blob: 5a3ab890572763004f7570d0d8e6440c2676949c [file] [log] [blame]
Steve Blocka7e24c12009-10-30 11:49:00 +00001// Copyright 2006-2008 the V8 project authors. All rights reserved.
2// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include "v8.h"
29
30#include "execution.h"
31#include "global-handles.h"
32#include "ic-inl.h"
33#include "mark-compact.h"
34#include "stub-cache.h"
35
36namespace v8 {
37namespace internal {
38
39// -------------------------------------------------------------------------
40// MarkCompactCollector
41
42bool MarkCompactCollector::force_compaction_ = false;
43bool MarkCompactCollector::compacting_collection_ = false;
44bool MarkCompactCollector::compact_on_next_gc_ = false;
45
46int MarkCompactCollector::previous_marked_count_ = 0;
47GCTracer* MarkCompactCollector::tracer_ = NULL;
48
49
50#ifdef DEBUG
51MarkCompactCollector::CollectorState MarkCompactCollector::state_ = IDLE;
52
53// Counters used for debugging the marking phase of mark-compact or mark-sweep
54// collection.
55int MarkCompactCollector::live_bytes_ = 0;
56int MarkCompactCollector::live_young_objects_ = 0;
57int MarkCompactCollector::live_old_data_objects_ = 0;
58int MarkCompactCollector::live_old_pointer_objects_ = 0;
59int MarkCompactCollector::live_code_objects_ = 0;
60int MarkCompactCollector::live_map_objects_ = 0;
61int MarkCompactCollector::live_cell_objects_ = 0;
62int MarkCompactCollector::live_lo_objects_ = 0;
63#endif
64
65void MarkCompactCollector::CollectGarbage() {
66 // Make sure that Prepare() has been called. The individual steps below will
67 // update the state as they proceed.
68 ASSERT(state_ == PREPARE_GC);
69
70 // Prepare has selected whether to compact the old generation or not.
71 // Tell the tracer.
72 if (IsCompacting()) tracer_->set_is_compacting();
73
74 MarkLiveObjects();
75
76 if (FLAG_collect_maps) ClearNonLiveTransitions();
77
78 SweepLargeObjectSpace();
79
80 if (IsCompacting()) {
81 EncodeForwardingAddresses();
82
83 UpdatePointers();
84
85 RelocateObjects();
86
87 RebuildRSets();
88
89 } else {
90 SweepSpaces();
91 }
92
93 Finish();
94
95 // Save the count of marked objects remaining after the collection and
96 // null out the GC tracer.
97 previous_marked_count_ = tracer_->marked_count();
98 ASSERT(previous_marked_count_ == 0);
99 tracer_ = NULL;
100}
101
102
103void MarkCompactCollector::Prepare(GCTracer* tracer) {
104 // Rather than passing the tracer around we stash it in a static member
105 // variable.
106 tracer_ = tracer;
107
108#ifdef DEBUG
109 ASSERT(state_ == IDLE);
110 state_ = PREPARE_GC;
111#endif
112 ASSERT(!FLAG_always_compact || !FLAG_never_compact);
113
114 compacting_collection_ =
115 FLAG_always_compact || force_compaction_ || compact_on_next_gc_;
116 compact_on_next_gc_ = false;
117
118 if (FLAG_never_compact) compacting_collection_ = false;
119 if (FLAG_collect_maps) CreateBackPointers();
120
121#ifdef DEBUG
122 if (compacting_collection_) {
123 // We will write bookkeeping information to the remembered set area
124 // starting now.
125 Page::set_rset_state(Page::NOT_IN_USE);
126 }
127#endif
128
129 PagedSpaces spaces;
130 while (PagedSpace* space = spaces.next()) {
131 space->PrepareForMarkCompact(compacting_collection_);
132 }
133
134#ifdef DEBUG
135 live_bytes_ = 0;
136 live_young_objects_ = 0;
137 live_old_pointer_objects_ = 0;
138 live_old_data_objects_ = 0;
139 live_code_objects_ = 0;
140 live_map_objects_ = 0;
141 live_cell_objects_ = 0;
142 live_lo_objects_ = 0;
143#endif
144}
145
146
147void MarkCompactCollector::Finish() {
148#ifdef DEBUG
149 ASSERT(state_ == SWEEP_SPACES || state_ == REBUILD_RSETS);
150 state_ = IDLE;
151#endif
152 // The stub cache is not traversed during GC; clear the cache to
153 // force lazy re-initialization of it. This must be done after the
154 // GC, because it relies on the new address of certain old space
155 // objects (empty string, illegal builtin).
156 StubCache::Clear();
157
158 // If we've just compacted old space there's no reason to check the
159 // fragmentation limit. Just return.
160 if (HasCompacted()) return;
161
162 // We compact the old generation on the next GC if it has gotten too
163 // fragmented (ie, we could recover an expected amount of space by
164 // reclaiming the waste and free list blocks).
165 static const int kFragmentationLimit = 15; // Percent.
166 static const int kFragmentationAllowed = 1 * MB; // Absolute.
167 int old_gen_recoverable = 0;
168 int old_gen_used = 0;
169
170 OldSpaces spaces;
171 while (OldSpace* space = spaces.next()) {
172 old_gen_recoverable += space->Waste() + space->AvailableFree();
173 old_gen_used += space->Size();
174 }
175
176 int old_gen_fragmentation =
177 static_cast<int>((old_gen_recoverable * 100.0) / old_gen_used);
178 if (old_gen_fragmentation > kFragmentationLimit &&
179 old_gen_recoverable > kFragmentationAllowed) {
180 compact_on_next_gc_ = true;
181 }
182}
183
184
185// -------------------------------------------------------------------------
186// Phase 1: tracing and marking live objects.
187// before: all objects are in normal state.
188// after: a live object's map pointer is marked as '00'.
189
190// Marking all live objects in the heap as part of mark-sweep or mark-compact
191// collection. Before marking, all objects are in their normal state. After
192// marking, live objects' map pointers are marked indicating that the object
193// has been found reachable.
194//
195// The marking algorithm is a (mostly) depth-first (because of possible stack
196// overflow) traversal of the graph of objects reachable from the roots. It
197// uses an explicit stack of pointers rather than recursion. The young
198// generation's inactive ('from') space is used as a marking stack. The
199// objects in the marking stack are the ones that have been reached and marked
200// but their children have not yet been visited.
201//
202// The marking stack can overflow during traversal. In that case, we set an
203// overflow flag. When the overflow flag is set, we continue marking objects
204// reachable from the objects on the marking stack, but no longer push them on
205// the marking stack. Instead, we mark them as both marked and overflowed.
206// When the stack is in the overflowed state, objects marked as overflowed
207// have been reached and marked but their children have not been visited yet.
208// After emptying the marking stack, we clear the overflow flag and traverse
209// the heap looking for objects marked as overflowed, push them on the stack,
210// and continue with marking. This process repeats until all reachable
211// objects have been marked.
212
213static MarkingStack marking_stack;
214
215
216static inline HeapObject* ShortCircuitConsString(Object** p) {
217 // Optimization: If the heap object pointed to by p is a non-symbol
218 // cons string whose right substring is Heap::empty_string, update
219 // it in place to its left substring. Return the updated value.
220 //
221 // Here we assume that if we change *p, we replace it with a heap object
222 // (ie, the left substring of a cons string is always a heap object).
223 //
224 // The check performed is:
225 // object->IsConsString() && !object->IsSymbol() &&
226 // (ConsString::cast(object)->second() == Heap::empty_string())
227 // except the maps for the object and its possible substrings might be
228 // marked.
229 HeapObject* object = HeapObject::cast(*p);
230 MapWord map_word = object->map_word();
231 map_word.ClearMark();
232 InstanceType type = map_word.ToMap()->instance_type();
233 if ((type & kShortcutTypeMask) != kShortcutTypeTag) return object;
234
235 Object* second = reinterpret_cast<ConsString*>(object)->unchecked_second();
236 if (second != Heap::raw_unchecked_empty_string()) {
237 return object;
238 }
239
240 // Since we don't have the object's start, it is impossible to update the
241 // remembered set. Therefore, we only replace the string with its left
242 // substring when the remembered set does not change.
243 Object* first = reinterpret_cast<ConsString*>(object)->unchecked_first();
244 if (!Heap::InNewSpace(object) && Heap::InNewSpace(first)) return object;
245
246 *p = first;
247 return HeapObject::cast(first);
248}
249
250
251// Helper class for marking pointers in HeapObjects.
252class MarkingVisitor : public ObjectVisitor {
253 public:
254 void VisitPointer(Object** p) {
255 MarkObjectByPointer(p);
256 }
257
258 void VisitPointers(Object** start, Object** end) {
259 // Mark all objects pointed to in [start, end).
