blob: bd4ab480a5938a1b9cf6fe80a18320c73716a868 [file] [log] [blame]
Steve Block44f0eee2011-05-26 01:26:41 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Andrei Popescu31002712010-02-23 13:46:05 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
Steve Block44f0eee2011-05-26 01:26:41 +010028#include <limits.h> // For LONG_MIN, LONG_MAX
Andrei Popescu31002712010-02-23 13:46:05 +000029
30#include "v8.h"
31
Leon Clarkef7060e22010-06-03 12:02:55 +010032#if defined(V8_TARGET_ARCH_MIPS)
33
Andrei Popescu31002712010-02-23 13:46:05 +000034#include "bootstrapper.h"
35#include "codegen-inl.h"
36#include "debug.h"
37#include "runtime.h"
38
39namespace v8 {
40namespace internal {
41
42MacroAssembler::MacroAssembler(void* buffer, int size)
43 : Assembler(buffer, size),
Andrei Popescu31002712010-02-23 13:46:05 +000044 generating_stub_(false),
45 allow_stub_calls_(true),
Steve Block44f0eee2011-05-26 01:26:41 +010046 code_object_(HEAP->undefined_value()) {
Andrei Popescu31002712010-02-23 13:46:05 +000047}
48
49
Steve Block44f0eee2011-05-26 01:26:41 +010050// Arguments macros
51#define COND_TYPED_ARGS Condition cond, Register r1, const Operand& r2
52#define COND_ARGS cond, r1, r2
Andrei Popescu31002712010-02-23 13:46:05 +000053
Steve Block44f0eee2011-05-26 01:26:41 +010054#define REGISTER_TARGET_BODY(Name) \
55void MacroAssembler::Name(Register target, \
56 BranchDelaySlot bd) { \
57 Name(Operand(target), bd); \
58} \
59void MacroAssembler::Name(Register target, COND_TYPED_ARGS, \
60 BranchDelaySlot bd) { \
61 Name(Operand(target), COND_ARGS, bd); \
Andrei Popescu31002712010-02-23 13:46:05 +000062}
63
64
Steve Block44f0eee2011-05-26 01:26:41 +010065#define INT_PTR_TARGET_BODY(Name) \
66void MacroAssembler::Name(intptr_t target, RelocInfo::Mode rmode, \
67 BranchDelaySlot bd) { \
68 Name(Operand(target, rmode), bd); \
69} \
70void MacroAssembler::Name(intptr_t target, \
71 RelocInfo::Mode rmode, \
72 COND_TYPED_ARGS, \
73 BranchDelaySlot bd) { \
74 Name(Operand(target, rmode), COND_ARGS, bd); \
Andrei Popescu31002712010-02-23 13:46:05 +000075}
76
77
Steve Block44f0eee2011-05-26 01:26:41 +010078#define BYTE_PTR_TARGET_BODY(Name) \
79void MacroAssembler::Name(byte* target, RelocInfo::Mode rmode, \
80 BranchDelaySlot bd) { \
81 Name(reinterpret_cast<intptr_t>(target), rmode, bd); \
82} \
83void MacroAssembler::Name(byte* target, \
84 RelocInfo::Mode rmode, \
85 COND_TYPED_ARGS, \
86 BranchDelaySlot bd) { \
87 Name(reinterpret_cast<intptr_t>(target), rmode, COND_ARGS, bd); \
Andrei Popescu31002712010-02-23 13:46:05 +000088}
89
90
Steve Block44f0eee2011-05-26 01:26:41 +010091#define CODE_TARGET_BODY(Name) \
92void MacroAssembler::Name(Handle<Code> target, RelocInfo::Mode rmode, \
93 BranchDelaySlot bd) { \
94 Name(reinterpret_cast<intptr_t>(target.location()), rmode, bd); \
95} \
96void MacroAssembler::Name(Handle<Code> target, \
97 RelocInfo::Mode rmode, \
98 COND_TYPED_ARGS, \
99 BranchDelaySlot bd) { \
100 Name(reinterpret_cast<intptr_t>(target.location()), rmode, COND_ARGS, bd); \
Andrei Popescu31002712010-02-23 13:46:05 +0000101}
102
103
Steve Block44f0eee2011-05-26 01:26:41 +0100104REGISTER_TARGET_BODY(Jump)
105REGISTER_TARGET_BODY(Call)
106INT_PTR_TARGET_BODY(Jump)
107INT_PTR_TARGET_BODY(Call)
108BYTE_PTR_TARGET_BODY(Jump)
109BYTE_PTR_TARGET_BODY(Call)
110CODE_TARGET_BODY(Jump)
111CODE_TARGET_BODY(Call)
112
113#undef COND_TYPED_ARGS
114#undef COND_ARGS
115#undef REGISTER_TARGET_BODY
116#undef BYTE_PTR_TARGET_BODY
117#undef CODE_TARGET_BODY
118
119
120void MacroAssembler::Ret(BranchDelaySlot bd) {
121 Jump(Operand(ra), bd);
Andrei Popescu31002712010-02-23 13:46:05 +0000122}
123
124
Steve Block44f0eee2011-05-26 01:26:41 +0100125void MacroAssembler::Ret(Condition cond, Register r1, const Operand& r2,
126 BranchDelaySlot bd) {
127 Jump(Operand(ra), cond, r1, r2, bd);
Andrei Popescu31002712010-02-23 13:46:05 +0000128}
129
130
131void MacroAssembler::LoadRoot(Register destination,
132 Heap::RootListIndex index) {
Steve Block6ded16b2010-05-10 14:33:55 +0100133 lw(destination, MemOperand(s6, index << kPointerSizeLog2));
Andrei Popescu31002712010-02-23 13:46:05 +0000134}
135
Steve Block44f0eee2011-05-26 01:26:41 +0100136
Andrei Popescu31002712010-02-23 13:46:05 +0000137void MacroAssembler::LoadRoot(Register destination,
138 Heap::RootListIndex index,
139 Condition cond,
140 Register src1, const Operand& src2) {
Steve Block44f0eee2011-05-26 01:26:41 +0100141 Branch(2, NegateCondition(cond), src1, src2);
Steve Block6ded16b2010-05-10 14:33:55 +0100142 lw(destination, MemOperand(s6, index << kPointerSizeLog2));
Andrei Popescu31002712010-02-23 13:46:05 +0000143}
144
145
Steve Block44f0eee2011-05-26 01:26:41 +0100146void MacroAssembler::StoreRoot(Register source,
147 Heap::RootListIndex index) {
148 sw(source, MemOperand(s6, index << kPointerSizeLog2));
149}
150
151
152void MacroAssembler::StoreRoot(Register source,
153 Heap::RootListIndex index,
154 Condition cond,
155 Register src1, const Operand& src2) {
156 Branch(2, NegateCondition(cond), src1, src2);
157 sw(source, MemOperand(s6, index << kPointerSizeLog2));
158}
159
160
161void MacroAssembler::RecordWriteHelper(Register object,
162 Register address,
163 Register scratch) {
164 if (FLAG_debug_code) {
165 // Check that the object is not in new space.
166 Label not_in_new_space;
167 InNewSpace(object, scratch, ne, &not_in_new_space);
168 Abort("new-space object passed to RecordWriteHelper");
169 bind(&not_in_new_space);
170 }
171
172 // Calculate page address: Clear bits from 0 to kPageSizeBits.
173 if (mips32r2) {
174 Ins(object, zero_reg, 0, kPageSizeBits);
175 } else {
176 // The Ins macro is slow on r1, so use shifts instead.
177 srl(object, object, kPageSizeBits);
178 sll(object, object, kPageSizeBits);
179 }
180
181 // Calculate region number.
182 Ext(address, address, Page::kRegionSizeLog2,
183 kPageSizeBits - Page::kRegionSizeLog2);
184
185 // Mark region dirty.
186 lw(scratch, MemOperand(object, Page::kDirtyFlagOffset));
187 li(at, Operand(1));
188 sllv(at, at, address);
189 or_(scratch, scratch, at);
190 sw(scratch, MemOperand(object, Page::kDirtyFlagOffset));
191}
192
193
194void MacroAssembler::InNewSpace(Register object,
195 Register scratch,
196 Condition cc,
197 Label* branch) {
198 ASSERT(cc == eq || cc == ne);
199 And(scratch, object, Operand(ExternalReference::new_space_mask(isolate())));
200 Branch(branch, cc, scratch,
201 Operand(ExternalReference::new_space_start(isolate())));
202}
203
204
205// Will clobber 4 registers: object, scratch0, scratch1, at. The
206// register 'object' contains a heap object pointer. The heap object
207// tag is shifted away.
208void MacroAssembler::RecordWrite(Register object,
209 Operand offset,
210 Register scratch0,
211 Register scratch1) {
212 // The compiled code assumes that record write doesn't change the
213 // context register, so we check that none of the clobbered
214 // registers are cp.
215 ASSERT(!object.is(cp) && !scratch0.is(cp) && !scratch1.is(cp));
216
217 Label done;
218
219 // First, test that the object is not in the new space. We cannot set
220 // region marks for new space pages.
221 InNewSpace(object, scratch0, eq, &done);
222
223 // Add offset into the object.
224 Addu(scratch0, object, offset);
225
226 // Record the actual write.
227 RecordWriteHelper(object, scratch0, scratch1);
228
229 bind(&done);
230
231 // Clobber all input registers when running with the debug-code flag
232 // turned on to provoke errors.
233 if (FLAG_debug_code) {
234 li(object, Operand(BitCast<int32_t>(kZapValue)));
235 li(scratch0, Operand(BitCast<int32_t>(kZapValue)));
236 li(scratch1, Operand(BitCast<int32_t>(kZapValue)));
237 }
238}
239
240
241// Will clobber 4 registers: object, address, scratch, ip. The
242// register 'object' contains a heap object pointer. The heap object
243// tag is shifted away.
244void MacroAssembler::RecordWrite(Register object,
245 Register address,
Andrei Popescu31002712010-02-23 13:46:05 +0000246 Register scratch) {
Steve Block44f0eee2011-05-26 01:26:41 +0100247 // The compiled code assumes that record write doesn't change the
248 // context register, so we check that none of the clobbered
249 // registers are cp.
250 ASSERT(!object.is(cp) && !address.is(cp) && !scratch.is(cp));
251
252 Label done;
253
254 // First, test that the object is not in the new space. We cannot set
255 // region marks for new space pages.
256 InNewSpace(object, scratch, eq, &done);
257
258 // Record the actual write.
259 RecordWriteHelper(object, address, scratch);
260
261 bind(&done);
262
263 // Clobber all input registers when running with the debug-code flag
264 // turned on to provoke errors.
265 if (FLAG_debug_code) {
266 li(object, Operand(BitCast<int32_t>(kZapValue)));
267 li(address, Operand(BitCast<int32_t>(kZapValue)));
268 li(scratch, Operand(BitCast<int32_t>(kZapValue)));
269 }
270}
271
272
273// -----------------------------------------------------------------------------
274// Allocation support
275
276
277void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg,
278 Register scratch,
279 Label* miss) {
280 Label same_contexts;
281
282 ASSERT(!holder_reg.is(scratch));
283 ASSERT(!holder_reg.is(at));
284 ASSERT(!scratch.is(at));
285
286 // Load current lexical context from the stack frame.
287 lw(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset));
288 // In debug mode, make sure the lexical context is set.
289#ifdef DEBUG
290 Check(ne, "we should not have an empty lexical context",
291 scratch, Operand(zero_reg));
292#endif
293
294 // Load the global context of the current context.
295 int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
296 lw(scratch, FieldMemOperand(scratch, offset));
297 lw(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset));
298
299 // Check the context is a global context.
300 if (FLAG_debug_code) {
301 // TODO(119): Avoid push(holder_reg)/pop(holder_reg).
302 Push(holder_reg); // Temporarily save holder on the stack.
303 // Read the first word and compare to the global_context_map.
304 lw(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset));
305 LoadRoot(at, Heap::kGlobalContextMapRootIndex);
306 Check(eq, "JSGlobalObject::global_context should be a global context.",
307 holder_reg, Operand(at));
308 Pop(holder_reg); // Restore holder.
309 }
310
311 // Check if both contexts are the same.
312 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
313 Branch(&same_contexts, eq, scratch, Operand(at));
314
315 // Check the context is a global context.
316 if (FLAG_debug_code) {
317 // TODO(119): Avoid push(holder_reg)/pop(holder_reg).
318 Push(holder_reg); // Temporarily save holder on the stack.
319 mov(holder_reg, at); // Move at to its holding place.
320 LoadRoot(at, Heap::kNullValueRootIndex);
321 Check(ne, "JSGlobalProxy::context() should not be null.",
322 holder_reg, Operand(at));
323
324 lw(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset));
325 LoadRoot(at, Heap::kGlobalContextMapRootIndex);
326 Check(eq, "JSGlobalObject::global_context should be a global context.",
327 holder_reg, Operand(at));
328 // Restore at is not needed. at is reloaded below.
