blob: 632c513643fdb9b757bc8532d68e09261d499340 [file] [log] [blame]
Ben Murdochb8a8cc12014-11-26 15:28:44 +00001// Copyright 2013 the V8 project authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef V8_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
6#define V8_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_
7
8#include "src/macro-assembler.h"
9
10#include "src/arm64/assembler-arm64.h"
11#include "src/arm64/assembler-arm64-inl.h"
12
13namespace v8 {
14namespace internal {
15
16
17#ifndef V8_INTERPRETED_REGEXP
18class RegExpMacroAssemblerARM64: public NativeRegExpMacroAssembler {
19 public:
20 RegExpMacroAssemblerARM64(Mode mode, int registers_to_save, Zone* zone);
21 virtual ~RegExpMacroAssemblerARM64();
22 virtual int stack_limit_slack();
23 virtual void AdvanceCurrentPosition(int by);
24 virtual void AdvanceRegister(int reg, int by);
25 virtual void Backtrack();
26 virtual void Bind(Label* label);
27 virtual void CheckAtStart(Label* on_at_start);
28 virtual void CheckCharacter(unsigned c, Label* on_equal);
29 virtual void CheckCharacterAfterAnd(unsigned c,
30 unsigned mask,
31 Label* on_equal);
32 virtual void CheckCharacterGT(uc16 limit, Label* on_greater);
33 virtual void CheckCharacterLT(uc16 limit, Label* on_less);
34 virtual void CheckCharacters(Vector<const uc16> str,
35 int cp_offset,
36 Label* on_failure,
37 bool check_end_of_string);
38 // A "greedy loop" is a loop that is both greedy and with a simple
39 // body. It has a particularly simple implementation.
40 virtual void CheckGreedyLoop(Label* on_tos_equals_current_position);
41 virtual void CheckNotAtStart(Label* on_not_at_start);
42 virtual void CheckNotBackReference(int start_reg, Label* on_no_match);
43 virtual void CheckNotBackReferenceIgnoreCase(int start_reg,
44 Label* on_no_match);
45 virtual void CheckNotCharacter(unsigned c, Label* on_not_equal);
46 virtual void CheckNotCharacterAfterAnd(unsigned c,
47 unsigned mask,
48 Label* on_not_equal);
49 virtual void CheckNotCharacterAfterMinusAnd(uc16 c,
50 uc16 minus,
51 uc16 mask,
52 Label* on_not_equal);
53 virtual void CheckCharacterInRange(uc16 from,
54 uc16 to,
55 Label* on_in_range);
56 virtual void CheckCharacterNotInRange(uc16 from,
57 uc16 to,
58 Label* on_not_in_range);
59 virtual void CheckBitInTable(Handle<ByteArray> table, Label* on_bit_set);
60
61 // Checks whether the given offset from the current position is before
62 // the end of the string.
63 virtual void CheckPosition(int cp_offset, Label* on_outside_input);
64 virtual bool CheckSpecialCharacterClass(uc16 type,
65 Label* on_no_match);
66 virtual void Fail();
67 virtual Handle<HeapObject> GetCode(Handle<String> source);
68 virtual void GoTo(Label* label);
69 virtual void IfRegisterGE(int reg, int comparand, Label* if_ge);
70 virtual void IfRegisterLT(int reg, int comparand, Label* if_lt);
71 virtual void IfRegisterEqPos(int reg, Label* if_eq);
72 virtual IrregexpImplementation Implementation();
73 virtual void LoadCurrentCharacter(int cp_offset,
74 Label* on_end_of_input,
75 bool check_bounds = true,
76 int characters = 1);
77 virtual void PopCurrentPosition();
78 virtual void PopRegister(int register_index);
79 virtual void PushBacktrack(Label* label);
80 virtual void PushCurrentPosition();
81 virtual void PushRegister(int register_index,
82 StackCheckFlag check_stack_limit);
83 virtual void ReadCurrentPositionFromRegister(int reg);
84 virtual void ReadStackPointerFromRegister(int reg);
85 virtual void SetCurrentPositionFromEnd(int by);
86 virtual void SetRegister(int register_index, int to);
87 virtual bool Succeed();
88 virtual void WriteCurrentPositionToRegister(int reg, int cp_offset);
89 virtual void ClearRegisters(int reg_from, int reg_to);
90 virtual void WriteStackPointerToRegister(int reg);
91 virtual bool CanReadUnaligned();
92
93 // Called from RegExp if the stack-guard is triggered.
