = ToRegister(instr->value());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005451 __ Store(value, FieldMemOperand(destination, offset), representation);
5452 }
5453 if (instr->hydrogen()->NeedsWriteBarrier()) {
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005454 Register value = ToRegister(instr->value());
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005455 __ RecordWriteField(destination,
5456 offset,
5457 value, // Clobbered.
5458 ToRegister(instr->temp1()), // Clobbered.
5459 GetLinkRegisterState(),
5460 kSaveFPRegs,
5461 EMIT_REMEMBERED_SET,
5462 instr->hydrogen()->SmiCheckForWriteBarrier(),
5463 instr->hydrogen()->PointersToHereCheckForValue());
5464 }
5465}
5466
5467
5468void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
5469 DCHECK(ToRegister(instr->context()).is(cp));
5470 DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
5471 DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
5472
5473 __ Mov(StoreDescriptor::NameRegister(), Operand(instr->name()));
5474 Handle<Code> ic = StoreIC::initialize_stub(isolate(), instr->strict_mode());
5475 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5476}
5477
5478
5479void LCodeGen::DoStringAdd(LStringAdd* instr) {
5480 DCHECK(ToRegister(instr->context()).is(cp));
5481 DCHECK(ToRegister(instr->left()).Is(x1));
5482 DCHECK(ToRegister(instr->right()).Is(x0));
5483 StringAddStub stub(isolate(),
5484 instr->hydrogen()->flags(),
5485 instr->hydrogen()->pretenure_flag());
5486 CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
5487}
5488
5489
5490void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
5491 class DeferredStringCharCodeAt: public LDeferredCode {
5492 public:
5493 DeferredStringCharCodeAt(LCodeGen* codegen, LStringCharCodeAt* instr)
5494 : LDeferredCode(codegen), instr_(instr) { }
5495 virtual void Generate() { codegen()->DoDeferredStringCharCodeAt(instr_); }
5496 virtual LInstruction* instr() { return instr_; }
5497 private:
5498 LStringCharCodeAt* instr_;
5499 };
5500
5501 DeferredStringCharCodeAt* deferred =
5502 new(zone()) DeferredStringCharCodeAt(this, instr);
5503
5504 StringCharLoadGenerator::Generate(masm(),
5505 ToRegister(instr->string()),
5506 ToRegister32(instr->index()),
5507 ToRegister(instr->result()),
5508 deferred->entry());
5509 __ Bind(deferred->exit());
5510}
5511
5512
5513void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
5514 Register string = ToRegister(instr->string());
5515 Register result = ToRegister(instr->result());
5516
5517 // TODO(3095996): Get rid of this. For now, we need to make the
5518 // result register contain a valid pointer because it is already
5519 // contained in the register pointer map.
5520 __ Mov(result, 0);
5521
5522 PushSafepointRegistersScope scope(this);
5523 __ Push(string);
5524 // Push the index as a smi. This is safe because of the checks in
5525 // DoStringCharCodeAt above.
5526 Register index = ToRegister(instr->index());
5527 __ SmiTagAndPush(index);
5528
5529 CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2, instr,
5530 instr->context());
5531 __ AssertSmi(x0);
5532 __ SmiUntag(x0);
5533 __ StoreToSafepointRegisterSlot(x0, result);
5534}
5535
5536
5537void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
5538 class DeferredStringCharFromCode: public LDeferredCode {
5539 public:
5540 DeferredStringCharFromCode(LCodeGen* codegen, LStringCharFromCode* instr)
5541 : LDeferredCode(codegen), instr_(instr) { }
5542 virtual void Generate() { codegen()->DoDeferredStringCharFromCode(instr_); }
5543 virtual LInstruction* instr() { return instr_; }
5544 private:
5545 LStringCharFromCode* instr_;
5546 };
5547
5548 DeferredStringCharFromCode* deferred =
5549 new(zone()) DeferredStringCharFromCode(this, instr);
5550
5551 DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
5552 Register char_code = ToRegister32(instr->char_code());
5553 Register result = ToRegister(instr->result());
5554
5555 __ Cmp(char_code, String::kMaxOneByteCharCode);
5556 __ B(hi, deferred->entry());
5557 __ LoadRoot(result, Heap::kSingleCharacterStringCacheRootIndex);
5558 __ Add(result, result, FixedArray::kHeaderSize - kHeapObjectTag);
5559 __ Ldr(result, MemOperand(result, char_code, SXTW, kPointerSizeLog2));
5560 __ CompareRoot(result, Heap::kUndefinedValueRootIndex);
5561 __ B(eq, deferred->entry());
5562 __ Bind(deferred->exit());
5563}
5564
5565
5566void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
5567 Register char_code = ToRegister(instr->char_code());
5568 Register result = ToRegister(instr->result());
5569
5570 // TODO(3095996): Get rid of this. For now, we need to make the
5571 // result register contain a valid pointer because it is already
5572 // contained in the register pointer map.