329 Pop(holder_reg); // Restore holder.
330 // Restore at to holder's context.
331 lw(at, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset));
332 }
333
334 // Check that the security token in the calling global object is
335 // compatible with the security token in the receiving global
336 // object.
337 int token_offset = Context::kHeaderSize +
338 Context::SECURITY_TOKEN_INDEX * kPointerSize;
339
340 lw(scratch, FieldMemOperand(scratch, token_offset));
341 lw(at, FieldMemOperand(at, token_offset));
342 Branch(miss, ne, scratch, Operand(at));
343
344 bind(&same_contexts);
Andrei Popescu31002712010-02-23 13:46:05 +0000345}
346
347
348// ---------------------------------------------------------------------------
349// Instruction macros
350
Andrei Popescu31002712010-02-23 13:46:05 +0000351void MacroAssembler::Addu(Register rd, Register rs, const Operand& rt) {
352 if (rt.is_reg()) {
353 addu(rd, rs, rt.rm());
354 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100355 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000356 addiu(rd, rs, rt.imm32_);
357 } else {
358 // li handles the relocation.
359 ASSERT(!rs.is(at));
360 li(at, rt);
361 addu(rd, rs, at);
362 }
363 }
364}
365
366
Steve Block44f0eee2011-05-26 01:26:41 +0100367void MacroAssembler::Subu(Register rd, Register rs, const Operand& rt) {
368 if (rt.is_reg()) {
369 subu(rd, rs, rt.rm());
370 } else {
371 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
372 addiu(rd, rs, -rt.imm32_); // No subiu instr, use addiu(x, y, -imm).
373 } else {
374 // li handles the relocation.
375 ASSERT(!rs.is(at));
376 li(at, rt);
377 subu(rd, rs, at);
378 }
379 }
380}
381
382
Andrei Popescu31002712010-02-23 13:46:05 +0000383void MacroAssembler::Mul(Register rd, Register rs, const Operand& rt) {
384 if (rt.is_reg()) {
385 mul(rd, rs, rt.rm());
386 } else {
387 // li handles the relocation.
388 ASSERT(!rs.is(at));
389 li(at, rt);
390 mul(rd, rs, at);
391 }
392}
393
394
395void MacroAssembler::Mult(Register rs, const Operand& rt) {
396 if (rt.is_reg()) {
397 mult(rs, rt.rm());
398 } else {
399 // li handles the relocation.
400 ASSERT(!rs.is(at));
401 li(at, rt);
402 mult(rs, at);
403 }
404}
405
406
407void MacroAssembler::Multu(Register rs, const Operand& rt) {
408 if (rt.is_reg()) {
409 multu(rs, rt.rm());
410 } else {
411 // li handles the relocation.
412 ASSERT(!rs.is(at));
413 li(at, rt);
414 multu(rs, at);
415 }
416}
417
418
419void MacroAssembler::Div(Register rs, const Operand& rt) {
420 if (rt.is_reg()) {
421 div(rs, rt.rm());
422 } else {
423 // li handles the relocation.
424 ASSERT(!rs.is(at));
425 li(at, rt);
426 div(rs, at);
427 }
428}
429
430
431void MacroAssembler::Divu(Register rs, const Operand& rt) {
432 if (rt.is_reg()) {
433 divu(rs, rt.rm());
434 } else {
435 // li handles the relocation.
436 ASSERT(!rs.is(at));
437 li(at, rt);
438 divu(rs, at);
439 }
440}
441
442
443void MacroAssembler::And(Register rd, Register rs, const Operand& rt) {
444 if (rt.is_reg()) {
445 and_(rd, rs, rt.rm());
446 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100447 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000448 andi(rd, rs, rt.imm32_);
449 } else {
450 // li handles the relocation.
451 ASSERT(!rs.is(at));
452 li(at, rt);
453 and_(rd, rs, at);
454 }
455 }
456}
457
458
459void MacroAssembler::Or(Register rd, Register rs, const Operand& rt) {
460 if (rt.is_reg()) {
461 or_(rd, rs, rt.rm());
462 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100463 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000464 ori(rd, rs, rt.imm32_);
465 } else {
466 // li handles the relocation.
467 ASSERT(!rs.is(at));
468 li(at, rt);
469 or_(rd, rs, at);
470 }
471 }
472}
473
474
475void MacroAssembler::Xor(Register rd, Register rs, const Operand& rt) {
476 if (rt.is_reg()) {
477 xor_(rd, rs, rt.rm());
478 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100479 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000480 xori(rd, rs, rt.imm32_);
481 } else {
482 // li handles the relocation.
483 ASSERT(!rs.is(at));
484 li(at, rt);
485 xor_(rd, rs, at);
486 }
487 }
488}
489
490
491void MacroAssembler::Nor(Register rd, Register rs, const Operand& rt) {
492 if (rt.is_reg()) {
493 nor(rd, rs, rt.rm());
494 } else {
495 // li handles the relocation.
496 ASSERT(!rs.is(at));
497 li(at, rt);
498 nor(rd, rs, at);
499 }
500}
501
502
503void MacroAssembler::Slt(Register rd, Register rs, const Operand& rt) {
504 if (rt.is_reg()) {
505 slt(rd, rs, rt.rm());
506 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100507 if (is_int16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000508 slti(rd, rs, rt.imm32_);
509 } else {
510 // li handles the relocation.
511 ASSERT(!rs.is(at));
512 li(at, rt);
513 slt(rd, rs, at);
514 }
515 }
516}
517
518
519void MacroAssembler::Sltu(Register rd, Register rs, const Operand& rt) {
520 if (rt.is_reg()) {
521 sltu(rd, rs, rt.rm());
522 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100523 if (is_uint16(rt.imm32_) && !MustUseReg(rt.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000524 sltiu(rd, rs, rt.imm32_);
525 } else {
526 // li handles the relocation.
527 ASSERT(!rs.is(at));
528 li(at, rt);
529 sltu(rd, rs, at);
530 }
531 }
532}
533
534
Steve Block44f0eee2011-05-26 01:26:41 +0100535void MacroAssembler::Ror(Register rd, Register rs, const Operand& rt) {
536 if (mips32r2) {
537 if (rt.is_reg()) {
538 rotrv(rd, rs, rt.rm());
539 } else {
540 rotr(rd, rs, rt.imm32_);
541 }
542 } else {
543 if (rt.is_reg()) {
544 subu(at, zero_reg, rt.rm());
545 sllv(at, rs, at);
546 srlv(rd, rs, rt.rm());
547 or_(rd, rd, at);
548 } else {
549 if (rt.imm32_ == 0) {
550 srl(rd, rs, 0);
551 } else {
552 srl(at, rs, rt.imm32_);
553 sll(rd, rs, (0x20 - rt.imm32_) & 0x1f);
554 or_(rd, rd, at);
555 }
556 }
557 }
Andrei Popescu31002712010-02-23 13:46:05 +0000558}
559
560
Steve Block44f0eee2011-05-26 01:26:41 +0100561//------------Pseudo-instructions-------------
562
Andrei Popescu31002712010-02-23 13:46:05 +0000563void MacroAssembler::li(Register rd, Operand j, bool gen2instr) {
564 ASSERT(!j.is_reg());
Steve Block44f0eee2011-05-26 01:26:41 +0100565 BlockTrampolinePoolScope block_trampoline_pool(this);
566 if (!MustUseReg(j.rmode_) && !gen2instr) {
Andrei Popescu31002712010-02-23 13:46:05 +0000567 // Normal load of an immediate value which does not need Relocation Info.
568 if (is_int16(j.imm32_)) {
569 addiu(rd, zero_reg, j.imm32_);
Steve Block44f0eee2011-05-26 01:26:41 +0100570 } else if (!(j.imm32_ & kHiMask)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000571 ori(rd, zero_reg, j.imm32_);
Steve Block44f0eee2011-05-26 01:26:41 +0100572 } else if (!(j.imm32_ & kImm16Mask)) {
573 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
Andrei Popescu31002712010-02-23 13:46:05 +0000574 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100575 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
576 ori(rd, rd, (j.imm32_ & kImm16Mask));
Andrei Popescu31002712010-02-23 13:46:05 +0000577 }
Steve Block44f0eee2011-05-26 01:26:41 +0100578 } else if (MustUseReg(j.rmode_) || gen2instr) {
579 if (MustUseReg(j.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000580 RecordRelocInfo(j.rmode_, j.imm32_);
581 }
582 // We need always the same number of instructions as we may need to patch
583 // this code to load another value which may need 2 instructions to load.
584 if (is_int16(j.imm32_)) {
585 nop();
586 addiu(rd, zero_reg, j.imm32_);
Steve Block44f0eee2011-05-26 01:26:41 +0100587 } else if (!(j.imm32_ & kHiMask)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000588 nop();
589 ori(rd, zero_reg, j.imm32_);
Steve Block44f0eee2011-05-26 01:26:41 +0100590 } else if (!(j.imm32_ & kImm16Mask)) {
Andrei Popescu31002712010-02-23 13:46:05 +0000591 nop();
Steve Block44f0eee2011-05-26 01:26:41 +0100592 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
Andrei Popescu31002712010-02-23 13:46:05 +0000593 } else {
Steve Block44f0eee2011-05-26 01:26:41 +0100594 lui(rd, (j.imm32_ & kHiMask) >> kLuiShift);
595 ori(rd, rd, (j.imm32_ & kImm16Mask));
Andrei Popescu31002712010-02-23 13:46:05 +0000596 }
597 }
598}
599
600
601// Exception-generating instructions and debugging support
602void MacroAssembler::stop(const char* msg) {
603 // TO_UPGRADE: Just a break for now. Maybe we could upgrade it.
604 // We use the 0x54321 value to be able to find it easily when reading memory.
605 break_(0x54321);
606}
607
608
609void MacroAssembler::MultiPush(RegList regs) {
610 int16_t NumSaved = 0;
611 int16_t NumToPush = NumberOfBitsSet(regs);
612
613 addiu(sp, sp, -4 * NumToPush);
Steve Block6ded16b2010-05-10 14:33:55 +0100614 for (int16_t i = kNumRegisters; i > 0; i--) {
Andrei Popescu31002712010-02-23 13:46:05 +0000615 if ((regs & (1 << i)) != 0) {
616 sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved)));
617 }
618 }
619}
620
621
622void MacroAssembler::MultiPushReversed(RegList regs) {
623 int16_t NumSaved = 0;
624 int16_t NumToPush = NumberOfBitsSet(regs);
625
626 addiu(sp, sp, -4 * NumToPush);
Steve Block6ded16b2010-05-10 14:33:55 +0100627 for (int16_t i = 0; i < kNumRegisters; i++) {
Andrei Popescu31002712010-02-23 13:46:05 +0000628 if ((regs & (1 << i)) != 0) {
629 sw(ToRegister(i), MemOperand(sp, 4 * (NumToPush - ++NumSaved)));
630 }
631 }
632}
633
634
635void MacroAssembler::MultiPop(RegList regs) {
636 int16_t NumSaved = 0;
637
Steve Block6ded16b2010-05-10 14:33:55 +0100638 for (int16_t i = 0; i < kNumRegisters; i++) {
Andrei Popescu31002712010-02-23 13:46:05 +0000639 if ((regs & (1 << i)) != 0) {
640 lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++)));
641 }
642 }
643 addiu(sp, sp, 4 * NumSaved);
644}
645
646
647void MacroAssembler::MultiPopReversed(RegList regs) {
648 int16_t NumSaved = 0;
649
Steve Block6ded16b2010-05-10 14:33:55 +0100650 for (int16_t i = kNumRegisters; i > 0; i--) {
Andrei Popescu31002712010-02-23 13:46:05 +0000651 if ((regs & (1 << i)) != 0) {
652 lw(ToRegister(i), MemOperand(sp, 4 * (NumSaved++)));
653 }
654 }
655 addiu(sp, sp, 4 * NumSaved);
656}
657
658
Steve Block44f0eee2011-05-26 01:26:41 +0100659void MacroAssembler::Ext(Register rt,
660 Register rs,
661 uint16_t pos,
662 uint16_t size) {
663 ASSERT(pos < 32);
664 ASSERT(pos + size < 32);
Andrei Popescu31002712010-02-23 13:46:05 +0000665
Steve Block44f0eee2011-05-26 01:26:41 +0100666 if (mips32r2) {
667 ext_(rt, rs, pos, size);
668 } else {
669 // Move rs to rt and shift it left then right to get the
670 // desired bitfield on the right side and zeroes on the left.
671 sll(rt, rs, 32 - (pos + size));
672 srl(rt, rt, 32 - size);
673 }
674}
675
676
677void MacroAssembler::Ins(Register rt,
678 Register rs,
679 uint16_t pos,
680 uint16_t size) {
681 ASSERT(pos < 32);
682 ASSERT(pos + size < 32);
683
684 if (mips32r2) {
685 ins_(rt, rs, pos, size);
686 } else {
687 ASSERT(!rt.is(t8) && !rs.is(t8));
688
689 srl(t8, rt, pos + size);
690 // The left chunk from rt that needs to
691 // be saved is on the right side of t8.