260 const int kMinRangeForMarkingRecursion = 64;
261 if (end - start >= kMinRangeForMarkingRecursion) {
262 if (VisitUnmarkedObjects(start, end)) return;
263 // We are close to a stack overflow, so just mark the objects.
264 }
265 for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
266 }
267
268 void VisitCodeTarget(RelocInfo* rinfo) {
269 ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
270 Code* code = Code::GetCodeFromTargetAddress(rinfo->target_address());
271 if (FLAG_cleanup_ics_at_gc && code->is_inline_cache_stub()) {
272 IC::Clear(rinfo->pc());
273 // Please note targets for cleared inline cached do not have to be
274 // marked since they are contained in Heap::non_monomorphic_cache().
275 } else {
276 MarkCompactCollector::MarkObject(code);
277 }
278 }
279
280 void VisitDebugTarget(RelocInfo* rinfo) {
281 ASSERT(RelocInfo::IsJSReturn(rinfo->rmode()) &&
Steve Block3ce2e202009-11-05 08:53:23 +0000282 rinfo->IsPatchedReturnSequence());
Steve Blocka7e24c12009-10-30 11:49:00 +0000283 HeapObject* code = Code::GetCodeFromTargetAddress(rinfo->call_address());
284 MarkCompactCollector::MarkObject(code);
Steve Blocka7e24c12009-10-30 11:49:00 +0000285 }
286
287 private:
288 // Mark object pointed to by p.
289 void MarkObjectByPointer(Object** p) {
290 if (!(*p)->IsHeapObject()) return;
291 HeapObject* object = ShortCircuitConsString(p);
292 MarkCompactCollector::MarkObject(object);
293 }
294
295 // Tells whether the mark sweep collection will perform compaction.
296 bool IsCompacting() { return MarkCompactCollector::IsCompacting(); }
297
298 // Visit an unmarked object.
299 void VisitUnmarkedObject(HeapObject* obj) {
300#ifdef DEBUG
301 ASSERT(Heap::Contains(obj));
302 ASSERT(!obj->IsMarked());
303#endif
304 Map* map = obj->map();
305 MarkCompactCollector::SetMark(obj);
306 // Mark the map pointer and the body.
307 MarkCompactCollector::MarkObject(map);
308 obj->IterateBody(map->instance_type(), obj->SizeFromMap(map), this);
309 }
310
311 // Visit all unmarked objects pointed to by [start, end).
312 // Returns false if the operation fails (lack of stack space).
313 inline bool VisitUnmarkedObjects(Object** start, Object** end) {
314 // Return false is we are close to the stack limit.
315 StackLimitCheck check;
316 if (check.HasOverflowed()) return false;
317
318 // Visit the unmarked objects.
319 for (Object** p = start; p < end; p++) {
320 if (!(*p)->IsHeapObject()) continue;
321 HeapObject* obj = HeapObject::cast(*p);
322 if (obj->IsMarked()) continue;
323 VisitUnmarkedObject(obj);
324 }
325 return true;
326 }
327};
328
329
330// Visitor class for marking heap roots.
331class RootMarkingVisitor : public ObjectVisitor {
332 public:
333 void VisitPointer(Object** p) {
334 MarkObjectByPointer(p);
335 }
336
337 void VisitPointers(Object** start, Object** end) {
338 for (Object** p = start; p < end; p++) MarkObjectByPointer(p);
339 }
340
341 MarkingVisitor* stack_visitor() { return &stack_visitor_; }
342
343 private:
344 MarkingVisitor stack_visitor_;
345
346 void MarkObjectByPointer(Object** p) {
347 if (!(*p)->IsHeapObject()) return;
348
349 // Replace flat cons strings in place.
350 HeapObject* object = ShortCircuitConsString(p);
351 if (object->IsMarked()) return;
352
353 Map* map = object->map();
354 // Mark the object.
355 MarkCompactCollector::SetMark(object);
356 // Mark the map pointer and body, and push them on the marking stack.
357 MarkCompactCollector::MarkObject(map);
358 object->IterateBody(map->instance_type(), object->SizeFromMap(map),
359 &stack_visitor_);
360
361 // Mark all the objects reachable from the map and body. May leave
362 // overflowed objects in the heap.
363 MarkCompactCollector::EmptyMarkingStack(&stack_visitor_);
364 }
365};
366
367
368// Helper class for pruning the symbol table.
369class SymbolTableCleaner : public ObjectVisitor {
370 public:
371 SymbolTableCleaner() : pointers_removed_(0) { }
372 void VisitPointers(Object** start, Object** end) {
373 // Visit all HeapObject pointers in [start, end).
374 for (Object** p = start; p < end; p++) {
375 if ((*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked()) {
376 // Check if the symbol being pruned is an external symbol. We need to
377 // delete the associated external data as this symbol is going away.
378
379 // Since the object is not marked we can access its map word safely
380 // without having to worry about marking bits in the object header.
381 Map* map = HeapObject::cast(*p)->map();
382 // Since no objects have yet been moved we can safely access the map of
383 // the object.
384 uint32_t type = map->instance_type();
385 bool is_external = (type & kStringRepresentationMask) ==
386 kExternalStringTag;
387 if (is_external) {
388 bool is_two_byte = (type & kStringEncodingMask) == kTwoByteStringTag;
389 byte* resource_addr = reinterpret_cast<byte*>(*p) +
390 ExternalString::kResourceOffset -
391 kHeapObjectTag;
392 if (is_two_byte) {
393 v8::String::ExternalStringResource** resource =
394 reinterpret_cast<v8::String::ExternalStringResource**>
395 (resource_addr);
396 delete *resource;
397 // Clear the resource pointer in the symbol.
398 *resource = NULL;
399 } else {
400 v8::String::ExternalAsciiStringResource** resource =
401 reinterpret_cast<v8::String::ExternalAsciiStringResource**>
402 (resource_addr);
403 delete *resource;
404 // Clear the resource pointer in the symbol.
405 *resource = NULL;
406 }
407 }
408 // Set the entry to null_value (as deleted).
409 *p = Heap::raw_unchecked_null_value();
410 pointers_removed_++;
411 }
412 }
413 }
414
415 int PointersRemoved() {
416 return pointers_removed_;
417 }
418 private:
419 int pointers_removed_;
420};
421
422
423void MarkCompactCollector::MarkUnmarkedObject(HeapObject* object) {
424 ASSERT(!object->IsMarked());
425 ASSERT(Heap::Contains(object));
426 if (object->IsMap()) {
427 Map* map = Map::cast(object);
428 if (FLAG_cleanup_caches_in_maps_at_gc) {
429 map->ClearCodeCache();
430 }
431 SetMark(map);
432 if (FLAG_collect_maps &&
433 map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
434 map->instance_type() <= JS_FUNCTION_TYPE) {
435 MarkMapContents(map);
436 } else {
437 marking_stack.Push(map);
438 }
439 } else {
440 SetMark(object);
441 marking_stack.Push(object);
442 }
443}
444
445
446void MarkCompactCollector::MarkMapContents(Map* map) {
447 MarkDescriptorArray(reinterpret_cast<DescriptorArray*>(
448 *HeapObject::RawField(map, Map::kInstanceDescriptorsOffset)));
449
450 // Mark the Object* fields of the Map.
451 // Since the descriptor array has been marked already, it is fine
452 // that one of these fields contains a pointer to it.
453 MarkingVisitor visitor; // Has no state or contents.
454 visitor.VisitPointers(HeapObject::RawField(map, Map::kPrototypeOffset),
455 HeapObject::RawField(map, Map::kSize));
456}
457
458
459void MarkCompactCollector::MarkDescriptorArray(
460 DescriptorArray* descriptors) {
461 if (descriptors->IsMarked()) return;
462 // Empty descriptor array is marked as a root before any maps are marked.
463 ASSERT(descriptors != Heap::raw_unchecked_empty_descriptor_array());
464 SetMark(descriptors);
465
466 FixedArray* contents = reinterpret_cast<FixedArray*>(
467 descriptors->get(DescriptorArray::kContentArrayIndex));
468 ASSERT(contents->IsHeapObject());
469 ASSERT(!contents->IsMarked());
470 ASSERT(contents->IsFixedArray());
471 ASSERT(contents->length() >= 2);
472 SetMark(contents);
473 // Contents contains (value, details) pairs. If the details say
474 // that the type of descriptor is MAP_TRANSITION, CONSTANT_TRANSITION,
475 // or NULL_DESCRIPTOR, we don't mark the value as live. Only for
476 // type MAP_TRANSITION is the value a Object* (a Map*).
477 for (int i = 0; i < contents->length(); i += 2) {
478 // If the pair (value, details) at index i, i+1 is not
479 // a transition or null descriptor, mark the value.