94 // If the code object is relocated, the return address is fixed before
95 // returning.
96 static int CheckStackGuardState(Address* return_address,
97 Code* re_code,
98 Address re_frame,
99 int start_offset,
100 const byte** input_start,
101 const byte** input_end);
102
103 private:
104 // Above the frame pointer - Stored registers and stack passed parameters.
105 // Callee-saved registers x19-x29, where x29 is the old frame pointer.
106 static const int kCalleeSavedRegisters = 0;
107 // Return address.
108 // It is placed above the 11 callee-saved registers.
109 static const int kReturnAddress = kCalleeSavedRegisters + 11 * kPointerSize;
110 static const int kSecondaryReturnAddress = kReturnAddress + kPointerSize;
111 // Stack parameter placed by caller.
112 static const int kIsolate = kSecondaryReturnAddress + kPointerSize;
113
114 // Below the frame pointer.
115 // Register parameters stored by setup code.
116 static const int kDirectCall = kCalleeSavedRegisters - kPointerSize;
117 static const int kStackBase = kDirectCall - kPointerSize;
118 static const int kOutputSize = kStackBase - kPointerSize;
119 static const int kInput = kOutputSize - kPointerSize;
120 // When adding local variables remember to push space for them in
121 // the frame in GetCode.
122 static const int kSuccessCounter = kInput - kPointerSize;
123 // First position register address on the stack. Following positions are
124 // below it. A position is a 32 bit value.
125 static const int kFirstRegisterOnStack = kSuccessCounter - kWRegSize;
126 // A capture is a 64 bit value holding two position.
127 static const int kFirstCaptureOnStack = kSuccessCounter - kXRegSize;
128
129 // Initial size of code buffer.
130 static const size_t kRegExpCodeSize = 1024;
131
132 // When initializing registers to a non-position value we can unroll
133 // the loop. Set the limit of registers to unroll.
134 static const int kNumRegistersToUnroll = 16;
135
136 // We are using x0 to x7 as a register cache. Each hardware register must
137 // contain one capture, that is two 32 bit registers. We can cache at most
138 // 16 registers.
139 static const int kNumCachedRegisters = 16;
140
141 // Load a number of characters at the given offset from the
142 // current position, into the current-character register.
143 void LoadCurrentCharacterUnchecked(int cp_offset, int character_count);
144
145 // Check whether preemption has been requested.
146 void CheckPreemption();
147
148 // Check whether we are exceeding the stack limit on the backtrack stack.
149 void CheckStackLimit();
150
151 // Generate a call to CheckStackGuardState.
152 void CallCheckStackGuardState(Register scratch);
153
154 // Location of a 32 bit position register.
155 MemOperand register_location(int register_index);
156
157 // Location of a 64 bit capture, combining two position registers.
158 MemOperand capture_location(int register_index, Register scratch);
159
160 // Register holding the current input position as negative offset from
161 // the end of the string.
162 Register current_input_offset() { return w21; }
163
164 // The register containing the current character after LoadCurrentCharacter.
165 Register current_character() { return w22; }
166
167 // Register holding address of the end of the input string.
168 Register input_end() { return x25; }
169
170 // Register holding address of the start of the input string.
171 Register input_start() { return x26; }
172
173 // Register holding the offset from the start of the string where we should
174 // start matching.
175 Register start_offset() { return w27; }
176
177 // Pointer to the output array's first element.