692 sll(at, t8, pos + size);
693 // The 'at' register now contains the left chunk on
694 // the left (proper position) and zeroes.
695 sll(t8, rt, 32 - pos);
696 // t8 now contains the right chunk on the left and zeroes.
697 srl(t8, t8, 32 - pos);
698 // t8 now contains the right chunk on
699 // the right (proper position) and zeroes.
700 or_(rt, at, t8);
701 // rt now contains the left and right chunks from the original rt
702 // in their proper position and zeroes in the middle.
703 sll(t8, rs, 32 - size);
704 // t8 now contains the chunk from rs on the left and zeroes.
705 srl(t8, t8, 32 - size - pos);
706 // t8 now contains the original chunk from rs in
707 // the middle (proper position).
708 or_(rt, rt, t8);
709 // rt now contains the result of the ins instruction in R2 mode.
710 }
711}
712
713
714void MacroAssembler::Cvt_d_uw(FPURegister fd, FPURegister fs) {
715 // Move the data from fs to t4.
716 mfc1(t4, fs);
717 return Cvt_d_uw(fd, t4);
718}
719
720
721void MacroAssembler::Cvt_d_uw(FPURegister fd, Register rs) {
722 // Convert rs to a FP value in fd (and fd + 1).
723 // We do this by converting rs minus the MSB to avoid sign conversion,
724 // then adding 2^31-1 and 1 to the result.
725
726 ASSERT(!fd.is(f20));
727 ASSERT(!rs.is(t9));
728 ASSERT(!rs.is(t8));
729
730 // Save rs's MSB to t8
731 And(t8, rs, 0x80000000);
732 // Remove rs's MSB.
733 And(t9, rs, 0x7FFFFFFF);
734 // Move t9 to fd
735 mtc1(t9, fd);
736
737 // Convert fd to a real FP value.
738 cvt_d_w(fd, fd);
739
740 Label conversion_done;
741
742 // If rs's MSB was 0, it's done.
743 // Otherwise we need to add that to the FP register.
744 Branch(&conversion_done, eq, t8, Operand(zero_reg));
745
746 // First load 2^31 - 1 into f20.
747 Or(t9, zero_reg, 0x7FFFFFFF);
748 mtc1(t9, f20);
749
750 // Convert it to FP and add it to fd.
751 cvt_d_w(f20, f20);
752 add_d(fd, fd, f20);
753 // Now add 1.
754 Or(t9, zero_reg, 1);
755 mtc1(t9, f20);
756
757 cvt_d_w(f20, f20);
758 add_d(fd, fd, f20);
759 bind(&conversion_done);
760}
761
762
763void MacroAssembler::Trunc_uw_d(FPURegister fd, FPURegister fs) {
764 Trunc_uw_d(fs, t4);
765 mtc1(t4, fd);
766}
767
768
769void MacroAssembler::Trunc_uw_d(FPURegister fd, Register rs) {
770 ASSERT(!fd.is(f22));
771 ASSERT(!rs.is(t6));
772
773 // Load 2^31 into f22.
774 Or(t6, zero_reg, 0x80000000);
775 Cvt_d_uw(f22, t6);
776
777 // Test if f22 > fd.
778 c(OLT, D, fd, f22);
779
780 Label simple_convert;
781 // If fd < 2^31 we can convert it normally.
782 bc1t(&simple_convert);
783
784 // First we subtract 2^31 from fd, then trunc it to rs
785 // and add 2^31 to rs.
786
787 sub_d(f22, fd, f22);
788 trunc_w_d(f22, f22);
789 mfc1(rs, f22);
790 or_(rs, rs, t6);
791
792 Label done;
793 Branch(&done);
794 // Simple conversion.
795 bind(&simple_convert);
796 trunc_w_d(f22, fd);
797 mfc1(rs, f22);
798
799 bind(&done);
800}
801
802
803// Tries to get a signed int32 out of a double precision floating point heap
804// number. Rounds towards 0. Branch to 'not_int32' if the double is out of the
805// 32bits signed integer range.
806// This method implementation differs from the ARM version for performance
807// reasons.
808void MacroAssembler::ConvertToInt32(Register source,
809 Register dest,
810 Register scratch,
811 Register scratch2,
812 FPURegister double_scratch,
813 Label *not_int32) {
814 Label right_exponent, done;
815 // Get exponent word (ENDIAN issues).
816 lw(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset));
817 // Get exponent alone in scratch2.
818 And(scratch2, scratch, Operand(HeapNumber::kExponentMask));
819 // Load dest with zero. We use this either for the final shift or
820 // for the answer.
821 mov(dest, zero_reg);
822 // Check whether the exponent matches a 32 bit signed int that is not a Smi.
823 // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is
824 // the exponent that we are fastest at and also the highest exponent we can
825 // handle here.
826 const uint32_t non_smi_exponent =
827 (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift;
828 // If we have a match of the int32-but-not-Smi exponent then skip some logic.
829 Branch(&right_exponent, eq, scratch2, Operand(non_smi_exponent));
830 // If the exponent is higher than that then go to not_int32 case. This
831 // catches numbers that don't fit in a signed int32, infinities and NaNs.
832 Branch(not_int32, gt, scratch2, Operand(non_smi_exponent));
833
834 // We know the exponent is smaller than 30 (biased). If it is less than
835 // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, ie
836 // it rounds to zero.
837 const uint32_t zero_exponent =
838 (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift;
839 Subu(scratch2, scratch2, Operand(zero_exponent));
840 // Dest already has a Smi zero.
841 Branch(&done, lt, scratch2, Operand(zero_reg));
842 if (!Isolate::Current()->cpu_features()->IsSupported(FPU)) {
843 // We have a shifted exponent between 0 and 30 in scratch2.
844 srl(dest, scratch2, HeapNumber::kExponentShift);
845 // We now have the exponent in dest. Subtract from 30 to get
846 // how much to shift down.
847 li(at, Operand(30));
848 subu(dest, at, dest);
849 }
850 bind(&right_exponent);
851 if (Isolate::Current()->cpu_features()->IsSupported(FPU)) {
852 CpuFeatures::Scope scope(FPU);
853 // MIPS FPU instructions implementing double precision to integer
854 // conversion using round to zero. Since the FP value was qualified
855 // above, the resulting integer should be a legal int32.
856 // The original 'Exponent' word is still in scratch.
857 lwc1(double_scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset));
858 mtc1(scratch, FPURegister::from_code(double_scratch.code() + 1));
859 trunc_w_d(double_scratch, double_scratch);
860 mfc1(dest, double_scratch);
861 } else {
862 // On entry, dest has final downshift, scratch has original sign/exp/mant.
863 // Save sign bit in top bit of dest.
864 And(scratch2, scratch, Operand(0x80000000));
865 Or(dest, dest, Operand(scratch2));
866 // Put back the implicit 1, just above mantissa field.
867 Or(scratch, scratch, Operand(1 << HeapNumber::kExponentShift));
868
869 // Shift up the mantissa bits to take up the space the exponent used to
870 // take. We just orred in the implicit bit so that took care of one and
871 // we want to leave the sign bit 0 so we subtract 2 bits from the shift
872 // distance. But we want to clear the sign-bit so shift one more bit
873 // left, then shift right one bit.
874 const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2;
875 sll(scratch, scratch, shift_distance + 1);
876 srl(scratch, scratch, 1);
877
878 // Get the second half of the double. For some exponents we don't
879 // actually need this because the bits get shifted out again, but
880 // it's probably slower to test than just to do it.
881 lw(scratch2, FieldMemOperand(source, HeapNumber::kMantissaOffset));
882 // Extract the top 10 bits, and insert those bottom 10 bits of scratch.
883 // The width of the field here is the same as the shift amount above.
884 const int field_width = shift_distance;
885 Ext(scratch2, scratch2, 32-shift_distance, field_width);
886 Ins(scratch, scratch2, 0, field_width);
887 // Move down according to the exponent.
888 srlv(scratch, scratch, dest);
889 // Prepare the negative version of our integer.
890 subu(scratch2, zero_reg, scratch);
891 // Trick to check sign bit (msb) held in dest, count leading zero.
892 // 0 indicates negative, save negative version with conditional move.
893 clz(dest, dest);
894 movz(scratch, scratch2, dest);
895 mov(dest, scratch);
896 }
897 bind(&done);
898}
899
900
901// Emulated condtional branches do not emit a nop in the branch delay slot.
902//
903// BRANCH_ARGS_CHECK checks that conditional jump arguments are correct.
904#define BRANCH_ARGS_CHECK(cond, rs, rt) ASSERT( \
905 (cond == cc_always && rs.is(zero_reg) && rt.rm().is(zero_reg)) || \
906 (cond != cc_always && (!rs.is(zero_reg) || !rt.rm().is(zero_reg))))
907
908
909void MacroAssembler::Branch(int16_t offset, BranchDelaySlot bdslot) {
910 b(offset);
911
912 // Emit a nop in the branch delay slot if required.
913 if (bdslot == PROTECT)
914 nop();
915}
916
917
918void MacroAssembler::Branch(int16_t offset, Condition cond, Register rs,
919 const Operand& rt,
920 BranchDelaySlot bdslot) {
921 BRANCH_ARGS_CHECK(cond, rs, rt);
922 ASSERT(!rs.is(zero_reg));
Steve Block6ded16b2010-05-10 14:33:55 +0100923 Register r2 = no_reg;
Steve Block44f0eee2011-05-26 01:26:41 +0100924 Register scratch = at;
925
Andrei Popescu31002712010-02-23 13:46:05 +0000926 if (rt.is_reg()) {
927 // We don't want any other register but scratch clobbered.
928 ASSERT(!scratch.is(rs) && !scratch.is(rt.rm_));
929 r2 = rt.rm_;
Steve Block44f0eee2011-05-26 01:26:41 +0100930 switch (cond) {
931 case cc_always:
932 b(offset);
933 break;
934 case eq:
935 beq(rs, r2, offset);
936 break;
937 case ne:
938 bne(rs, r2, offset);
939 break;
Andrei Popescu31002712010-02-23 13:46:05 +0000940 // Signed comparison
Steve Block44f0eee2011-05-26 01:26:41 +0100941 case greater:
942 if (r2.is(zero_reg)) {
943 bgtz(rs, offset);
944 } else {
945 slt(scratch, r2, rs);
946 bne(scratch, zero_reg, offset);
947 }
948 break;
949 case greater_equal:
950 if (r2.is(zero_reg)) {
951 bgez(rs, offset);
952 } else {
953 slt(scratch, rs, r2);
954 beq(scratch, zero_reg, offset);
955 }
956 break;
957 case less:
958 if (r2.is(zero_reg)) {
959 bltz(rs, offset);
960 } else {
961 slt(scratch, rs, r2);
962 bne(scratch, zero_reg, offset);
963 }
964 break;
965 case less_equal:
966 if (r2.is(zero_reg)) {
967 blez(rs, offset);
968 } else {
969 slt(scratch, r2, rs);
970 beq(scratch, zero_reg, offset);
971 }
972 break;
Andrei Popescu31002712010-02-23 13:46:05 +0000973 // Unsigned comparison.
Steve Block44f0eee2011-05-26 01:26:41 +0100974 case Ugreater:
975 if (r2.is(zero_reg)) {
976 bgtz(rs, offset);
977 } else {
978 sltu(scratch, r2, rs);
979 bne(scratch, zero_reg, offset);
980 }
981 break;
982 case Ugreater_equal:
983 if (r2.is(zero_reg)) {
984 bgez(rs, offset);
985 } else {
986 sltu(scratch, rs, r2);
987 beq(scratch, zero_reg, offset);
988 }
989 break;
990 case Uless:
991 if (r2.is(zero_reg)) {
992 b(offset);
993 } else {
994 sltu(scratch, rs, r2);
995 bne(scratch, zero_reg, offset);
996 }
997 break;
998 case Uless_equal:
999 if (r2.is(zero_reg)) {
1000 b(offset);
1001 } else {
1002 sltu(scratch, r2, rs);
1003 beq(scratch, zero_reg, offset);
1004 }
1005 break;
1006 default:
1007 UNREACHABLE();
1008 }
1009 } else {
1010 // Be careful to always use shifted_branch_offset only just before the
1011 // branch instruction, as the location will be remember for patching the
1012 // target.
1013 switch (cond) {
1014 case cc_always:
1015 b(offset);
1016 break;
1017 case eq:
1018 // We don't want any other register but scratch clobbered.
1019 ASSERT(!scratch.is(rs));
1020 r2 = scratch;
1021 li(r2, rt);
1022 beq(rs, r2, offset);
1023 break;
1024 case ne:
1025 // We don't want any other register but scratch clobbered.