480 PropertyDetails details(Smi::cast(contents->get(i + 1)));
481 if (details.type() < FIRST_PHANTOM_PROPERTY_TYPE) {
482 HeapObject* object = reinterpret_cast<HeapObject*>(contents->get(i));
483 if (object->IsHeapObject() && !object->IsMarked()) {
484 SetMark(object);
485 marking_stack.Push(object);
486 }
487 }
488 }
489 // The DescriptorArray descriptors contains a pointer to its contents array,
490 // but the contents array is already marked.
491 marking_stack.Push(descriptors);
492}
493
494
495void MarkCompactCollector::CreateBackPointers() {
496 HeapObjectIterator iterator(Heap::map_space());
497 while (iterator.has_next()) {
498 Object* next_object = iterator.next();
499 if (next_object->IsMap()) { // Could also be ByteArray on free list.
500 Map* map = Map::cast(next_object);
501 if (map->instance_type() >= FIRST_JS_OBJECT_TYPE &&
502 map->instance_type() <= JS_FUNCTION_TYPE) {
503 map->CreateBackPointers();
504 } else {
505 ASSERT(map->instance_descriptors() == Heap::empty_descriptor_array());
506 }
507 }
508 }
509}
510
511
512static int OverflowObjectSize(HeapObject* obj) {
513 // Recover the normal map pointer, it might be marked as live and
514 // overflowed.
515 MapWord map_word = obj->map_word();
516 map_word.ClearMark();
517 map_word.ClearOverflow();
518 return obj->SizeFromMap(map_word.ToMap());
519}
520
521
522// Fill the marking stack with overflowed objects returned by the given
523// iterator. Stop when the marking stack is filled or the end of the space
524// is reached, whichever comes first.
525template<class T>
526static void ScanOverflowedObjects(T* it) {
527 // The caller should ensure that the marking stack is initially not full,
528 // so that we don't waste effort pointlessly scanning for objects.
529 ASSERT(!marking_stack.is_full());
530
531 while (it->has_next()) {
532 HeapObject* object = it->next();
533 if (object->IsOverflowed()) {
534 object->ClearOverflow();
535 ASSERT(object->IsMarked());
536 ASSERT(Heap::Contains(object));
537 marking_stack.Push(object);
538 if (marking_stack.is_full()) return;
539 }
540 }
541}
542
543
544bool MarkCompactCollector::IsUnmarkedHeapObject(Object** p) {
545 return (*p)->IsHeapObject() && !HeapObject::cast(*p)->IsMarked();
546}
547
548
549class SymbolMarkingVisitor : public ObjectVisitor {
550 public:
551 void VisitPointers(Object** start, Object** end) {
552 MarkingVisitor marker;
553 for (Object** p = start; p < end; p++) {
554 if (!(*p)->IsHeapObject()) continue;
555
556 HeapObject* object = HeapObject::cast(*p);
557 // If the object is marked, we have marked or are in the process
558 // of marking subparts.
559 if (object->IsMarked()) continue;
560
561 // The object is unmarked, we do not need to unmark to use its
562 // map.
563 Map* map = object->map();
564 object->IterateBody(map->instance_type(),
565 object->SizeFromMap(map),
566 &marker);
567 }
568 }
569};
570
571
572void MarkCompactCollector::MarkSymbolTable() {
573 // Objects reachable from symbols are marked as live so as to ensure
574 // that if the symbol itself remains alive after GC for any reason,
575 // and if it is a sliced string or a cons string backed by an
576 // external string (even indirectly), then the external string does
577 // not receive a weak reference callback.
578 SymbolTable* symbol_table = Heap::raw_unchecked_symbol_table();
579 // Mark the symbol table itself.
580 SetMark(symbol_table);
581 // Explicitly mark the prefix.
582 MarkingVisitor marker;
583 symbol_table->IteratePrefix(&marker);
584 ProcessMarkingStack(&marker);
585 // Mark subparts of the symbols but not the symbols themselves
586 // (unless reachable from another symbol).
587 SymbolMarkingVisitor symbol_marker;
588 symbol_table->IterateElements(&symbol_marker);
589 ProcessMarkingStack(&marker);
590}
591
592
593void MarkCompactCollector::MarkRoots(RootMarkingVisitor* visitor) {
594 // Mark the heap roots including global variables, stack variables,
595 // etc., and all objects reachable from them.
596 Heap::IterateStrongRoots(visitor);
597
598 // Handle the symbol table specially.
599 MarkSymbolTable();
600
601 // There may be overflowed objects in the heap. Visit them now.
602 while (marking_stack.overflowed()) {
603 RefillMarkingStack();
604 EmptyMarkingStack(visitor->stack_visitor());
605 }
606}
607
608
609void MarkCompactCollector::MarkObjectGroups() {
610 List<ObjectGroup*>* object_groups = GlobalHandles::ObjectGroups();
611
612 for (int i = 0; i < object_groups->length(); i++) {
613 ObjectGroup* entry = object_groups->at(i);
614 if (entry == NULL) continue;
615
616 List<Object**>& objects = entry->objects_;
617 bool group_marked = false;
618 for (int j = 0; j < objects.length(); j++) {
619 Object* object = *objects[j];
620 if (object->IsHeapObject() && HeapObject::cast(object)->IsMarked()) {
621 group_marked = true;
622 break;
623 }
624 }
625
626 if (!group_marked) continue;
627
628 // An object in the group is marked, so mark as gray all white heap
629 // objects in the group.
630 for (int j = 0; j < objects.length(); ++j) {
631 if ((*objects[j])->IsHeapObject()) {
632 MarkObject(HeapObject::cast(*objects[j]));
633 }
634 }
635 // Once the entire group has been colored gray, set the object group
636 // to NULL so it won't be processed again.
637 delete object_groups->at(i);
638 object_groups->at(i) = NULL;
639 }
640}
641
642
643// Mark all objects reachable from the objects on the marking stack.
644// Before: the marking stack contains zero or more heap object pointers.
645// After: the marking stack is empty, and all objects reachable from the
646// marking stack have been marked, or are overflowed in the heap.
647void MarkCompactCollector::EmptyMarkingStack(MarkingVisitor* visitor) {
648 while (!marking_stack.is_empty()) {
649 HeapObject* object = marking_stack.Pop();
650 ASSERT(object->IsHeapObject());
651 ASSERT(Heap::Contains(object));
652 ASSERT(object->IsMarked());
653 ASSERT(!object->IsOverflowed());
654
655 // Because the object is marked, we have to recover the original map
656 // pointer and use it to mark the object's body.
657 MapWord map_word = object->map_word();
658 map_word.ClearMark();
659 Map* map = map_word.ToMap();
660 MarkObject(map);
661 object->IterateBody(map->instance_type(), object->SizeFromMap(map),
662 visitor);
663 }
664}
665
666
667// Sweep the heap for overflowed objects, clear their overflow bits, and
668// push them on the marking stack. Stop early if the marking stack fills
669// before sweeping completes. If sweeping completes, there are no remaining
670// overflowed objects in the heap so the overflow flag on the markings stack
671// is cleared.
672void MarkCompactCollector::RefillMarkingStack() {
673 ASSERT(marking_stack.overflowed());
674
675 SemiSpaceIterator new_it(Heap::new_space(), &OverflowObjectSize);
676 ScanOverflowedObjects(&new_it);
677 if (marking_stack.is_full()) return;
678
679 HeapObjectIterator old_pointer_it(Heap::old_pointer_space(),
680 &OverflowObjectSize);
681 ScanOverflowedObjects(&old_pointer_it);
682 if (marking_stack.is_full()) return;
683
684 HeapObjectIterator old_data_it(Heap::old_data_space(), &OverflowObjectSize);
685 ScanOverflowedObjects(&old_data_it);
686 if (marking_stack.is_full()) return;
687
688 HeapObjectIterator code_it(Heap::code_space(), &OverflowObjectSize);
689 ScanOverflowedObjects(&code_it);
690 if (marking_stack.is_full()) return;
691
692 HeapObjectIterator map_it(Heap::map_space(), &OverflowObjectSize);
693 ScanOverflowedObjects(&map_it);
694 if (marking_stack.is_full()) return;
695
696 HeapObjectIterator cell_it(Heap::cell_space(), &OverflowObjectSize);
697 ScanOverflowedObjects(&cell_it);
698 if (marking_stack.is_full()) return;
699
700 LargeObjectIterator lo_it(Heap::lo_space(), &OverflowObjectSize);
701 ScanOverflowedObjects(&lo_it);
702 if (marking_stack.is_full()) return;
703
704 marking_stack.clear_overflowed();
705}
706
707
708// Mark all objects reachable (transitively) from objects on the marking
709// stack. Before: the marking stack contains zero or more heap object
710// pointers. After: the marking stack is empty and there are no overflowed
711// objects in the heap.