5573 __ Mov(result, 0);
5574
5575 PushSafepointRegistersScope scope(this);
5576 __ SmiTagAndPush(char_code);
5577 CallRuntimeFromDeferred(Runtime::kCharFromCode, 1, instr, instr->context());
5578 __ StoreToSafepointRegisterSlot(x0, result);
5579}
5580
5581
5582void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
5583 DCHECK(ToRegister(instr->context()).is(cp));
5584 Token::Value op = instr->op();
5585
5586 Handle<Code> ic = CodeFactory::CompareIC(isolate(), op).code();
5587 CallCode(ic, RelocInfo::CODE_TARGET, instr);
5588 InlineSmiCheckInfo::EmitNotInlined(masm());
5589
5590 Condition condition = TokenToCondition(op, false);
5591
5592 EmitCompareAndBranch(instr, condition, x0, 0);
5593}
5594
5595
5596void LCodeGen::DoSubI(LSubI* instr) {
5597 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5598 Register result = ToRegister32(instr->result());
5599 Register left = ToRegister32(instr->left());
5600 Operand right = ToShiftedRightOperand32(instr->right(), instr);
5601
5602 if (can_overflow) {
5603 __ Subs(result, left, right);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005604 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005605 } else {
5606 __ Sub(result, left, right);
5607 }
5608}
5609
5610
5611void LCodeGen::DoSubS(LSubS* instr) {
5612 bool can_overflow = instr->hydrogen()->CheckFlag(HValue::kCanOverflow);
5613 Register result = ToRegister(instr->result());
5614 Register left = ToRegister(instr->left());
5615 Operand right = ToOperand(instr->right());
5616 if (can_overflow) {
5617 __ Subs(result, left, right);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005618 DeoptimizeIf(vs, instr, "overflow");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005619 } else {
5620 __ Sub(result, left, right);
5621 }
5622}
5623
5624
5625void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr,
5626 LOperand* value,
5627 LOperand* temp1,
5628 LOperand* temp2) {
5629 Register input = ToRegister(value);
5630 Register scratch1 = ToRegister(temp1);
5631 DoubleRegister dbl_scratch1 = double_scratch();
5632
5633 Label done;
5634
5635 if (instr->truncating()) {
5636 Register output = ToRegister(instr->result());
5637 Label check_bools;
5638
5639 // If it's not a heap number, jump to undefined check.
5640 __ JumpIfNotHeapNumber(input, &check_bools);
5641
5642 // A heap number: load value and convert to int32 using truncating function.
5643 __ TruncateHeapNumberToI(output, input);
5644 __ B(&done);
5645
5646 __ Bind(&check_bools);
5647
5648 Register true_root = output;
5649 Register false_root = scratch1;
5650 __ LoadTrueFalseRoots(true_root, false_root);
5651 __ Cmp(input, true_root);
5652 __ Cset(output, eq);
5653 __ Ccmp(input, false_root, ZFlag, ne);
5654 __ B(eq, &done);
5655
5656 // Output contains zero, undefined is converted to zero for truncating
5657 // conversions.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005658 DeoptimizeIfNotRoot(input, Heap::kUndefinedValueRootIndex, instr,
5659 "not a heap number/undefined/true/false");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005660 } else {
5661 Register output = ToRegister32(instr->result());
5662 DoubleRegister dbl_scratch2 = ToDoubleRegister(temp2);
5663
5664 DeoptimizeIfNotHeapNumber(input, instr);
5665
5666 // A heap number: load value and convert to int32 using non-truncating
5667 // function. If the result is out of range, branch to deoptimize.