1026 ASSERT(!scratch.is(rs));
1027 r2 = scratch;
1028 li(r2, rt);
1029 bne(rs, r2, offset);
1030 break;
1031 // Signed comparison
1032 case greater:
1033 if (rt.imm32_ == 0) {
1034 bgtz(rs, offset);
1035 } else {
1036 r2 = scratch;
1037 li(r2, rt);
1038 slt(scratch, r2, rs);
1039 bne(scratch, zero_reg, offset);
1040 }
1041 break;
1042 case greater_equal:
1043 if (rt.imm32_ == 0) {
1044 bgez(rs, offset);
1045 } else if (is_int16(rt.imm32_)) {
1046 slti(scratch, rs, rt.imm32_);
1047 beq(scratch, zero_reg, offset);
1048 } else {
1049 r2 = scratch;
1050 li(r2, rt);
1051 sltu(scratch, rs, r2);
1052 beq(scratch, zero_reg, offset);
1053 }
1054 break;
1055 case less:
1056 if (rt.imm32_ == 0) {
1057 bltz(rs, offset);
1058 } else if (is_int16(rt.imm32_)) {
1059 slti(scratch, rs, rt.imm32_);
1060 bne(scratch, zero_reg, offset);
1061 } else {
1062 r2 = scratch;
1063 li(r2, rt);
1064 slt(scratch, rs, r2);
1065 bne(scratch, zero_reg, offset);
1066 }
1067 break;
1068 case less_equal:
1069 if (rt.imm32_ == 0) {
1070 blez(rs, offset);
1071 } else {
1072 r2 = scratch;
1073 li(r2, rt);
1074 slt(scratch, r2, rs);
1075 beq(scratch, zero_reg, offset);
1076 }
1077 break;
1078 // Unsigned comparison.
1079 case Ugreater:
1080 if (rt.imm32_ == 0) {
1081 bgtz(rs, offset);
1082 } else {
1083 r2 = scratch;
1084 li(r2, rt);
1085 sltu(scratch, r2, rs);
1086 bne(scratch, zero_reg, offset);
1087 }
1088 break;
1089 case Ugreater_equal:
1090 if (rt.imm32_ == 0) {
1091 bgez(rs, offset);
1092 } else if (is_int16(rt.imm32_)) {
1093 sltiu(scratch, rs, rt.imm32_);
1094 beq(scratch, zero_reg, offset);
1095 } else {
1096 r2 = scratch;
1097 li(r2, rt);
1098 sltu(scratch, rs, r2);
1099 beq(scratch, zero_reg, offset);
1100 }
1101 break;
1102 case Uless:
1103 if (rt.imm32_ == 0) {
1104 b(offset);
1105 } else if (is_int16(rt.imm32_)) {
1106 sltiu(scratch, rs, rt.imm32_);
1107 bne(scratch, zero_reg, offset);
1108 } else {
1109 r2 = scratch;
1110 li(r2, rt);
1111 sltu(scratch, rs, r2);
1112 bne(scratch, zero_reg, offset);
1113 }
1114 break;
1115 case Uless_equal:
1116 if (rt.imm32_ == 0) {
1117 b(offset);
1118 } else {
1119 r2 = scratch;
1120 li(r2, rt);
1121 sltu(scratch, r2, rs);
1122 beq(scratch, zero_reg, offset);
1123 }
1124 break;
1125 default:
1126 UNREACHABLE();
1127 }
Andrei Popescu31002712010-02-23 13:46:05 +00001128 }
Steve Block44f0eee2011-05-26 01:26:41 +01001129 // Emit a nop in the branch delay slot if required.
1130 if (bdslot == PROTECT)
1131 nop();
Andrei Popescu31002712010-02-23 13:46:05 +00001132}
1133
1134
Steve Block44f0eee2011-05-26 01:26:41 +01001135void MacroAssembler::Branch(Label* L, BranchDelaySlot bdslot) {
Andrei Popescu31002712010-02-23 13:46:05 +00001136 // We use branch_offset as an argument for the branch instructions to be sure
1137 // it is called just before generating the branch instruction, as needed.
1138
Steve Block44f0eee2011-05-26 01:26:41 +01001139 b(shifted_branch_offset(L, false));
Andrei Popescu31002712010-02-23 13:46:05 +00001140
Steve Block44f0eee2011-05-26 01:26:41 +01001141 // Emit a nop in the branch delay slot if required.
1142 if (bdslot == PROTECT)
1143 nop();
Andrei Popescu31002712010-02-23 13:46:05 +00001144}
1145
1146
Steve Block44f0eee2011-05-26 01:26:41 +01001147void MacroAssembler::Branch(Label* L, Condition cond, Register rs,
1148 const Operand& rt,
1149 BranchDelaySlot bdslot) {
1150 BRANCH_ARGS_CHECK(cond, rs, rt);
1151
1152 int32_t offset;
1153 Register r2 = no_reg;
1154 Register scratch = at;
1155 if (rt.is_reg()) {
1156 r2 = rt.rm_;
1157 // Be careful to always use shifted_branch_offset only just before the
1158 // branch instruction, as the location will be remember for patching the
1159 // target.
1160 switch (cond) {
1161 case cc_always:
1162 offset = shifted_branch_offset(L, false);
1163 b(offset);
1164 break;
1165 case eq:
1166 offset = shifted_branch_offset(L, false);
1167 beq(rs, r2, offset);
1168 break;
1169 case ne:
1170 offset = shifted_branch_offset(L, false);
1171 bne(rs, r2, offset);
1172 break;
1173 // Signed comparison
1174 case greater:
1175 if (r2.is(zero_reg)) {
1176 offset = shifted_branch_offset(L, false);
1177 bgtz(rs, offset);
1178 } else {
1179 slt(scratch, r2, rs);
1180 offset = shifted_branch_offset(L, false);
1181 bne(scratch, zero_reg, offset);
1182 }
1183 break;
1184 case greater_equal:
1185 if (r2.is(zero_reg)) {
1186 offset = shifted_branch_offset(L, false);
1187 bgez(rs, offset);
1188 } else {
1189 slt(scratch, rs, r2);
1190 offset = shifted_branch_offset(L, false);
1191 beq(scratch, zero_reg, offset);
1192 }
1193 break;
1194 case less:
1195 if (r2.is(zero_reg)) {
1196 offset = shifted_branch_offset(L, false);
1197 bltz(rs, offset);
1198 } else {
1199 slt(scratch, rs, r2);
1200 offset = shifted_branch_offset(L, false);
1201 bne(scratch, zero_reg, offset);
1202 }
1203 break;
1204 case less_equal:
1205 if (r2.is(zero_reg)) {
1206 offset = shifted_branch_offset(L, false);
1207 blez(rs, offset);
1208 } else {
1209 slt(scratch, r2, rs);
1210 offset = shifted_branch_offset(L, false);
1211 beq(scratch, zero_reg, offset);
1212 }
1213 break;
1214 // Unsigned comparison.
1215 case Ugreater:
1216 if (r2.is(zero_reg)) {
1217 offset = shifted_branch_offset(L, false);
1218 bgtz(rs, offset);
1219 } else {
1220 sltu(scratch, r2, rs);
1221 offset = shifted_branch_offset(L, false);
1222 bne(scratch, zero_reg, offset);
1223 }
1224 break;
1225 case Ugreater_equal:
1226 if (r2.is(zero_reg)) {
1227 offset = shifted_branch_offset(L, false);
1228 bgez(rs, offset);
1229 } else {
1230 sltu(scratch, rs, r2);
1231 offset = shifted_branch_offset(L, false);
1232 beq(scratch, zero_reg, offset);
1233 }
1234 break;
1235 case Uless:
1236 if (r2.is(zero_reg)) {
1237 offset = shifted_branch_offset(L, false);
1238 b(offset);
1239 } else {
1240 sltu(scratch, rs, r2);
1241 offset = shifted_branch_offset(L, false);
1242 bne(scratch, zero_reg, offset);
1243 }
1244 break;
1245 case Uless_equal:
1246 if (r2.is(zero_reg)) {
1247 offset = shifted_branch_offset(L, false);
1248 b(offset);
1249 } else {
1250 sltu(scratch, r2, rs);
1251 offset = shifted_branch_offset(L, false);
1252 beq(scratch, zero_reg, offset);
1253 }
1254 break;
1255 default:
1256 UNREACHABLE();
1257 }
1258 } else {
1259 // Be careful to always use shifted_branch_offset only just before the
1260 // branch instruction, as the location will be remember for patching the
1261 // target.
1262 switch (cond) {
1263 case cc_always:
1264 offset = shifted_branch_offset(L, false);
1265 b(offset);
1266 break;
1267 case eq:
1268 r2 = scratch;
1269 li(r2, rt);
1270 offset = shifted_branch_offset(L, false);
1271 beq(rs, r2, offset);
1272 break;
1273 case ne:
1274 r2 = scratch;
1275 li(r2, rt);
1276 offset = shifted_branch_offset(L, false);
1277 bne(rs, r2, offset);
1278 break;
1279 // Signed comparison
1280 case greater:
1281 if (rt.imm32_ == 0) {
1282 offset = shifted_branch_offset(L, false);
1283 bgtz(rs, offset);
1284 } else {
1285 r2 = scratch;
1286 li(r2, rt);
1287 slt(scratch, r2, rs);
1288 offset = shifted_branch_offset(L, false);
1289 bne(scratch, zero_reg, offset);
1290 }
1291 break;
1292 case greater_equal:
1293 if (rt.imm32_ == 0) {
1294 offset = shifted_branch_offset(L, false);
1295 bgez(rs, offset);
1296 } else if (is_int16(rt.imm32_)) {
1297 slti(scratch, rs, rt.imm32_);
1298 offset = shifted_branch_offset(L, false);
1299 beq(scratch, zero_reg, offset);
1300 } else {
1301 r2 = scratch;
1302 li(r2, rt);
1303 sltu(scratch, rs, r2);
1304 offset = shifted_branch_offset(L, false);
1305 beq(scratch, zero_reg, offset);
1306 }
1307 break;
1308 case less:
1309 if (rt.imm32_ == 0) {
1310 offset = shifted_branch_offset(L, false);
1311 bltz(rs, offset);
1312 } else if (is_int16(rt.imm32_)) {
1313 slti(scratch, rs, rt.imm32_);
1314 offset = shifted_branch_offset(L, false);
1315 bne(scratch, zero_reg, offset);
1316 } else {
1317 r2 = scratch;
1318 li(r2, rt);
1319 slt(scratch, rs, r2);
1320 offset = shifted_branch_offset(L, false);
1321 bne(scratch, zero_reg, offset);
1322 }
1323 break;
1324 case less_equal:
1325 if (rt.imm32_ == 0) {
1326 offset = shifted_branch_offset(L, false);
1327 blez(rs, offset);
1328 } else {
1329 r2 = scratch;
1330 li(r2, rt);
1331 slt(scratch, r2, rs);
1332 offset = shifted_branch_offset(L, false);
1333 beq(scratch, zero_reg, offset);
1334 }
1335 break;
1336 // Unsigned comparison.
1337 case Ugreater:
1338 if (rt.imm32_ == 0) {
1339 offset = shifted_branch_offset(L, false);
1340 bgtz(rs, offset);
1341 } else {
1342 r2 = scratch;
1343 li(r2, rt);
1344 sltu(scratch, r2, rs);
1345 offset = shifted_branch_offset(L, false);
1346 bne(scratch, zero_reg, offset);
1347 }
1348 break;
1349 case Ugreater_equal:
1350 if (rt.imm32_ == 0) {
1351 offset = shifted_branch_offset(L, false);
1352 bgez(rs, offset);
1353 } else if (is_int16(rt.imm32_)) {
1354 sltiu(scratch, rs, rt.imm32_);
1355 offset = shifted_branch_offset(L, false);
1356 beq(scratch, zero_reg, offset);
1357 } else {
1358 r2 = scratch;
1359 li(r2, rt);
1360 sltu(scratch, rs, r2);
1361 offset = shifted_branch_offset(L, false);
1362 beq(scratch, zero_reg, offset);
1363 }
1364 break;
1365 case Uless:
1366 if (rt.imm32_ == 0) {
1367 offset = shifted_branch_offset(L, false);
1368 b(offset);
1369 } else if (is_int16(rt.imm32_)) {
1370 sltiu(scratch, rs, rt.imm32_);
1371 offset = shifted_branch_offset(L, false);
1372 bne(scratch, zero_reg, offset);
1373 } else {
1374 r2 = scratch;
1375 li(r2, rt);
1376 sltu(scratch, rs, r2);
1377 offset = shifted_branch_offset(L, false);
1378 bne(scratch, zero_reg, offset);
1379 }
1380 break;
1381 case Uless_equal:
1382 if (rt.imm32_ == 0) {
1383 offset = shifted_branch_offset(L, false);
1384 b(offset);
1385 } else {
1386 r2 = scratch;
1387 li(r2, rt);
1388 sltu(scratch, r2, rs);
1389 offset = shifted_branch_offset(L, false);
1390 beq(scratch, zero_reg, offset);
1391 }
1392 break;
1393 default:
1394 UNREACHABLE();
1395 }
1396 }
1397 // Check that offset could actually hold on an int16_t.