178 Register output_array() { return x28; }
179
180 // Register holding the frame address. Local variables, parameters and
181 // regexp registers are addressed relative to this.
182 Register frame_pointer() { return fp; }
183
184 // The register containing the backtrack stack top. Provides a meaningful
185 // name to the register.
186 Register backtrack_stackpointer() { return x23; }
187
188 // Register holding pointer to the current code object.
189 Register code_pointer() { return x20; }
190
191 // Register holding the value used for clearing capture registers.
192 Register non_position_value() { return w24; }
193 // The top 32 bit of this register is used to store this value
194 // twice. This is used for clearing more than one register at a time.
195 Register twice_non_position_value() { return x24; }
196
197 // Byte size of chars in the string to match (decided by the Mode argument)
198 int char_size() { return static_cast<int>(mode_); }
199
200 // Equivalent to a conditional branch to the label, unless the label
201 // is NULL, in which case it is a conditional Backtrack.
202 void BranchOrBacktrack(Condition condition, Label* to);
203
204 // Compares reg against immmediate before calling BranchOrBacktrack.
205 // It makes use of the Cbz and Cbnz instructions.
206 void CompareAndBranchOrBacktrack(Register reg,
207 int immediate,
208 Condition condition,
209 Label* to);
210
211 inline void CallIf(Label* to, Condition condition);
212
213 // Save and restore the link register on the stack in a way that
214 // is GC-safe.
215 inline void SaveLinkRegister();
216 inline void RestoreLinkRegister();
217
218 // Pushes the value of a register on the backtrack stack. Decrements the
219 // stack pointer by a word size and stores the register's value there.
220 inline void Push(Register source);
221
222 // Pops a value from the backtrack stack. Reads the word at the stack pointer
223 // and increments it by a word size.
224 inline void Pop(Register target);
225
226 // This state indicates where the register actually is.
227 enum RegisterState {
228 STACKED, // Resides in memory.
229 CACHED_LSW, // Least Significant Word of a 64 bit hardware register.
230 CACHED_MSW // Most Significant Word of a 64 bit hardware register.
231 };
232
233 RegisterState GetRegisterState(int register_index) {
234 DCHECK(register_index >= 0);
235 if (register_index >= kNumCachedRegisters) {
236 return STACKED;
237 } else {
238 if ((register_index % 2) == 0) {
239 return CACHED_LSW;
240 } else {
241 return CACHED_MSW;
242 }
243 }
244 }
245
246 // Store helper that takes the state of the register into account.
247 inline void StoreRegister(int register_index, Register source);
248
249 // Returns a hardware W register that holds the value of the capture
250 // register.
251 //
252 // This function will try to use an existing cache register (w0-w7) for the
253 // result. Otherwise, it will load the value into maybe_result.
254 //
255 // If the returned register is anything other than maybe_result, calling code
256 // must not write to it.
257 inline Register GetRegister(int register_index, Register maybe_result);
258
259 // Returns the harware register (x0-x7) holding the value of the capture
260 // register.
261 // This assumes that the state of the register is not STACKED.
262 inline Register GetCachedRegister(int register_index);
263
264 Isolate* isolate() const { return masm_->isolate(); }
265
266 MacroAssembler* masm_;
267
268 // Which mode to generate code for (LATIN1 or UC16).
269 Mode mode_;
270
271 // One greater than maximal register index actually used.
272 int num_registers_;
273
274 // Number of registers to output at the end (the saved registers
275 // are always 0..num_saved_registers_-1)
276 int num_saved_registers_;
277
278 // Labels used internally.
279 Label entry_label_;
280 Label start_label_;
281 Label success_label_;
282 Label backtrack_label_;
283 Label exit_label_;
284 Label check_preempt_label_;
285 Label stack_overflow_label_;
286};
287
288#endif // V8_INTERPRETED_REGEXP
289
290
291}} // namespace v8::internal
292
293#endif // V8_ARM64_REGEXP_MACRO_ASSEMBLER_ARM64_H_