712void MarkCompactCollector::ProcessMarkingStack(MarkingVisitor* visitor) {
713 EmptyMarkingStack(visitor);
714 while (marking_stack.overflowed()) {
715 RefillMarkingStack();
716 EmptyMarkingStack(visitor);
717 }
718}
719
720
721void MarkCompactCollector::ProcessObjectGroups(MarkingVisitor* visitor) {
722 bool work_to_do = true;
723 ASSERT(marking_stack.is_empty());
724 while (work_to_do) {
725 MarkObjectGroups();
726 work_to_do = !marking_stack.is_empty();
727 ProcessMarkingStack(visitor);
728 }
729}
730
731
732void MarkCompactCollector::MarkLiveObjects() {
733#ifdef DEBUG
734 ASSERT(state_ == PREPARE_GC);
735 state_ = MARK_LIVE_OBJECTS;
736#endif
737 // The to space contains live objects, the from space is used as a marking
738 // stack.
739 marking_stack.Initialize(Heap::new_space()->FromSpaceLow(),
740 Heap::new_space()->FromSpaceHigh());
741
742 ASSERT(!marking_stack.overflowed());
743
744 RootMarkingVisitor root_visitor;
745 MarkRoots(&root_visitor);
746
747 // The objects reachable from the roots are marked, yet unreachable
748 // objects are unmarked. Mark objects reachable from object groups
749 // containing at least one marked object, and continue until no new
750 // objects are reachable from the object groups.
751 ProcessObjectGroups(root_visitor.stack_visitor());
752
753 // The objects reachable from the roots or object groups are marked,
754 // yet unreachable objects are unmarked. Mark objects reachable
755 // only from weak global handles.
756 //
757 // First we identify nonlive weak handles and mark them as pending
758 // destruction.
759 GlobalHandles::IdentifyWeakHandles(&IsUnmarkedHeapObject);
760 // Then we mark the objects and process the transitive closure.
761 GlobalHandles::IterateWeakRoots(&root_visitor);
762 while (marking_stack.overflowed()) {
763 RefillMarkingStack();
764 EmptyMarkingStack(root_visitor.stack_visitor());
765 }
766
767 // Repeat the object groups to mark unmarked groups reachable from the
768 // weak roots.
769 ProcessObjectGroups(root_visitor.stack_visitor());
770
771 // Prune the symbol table removing all symbols only pointed to by the
772 // symbol table. Cannot use symbol_table() here because the symbol
773 // table is marked.
774 SymbolTable* symbol_table = Heap::raw_unchecked_symbol_table();
775 SymbolTableCleaner v;
776 symbol_table->IterateElements(&v);
777 symbol_table->ElementsRemoved(v.PointersRemoved());
778
779 // Remove object groups after marking phase.
780 GlobalHandles::RemoveObjectGroups();
781}
782
783
784static int CountMarkedCallback(HeapObject* obj) {
785 MapWord map_word = obj->map_word();
786 map_word.ClearMark();
787 return obj->SizeFromMap(map_word.ToMap());
788}
789
790
791#ifdef DEBUG
792void MarkCompactCollector::UpdateLiveObjectCount(HeapObject* obj) {
793 live_bytes_ += obj->Size();
794 if (Heap::new_space()->Contains(obj)) {
795 live_young_objects_++;
796 } else if (Heap::map_space()->Contains(obj)) {
797 ASSERT(obj->IsMap());
798 live_map_objects_++;
799 } else if (Heap::cell_space()->Contains(obj)) {
800 ASSERT(obj->IsJSGlobalPropertyCell());
801 live_cell_objects_++;
802 } else if (Heap::old_pointer_space()->Contains(obj)) {
803 live_old_pointer_objects_++;
804 } else if (Heap::old_data_space()->Contains(obj)) {
805 live_old_data_objects_++;
806 } else if (Heap::code_space()->Contains(obj)) {
807 live_code_objects_++;
808 } else if (Heap::lo_space()->Contains(obj)) {
809 live_lo_objects_++;
810 } else {
811 UNREACHABLE();
812 }
813}
814#endif // DEBUG
815
816
817void MarkCompactCollector::SweepLargeObjectSpace() {
818#ifdef DEBUG
819 ASSERT(state_ == MARK_LIVE_OBJECTS);
820 state_ =
821 compacting_collection_ ? ENCODE_FORWARDING_ADDRESSES : SWEEP_SPACES;
822#endif
823 // Deallocate unmarked objects and clear marked bits for marked objects.
824 Heap::lo_space()->FreeUnmarkedObjects();
825}
826
827// Safe to use during marking phase only.
828bool MarkCompactCollector::SafeIsMap(HeapObject* object) {
829 MapWord metamap = object->map_word();
830 metamap.ClearMark();
831 return metamap.ToMap()->instance_type() == MAP_TYPE;
832}
833
834void MarkCompactCollector::ClearNonLiveTransitions() {
835 HeapObjectIterator map_iterator(Heap::map_space(), &CountMarkedCallback);
836 // Iterate over the map space, setting map transitions that go from
837 // a marked map to an unmarked map to null transitions. At the same time,
838 // set all the prototype fields of maps back to their original value,
839 // dropping the back pointers temporarily stored in the prototype field.
840 // Setting the prototype field requires following the linked list of
841 // back pointers, reversing them all at once. This allows us to find
842 // those maps with map transitions that need to be nulled, and only
843 // scan the descriptor arrays of those maps, not all maps.
844 // All of these actions are carried out only on maps of JSObects
845 // and related subtypes.
846 while (map_iterator.has_next()) {
847 Map* map = reinterpret_cast<Map*>(map_iterator.next());
848 if (!map->IsMarked() && map->IsByteArray()) continue;
849
850 ASSERT(SafeIsMap(map));
851 // Only JSObject and subtypes have map transitions and back pointers.
852 if (map->instance_type() < FIRST_JS_OBJECT_TYPE) continue;
853 if (map->instance_type() > JS_FUNCTION_TYPE) continue;
854 // Follow the chain of back pointers to find the prototype.
855 Map* current = map;
856 while (SafeIsMap(current)) {
857 current = reinterpret_cast<Map*>(current->prototype());
858 ASSERT(current->IsHeapObject());
859 }
860 Object* real_prototype = current;
861
862 // Follow back pointers, setting them to prototype,
863 // clearing map transitions when necessary.
864 current = map;
865 bool on_dead_path = !current->IsMarked();
866 Object* next;
867 while (SafeIsMap(current)) {
868 next = current->prototype();
869 // There should never be a dead map above a live map.
870 ASSERT(on_dead_path || current->IsMarked());
871
872 // A live map above a dead map indicates a dead transition.
873 // This test will always be false on the first iteration.
874 if (on_dead_path && current->IsMarked()) {
875 on_dead_path = false;
876 current->ClearNonLiveTransitions(real_prototype);
877 }
878 *HeapObject::RawField(current, Map::kPrototypeOffset) =
879 real_prototype;
880 current = reinterpret_cast<Map*>(next);
881 }
882 }
883}
884
885// -------------------------------------------------------------------------
886// Phase 2: Encode forwarding addresses.
887// When compacting, forwarding addresses for objects in old space and map
888// space are encoded in their map pointer word (along with an encoding of
889// their map pointers).
890//
891// 31 21 20 10 9 0
892// +-----------------+------------------+-----------------+
893// |forwarding offset|page offset of map|page index of map|
894// +-----------------+------------------+-----------------+
895// 11 bits 11 bits 10 bits
896//
897// An address range [start, end) can have both live and non-live objects.
898// Maximal non-live regions are marked so they can be skipped on subsequent
899// sweeps of the heap. A distinguished map-pointer encoding is used to mark
900// free regions of one-word size (in which case the next word is the start
901// of a live object). A second distinguished map-pointer encoding is used
902// to mark free regions larger than one word, and the size of the free
903// region (including the first word) is written to the second word of the
904// region.
905//
906// Any valid map page offset must lie in the object area of the page, so map
907// page offsets less than Page::kObjectStartOffset are invalid. We use a
908// pair of distinguished invalid map encodings (for single word and multiple
909// words) to indicate free regions in the page found during computation of
910// forwarding addresses and skipped over in subsequent sweeps.
911static const uint32_t kSingleFreeEncoding = 0;
912static const uint32_t kMultiFreeEncoding = 1;
913
914
915// Encode a free region, defined by the given start address and size, in the
916// first word or two of the region.
917void EncodeFreeRegion(Address free_start, int free_size) {
918 ASSERT(free_size >= kIntSize);
919 if (free_size == kIntSize) {
920 Memory::uint32_at(free_start) = kSingleFreeEncoding;
921 } else {
922 ASSERT(free_size >= 2 * kIntSize);
923 Memory::uint32_at(free_start) = kMultiFreeEncoding;
924 Memory::int_at(free_start + kIntSize) = free_size;
925 }
926
927#ifdef DEBUG
928 // Zap the body of the free region.