1398 ASSERT(is_int16(offset));
1399 // Emit a nop in the branch delay slot if required.
1400 if (bdslot == PROTECT)
1401 nop();
1402}
1403
1404
Andrei Popescu31002712010-02-23 13:46:05 +00001405// We need to use a bgezal or bltzal, but they can't be used directly with the
1406// slt instructions. We could use sub or add instead but we would miss overflow
1407// cases, so we keep slt and add an intermediate third instruction.
Steve Block44f0eee2011-05-26 01:26:41 +01001408void MacroAssembler::BranchAndLink(int16_t offset,
1409 BranchDelaySlot bdslot) {
1410 bal(offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001411
Steve Block44f0eee2011-05-26 01:26:41 +01001412 // Emit a nop in the branch delay slot if required.
1413 if (bdslot == PROTECT)
1414 nop();
Andrei Popescu31002712010-02-23 13:46:05 +00001415}
1416
1417
Steve Block44f0eee2011-05-26 01:26:41 +01001418void MacroAssembler::BranchAndLink(int16_t offset, Condition cond, Register rs,
1419 const Operand& rt,
1420 BranchDelaySlot bdslot) {
1421 BRANCH_ARGS_CHECK(cond, rs, rt);
Steve Block6ded16b2010-05-10 14:33:55 +01001422 Register r2 = no_reg;
Steve Block44f0eee2011-05-26 01:26:41 +01001423 Register scratch = at;
1424
Andrei Popescu31002712010-02-23 13:46:05 +00001425 if (rt.is_reg()) {
1426 r2 = rt.rm_;
1427 } else if (cond != cc_always) {
1428 r2 = scratch;
1429 li(r2, rt);
1430 }
1431
1432 switch (cond) {
1433 case cc_always:
Steve Block44f0eee2011-05-26 01:26:41 +01001434 bal(offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001435 break;
1436 case eq:
1437 bne(rs, r2, 2);
1438 nop();
Steve Block44f0eee2011-05-26 01:26:41 +01001439 bal(offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001440 break;
1441 case ne:
1442 beq(rs, r2, 2);
1443 nop();
Steve Block44f0eee2011-05-26 01:26:41 +01001444 bal(offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001445 break;
1446
1447 // Signed comparison
1448 case greater:
1449 slt(scratch, r2, rs);
1450 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001451 bgezal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001452 break;
1453 case greater_equal:
1454 slt(scratch, rs, r2);
1455 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001456 bltzal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001457 break;
1458 case less:
1459 slt(scratch, rs, r2);
1460 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001461 bgezal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001462 break;
1463 case less_equal:
1464 slt(scratch, r2, rs);
1465 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001466 bltzal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001467 break;
1468
1469 // Unsigned comparison.
1470 case Ugreater:
1471 sltu(scratch, r2, rs);
1472 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001473 bgezal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001474 break;
1475 case Ugreater_equal:
1476 sltu(scratch, rs, r2);
1477 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001478 bltzal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001479 break;
1480 case Uless:
1481 sltu(scratch, rs, r2);
1482 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001483 bgezal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001484 break;
1485 case Uless_equal:
1486 sltu(scratch, r2, rs);
1487 addiu(scratch, scratch, -1);
Steve Block44f0eee2011-05-26 01:26:41 +01001488 bltzal(scratch, offset);
Andrei Popescu31002712010-02-23 13:46:05 +00001489 break;
1490
1491 default:
1492 UNREACHABLE();
1493 }
Steve Block44f0eee2011-05-26 01:26:41 +01001494 // Emit a nop in the branch delay slot if required.
1495 if (bdslot == PROTECT)
1496 nop();
1497}
1498
1499
1500void MacroAssembler::BranchAndLink(Label* L, BranchDelaySlot bdslot) {
1501 bal(shifted_branch_offset(L, false));
1502
1503 // Emit a nop in the branch delay slot if required.
1504 if (bdslot == PROTECT)
1505 nop();
1506}
1507
1508
1509void MacroAssembler::BranchAndLink(Label* L, Condition cond, Register rs,
1510 const Operand& rt,
1511 BranchDelaySlot bdslot) {
1512 BRANCH_ARGS_CHECK(cond, rs, rt);
1513
1514 int32_t offset;
1515 Register r2 = no_reg;
1516 Register scratch = at;
1517 if (rt.is_reg()) {
1518 r2 = rt.rm_;
1519 } else if (cond != cc_always) {
1520 r2 = scratch;
1521 li(r2, rt);
1522 }
1523
1524 switch (cond) {
1525 case cc_always:
1526 offset = shifted_branch_offset(L, false);
1527 bal(offset);
1528 break;
1529 case eq:
1530 bne(rs, r2, 2);
1531 nop();
1532 offset = shifted_branch_offset(L, false);
1533 bal(offset);
1534 break;
1535 case ne:
1536 beq(rs, r2, 2);
1537 nop();
1538 offset = shifted_branch_offset(L, false);
1539 bal(offset);
1540 break;
1541
1542 // Signed comparison
1543 case greater:
1544 slt(scratch, r2, rs);
1545 addiu(scratch, scratch, -1);
1546 offset = shifted_branch_offset(L, false);
1547 bgezal(scratch, offset);
1548 break;
1549 case greater_equal:
1550 slt(scratch, rs, r2);
1551 addiu(scratch, scratch, -1);
1552 offset = shifted_branch_offset(L, false);
1553 bltzal(scratch, offset);
1554 break;
1555 case less:
1556 slt(scratch, rs, r2);
1557 addiu(scratch, scratch, -1);
1558 offset = shifted_branch_offset(L, false);
1559 bgezal(scratch, offset);
1560 break;
1561 case less_equal:
1562 slt(scratch, r2, rs);
1563 addiu(scratch, scratch, -1);
1564 offset = shifted_branch_offset(L, false);
1565 bltzal(scratch, offset);
1566 break;
1567
1568 // Unsigned comparison.
1569 case Ugreater:
1570 sltu(scratch, r2, rs);
1571 addiu(scratch, scratch, -1);
1572 offset = shifted_branch_offset(L, false);
1573 bgezal(scratch, offset);
1574 break;
1575 case Ugreater_equal:
1576 sltu(scratch, rs, r2);
1577 addiu(scratch, scratch, -1);
1578 offset = shifted_branch_offset(L, false);
1579 bltzal(scratch, offset);
1580 break;
1581 case Uless:
1582 sltu(scratch, rs, r2);
1583 addiu(scratch, scratch, -1);
1584 offset = shifted_branch_offset(L, false);
1585 bgezal(scratch, offset);
1586 break;
1587 case Uless_equal:
1588 sltu(scratch, r2, rs);
1589 addiu(scratch, scratch, -1);
1590 offset = shifted_branch_offset(L, false);
1591 bltzal(scratch, offset);
1592 break;
1593
1594 default:
1595 UNREACHABLE();
1596 }
1597
1598 // Check that offset could actually hold on an int16_t.
1599 ASSERT(is_int16(offset));
1600
1601 // Emit a nop in the branch delay slot if required.
1602 if (bdslot == PROTECT)
1603 nop();
1604}
1605
1606
1607void MacroAssembler::Jump(const Operand& target, BranchDelaySlot bdslot) {
1608 BlockTrampolinePoolScope block_trampoline_pool(this);
1609 if (target.is_reg()) {
1610 jr(target.rm());
1611 } else {
1612 if (!MustUseReg(target.rmode_)) {
1613 j(target.imm32_);
1614 } else {
1615 li(t9, target);
1616 jr(t9);
1617 }
1618 }
1619 // Emit a nop in the branch delay slot if required.
1620 if (bdslot == PROTECT)
1621 nop();
Andrei Popescu31002712010-02-23 13:46:05 +00001622}
1623
1624
1625void MacroAssembler::Jump(const Operand& target,
Steve Block44f0eee2011-05-26 01:26:41 +01001626 Condition cond, Register rs, const Operand& rt,
1627 BranchDelaySlot bdslot) {
1628 BlockTrampolinePoolScope block_trampoline_pool(this);
1629 BRANCH_ARGS_CHECK(cond, rs, rt);
Andrei Popescu31002712010-02-23 13:46:05 +00001630 if (target.is_reg()) {
1631 if (cond == cc_always) {
1632 jr(target.rm());
1633 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001634 Branch(2, NegateCondition(cond), rs, rt);
Andrei Popescu31002712010-02-23 13:46:05 +00001635 jr(target.rm());
1636 }
Steve Block44f0eee2011-05-26 01:26:41 +01001637 } else { // Not register target.
1638 if (!MustUseReg(target.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +00001639 if (cond == cc_always) {
1640 j(target.imm32_);
1641 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001642 Branch(2, NegateCondition(cond), rs, rt);
Steve Block6ded16b2010-05-10 14:33:55 +01001643 j(target.imm32_); // Will generate only one instruction.
Andrei Popescu31002712010-02-23 13:46:05 +00001644 }
Steve Block44f0eee2011-05-26 01:26:41 +01001645 } else { // MustUseReg(target)
1646 li(t9, target);
Andrei Popescu31002712010-02-23 13:46:05 +00001647 if (cond == cc_always) {
Steve Block44f0eee2011-05-26 01:26:41 +01001648 jr(t9);
Andrei Popescu31002712010-02-23 13:46:05 +00001649 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001650 Branch(2, NegateCondition(cond), rs, rt);
1651 jr(t9); // Will generate only one instruction.
Andrei Popescu31002712010-02-23 13:46:05 +00001652 }
1653 }
1654 }
Steve Block44f0eee2011-05-26 01:26:41 +01001655 // Emit a nop in the branch delay slot if required.
1656 if (bdslot == PROTECT)
1657 nop();
Andrei Popescu31002712010-02-23 13:46:05 +00001658}
1659
1660
Steve Block44f0eee2011-05-26 01:26:41 +01001661// Note: To call gcc-compiled C code on mips, you must call thru t9.
1662void MacroAssembler::Call(const Operand& target, BranchDelaySlot bdslot) {
1663 BlockTrampolinePoolScope block_trampoline_pool(this);
1664 if (target.is_reg()) {
1665 jalr(target.rm());
1666 } else { // !target.is_reg()
1667 if (!MustUseReg(target.rmode_)) {
1668 jal(target.imm32_);
1669 } else { // MustUseReg(target)
1670 li(t9, target);
1671 jalr(t9);
1672 }
1673 }
1674 // Emit a nop in the branch delay slot if required.
1675 if (bdslot == PROTECT)
1676 nop();
1677}
1678
1679
1680// Note: To call gcc-compiled C code on mips, you must call thru t9.
Andrei Popescu31002712010-02-23 13:46:05 +00001681void MacroAssembler::Call(const Operand& target,
Steve Block44f0eee2011-05-26 01:26:41 +01001682 Condition cond, Register rs, const Operand& rt,
1683 BranchDelaySlot bdslot) {
1684 BlockTrampolinePoolScope block_trampoline_pool(this);
1685 BRANCH_ARGS_CHECK(cond, rs, rt);
Andrei Popescu31002712010-02-23 13:46:05 +00001686 if (target.is_reg()) {
1687 if (cond == cc_always) {
1688 jalr(target.rm());
1689 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001690 Branch(2, NegateCondition(cond), rs, rt);
Andrei Popescu31002712010-02-23 13:46:05 +00001691 jalr(target.rm());
1692 }
1693 } else { // !target.is_reg()
Steve Block44f0eee2011-05-26 01:26:41 +01001694 if (!MustUseReg(target.rmode_)) {
Andrei Popescu31002712010-02-23 13:46:05 +00001695 if (cond == cc_always) {
1696 jal(target.imm32_);
1697 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001698 Branch(2, NegateCondition(cond), rs, rt);
Steve Block6ded16b2010-05-10 14:33:55 +01001699 jal(target.imm32_); // Will generate only one instruction.
Andrei Popescu31002712010-02-23 13:46:05 +00001700 }
Steve Block44f0eee2011-05-26 01:26:41 +01001701 } else { // MustUseReg(target)
1702 li(t9, target);
Andrei Popescu31002712010-02-23 13:46:05 +00001703 if (cond == cc_always) {
Steve Block44f0eee2011-05-26 01:26:41 +01001704 jalr(t9);
Andrei Popescu31002712010-02-23 13:46:05 +00001705 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01001706 Branch(2, NegateCondition(cond), rs, rt);
1707 jalr(t9); // Will generate only one instruction.
Andrei Popescu31002712010-02-23 13:46:05 +00001708 }
1709 }
1710 }
Steve Block44f0eee2011-05-26 01:26:41 +01001711 // Emit a nop in the branch delay slot if required.