5668 __ Ldr(dbl_scratch1, FieldMemOperand(input, HeapNumber::kValueOffset));
5669 __ TryRepresentDoubleAsInt32(output, dbl_scratch1, dbl_scratch2);
5670 DeoptimizeIf(ne, instr, "lost precision or NaN");
5671
5672 if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
5673 __ Cmp(output, 0);
5674 __ B(ne, &done);
5675 __ Fmov(scratch1, dbl_scratch1);
5676 DeoptimizeIfNegative(scratch1, instr, "minus zero");
5677 }
5678 }
5679 __ Bind(&done);
5680}
5681
5682
5683void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
5684 class DeferredTaggedToI: public LDeferredCode {
5685 public:
5686 DeferredTaggedToI(LCodeGen* codegen, LTaggedToI* instr)
5687 : LDeferredCode(codegen), instr_(instr) { }
5688 virtual void Generate() {
5689 codegen()->DoDeferredTaggedToI(instr_, instr_->value(), instr_->temp1(),
5690 instr_->temp2());
5691 }
5692
5693 virtual LInstruction* instr() { return instr_; }
5694 private:
5695 LTaggedToI* instr_;
5696 };
5697
5698 Register input = ToRegister(instr->value());
5699 Register output = ToRegister(instr->result());
5700
5701 if (instr->hydrogen()->value()->representation().IsSmi()) {
5702 __ SmiUntag(output, input);
5703 } else {
5704 DeferredTaggedToI* deferred = new(zone()) DeferredTaggedToI(this, instr);
5705
5706 __ JumpIfNotSmi(input, deferred->entry());
5707 __ SmiUntag(output, input);
5708 __ Bind(deferred->exit());
5709 }
5710}
5711
5712
5713void LCodeGen::DoThisFunction(LThisFunction* instr) {
5714 Register result = ToRegister(instr->result());
5715 __ Ldr(result, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset));
5716}
5717
5718
5719void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
5720 DCHECK(ToRegister(instr->value()).Is(x0));
5721 DCHECK(ToRegister(instr->result()).Is(x0));
5722 __ Push(x0);
5723 CallRuntime(Runtime::kToFastProperties, 1, instr);
5724}
5725
5726
5727void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
5728 DCHECK(ToRegister(instr->context()).is(cp));
5729 Label materialized;
5730 // Registers will be used as follows:
5731 // x7 = literals array.
5732 // x1 = regexp literal.
5733 // x0 = regexp literal clone.
5734 // x10-x12 are used as temporaries.
5735 int literal_offset =
5736 FixedArray::OffsetOfElementAt(instr->hydrogen()->literal_index());
5737 __ LoadObject(x7, instr->hydrogen()->literals());
5738 __ Ldr(x1, FieldMemOperand(x7, literal_offset));
5739 __ JumpIfNotRoot(x1, Heap::kUndefinedValueRootIndex, &materialized);
5740
5741 // Create regexp literal using runtime function
5742 // Result will be in x0.
5743 __ Mov(x12, Operand(Smi::FromInt(instr->hydrogen()->literal_index())));
5744 __ Mov(x11, Operand(instr->hydrogen()->pattern()));
5745 __ Mov(x10, Operand(instr->hydrogen()->flags()));
5746 __ Push(x7, x12, x11, x10);
5747 CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
5748 __ Mov(x1, x0);
5749
5750 __ Bind(&materialized);
5751 int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
5752 Label allocated, runtime_allocate;
5753
5754 __ Allocate(size, x0, x10, x11, &runtime_allocate, TAG_OBJECT);
5755 __ B(&allocated);
5756
5757 __ Bind(&runtime_allocate);
5758 __ Mov(x0, Smi::FromInt(size));
5759 __ Push(x1, x0);
5760 CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
5761 __ Pop(x1);
5762
5763 __ Bind(&allocated);
5764 // Copy the content into the newly allocated memory.
5765 __ CopyFields(x0, x1, CPURegList(x10, x11, x12), size / kPointerSize);
5766}
5767
5768
5769void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
5770 Register object = ToRegister(instr->object());
5771
5772 Handle<Map> from_map = instr->original_map();
5773 Handle<Map> to_map = instr->transitioned_map();
5774 ElementsKind from_kind = instr->from_kind();
5775 ElementsKind to_kind = instr->to_kind();
5776
5777 Label not_applicable;
5778
5779 if (IsSimpleMapChangeTransition(from_kind, to_kind)) {
5780 Register temp1 = ToRegister(instr->temp1());
5781 Register new_map = ToRegister(instr->temp2());
5782 __ CheckMap(object, temp1, from_map, &not_applicable, DONT_DO_SMI_CHECK);
5783 __ Mov(new_map, Operand(to_map));
5784 __ Str(new_map, FieldMemOperand(object, HeapObject::kMapOffset));
5785 // Write barrier.