929 if (FLAG_enable_slow_asserts) {
930 for (int offset = 2 * kIntSize;
931 offset < free_size;
932 offset += kPointerSize) {
933 Memory::Address_at(free_start + offset) = kZapValue;
934 }
935 }
936#endif
937}
938
939
940// Try to promote all objects in new space. Heap numbers and sequential
941// strings are promoted to the code space, large objects to large object space,
942// and all others to the old space.
943inline Object* MCAllocateFromNewSpace(HeapObject* object, int object_size) {
944 Object* forwarded;
945 if (object_size > Heap::MaxObjectSizeInPagedSpace()) {
946 forwarded = Failure::Exception();
947 } else {
948 OldSpace* target_space = Heap::TargetSpace(object);
949 ASSERT(target_space == Heap::old_pointer_space() ||
950 target_space == Heap::old_data_space());
951 forwarded = target_space->MCAllocateRaw(object_size);
952 }
953 if (forwarded->IsFailure()) {
954 forwarded = Heap::new_space()->MCAllocateRaw(object_size);
955 }
956 return forwarded;
957}
958
959
960// Allocation functions for the paged spaces call the space's MCAllocateRaw.
961inline Object* MCAllocateFromOldPointerSpace(HeapObject* ignore,
962 int object_size) {
963 return Heap::old_pointer_space()->MCAllocateRaw(object_size);
964}
965
966
967inline Object* MCAllocateFromOldDataSpace(HeapObject* ignore, int object_size) {
968 return Heap::old_data_space()->MCAllocateRaw(object_size);
969}
970
971
972inline Object* MCAllocateFromCodeSpace(HeapObject* ignore, int object_size) {
973 return Heap::code_space()->MCAllocateRaw(object_size);
974}
975
976
977inline Object* MCAllocateFromMapSpace(HeapObject* ignore, int object_size) {
978 return Heap::map_space()->MCAllocateRaw(object_size);
979}
980
981
982inline Object* MCAllocateFromCellSpace(HeapObject* ignore, int object_size) {
983 return Heap::cell_space()->MCAllocateRaw(object_size);
984}
985
986
987// The forwarding address is encoded at the same offset as the current
988// to-space object, but in from space.
989inline void EncodeForwardingAddressInNewSpace(HeapObject* old_object,
990 int object_size,
991 Object* new_object,
992 int* ignored) {
993 int offset =
994 Heap::new_space()->ToSpaceOffsetForAddress(old_object->address());
995 Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset) =
996 HeapObject::cast(new_object)->address();
997}
998
999
1000// The forwarding address is encoded in the map pointer of the object as an
1001// offset (in terms of live bytes) from the address of the first live object
1002// in the page.
1003inline void EncodeForwardingAddressInPagedSpace(HeapObject* old_object,
1004 int object_size,
1005 Object* new_object,
1006 int* offset) {
1007 // Record the forwarding address of the first live object if necessary.
1008 if (*offset == 0) {
1009 Page::FromAddress(old_object->address())->mc_first_forwarded =
1010 HeapObject::cast(new_object)->address();
1011 }
1012
1013 MapWord encoding =
1014 MapWord::EncodeAddress(old_object->map()->address(), *offset);
1015 old_object->set_map_word(encoding);
1016 *offset += object_size;
1017 ASSERT(*offset <= Page::kObjectAreaSize);
1018}
1019
1020
1021// Most non-live objects are ignored.
1022inline void IgnoreNonLiveObject(HeapObject* object) {}
1023
1024
1025// A code deletion event is logged for non-live code objects.
1026inline void LogNonLiveCodeObject(HeapObject* object) {
1027 if (object->IsCode()) LOG(CodeDeleteEvent(object->address()));
1028}
1029
1030
1031// Function template that, given a range of addresses (eg, a semispace or a
1032// paged space page), iterates through the objects in the range to clear
1033// mark bits and compute and encode forwarding addresses. As a side effect,
1034// maximal free chunks are marked so that they can be skipped on subsequent
1035// sweeps.
1036//
1037// The template parameters are an allocation function, a forwarding address
1038// encoding function, and a function to process non-live objects.
1039template<MarkCompactCollector::AllocationFunction Alloc,
1040 MarkCompactCollector::EncodingFunction Encode,
1041 MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
1042inline void EncodeForwardingAddressesInRange(Address start,
1043 Address end,
1044 int* offset) {
1045 // The start address of the current free region while sweeping the space.
1046 // This address is set when a transition from live to non-live objects is
1047 // encountered. A value (an encoding of the 'next free region' pointer)
1048 // is written to memory at this address when a transition from non-live to
1049 // live objects is encountered.
1050 Address free_start = NULL;
1051
1052 // A flag giving the state of the previously swept object. Initially true
1053 // to ensure that free_start is initialized to a proper address before
1054 // trying to write to it.
1055 bool is_prev_alive = true;
1056
1057 int object_size; // Will be set on each iteration of the loop.
1058 for (Address current = start; current < end; current += object_size) {
1059 HeapObject* object = HeapObject::FromAddress(current);
1060 if (object->IsMarked()) {
1061 object->ClearMark();
1062 MarkCompactCollector::tracer()->decrement_marked_count();
1063 object_size = object->Size();
1064
1065 Object* forwarded = Alloc(object, object_size);
1066 // Allocation cannot fail, because we are compacting the space.
1067 ASSERT(!forwarded->IsFailure());
1068 Encode(object, object_size, forwarded, offset);
1069
1070#ifdef DEBUG
1071 if (FLAG_gc_verbose) {
1072 PrintF("forward %p -> %p.\n", object->address(),
1073 HeapObject::cast(forwarded)->address());
1074 }
1075#endif
1076 if (!is_prev_alive) { // Transition from non-live to live.
1077 EncodeFreeRegion(free_start, current - free_start);
1078 is_prev_alive = true;
1079 }
1080 } else { // Non-live object.
1081 object_size = object->Size();
1082 ProcessNonLive(object);
1083 if (is_prev_alive) { // Transition from live to non-live.
1084 free_start = current;
1085 is_prev_alive = false;
1086 }
1087 }
1088 }
1089
1090 // If we ended on a free region, mark it.
1091 if (!is_prev_alive) EncodeFreeRegion(free_start, end - free_start);
1092}
1093
1094
1095// Functions to encode the forwarding pointers in each compactable space.
1096void MarkCompactCollector::EncodeForwardingAddressesInNewSpace() {
1097 int ignored;
1098 EncodeForwardingAddressesInRange<MCAllocateFromNewSpace,
1099 EncodeForwardingAddressInNewSpace,
1100 IgnoreNonLiveObject>(
1101 Heap::new_space()->bottom(),
1102 Heap::new_space()->top(),
1103 &ignored);
1104}
1105
1106
1107template<MarkCompactCollector::AllocationFunction Alloc,
1108 MarkCompactCollector::ProcessNonLiveFunction ProcessNonLive>
1109void MarkCompactCollector::EncodeForwardingAddressesInPagedSpace(
1110 PagedSpace* space) {
1111 PageIterator it(space, PageIterator::PAGES_IN_USE);
1112 while (it.has_next()) {
1113 Page* p = it.next();
1114 // The offset of each live object in the page from the first live object
1115 // in the page.
1116 int offset = 0;
1117 EncodeForwardingAddressesInRange<Alloc,
1118 EncodeForwardingAddressInPagedSpace,
1119 ProcessNonLive>(
1120 p->ObjectAreaStart(),
1121 p->AllocationTop(),
1122 &offset);
1123 }
1124}
1125
1126
1127static void SweepSpace(NewSpace* space) {
1128 HeapObject* object;
1129 for (Address current = space->bottom();
1130 current < space->top();
1131 current += object->Size()) {
1132 object = HeapObject::FromAddress(current);
1133 if (object->IsMarked()) {
1134 object->ClearMark();
1135 MarkCompactCollector::tracer()->decrement_marked_count();
1136 } else {
1137 // We give non-live objects a map that will correctly give their size,
1138 // since their existing map might not be live after the collection.
1139 int size = object->Size();
1140 if (size >= ByteArray::kHeaderSize) {
1141 object->set_map(Heap::raw_unchecked_byte_array_map());
1142 ByteArray::cast(object)->set_length(ByteArray::LengthFor(size));
1143 } else {
1144 ASSERT(size == kPointerSize);
1145 object->set_map(Heap::raw_unchecked_one_pointer_filler_map());
1146 }
1147 ASSERT(object->Size() == size);
1148 }
1149 // The object is now unmarked for the call to Size() at the top of the
1150 // loop.