1712 if (bdslot == PROTECT)
1713 nop();
Andrei Popescu31002712010-02-23 13:46:05 +00001714}
1715
1716
Steve Block44f0eee2011-05-26 01:26:41 +01001717void MacroAssembler::Drop(int count,
1718 Condition cond,
1719 Register reg,
1720 const Operand& op) {
1721 if (count <= 0) {
1722 return;
1723 }
1724
1725 Label skip;
1726
1727 if (cond != al) {
1728 Branch(&skip, NegateCondition(cond), reg, op);
1729 }
1730
1731 if (count > 0) {
1732 addiu(sp, sp, count * kPointerSize);
1733 }
1734
1735 if (cond != al) {
1736 bind(&skip);
1737 }
1738}
1739
1740
1741void MacroAssembler::DropAndRet(int drop,
1742 Condition cond,
1743 Register r1,
1744 const Operand& r2) {
1745 // This is a workaround to make sure only one branch instruction is
1746 // generated. It relies on Drop and Ret not creating branches if
1747 // cond == cc_always.
1748 Label skip;
1749 if (cond != cc_always) {
1750 Branch(&skip, NegateCondition(cond), r1, r2);
1751 }
1752
1753 Drop(drop);
1754 Ret();
1755
1756 if (cond != cc_always) {
1757 bind(&skip);
1758 }
1759}
1760
1761
1762void MacroAssembler::Swap(Register reg1,
1763 Register reg2,
1764 Register scratch) {
1765 if (scratch.is(no_reg)) {
1766 Xor(reg1, reg1, Operand(reg2));
1767 Xor(reg2, reg2, Operand(reg1));
1768 Xor(reg1, reg1, Operand(reg2));
1769 } else {
1770 mov(scratch, reg1);
1771 mov(reg1, reg2);
1772 mov(reg2, scratch);
1773 }
Andrei Popescu31002712010-02-23 13:46:05 +00001774}
1775
1776
1777void MacroAssembler::Call(Label* target) {
Steve Block44f0eee2011-05-26 01:26:41 +01001778 BranchAndLink(target);
1779}
1780
1781
1782void MacroAssembler::Move(Register dst, Register src) {
1783 if (!dst.is(src)) {
1784 mov(dst, src);
1785 }
Andrei Popescu31002712010-02-23 13:46:05 +00001786}
1787
1788
Steve Block6ded16b2010-05-10 14:33:55 +01001789#ifdef ENABLE_DEBUGGER_SUPPORT
Steve Block6ded16b2010-05-10 14:33:55 +01001790
Steve Block44f0eee2011-05-26 01:26:41 +01001791void MacroAssembler::DebugBreak() {
1792 ASSERT(allow_stub_calls());
1793 mov(a0, zero_reg);
1794 li(a1, Operand(ExternalReference(Runtime::kDebugBreak, isolate())));
1795 CEntryStub ces(1);
1796 Call(ces.GetCode(), RelocInfo::DEBUG_BREAK);
1797}
1798
1799#endif // ENABLE_DEBUGGER_SUPPORT
Steve Block6ded16b2010-05-10 14:33:55 +01001800
1801
Andrei Popescu31002712010-02-23 13:46:05 +00001802// ---------------------------------------------------------------------------
1803// Exception handling
1804
1805void MacroAssembler::PushTryHandler(CodeLocation try_location,
1806 HandlerType type) {
Steve Block6ded16b2010-05-10 14:33:55 +01001807 // Adjust this code if not the case.
1808 ASSERT(StackHandlerConstants::kSize == 4 * kPointerSize);
1809 // The return address is passed in register ra.
1810 if (try_location == IN_JAVASCRIPT) {
1811 if (type == TRY_CATCH_HANDLER) {
1812 li(t0, Operand(StackHandler::TRY_CATCH));
1813 } else {
1814 li(t0, Operand(StackHandler::TRY_FINALLY));
1815 }
1816 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
1817 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
1818 && StackHandlerConstants::kPCOffset == 3 * kPointerSize
1819 && StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1820 // Save the current handler as the next handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001821 li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Steve Block6ded16b2010-05-10 14:33:55 +01001822 lw(t1, MemOperand(t2));
1823
1824 addiu(sp, sp, -StackHandlerConstants::kSize);
1825 sw(ra, MemOperand(sp, 12));
1826 sw(fp, MemOperand(sp, 8));
1827 sw(t0, MemOperand(sp, 4));
1828 sw(t1, MemOperand(sp, 0));
1829
1830 // Link this handler as the new current one.
1831 sw(sp, MemOperand(t2));
1832
1833 } else {
1834 // Must preserve a0-a3, and s0 (argv).
1835 ASSERT(try_location == IN_JS_ENTRY);
1836 ASSERT(StackHandlerConstants::kStateOffset == 1 * kPointerSize
1837 && StackHandlerConstants::kFPOffset == 2 * kPointerSize
1838 && StackHandlerConstants::kPCOffset == 3 * kPointerSize
1839 && StackHandlerConstants::kNextOffset == 0 * kPointerSize);
1840
1841 // The frame pointer does not point to a JS frame so we save NULL
1842 // for fp. We expect the code throwing an exception to check fp
1843 // before dereferencing it to restore the context.
1844 li(t0, Operand(StackHandler::ENTRY));
1845
1846 // Save the current handler as the next handler.
Steve Block44f0eee2011-05-26 01:26:41 +01001847 li(t2, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
Steve Block6ded16b2010-05-10 14:33:55 +01001848 lw(t1, MemOperand(t2));
1849
1850 addiu(sp, sp, -StackHandlerConstants::kSize);
1851 sw(ra, MemOperand(sp, 12));
1852 sw(zero_reg, MemOperand(sp, 8));
1853 sw(t0, MemOperand(sp, 4));
1854 sw(t1, MemOperand(sp, 0));
1855
1856 // Link this handler as the new current one.
1857 sw(sp, MemOperand(t2));
1858 }
Andrei Popescu31002712010-02-23 13:46:05 +00001859}
1860
1861
1862void MacroAssembler::PopTryHandler() {
Steve Block44f0eee2011-05-26 01:26:41 +01001863 ASSERT_EQ(0, StackHandlerConstants::kNextOffset);
1864 pop(a1);
1865 Addu(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize));
1866 li(at, Operand(ExternalReference(Isolate::k_handler_address, isolate())));
1867 sw(a1, MemOperand(at));
Andrei Popescu31002712010-02-23 13:46:05 +00001868}
1869
1870
Steve Block44f0eee2011-05-26 01:26:41 +01001871void MacroAssembler::AllocateInNewSpace(int object_size,
1872 Register result,
1873 Register scratch1,
1874 Register scratch2,
1875 Label* gc_required,
1876 AllocationFlags flags) {
1877 if (!FLAG_inline_new) {
1878 if (FLAG_debug_code) {
1879 // Trash the registers to simulate an allocation failure.
1880 li(result, 0x7091);
1881 li(scratch1, 0x7191);
1882 li(scratch2, 0x7291);
1883 }
1884 jmp(gc_required);
1885 return;
Steve Block6ded16b2010-05-10 14:33:55 +01001886 }
1887
Steve Block44f0eee2011-05-26 01:26:41 +01001888 ASSERT(!result.is(scratch1));
1889 ASSERT(!result.is(scratch2));
1890 ASSERT(!scratch1.is(scratch2));
1891 ASSERT(!scratch1.is(t9));
1892 ASSERT(!scratch2.is(t9));
1893 ASSERT(!result.is(t9));
Steve Block6ded16b2010-05-10 14:33:55 +01001894
Steve Block44f0eee2011-05-26 01:26:41 +01001895 // Make object size into bytes.
1896 if ((flags & SIZE_IN_WORDS) != 0) {
1897 object_size *= kPointerSize;
1898 }
1899 ASSERT_EQ(0, object_size & kObjectAlignmentMask);
Steve Block6ded16b2010-05-10 14:33:55 +01001900
Steve Block44f0eee2011-05-26 01:26:41 +01001901 // Check relative positions of allocation top and limit addresses.
1902 // ARM adds additional checks to make sure the ldm instruction can be
1903 // used. On MIPS we don't have ldm so we don't need additional checks either.
1904 ExternalReference new_space_allocation_top =
1905 ExternalReference::new_space_allocation_top_address(isolate());
1906 ExternalReference new_space_allocation_limit =
1907 ExternalReference::new_space_allocation_limit_address(isolate());
1908 intptr_t top =
1909 reinterpret_cast<intptr_t>(new_space_allocation_top.address());
1910 intptr_t limit =
1911 reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
1912 ASSERT((limit - top) == kPointerSize);
1913
1914 // Set up allocation top address and object size registers.
1915 Register topaddr = scratch1;
1916 Register obj_size_reg = scratch2;
1917 li(topaddr, Operand(new_space_allocation_top));
1918 li(obj_size_reg, Operand(object_size));
1919
1920 // This code stores a temporary value in t9.
1921 if ((flags & RESULT_CONTAINS_TOP) == 0) {
1922 // Load allocation top into result and allocation limit into t9.
1923 lw(result, MemOperand(topaddr));
1924 lw(t9, MemOperand(topaddr, kPointerSize));
1925 } else {
1926 if (FLAG_debug_code) {
1927 // Assert that result actually contains top on entry. t9 is used
1928 // immediately below so this use of t9 does not cause difference with
1929 // respect to register content between debug and release mode.
1930 lw(t9, MemOperand(topaddr));
1931 Check(eq, "Unexpected allocation top", result, Operand(t9));
1932 }
1933 // Load allocation limit into t9. Result already contains allocation top.
1934 lw(t9, MemOperand(topaddr, limit - top));
1935 }
1936
1937 // Calculate new top and bail out if new space is exhausted. Use result
1938 // to calculate the new top.
1939 Addu(scratch2, result, Operand(obj_size_reg));
1940 Branch(gc_required, Ugreater, scratch2, Operand(t9));
1941 sw(scratch2, MemOperand(topaddr));
1942
1943 // Tag object if requested.
1944 if ((flags & TAG_OBJECT) != 0) {
1945 Addu(result, result, Operand(kHeapObjectTag));
1946 }
Steve Block6ded16b2010-05-10 14:33:55 +01001947}
1948
1949
Steve Block44f0eee2011-05-26 01:26:41 +01001950void MacroAssembler::AllocateInNewSpace(Register object_size,
1951 Register result,
1952 Register scratch1,
1953 Register scratch2,
1954 Label* gc_required,
1955 AllocationFlags flags) {
1956 if (!FLAG_inline_new) {
1957 if (FLAG_debug_code) {
1958 // Trash the registers to simulate an allocation failure.
1959 li(result, 0x7091);
1960 li(scratch1, 0x7191);
1961 li(scratch2, 0x7291);
1962 }
1963 jmp(gc_required);
1964 return;
1965 }
1966
1967 ASSERT(!result.is(scratch1));
1968 ASSERT(!result.is(scratch2));
1969 ASSERT(!scratch1.is(scratch2));
1970 ASSERT(!scratch1.is(t9) && !scratch2.is(t9) && !result.is(t9));
1971
1972 // Check relative positions of allocation top and limit addresses.
1973 // ARM adds additional checks to make sure the ldm instruction can be
1974 // used. On MIPS we don't have ldm so we don't need additional checks either.
1975 ExternalReference new_space_allocation_top =
1976 ExternalReference::new_space_allocation_top_address(isolate());
1977 ExternalReference new_space_allocation_limit =
1978 ExternalReference::new_space_allocation_limit_address(isolate());
1979 intptr_t top =
1980 reinterpret_cast<intptr_t>(new_space_allocation_top.address());
1981 intptr_t limit =
1982 reinterpret_cast<intptr_t>(new_space_allocation_limit.address());
1983 ASSERT((limit - top) == kPointerSize);
1984
1985 // Set up allocation top address and object size registers.
1986 Register topaddr = scratch1;
1987 li(topaddr, Operand(new_space_allocation_top));
1988
1989 // This code stores a temporary value in t9.
1990 if ((flags & RESULT_CONTAINS_TOP) == 0) {
1991 // Load allocation top into result and allocation limit into t9.
1992 lw(result, MemOperand(topaddr));
1993 lw(t9, MemOperand(topaddr, kPointerSize));
1994 } else {
1995 if (FLAG_debug_code) {
1996 // Assert that result actually contains top on entry. t9 is used
1997 // immediately below so this use of t9 does not cause difference with
1998 // respect to register content between debug and release mode.
1999 lw(t9, MemOperand(topaddr));
2000 Check(eq, "Unexpected allocation top", result, Operand(t9));
2001 }
2002 // Load allocation limit into t9. Result already contains allocation top.
2003 lw(t9, MemOperand(topaddr, limit - top));
2004 }
2005
2006 // Calculate new top and bail out if new space is exhausted. Use result
2007 // to calculate the new top. Object size may be in words so a shift is
2008 // required to get the number of bytes.