5786 __ RecordWriteForMap(object, new_map, temp1, GetLinkRegisterState(),
5787 kDontSaveFPRegs);
5788 } else {
5789 {
5790 UseScratchRegisterScope temps(masm());
5791 // Use the temp register only in a restricted scope - the codegen checks
5792 // that we do not use any register across a call.
5793 __ CheckMap(object, temps.AcquireX(), from_map, &not_applicable,
5794 DONT_DO_SMI_CHECK);
5795 }
5796 DCHECK(object.is(x0));
5797 DCHECK(ToRegister(instr->context()).is(cp));
5798 PushSafepointRegistersScope scope(this);
5799 __ Mov(x1, Operand(to_map));
5800 bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
5801 TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
5802 __ CallStub(&stub);
5803 RecordSafepointWithRegisters(
5804 instr->pointer_map(), 0, Safepoint::kLazyDeopt);
5805 }
5806 __ Bind(&not_applicable);
5807}
5808
5809
5810void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
5811 Register object = ToRegister(instr->object());
5812 Register temp1 = ToRegister(instr->temp1());
5813 Register temp2 = ToRegister(instr->temp2());
5814
5815 Label no_memento_found;
5816 __ TestJSArrayForAllocationMemento(object, temp1, temp2, &no_memento_found);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005817 DeoptimizeIf(eq, instr, "memento found");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005818 __ Bind(&no_memento_found);
5819}
5820
5821
5822void LCodeGen::DoTruncateDoubleToIntOrSmi(LTruncateDoubleToIntOrSmi* instr) {
5823 DoubleRegister input = ToDoubleRegister(instr->value());
5824 Register result = ToRegister(instr->result());
5825 __ TruncateDoubleToI(result, input);
5826 if (instr->tag_result()) {
5827 __ SmiTag(result, result);
5828 }
5829}
5830
5831
5832void LCodeGen::DoTypeof(LTypeof* instr) {
5833 Register input = ToRegister(instr->value());
5834 __ Push(input);
5835 CallRuntime(Runtime::kTypeof, 1, instr);
5836}
5837
5838
5839void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
5840 Handle<String> type_name = instr->type_literal();
5841 Label* true_label = instr->TrueLabel(chunk_);
5842 Label* false_label = instr->FalseLabel(chunk_);
5843 Register value = ToRegister(instr->value());
5844
5845 Factory* factory = isolate()->factory();
5846 if (String::Equals(type_name, factory->number_string())) {
5847 __ JumpIfSmi(value, true_label);
5848
5849 int true_block = instr->TrueDestination(chunk_);
5850 int false_block = instr->FalseDestination(chunk_);
5851 int next_block = GetNextEmittedBlock();
5852
5853 if (true_block == false_block) {
5854 EmitGoto(true_block);
5855 } else if (true_block == next_block) {
5856 __ JumpIfNotHeapNumber(value, chunk_->GetAssemblyLabel(false_block));
5857 } else {
5858 __ JumpIfHeapNumber(value, chunk_->GetAssemblyLabel(true_block));
5859 if (false_block != next_block) {
5860 __ B(chunk_->GetAssemblyLabel(false_block));
5861 }
5862 }
5863
5864 } else if (String::Equals(type_name, factory->string_string())) {
5865 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5866 Register map = ToRegister(instr->temp1());
5867 Register scratch = ToRegister(instr->temp2());
5868
5869 __ JumpIfSmi(value, false_label);
5870 __ JumpIfObjectType(
5871 value, map, scratch, FIRST_NONSTRING_TYPE, false_label, ge);
5872 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5873 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
5874
5875 } else if (String::Equals(type_name, factory->symbol_string())) {
5876 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5877 Register map = ToRegister(instr->temp1());
5878 Register scratch = ToRegister(instr->temp2());
5879
5880 __ JumpIfSmi(value, false_label);
5881 __ CompareObjectType(value, map, scratch, SYMBOL_TYPE);
5882 EmitBranch(instr, eq);
5883
5884 } else if (String::Equals(type_name, factory->boolean_string())) {
5885 __ JumpIfRoot(value, Heap::kTrueValueRootIndex, true_label);
5886 __ CompareRoot(value, Heap::kFalseValueRootIndex);
5887 EmitBranch(instr, eq);
5888
5889 } else if (String::Equals(type_name, factory->undefined_string())) {
5890 DCHECK(instr->temp1() != NULL);
5891 Register scratch = ToRegister(instr->temp1());
5892
5893 __ JumpIfRoot(value, Heap::kUndefinedValueRootIndex, true_label);
5894 __ JumpIfSmi(value, false_label);
5895 // Check for undetectable objects and jump to the true branch in this case.