1151 }
1152}
1153
1154
1155static void SweepSpace(PagedSpace* space, DeallocateFunction dealloc) {
1156 PageIterator it(space, PageIterator::PAGES_IN_USE);
1157 while (it.has_next()) {
1158 Page* p = it.next();
1159
1160 bool is_previous_alive = true;
1161 Address free_start = NULL;
1162 HeapObject* object;
1163
1164 for (Address current = p->ObjectAreaStart();
1165 current < p->AllocationTop();
1166 current += object->Size()) {
1167 object = HeapObject::FromAddress(current);
1168 if (object->IsMarked()) {
1169 object->ClearMark();
1170 MarkCompactCollector::tracer()->decrement_marked_count();
1171 if (!is_previous_alive) { // Transition from free to live.
1172 dealloc(free_start, current - free_start);
1173 is_previous_alive = true;
1174 }
1175 } else {
1176 if (object->IsCode()) {
1177 // Notify the logger that compiled code has been collected.
1178 LOG(CodeDeleteEvent(Code::cast(object)->address()));
1179 }
1180 if (is_previous_alive) { // Transition from live to free.
1181 free_start = current;
1182 is_previous_alive = false;
1183 }
1184 }
1185 // The object is now unmarked for the call to Size() at the top of the
1186 // loop.
1187 }
1188
1189 // If the last region was not live we need to deallocate from
1190 // free_start to the allocation top in the page.
1191 if (!is_previous_alive) {
1192 int free_size = p->AllocationTop() - free_start;
1193 if (free_size > 0) {
1194 dealloc(free_start, free_size);
1195 }
1196 }
1197 }
1198}
1199
1200
1201void MarkCompactCollector::DeallocateOldPointerBlock(Address start,
1202 int size_in_bytes) {
1203 Heap::ClearRSetRange(start, size_in_bytes);
1204 Heap::old_pointer_space()->Free(start, size_in_bytes);
1205}
1206
1207
1208void MarkCompactCollector::DeallocateOldDataBlock(Address start,
1209 int size_in_bytes) {
1210 Heap::old_data_space()->Free(start, size_in_bytes);
1211}
1212
1213
1214void MarkCompactCollector::DeallocateCodeBlock(Address start,
1215 int size_in_bytes) {
1216 Heap::code_space()->Free(start, size_in_bytes);
1217}
1218
1219
1220void MarkCompactCollector::DeallocateMapBlock(Address start,
1221 int size_in_bytes) {
1222 // Objects in map space are frequently assumed to have size Map::kSize and a
1223 // valid map in their first word. Thus, we break the free block up into
1224 // chunks and free them separately.
1225 ASSERT(size_in_bytes % Map::kSize == 0);
1226 Heap::ClearRSetRange(start, size_in_bytes);
1227 Address end = start + size_in_bytes;
1228 for (Address a = start; a < end; a += Map::kSize) {
1229 Heap::map_space()->Free(a);
1230 }
1231}
1232
1233
1234void MarkCompactCollector::DeallocateCellBlock(Address start,
1235 int size_in_bytes) {
1236 // Free-list elements in cell space are assumed to have a fixed size.
1237 // We break the free block into chunks and add them to the free list
1238 // individually.
1239 int size = Heap::cell_space()->object_size_in_bytes();
1240 ASSERT(size_in_bytes % size == 0);
1241 Heap::ClearRSetRange(start, size_in_bytes);
1242 Address end = start + size_in_bytes;
1243 for (Address a = start; a < end; a += size) {
1244 Heap::cell_space()->Free(a);
1245 }
1246}
1247
1248
1249void MarkCompactCollector::EncodeForwardingAddresses() {
1250 ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
1251 // Objects in the active semispace of the young generation may be
1252 // relocated to the inactive semispace (if not promoted). Set the
1253 // relocation info to the beginning of the inactive semispace.
1254 Heap::new_space()->MCResetRelocationInfo();
1255
1256 // Compute the forwarding pointers in each space.
1257 EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldPointerSpace,
1258 IgnoreNonLiveObject>(
1259 Heap::old_pointer_space());
1260
1261 EncodeForwardingAddressesInPagedSpace<MCAllocateFromOldDataSpace,
1262 IgnoreNonLiveObject>(
1263 Heap::old_data_space());
1264
1265 EncodeForwardingAddressesInPagedSpace<MCAllocateFromCodeSpace,
1266 LogNonLiveCodeObject>(
1267 Heap::code_space());
1268
1269 EncodeForwardingAddressesInPagedSpace<MCAllocateFromCellSpace,
1270 IgnoreNonLiveObject>(
1271 Heap::cell_space());
1272
1273
1274 // Compute new space next to last after the old and code spaces have been
1275 // compacted. Objects in new space can be promoted to old or code space.
1276 EncodeForwardingAddressesInNewSpace();
1277
1278 // Compute map space last because computing forwarding addresses
1279 // overwrites non-live objects. Objects in the other spaces rely on
1280 // non-live map pointers to get the sizes of non-live objects.
1281 EncodeForwardingAddressesInPagedSpace<MCAllocateFromMapSpace,
1282 IgnoreNonLiveObject>(
1283 Heap::map_space());
1284
1285 // Write relocation info to the top page, so we can use it later. This is
1286 // done after promoting objects from the new space so we get the correct
1287 // allocation top.
1288 Heap::old_pointer_space()->MCWriteRelocationInfoToPage();
1289 Heap::old_data_space()->MCWriteRelocationInfoToPage();
1290 Heap::code_space()->MCWriteRelocationInfoToPage();
1291 Heap::map_space()->MCWriteRelocationInfoToPage();
1292 Heap::cell_space()->MCWriteRelocationInfoToPage();
1293}
1294
1295
1296void MarkCompactCollector::SweepSpaces() {
1297 ASSERT(state_ == SWEEP_SPACES);
1298 ASSERT(!IsCompacting());
1299 // Noncompacting collections simply sweep the spaces to clear the mark
1300 // bits and free the nonlive blocks (for old and map spaces). We sweep
1301 // the map space last because freeing non-live maps overwrites them and
1302 // the other spaces rely on possibly non-live maps to get the sizes for
1303 // non-live objects.
1304 SweepSpace(Heap::old_pointer_space(), &DeallocateOldPointerBlock);
1305 SweepSpace(Heap::old_data_space(), &DeallocateOldDataBlock);
1306 SweepSpace(Heap::code_space(), &DeallocateCodeBlock);
1307 SweepSpace(Heap::cell_space(), &DeallocateCellBlock);
1308 SweepSpace(Heap::new_space());
1309 SweepSpace(Heap::map_space(), &DeallocateMapBlock);
1310}
1311
1312
1313// Iterate the live objects in a range of addresses (eg, a page or a
1314// semispace). The live regions of the range have been linked into a list.
1315// The first live region is [first_live_start, first_live_end), and the last
1316// address in the range is top. The callback function is used to get the
1317// size of each live object.
1318int MarkCompactCollector::IterateLiveObjectsInRange(
1319 Address start,
1320 Address end,
1321 HeapObjectCallback size_func) {
1322 int live_objects = 0;
1323 Address current = start;
1324 while (current < end) {
1325 uint32_t encoded_map = Memory::uint32_at(current);
1326 if (encoded_map == kSingleFreeEncoding) {
1327 current += kPointerSize;
1328 } else if (encoded_map == kMultiFreeEncoding) {
1329 current += Memory::int_at(current + kIntSize);
1330 } else {
1331 live_objects++;
1332 current += size_func(HeapObject::FromAddress(current));
1333 }
1334 }
1335 return live_objects;
1336}
1337
1338
1339int MarkCompactCollector::IterateLiveObjects(NewSpace* space,
1340 HeapObjectCallback size_f) {
1341 ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
1342 return IterateLiveObjectsInRange(space->bottom(), space->top(), size_f);
1343}
1344
1345
1346int MarkCompactCollector::IterateLiveObjects(PagedSpace* space,
1347 HeapObjectCallback size_f) {
1348 ASSERT(MARK_LIVE_OBJECTS < state_ && state_ <= RELOCATE_OBJECTS);
1349 int total = 0;
1350 PageIterator it(space, PageIterator::PAGES_IN_USE);
1351 while (it.has_next()) {
1352 Page* p = it.next();
1353 total += IterateLiveObjectsInRange(p->ObjectAreaStart(),
1354 p->AllocationTop(),
1355 size_f);
1356 }
1357 return total;
1358}
1359
1360
1361// -------------------------------------------------------------------------
1362// Phase 3: Update pointers
1363
1364// Helper class for updating pointers in HeapObjects.