2009 if ((flags & SIZE_IN_WORDS) != 0) {
2010 sll(scratch2, object_size, kPointerSizeLog2);
2011 Addu(scratch2, result, scratch2);
2012 } else {
2013 Addu(scratch2, result, Operand(object_size));
2014 }
2015 Branch(gc_required, Ugreater, scratch2, Operand(t9));
2016
2017 // Update allocation top. result temporarily holds the new top.
2018 if (FLAG_debug_code) {
2019 And(t9, scratch2, Operand(kObjectAlignmentMask));
2020 Check(eq, "Unaligned allocation in new space", t9, Operand(zero_reg));
2021 }
2022 sw(scratch2, MemOperand(topaddr));
2023
2024 // Tag object if requested.
2025 if ((flags & TAG_OBJECT) != 0) {
2026 Addu(result, result, Operand(kHeapObjectTag));
2027 }
2028}
2029
2030
2031void MacroAssembler::UndoAllocationInNewSpace(Register object,
2032 Register scratch) {
2033 ExternalReference new_space_allocation_top =
2034 ExternalReference::new_space_allocation_top_address(isolate());
2035
2036 // Make sure the object has no tag before resetting top.
2037 And(object, object, Operand(~kHeapObjectTagMask));
2038#ifdef DEBUG
2039 // Check that the object un-allocated is below the current top.
2040 li(scratch, Operand(new_space_allocation_top));
2041 lw(scratch, MemOperand(scratch));
2042 Check(less, "Undo allocation of non allocated memory",
2043 object, Operand(scratch));
2044#endif
2045 // Write the address of the object to un-allocate as the current top.
2046 li(scratch, Operand(new_space_allocation_top));
2047 sw(object, MemOperand(scratch));
2048}
2049
2050
2051void MacroAssembler::AllocateTwoByteString(Register result,
2052 Register length,
2053 Register scratch1,
2054 Register scratch2,
2055 Register scratch3,
2056 Label* gc_required) {
2057 // Calculate the number of bytes needed for the characters in the string while
2058 // observing object alignment.
2059 ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0);
2060 sll(scratch1, length, 1); // Length in bytes, not chars.
2061 addiu(scratch1, scratch1,
2062 kObjectAlignmentMask + SeqTwoByteString::kHeaderSize);
2063 And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
2064
2065 // Allocate two-byte string in new space.
2066 AllocateInNewSpace(scratch1,
2067 result,
2068 scratch2,
2069 scratch3,
2070 gc_required,
2071 TAG_OBJECT);
2072
2073 // Set the map, length and hash field.
2074 InitializeNewString(result,
2075 length,
2076 Heap::kStringMapRootIndex,
2077 scratch1,
2078 scratch2);
2079}
2080
2081
2082void MacroAssembler::AllocateAsciiString(Register result,
2083 Register length,
2084 Register scratch1,
2085 Register scratch2,
2086 Register scratch3,
2087 Label* gc_required) {
2088 // Calculate the number of bytes needed for the characters in the string
2089 // while observing object alignment.
2090 ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0);
2091 ASSERT(kCharSize == 1);
2092 addiu(scratch1, length, kObjectAlignmentMask + SeqAsciiString::kHeaderSize);
2093 And(scratch1, scratch1, Operand(~kObjectAlignmentMask));
2094
2095 // Allocate ASCII string in new space.
2096 AllocateInNewSpace(scratch1,
2097 result,
2098 scratch2,
2099 scratch3,
2100 gc_required,
2101 TAG_OBJECT);
2102
2103 // Set the map, length and hash field.
2104 InitializeNewString(result,
2105 length,
2106 Heap::kAsciiStringMapRootIndex,
2107 scratch1,
2108 scratch2);
2109}
2110
2111
2112void MacroAssembler::AllocateTwoByteConsString(Register result,
2113 Register length,
2114 Register scratch1,
2115 Register scratch2,
2116 Label* gc_required) {
2117 AllocateInNewSpace(ConsString::kSize,
2118 result,
2119 scratch1,
2120 scratch2,
2121 gc_required,
2122 TAG_OBJECT);
2123 InitializeNewString(result,
2124 length,
2125 Heap::kConsStringMapRootIndex,
2126 scratch1,
2127 scratch2);
2128}
2129
2130
2131void MacroAssembler::AllocateAsciiConsString(Register result,
2132 Register length,
2133 Register scratch1,
2134 Register scratch2,
2135 Label* gc_required) {
2136 AllocateInNewSpace(ConsString::kSize,
2137 result,
2138 scratch1,
2139 scratch2,
2140 gc_required,
2141 TAG_OBJECT);
2142 InitializeNewString(result,
2143 length,
2144 Heap::kConsAsciiStringMapRootIndex,
2145 scratch1,
2146 scratch2);
2147}
2148
2149
2150// Allocates a heap number or jumps to the label if the young space is full and
2151// a scavenge is needed.
2152void MacroAssembler::AllocateHeapNumber(Register result,
2153 Register scratch1,
2154 Register scratch2,
2155 Register heap_number_map,
2156 Label* need_gc) {
2157 // Allocate an object in the heap for the heap number and tag it as a heap
2158 // object.
2159 AllocateInNewSpace(HeapNumber::kSize,
2160 result,
2161 scratch1,
2162 scratch2,
2163 need_gc,
2164 TAG_OBJECT);
2165
2166 // Store heap number map in the allocated object.
2167 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
2168 sw(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset));
2169}
2170
2171
2172void MacroAssembler::AllocateHeapNumberWithValue(Register result,
2173 FPURegister value,
2174 Register scratch1,
2175 Register scratch2,
2176 Label* gc_required) {
2177 LoadRoot(t6, Heap::kHeapNumberMapRootIndex);
2178 AllocateHeapNumber(result, scratch1, scratch2, t6, gc_required);
2179 sdc1(value, FieldMemOperand(result, HeapNumber::kValueOffset));
2180}
2181
2182
2183// Copies a fixed number of fields of heap objects from src to dst.
2184void MacroAssembler::CopyFields(Register dst,
2185 Register src,
2186 RegList temps,
2187 int field_count) {
2188 ASSERT((temps & dst.bit()) == 0);
2189 ASSERT((temps & src.bit()) == 0);
2190 // Primitive implementation using only one temporary register.
2191
2192 Register tmp = no_reg;
2193 // Find a temp register in temps list.
2194 for (int i = 0; i < kNumRegisters; i++) {
2195 if ((temps & (1 << i)) != 0) {
2196 tmp.code_ = i;
2197 break;
2198 }
2199 }
2200 ASSERT(!tmp.is(no_reg));
2201
2202 for (int i = 0; i < field_count; i++) {
2203 lw(tmp, FieldMemOperand(src, i * kPointerSize));
2204 sw(tmp, FieldMemOperand(dst, i * kPointerSize));
2205 }
2206}
2207
2208
2209void MacroAssembler::CheckMap(Register obj,
2210 Register scratch,
2211 Handle<Map> map,
2212 Label* fail,
2213 bool is_heap_object) {
2214 if (!is_heap_object) {
2215 JumpIfSmi(obj, fail);
2216 }
2217 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2218 li(at, Operand(map));
2219 Branch(fail, ne, scratch, Operand(at));
2220}
2221
2222
2223void MacroAssembler::CheckMap(Register obj,
2224 Register scratch,
2225 Heap::RootListIndex index,
2226 Label* fail,
2227 bool is_heap_object) {
2228 if (!is_heap_object) {
2229 JumpIfSmi(obj, fail);
2230 }
2231 lw(scratch, FieldMemOperand(obj, HeapObject::kMapOffset));
2232 LoadRoot(at, index);
2233 Branch(fail, ne, scratch, Operand(at));
Steve Block6ded16b2010-05-10 14:33:55 +01002234}
2235
2236
2237// -----------------------------------------------------------------------------
2238// JavaScript invokes
2239
2240void MacroAssembler::InvokePrologue(const ParameterCount& expected,
2241 const ParameterCount& actual,
2242 Handle<Code> code_constant,
2243 Register code_reg,
2244 Label* done,
Steve Block44f0eee2011-05-26 01:26:41 +01002245 InvokeFlag flag,
2246 PostCallGenerator* post_call_generator) {
Steve Block6ded16b2010-05-10 14:33:55 +01002247 bool definitely_matches = false;
2248 Label regular_invoke;
2249
2250 // Check whether the expected and actual arguments count match. If not,
2251 // setup registers according to contract with ArgumentsAdaptorTrampoline:
2252 // a0: actual arguments count
2253 // a1: function (passed through to callee)
2254 // a2: expected arguments count
2255 // a3: callee code entry
2256
2257 // The code below is made a lot easier because the calling code already sets
2258 // up actual and expected registers according to the contract if values are
2259 // passed in registers.
2260 ASSERT(actual.is_immediate() || actual.reg().is(a0));
2261 ASSERT(expected.is_immediate() || expected.reg().is(a2));
2262 ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(a3));
2263
2264 if (expected.is_immediate()) {
2265 ASSERT(actual.is_immediate());
2266 if (expected.immediate() == actual.immediate()) {
2267 definitely_matches = true;
2268 } else {
2269 li(a0, Operand(actual.immediate()));
2270 const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel;
2271 if (expected.immediate() == sentinel) {
2272 // Don't worry about adapting arguments for builtins that
2273 // don't want that done. Skip adaption code by making it look
2274 // like we have a match between expected and actual number of
2275 // arguments.
2276 definitely_matches = true;
2277 } else {
2278 li(a2, Operand(expected.immediate()));
2279 }
2280 }
Steve Block6ded16b2010-05-10 14:33:55 +01002281 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01002282 if (actual.is_immediate()) {
2283 Branch(&regular_invoke, eq, expected.reg(), Operand(actual.immediate()));
2284 li(a0, Operand(actual.immediate()));
2285 } else {
2286 Branch(&regular_invoke, eq, expected.reg(), Operand(actual.reg()));
2287 }
Steve Block6ded16b2010-05-10 14:33:55 +01002288 }
2289
2290 if (!definitely_matches) {
2291 if (!code_constant.is_null()) {
2292 li(a3, Operand(code_constant));
2293 addiu(a3, a3, Code::kHeaderSize - kHeapObjectTag);
2294 }
2295
Steve Block44f0eee2011-05-26 01:26:41 +01002296 Handle<Code> adaptor =
2297 isolate()->builtins()->ArgumentsAdaptorTrampoline();
Steve Block6ded16b2010-05-10 14:33:55 +01002298 if (flag == CALL_FUNCTION) {
Steve Block44f0eee2011-05-26 01:26:41 +01002299 Call(adaptor, RelocInfo::CODE_TARGET);
2300 if (post_call_generator != NULL) post_call_generator->Generate();
2301 jmp(done);
Steve Block6ded16b2010-05-10 14:33:55 +01002302 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01002303 Jump(adaptor, RelocInfo::CODE_TARGET);
Steve Block6ded16b2010-05-10 14:33:55 +01002304 }
2305 bind(&regular_invoke);
2306 }
2307}
2308
Steve Block44f0eee2011-05-26 01:26:41 +01002309
Steve Block6ded16b2010-05-10 14:33:55 +01002310void MacroAssembler::InvokeCode(Register code,
2311 const ParameterCount& expected,
2312 const ParameterCount& actual,
Steve Block44f0eee2011-05-26 01:26:41 +01002313 InvokeFlag flag,
2314 PostCallGenerator* post_call_generator) {
Steve Block6ded16b2010-05-10 14:33:55 +01002315 Label done;
2316
Steve Block44f0eee2011-05-26 01:26:41 +01002317 InvokePrologue(expected, actual, Handle<Code>::null(), code, &done, flag,
2318 post_call_generator);
Steve Block6ded16b2010-05-10 14:33:55 +01002319 if (flag == CALL_FUNCTION) {
2320 Call(code);
2321 } else {
2322 ASSERT(flag == JUMP_FUNCTION);
2323 Jump(code);
2324 }
2325 // Continue here if InvokePrologue does handle the invocation due to
2326 // mismatched parameter counts.
2327 bind(&done);
2328}
2329
2330
2331void MacroAssembler::InvokeCode(Handle<Code> code,
2332 const ParameterCount& expected,
2333 const ParameterCount& actual,
2334 RelocInfo::Mode rmode,
2335 InvokeFlag flag) {
2336 Label done;
2337
2338 InvokePrologue(expected, actual, code, no_reg, &done, flag);
2339 if (flag == CALL_FUNCTION) {
2340 Call(code, rmode);
2341 } else {
2342 Jump(code, rmode);
2343 }
2344 // Continue here if InvokePrologue does handle the invocation due to
2345 // mismatched parameter counts.
2346 bind(&done);
2347}
2348
2349
2350void MacroAssembler::InvokeFunction(Register function,
2351 const ParameterCount& actual,
Steve Block44f0eee2011-05-26 01:26:41 +01002352 InvokeFlag flag,
2353 PostCallGenerator* post_call_generator) {
Steve Block6ded16b2010-05-10 14:33:55 +01002354 // Contract with called JS functions requires that function is passed in a1.