5896 __ Ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset));
5897 __ Ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
5898 EmitTestAndBranch(instr, ne, scratch, 1 << Map::kIsUndetectable);
5899
5900 } else if (String::Equals(type_name, factory->function_string())) {
5901 STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
5902 DCHECK(instr->temp1() != NULL);
5903 Register type = ToRegister(instr->temp1());
5904
5905 __ JumpIfSmi(value, false_label);
5906 __ JumpIfObjectType(value, type, type, JS_FUNCTION_TYPE, true_label);
5907 // HeapObject's type has been loaded into type register by JumpIfObjectType.
5908 EmitCompareAndBranch(instr, eq, type, JS_FUNCTION_PROXY_TYPE);
5909
5910 } else if (String::Equals(type_name, factory->object_string())) {
5911 DCHECK((instr->temp1() != NULL) && (instr->temp2() != NULL));
5912 Register map = ToRegister(instr->temp1());
5913 Register scratch = ToRegister(instr->temp2());
5914
5915 __ JumpIfSmi(value, false_label);
5916 __ JumpIfRoot(value, Heap::kNullValueRootIndex, true_label);
5917 __ JumpIfObjectType(value, map, scratch,
5918 FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, false_label, lt);
5919 __ CompareInstanceType(map, scratch, LAST_NONCALLABLE_SPEC_OBJECT_TYPE);
5920 __ B(gt, false_label);
5921 // Check for undetectable objects => false.
5922 __ Ldrb(scratch, FieldMemOperand(map, Map::kBitFieldOffset));
5923 EmitTestAndBranch(instr, eq, scratch, 1 << Map::kIsUndetectable);
5924
5925 } else {
5926 __ B(false_label);
5927 }
5928}
5929
5930
5931void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
5932 __ Ucvtf(ToDoubleRegister(instr->result()), ToRegister32(instr->value()));
5933}
5934
5935
5936void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
5937 Register object = ToRegister(instr->value());
5938 Register map = ToRegister(instr->map());
5939 Register temp = ToRegister(instr->temp());
5940 __ Ldr(temp, FieldMemOperand(object, HeapObject::kMapOffset));
5941 __ Cmp(map, temp);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005942 DeoptimizeIf(ne, instr, "wrong map");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005943}
5944
5945
5946void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
5947 Register receiver = ToRegister(instr->receiver());
5948 Register function = ToRegister(instr->function());
5949 Register result = ToRegister(instr->result());
5950
5951 // If the receiver is null or undefined, we have to pass the global object as
5952 // a receiver to normal functions. Values have to be passed unchanged to
5953 // builtins and strict-mode functions.
5954 Label global_object, done, copy_receiver;
5955
5956 if (!instr->hydrogen()->known_function()) {
5957 __ Ldr(result, FieldMemOperand(function,
5958 JSFunction::kSharedFunctionInfoOffset));
5959
5960 // CompilerHints is an int32 field. See objects.h.
5961 __ Ldr(result.W(),
5962 FieldMemOperand(result, SharedFunctionInfo::kCompilerHintsOffset));
5963
5964 // Do not transform the receiver to object for strict mode functions.
5965 __ Tbnz(result, SharedFunctionInfo::kStrictModeFunction, &copy_receiver);
5966
5967 // Do not transform the receiver to object for builtins.
5968 __ Tbnz(result, SharedFunctionInfo::kNative, &copy_receiver);
5969 }
5970
5971 // Normal function. Replace undefined or null with global receiver.
5972 __ JumpIfRoot(receiver, Heap::kNullValueRootIndex, &global_object);
5973 __ JumpIfRoot(receiver, Heap::kUndefinedValueRootIndex, &global_object);
5974
5975 // Deoptimize if the receiver is not a JS object.