1365class UpdatingVisitor: public ObjectVisitor {
1366 public:
1367 void VisitPointer(Object** p) {
1368 UpdatePointer(p);
1369 }
1370
1371 void VisitPointers(Object** start, Object** end) {
1372 // Mark all HeapObject pointers in [start, end)
1373 for (Object** p = start; p < end; p++) UpdatePointer(p);
1374 }
1375
1376 void VisitCodeTarget(RelocInfo* rinfo) {
1377 ASSERT(RelocInfo::IsCodeTarget(rinfo->rmode()));
1378 Object* target = Code::GetCodeFromTargetAddress(rinfo->target_address());
1379 VisitPointer(&target);
1380 rinfo->set_target_address(
1381 reinterpret_cast<Code*>(target)->instruction_start());
1382 }
1383
Steve Block3ce2e202009-11-05 08:53:23 +00001384 void VisitDebugTarget(RelocInfo* rinfo) {
1385 ASSERT(RelocInfo::IsJSReturn(rinfo->rmode()) &&
1386 rinfo->IsPatchedReturnSequence());
1387 Object* target = Code::GetCodeFromTargetAddress(rinfo->call_address());
1388 VisitPointer(&target);
1389 rinfo->set_call_address(
1390 reinterpret_cast<Code*>(target)->instruction_start());
1391 }
1392
Steve Blocka7e24c12009-10-30 11:49:00 +00001393 private:
1394 void UpdatePointer(Object** p) {
1395 if (!(*p)->IsHeapObject()) return;
1396
1397 HeapObject* obj = HeapObject::cast(*p);
1398 Address old_addr = obj->address();
1399 Address new_addr;
1400 ASSERT(!Heap::InFromSpace(obj));
1401
1402 if (Heap::new_space()->Contains(obj)) {
1403 Address forwarding_pointer_addr =
1404 Heap::new_space()->FromSpaceLow() +
1405 Heap::new_space()->ToSpaceOffsetForAddress(old_addr);
1406 new_addr = Memory::Address_at(forwarding_pointer_addr);
1407
1408#ifdef DEBUG
1409 ASSERT(Heap::old_pointer_space()->Contains(new_addr) ||
1410 Heap::old_data_space()->Contains(new_addr) ||
1411 Heap::new_space()->FromSpaceContains(new_addr) ||
1412 Heap::lo_space()->Contains(HeapObject::FromAddress(new_addr)));
1413
1414 if (Heap::new_space()->FromSpaceContains(new_addr)) {
1415 ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <=
1416 Heap::new_space()->ToSpaceOffsetForAddress(old_addr));
1417 }
1418#endif
1419
1420 } else if (Heap::lo_space()->Contains(obj)) {
1421 // Don't move objects in the large object space.
1422 return;
1423
1424 } else {
1425#ifdef DEBUG
1426 PagedSpaces spaces;
1427 PagedSpace* original_space = spaces.next();
1428 while (original_space != NULL) {
1429 if (original_space->Contains(obj)) break;
1430 original_space = spaces.next();
1431 }
1432 ASSERT(original_space != NULL);
1433#endif
1434 new_addr = MarkCompactCollector::GetForwardingAddressInOldSpace(obj);
1435 ASSERT(original_space->Contains(new_addr));
1436 ASSERT(original_space->MCSpaceOffsetForAddress(new_addr) <=
1437 original_space->MCSpaceOffsetForAddress(old_addr));
1438 }
1439
1440 *p = HeapObject::FromAddress(new_addr);
1441
1442#ifdef DEBUG
1443 if (FLAG_gc_verbose) {
1444 PrintF("update %p : %p -> %p\n",
1445 reinterpret_cast<Address>(p), old_addr, new_addr);
1446 }
1447#endif
1448 }
1449};
1450
1451
1452void MarkCompactCollector::UpdatePointers() {
1453#ifdef DEBUG
1454 ASSERT(state_ == ENCODE_FORWARDING_ADDRESSES);
1455 state_ = UPDATE_POINTERS;
1456#endif
1457 UpdatingVisitor updating_visitor;
1458 Heap::IterateRoots(&updating_visitor);
1459 GlobalHandles::IterateWeakRoots(&updating_visitor);
1460
1461 int live_maps = IterateLiveObjects(Heap::map_space(),
1462 &UpdatePointersInOldObject);
1463 int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(),
1464 &UpdatePointersInOldObject);
1465 int live_data_olds = IterateLiveObjects(Heap::old_data_space(),
1466 &UpdatePointersInOldObject);
1467 int live_codes = IterateLiveObjects(Heap::code_space(),
1468 &UpdatePointersInOldObject);
1469 int live_cells = IterateLiveObjects(Heap::cell_space(),
1470 &UpdatePointersInOldObject);
1471 int live_news = IterateLiveObjects(Heap::new_space(),
1472 &UpdatePointersInNewObject);
1473
1474 // Large objects do not move, the map word can be updated directly.
1475 LargeObjectIterator it(Heap::lo_space());
1476 while (it.has_next()) UpdatePointersInNewObject(it.next());
1477
1478 USE(live_maps);
1479 USE(live_pointer_olds);
1480 USE(live_data_olds);
1481 USE(live_codes);
1482 USE(live_cells);
1483 USE(live_news);
1484 ASSERT(live_maps == live_map_objects_);
1485 ASSERT(live_data_olds == live_old_data_objects_);
1486 ASSERT(live_pointer_olds == live_old_pointer_objects_);
1487 ASSERT(live_codes == live_code_objects_);
1488 ASSERT(live_cells == live_cell_objects_);
1489 ASSERT(live_news == live_young_objects_);
1490}
1491
1492
1493int MarkCompactCollector::UpdatePointersInNewObject(HeapObject* obj) {
1494 // Keep old map pointers
1495 Map* old_map = obj->map();
1496 ASSERT(old_map->IsHeapObject());
1497
1498 Address forwarded = GetForwardingAddressInOldSpace(old_map);
1499
1500 ASSERT(Heap::map_space()->Contains(old_map));
1501 ASSERT(Heap::map_space()->Contains(forwarded));
1502#ifdef DEBUG
1503 if (FLAG_gc_verbose) {
1504 PrintF("update %p : %p -> %p\n", obj->address(), old_map->address(),
1505 forwarded);
1506 }
1507#endif
1508 // Update the map pointer.
1509 obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(forwarded)));
1510
1511 // We have to compute the object size relying on the old map because
1512 // map objects are not relocated yet.
1513 int obj_size = obj->SizeFromMap(old_map);
1514
1515 // Update pointers in the object body.
1516 UpdatingVisitor updating_visitor;
1517 obj->IterateBody(old_map->instance_type(), obj_size, &updating_visitor);
1518 return obj_size;
1519}
1520
1521
1522int MarkCompactCollector::UpdatePointersInOldObject(HeapObject* obj) {
1523 // Decode the map pointer.
1524 MapWord encoding = obj->map_word();
1525 Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
1526 ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));
1527
1528 // At this point, the first word of map_addr is also encoded, cannot
1529 // cast it to Map* using Map::cast.
1530 Map* map = reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr));
1531 int obj_size = obj->SizeFromMap(map);
1532 InstanceType type = map->instance_type();
1533
1534 // Update map pointer.
1535 Address new_map_addr = GetForwardingAddressInOldSpace(map);
1536 int offset = encoding.DecodeOffset();
1537 obj->set_map_word(MapWord::EncodeAddress(new_map_addr, offset));
1538
1539#ifdef DEBUG
1540 if (FLAG_gc_verbose) {
1541 PrintF("update %p : %p -> %p\n", obj->address(),
1542 map_addr, new_map_addr);
1543 }
1544#endif
1545
1546 // Update pointers in the object body.
1547 UpdatingVisitor updating_visitor;
1548 obj->IterateBody(type, obj_size, &updating_visitor);
1549 return obj_size;
1550}
1551
1552
1553Address MarkCompactCollector::GetForwardingAddressInOldSpace(HeapObject* obj) {
1554 // Object should either in old or map space.
1555 MapWord encoding = obj->map_word();
1556
1557 // Offset to the first live object's forwarding address.
1558 int offset = encoding.DecodeOffset();
1559 Address obj_addr = obj->address();
1560
1561 // Find the first live object's forwarding address.
1562 Page* p = Page::FromAddress(obj_addr);
1563 Address first_forwarded = p->mc_first_forwarded;
1564
1565 // Page start address of forwarded address.
1566 Page* forwarded_page = Page::FromAddress(first_forwarded);
1567 int forwarded_offset = forwarded_page->Offset(first_forwarded);
1568
1569 // Find end of allocation of in the page of first_forwarded.
1570 Address mc_top = forwarded_page->mc_relocation_top;
1571 int mc_top_offset = forwarded_page->Offset(mc_top);
1572
1573 // Check if current object's forward pointer is in the same page
1574 // as the first live object's forwarding pointer
1575 if (forwarded_offset + offset < mc_top_offset) {
1576 // In the same page.
1577 return first_forwarded + offset;
1578 }
1579
1580 // Must be in the next page, NOTE: this may cross chunks.