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005976 DeoptimizeIfSmi(receiver, instr, "Smi");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005977 __ CompareObjectType(receiver, result, result, FIRST_SPEC_OBJECT_TYPE);
5978 __ B(ge, &copy_receiver);
Emily Bernierd0a1eb72015-03-24 16:35:39 -04005979 Deoptimize(instr, "not a JavaScript object");
Ben Murdochb8a8cc12014-11-26 15:28:44 +00005980
5981 __ Bind(&global_object);
5982 __ Ldr(result, FieldMemOperand(function, JSFunction::kContextOffset));
5983 __ Ldr(result, ContextMemOperand(result, Context::GLOBAL_OBJECT_INDEX));
5984 __ Ldr(result, FieldMemOperand(result, GlobalObject::kGlobalProxyOffset));
5985 __ B(&done);
5986
5987 __ Bind(&copy_receiver);
5988 __ Mov(result, receiver);
5989 __ Bind(&done);
5990}
5991
5992
5993void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
5994 Register result,
5995 Register object,
5996 Register index) {
5997 PushSafepointRegistersScope scope(this);
5998 __ Push(object);
5999 __ Push(index);
6000 __ Mov(cp, 0);
6001 __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
6002 RecordSafepointWithRegisters(
6003 instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
6004 __ StoreToSafepointRegisterSlot(x0, result);
6005}
6006
6007
6008void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
6009 class DeferredLoadMutableDouble FINAL : public LDeferredCode {
6010 public:
6011 DeferredLoadMutableDouble(LCodeGen* codegen,
6012 LLoadFieldByIndex* instr,
6013 Register result,
6014 Register object,
6015 Register index)
6016 : LDeferredCode(codegen),
6017 instr_(instr),
6018 result_(result),
6019 object_(object),
6020 index_(index) {
6021 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04006022 void Generate() OVERRIDE {
Ben Murdochb8a8cc12014-11-26 15:28:44 +00006023 codegen()->DoDeferredLoadMutableDouble(instr_, result_, object_, index_);
6024 }
Emily Bernierd0a1eb72015-03-24 16:35:39 -04006025 LInstruction* instr() OVERRIDE { return instr_; }
6026
Ben Murdochb8a8cc12014-11-26 15:28:44 +00006027 private:
6028 LLoadFieldByIndex* instr_;
6029 Register result_;
6030 Register object_;
6031 Register index_;
6032 };
6033 Register object = ToRegister(instr->object());
6034 Register index = ToRegister(instr->index());
6035 Register result = ToRegister(instr->result());
6036
6037 __ AssertSmi(index);
6038
6039 DeferredLoadMutableDouble* deferred;
6040 deferred = new(zone()) DeferredLoadMutableDouble(
6041 this, instr, result, object, index);
6042
6043 Label out_of_object, done;
6044
6045 __ TestAndBranchIfAnySet(
6046 index, reinterpret_cast<uint64_t>(Smi::FromInt(1)), deferred->entry());
6047 __ Mov(index, Operand(index, ASR, 1));
6048
6049 __ Cmp(index, Smi::FromInt(0));
6050 __ B(lt, &out_of_object);
6051
6052 STATIC_ASSERT(kPointerSizeLog2 > kSmiTagSize);
6053 __ Add(result, object, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
6054 __ Ldr(result, FieldMemOperand(result, JSObject::kHeaderSize));
6055
6056 __ B(&done);
6057
6058 __ Bind(&out_of_object);
6059 __ Ldr(result, FieldMemOperand(object, JSObject::kPropertiesOffset));
6060 // Index is equal to negated out of object property index plus 1.
6061 __ Sub(result, result, Operand::UntagSmiAndScale(index, kPointerSizeLog2));
6062 __ Ldr(result, FieldMemOperand(result,
6063 FixedArray::kHeaderSize - kPointerSize));
6064 __ Bind(deferred->exit());
6065 __ Bind(&done);
6066}
6067
6068
6069void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
6070 Register context = ToRegister(instr->context());
6071 __ Str(context, MemOperand(fp, StandardFrameConstants::kContextOffset));
6072}
6073
6074
6075void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
6076 Handle<ScopeInfo> scope_info = instr->scope_info();
6077 __ Push(scope_info);
6078 __ Push(ToRegister(instr->function()));
6079 CallRuntime(Runtime::kPushBlockContext, 2, instr);
6080 RecordSafepoint(Safepoint::kNoLazyDeopt);
6081}
6082
6083
6084
6085} } // namespace v8::internal