1581 Page* next_page = forwarded_page->next_page();
1582 ASSERT(next_page->is_valid());
1583
1584 offset -= (mc_top_offset - forwarded_offset);
1585 offset += Page::kObjectStartOffset;
1586
1587 ASSERT_PAGE_OFFSET(offset);
1588 ASSERT(next_page->OffsetToAddress(offset) < next_page->mc_relocation_top);
1589
1590 return next_page->OffsetToAddress(offset);
1591}
1592
1593
1594// -------------------------------------------------------------------------
1595// Phase 4: Relocate objects
1596
1597void MarkCompactCollector::RelocateObjects() {
1598#ifdef DEBUG
1599 ASSERT(state_ == UPDATE_POINTERS);
1600 state_ = RELOCATE_OBJECTS;
1601#endif
1602 // Relocates objects, always relocate map objects first. Relocating
1603 // objects in other space relies on map objects to get object size.
1604 int live_maps = IterateLiveObjects(Heap::map_space(), &RelocateMapObject);
1605 int live_pointer_olds = IterateLiveObjects(Heap::old_pointer_space(),
1606 &RelocateOldPointerObject);
1607 int live_data_olds = IterateLiveObjects(Heap::old_data_space(),
1608 &RelocateOldDataObject);
1609 int live_codes = IterateLiveObjects(Heap::code_space(), &RelocateCodeObject);
1610 int live_cells = IterateLiveObjects(Heap::cell_space(), &RelocateCellObject);
1611 int live_news = IterateLiveObjects(Heap::new_space(), &RelocateNewObject);
1612
1613 USE(live_maps);
1614 USE(live_data_olds);
1615 USE(live_pointer_olds);
1616 USE(live_codes);
1617 USE(live_cells);
1618 USE(live_news);
1619 ASSERT(live_maps == live_map_objects_);
1620 ASSERT(live_data_olds == live_old_data_objects_);
1621 ASSERT(live_pointer_olds == live_old_pointer_objects_);
1622 ASSERT(live_codes == live_code_objects_);
1623 ASSERT(live_cells == live_cell_objects_);
1624 ASSERT(live_news == live_young_objects_);
1625
1626 // Flip from and to spaces
1627 Heap::new_space()->Flip();
1628
1629 // Set age_mark to bottom in to space
1630 Address mark = Heap::new_space()->bottom();
1631 Heap::new_space()->set_age_mark(mark);
1632
1633 Heap::new_space()->MCCommitRelocationInfo();
1634#ifdef DEBUG
1635 // It is safe to write to the remembered sets as remembered sets on a
1636 // page-by-page basis after committing the m-c forwarding pointer.
1637 Page::set_rset_state(Page::IN_USE);
1638#endif
1639 PagedSpaces spaces;
1640 while (PagedSpace* space = spaces.next()) space->MCCommitRelocationInfo();
1641}
1642
1643
1644int MarkCompactCollector::RelocateMapObject(HeapObject* obj) {
1645 // Recover map pointer.
1646 MapWord encoding = obj->map_word();
1647 Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
1648 ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));
1649
1650 // Get forwarding address before resetting map pointer
1651 Address new_addr = GetForwardingAddressInOldSpace(obj);
1652
1653 // Reset map pointer. The meta map object may not be copied yet so
1654 // Map::cast does not yet work.
1655 obj->set_map(reinterpret_cast<Map*>(HeapObject::FromAddress(map_addr)));
1656
1657 Address old_addr = obj->address();
1658
1659 if (new_addr != old_addr) {
1660 memmove(new_addr, old_addr, Map::kSize); // copy contents
1661 }
1662
1663#ifdef DEBUG
1664 if (FLAG_gc_verbose) {
1665 PrintF("relocate %p -> %p\n", old_addr, new_addr);
1666 }
1667#endif
1668
1669 return Map::kSize;
1670}
1671
1672
1673static inline int RestoreMap(HeapObject* obj,
1674 PagedSpace* space,
1675 Address new_addr,
1676 Address map_addr) {
1677 // This must be a non-map object, and the function relies on the
1678 // assumption that the Map space is compacted before the other paged
1679 // spaces (see RelocateObjects).
1680
1681 // Reset map pointer.
1682 obj->set_map(Map::cast(HeapObject::FromAddress(map_addr)));
1683
1684 int obj_size = obj->Size();
1685 ASSERT_OBJECT_SIZE(obj_size);
1686
1687 ASSERT(space->MCSpaceOffsetForAddress(new_addr) <=
1688 space->MCSpaceOffsetForAddress(obj->address()));
1689
1690#ifdef DEBUG
1691 if (FLAG_gc_verbose) {
1692 PrintF("relocate %p -> %p\n", obj->address(), new_addr);
1693 }
1694#endif
1695
1696 return obj_size;
1697}
1698
1699
1700int MarkCompactCollector::RelocateOldNonCodeObject(HeapObject* obj,
1701 PagedSpace* space) {
1702 // Recover map pointer.
1703 MapWord encoding = obj->map_word();
1704 Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
1705 ASSERT(Heap::map_space()->Contains(map_addr));
1706
1707 // Get forwarding address before resetting map pointer.
1708 Address new_addr = GetForwardingAddressInOldSpace(obj);
1709
1710 // Reset the map pointer.
1711 int obj_size = RestoreMap(obj, space, new_addr, map_addr);
1712
1713 Address old_addr = obj->address();
1714
1715 if (new_addr != old_addr) {
1716 memmove(new_addr, old_addr, obj_size); // Copy contents
1717 }
1718
1719 ASSERT(!HeapObject::FromAddress(new_addr)->IsCode());
1720
1721 return obj_size;
1722}
1723
1724
1725int MarkCompactCollector::RelocateOldPointerObject(HeapObject* obj) {
1726 return RelocateOldNonCodeObject(obj, Heap::old_pointer_space());
1727}
1728
1729
1730int MarkCompactCollector::RelocateOldDataObject(HeapObject* obj) {
1731 return RelocateOldNonCodeObject(obj, Heap::old_data_space());
1732}
1733
1734
1735int MarkCompactCollector::RelocateCellObject(HeapObject* obj) {
1736 return RelocateOldNonCodeObject(obj, Heap::cell_space());
1737}
1738
1739
1740int MarkCompactCollector::RelocateCodeObject(HeapObject* obj) {
1741 // Recover map pointer.
1742 MapWord encoding = obj->map_word();
1743 Address map_addr = encoding.DecodeMapAddress(Heap::map_space());
1744 ASSERT(Heap::map_space()->Contains(HeapObject::FromAddress(map_addr)));
1745
1746 // Get forwarding address before resetting map pointer
1747 Address new_addr = GetForwardingAddressInOldSpace(obj);
1748
1749 // Reset the map pointer.
1750 int obj_size = RestoreMap(obj, Heap::code_space(), new_addr, map_addr);
1751
1752 Address old_addr = obj->address();
1753
1754 if (new_addr != old_addr) {
1755 memmove(new_addr, old_addr, obj_size); // Copy contents.
1756 }
1757
1758 HeapObject* copied_to = HeapObject::FromAddress(new_addr);
1759 if (copied_to->IsCode()) {
1760 // May also update inline cache target.
1761 Code::cast(copied_to)->Relocate(new_addr - old_addr);
1762 // Notify the logger that compiled code has moved.
1763 LOG(CodeMoveEvent(old_addr, new_addr));
1764 }
1765
1766 return obj_size;
1767}
1768
1769
1770int MarkCompactCollector::RelocateNewObject(HeapObject* obj) {
1771 int obj_size = obj->Size();
1772
1773 // Get forwarding address
1774 Address old_addr = obj->address();
1775 int offset = Heap::new_space()->ToSpaceOffsetForAddress(old_addr);
1776
1777 Address new_addr =
1778 Memory::Address_at(Heap::new_space()->FromSpaceLow() + offset);
1779
1780#ifdef DEBUG
1781 if (Heap::new_space()->FromSpaceContains(new_addr)) {
1782 ASSERT(Heap::new_space()->FromSpaceOffsetForAddress(new_addr) <=
1783 Heap::new_space()->ToSpaceOffsetForAddress(old_addr));
1784 } else {
1785 ASSERT(Heap::TargetSpace(obj) == Heap::old_pointer_space() ||
1786 Heap::TargetSpace(obj) == Heap::old_data_space());
1787 }
1788#endif
1789
1790 // New and old addresses cannot overlap.
1791 memcpy(reinterpret_cast<void*>(new_addr),
1792 reinterpret_cast<void*>(old_addr),
1793 obj_size);
1794
1795#ifdef DEBUG
1796 if (FLAG_gc_verbose) {
1797 PrintF("relocate %p -> %p\n", old_addr, new_addr);
1798 }
1799#endif
1800
1801 return obj_size;
1802}
1803
1804
1805// -------------------------------------------------------------------------
1806// Phase 5: rebuild remembered sets
1807
1808void MarkCompactCollector::RebuildRSets() {
1809#ifdef DEBUG
1810 ASSERT(state_ == RELOCATE_OBJECTS);
1811 state_ = REBUILD_RSETS;
1812#endif
1813 Heap::RebuildRSets();
1814}
1815
1816} } // namespace v8::internal