2355 ASSERT(function.is(a1));
2356 Register expected_reg = a2;
2357 Register code_reg = a3;
2358
2359 lw(code_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
2360 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
2361 lw(expected_reg,
2362 FieldMemOperand(code_reg,
2363 SharedFunctionInfo::kFormalParameterCountOffset));
Steve Block44f0eee2011-05-26 01:26:41 +01002364 sra(expected_reg, expected_reg, kSmiTagSize);
2365 lw(code_reg, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
Steve Block6ded16b2010-05-10 14:33:55 +01002366
2367 ParameterCount expected(expected_reg);
Steve Block44f0eee2011-05-26 01:26:41 +01002368 InvokeCode(code_reg, expected, actual, flag, post_call_generator);
2369}
2370
2371
2372void MacroAssembler::InvokeFunction(JSFunction* function,
2373 const ParameterCount& actual,
2374 InvokeFlag flag) {
2375 ASSERT(function->is_compiled());
2376
2377 // Get the function and setup the context.
2378 li(a1, Operand(Handle<JSFunction>(function)));
2379 lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
2380
2381 // Invoke the cached code.
2382 Handle<Code> code(function->code());
2383 ParameterCount expected(function->shared()->formal_parameter_count());
2384 if (V8::UseCrankshaft()) {
2385 UNIMPLEMENTED_MIPS();
2386 } else {
2387 InvokeCode(code, expected, actual, RelocInfo::CODE_TARGET, flag);
2388 }
2389}
2390
2391
2392void MacroAssembler::IsObjectJSObjectType(Register heap_object,
2393 Register map,
2394 Register scratch,
2395 Label* fail) {
2396 lw(map, FieldMemOperand(heap_object, HeapObject::kMapOffset));
2397 IsInstanceJSObjectType(map, scratch, fail);
2398}
2399
2400
2401void MacroAssembler::IsInstanceJSObjectType(Register map,
2402 Register scratch,
2403 Label* fail) {
2404 lbu(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset));
2405 Branch(fail, lt, scratch, Operand(FIRST_JS_OBJECT_TYPE));
2406 Branch(fail, gt, scratch, Operand(LAST_JS_OBJECT_TYPE));
2407}
2408
2409
2410void MacroAssembler::IsObjectJSStringType(Register object,
2411 Register scratch,
2412 Label* fail) {
2413 ASSERT(kNotStringTag != 0);
2414
2415 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
2416 lbu(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2417 And(scratch, scratch, Operand(kIsNotStringMask));
2418 Branch(fail, ne, scratch, Operand(zero_reg));
Steve Block6ded16b2010-05-10 14:33:55 +01002419}
2420
2421
2422// ---------------------------------------------------------------------------
2423// Support functions.
2424
Steve Block44f0eee2011-05-26 01:26:41 +01002425
2426void MacroAssembler::TryGetFunctionPrototype(Register function,
2427 Register result,
2428 Register scratch,
2429 Label* miss) {
2430 // Check that the receiver isn't a smi.
2431 JumpIfSmi(function, miss);
2432
2433 // Check that the function really is a function. Load map into result reg.
2434 GetObjectType(function, result, scratch);
2435 Branch(miss, ne, scratch, Operand(JS_FUNCTION_TYPE));
2436
2437 // Make sure that the function has an instance prototype.
2438 Label non_instance;
2439 lbu(scratch, FieldMemOperand(result, Map::kBitFieldOffset));
2440 And(scratch, scratch, Operand(1 << Map::kHasNonInstancePrototype));
2441 Branch(&non_instance, ne, scratch, Operand(zero_reg));
2442
2443 // Get the prototype or initial map from the function.
2444 lw(result,
2445 FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2446
2447 // If the prototype or initial map is the hole, don't return it and
2448 // simply miss the cache instead. This will allow us to allocate a
2449 // prototype object on-demand in the runtime system.
2450 LoadRoot(t8, Heap::kTheHoleValueRootIndex);
2451 Branch(miss, eq, result, Operand(t8));
2452
2453 // If the function does not have an initial map, we're done.
2454 Label done;
2455 GetObjectType(result, scratch, scratch);
2456 Branch(&done, ne, scratch, Operand(MAP_TYPE));
2457
2458 // Get the prototype from the initial map.
2459 lw(result, FieldMemOperand(result, Map::kPrototypeOffset));
2460 jmp(&done);
2461
2462 // Non-instance prototype: Fetch prototype from constructor field
2463 // in initial map.
2464 bind(&non_instance);
2465 lw(result, FieldMemOperand(result, Map::kConstructorOffset));
2466
2467 // All done.
2468 bind(&done);
2469}
Steve Block6ded16b2010-05-10 14:33:55 +01002470
2471
Steve Block44f0eee2011-05-26 01:26:41 +01002472void MacroAssembler::GetObjectType(Register object,
2473 Register map,
2474 Register type_reg) {
2475 lw(map, FieldMemOperand(object, HeapObject::kMapOffset));
2476 lbu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset));
2477}
Steve Block6ded16b2010-05-10 14:33:55 +01002478
2479
2480// -----------------------------------------------------------------------------
2481// Runtime calls
2482
Andrei Popescu31002712010-02-23 13:46:05 +00002483void MacroAssembler::CallStub(CodeStub* stub, Condition cond,
2484 Register r1, const Operand& r2) {
Steve Block6ded16b2010-05-10 14:33:55 +01002485 ASSERT(allow_stub_calls()); // Stub calls are not allowed in some stubs.
2486 Call(stub->GetCode(), RelocInfo::CODE_TARGET, cond, r1, r2);
Andrei Popescu31002712010-02-23 13:46:05 +00002487}
2488
2489
Steve Block44f0eee2011-05-26 01:26:41 +01002490void MacroAssembler::TailCallStub(CodeStub* stub) {
2491 ASSERT(allow_stub_calls()); // stub calls are not allowed in some stubs
2492 Jump(stub->GetCode(), RelocInfo::CODE_TARGET);
Andrei Popescu31002712010-02-23 13:46:05 +00002493}
2494
2495
Steve Block6ded16b2010-05-10 14:33:55 +01002496void MacroAssembler::IllegalOperation(int num_arguments) {
2497 if (num_arguments > 0) {
2498 addiu(sp, sp, num_arguments * kPointerSize);
2499 }
2500 LoadRoot(v0, Heap::kUndefinedValueRootIndex);
2501}
2502
2503
Steve Block44f0eee2011-05-26 01:26:41 +01002504void MacroAssembler::IndexFromHash(Register hash,
2505 Register index) {
2506 // If the hash field contains an array index pick it out. The assert checks
2507 // that the constants for the maximum number of digits for an array index
2508 // cached in the hash field and the number of bits reserved for it does not
2509 // conflict.
2510 ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) <
2511 (1 << String::kArrayIndexValueBits));
2512 // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in
2513 // the low kHashShift bits.
2514 STATIC_ASSERT(kSmiTag == 0);
2515 Ext(hash, hash, String::kHashShift, String::kArrayIndexValueBits);
2516 sll(index, hash, kSmiTagSize);
2517}
2518
2519
2520void MacroAssembler::ObjectToDoubleFPURegister(Register object,
2521 FPURegister result,
2522 Register scratch1,
2523 Register scratch2,
2524 Register heap_number_map,
2525 Label* not_number,
2526 ObjectToDoubleFlags flags) {
2527 Label done;
2528 if ((flags & OBJECT_NOT_SMI) == 0) {
2529 Label not_smi;
2530 JumpIfNotSmi(object, &not_smi);
2531 // Remove smi tag and convert to double.
2532 sra(scratch1, object, kSmiTagSize);
2533 mtc1(scratch1, result);
2534 cvt_d_w(result, result);
2535 Branch(&done);
2536 bind(&not_smi);
2537 }
2538 // Check for heap number and load double value from it.
2539 lw(scratch1, FieldMemOperand(object, HeapObject::kMapOffset));
2540 Branch(not_number, ne, scratch1, Operand(heap_number_map));
2541
2542 if ((flags & AVOID_NANS_AND_INFINITIES) != 0) {
2543 // If exponent is all ones the number is either a NaN or +/-Infinity.
2544 Register exponent = scratch1;
2545 Register mask_reg = scratch2;
2546 lw(exponent, FieldMemOperand(object, HeapNumber::kExponentOffset));
2547 li(mask_reg, HeapNumber::kExponentMask);
2548
2549 And(exponent, exponent, mask_reg);
2550 Branch(not_number, eq, exponent, Operand(mask_reg));
2551 }
2552 ldc1(result, FieldMemOperand(object, HeapNumber::kValueOffset));
2553 bind(&done);
2554}
2555
2556
2557
2558void MacroAssembler::SmiToDoubleFPURegister(Register smi,
2559 FPURegister value,
2560 Register scratch1) {
2561 sra(scratch1, smi, kSmiTagSize);
2562 mtc1(scratch1, value);
2563 cvt_d_w(value, value);
2564}
2565
2566
2567void MacroAssembler::CallRuntime(const Runtime::Function* f,
2568 int num_arguments) {
Steve Block6ded16b2010-05-10 14:33:55 +01002569 // All parameters are on the stack. v0 has the return value after call.
2570
2571 // If the expected number of arguments of the runtime function is
2572 // constant, we check that the actual number of arguments match the
2573 // expectation.
2574 if (f->nargs >= 0 && f->nargs != num_arguments) {
2575 IllegalOperation(num_arguments);
2576 return;
2577 }
2578
2579 // TODO(1236192): Most runtime routines don't need the number of
2580 // arguments passed in because it is constant. At some point we
2581 // should remove this need and make the runtime routine entry code
2582 // smarter.
2583 li(a0, num_arguments);
Steve Block44f0eee2011-05-26 01:26:41 +01002584 li(a1, Operand(ExternalReference(f, isolate())));
Steve Block6ded16b2010-05-10 14:33:55 +01002585 CEntryStub stub(1);
2586 CallStub(&stub);
Andrei Popescu31002712010-02-23 13:46:05 +00002587}
2588
2589
Steve Block44f0eee2011-05-26 01:26:41 +01002590void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) {
2591 const Runtime::Function* function = Runtime::FunctionForId(id);
2592 li(a0, Operand(function->nargs));
2593 li(a1, Operand(ExternalReference(function, isolate())));
2594 CEntryStub stub(1);
2595 stub.SaveDoubles();
2596 CallStub(&stub);
2597}
2598
2599
Andrei Popescu31002712010-02-23 13:46:05 +00002600void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) {
Steve Block6ded16b2010-05-10 14:33:55 +01002601 CallRuntime(Runtime::FunctionForId(fid), num_arguments);
2602}
2603
2604
Steve Block44f0eee2011-05-26 01:26:41 +01002605void MacroAssembler::CallExternalReference(const ExternalReference& ext,
2606 int num_arguments) {
2607 li(a0, Operand(num_arguments));
2608 li(a1, Operand(ext));
2609
2610 CEntryStub stub(1);
2611 CallStub(&stub);
2612}
2613
2614
Steve Block6ded16b2010-05-10 14:33:55 +01002615void MacroAssembler::TailCallExternalReference(const ExternalReference& ext,
2616 int num_arguments,
2617 int result_size) {
Steve Block44f0eee2011-05-26 01:26:41 +01002618 // TODO(1236192): Most runtime routines don't need the number of
2619 // arguments passed in because it is constant. At some point we
2620 // should remove this need and make the runtime routine entry code
2621 // smarter.
2622 li(a0, Operand(num_arguments));
2623 JumpToExternalReference(ext);
Andrei Popescu31002712010-02-23 13:46:05 +00002624}
2625
2626
Steve Block6ded16b2010-05-10 14:33:55 +01002627void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid,
Andrei Popescu31002712010-02-23 13:46:05 +00002628 int num_arguments,
2629 int result_size) {
Steve Block44f0eee2011-05-26 01:26:41 +01002630 TailCallExternalReference(ExternalReference(fid, isolate()),
2631 num_arguments,
2632 result_size);
Andrei Popescu31002712010-02-23 13:46:05 +00002633}
2634
2635
Steve Block6ded16b2010-05-10 14:33:55 +01002636void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) {
Steve Block44f0eee2011-05-26 01:26:41 +01002637 li(a1, Operand(builtin));
2638 CEntryStub stub(1);
2639 Jump(stub.GetCode(), RelocInfo::CODE_TARGET);
Andrei Popescu31002712010-02-23 13:46:05 +00002640}
2641
2642
2643void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id,
Steve Block44f0eee2011-05-26 01:26:41 +01002644 InvokeJSFlags flags,
2645 PostCallGenerator* post_call_generator) {
2646 GetBuiltinEntry(t9, id);
2647 if (flags == CALL_JS) {
2648 Call(t9);
2649 if (post_call_generator != NULL) post_call_generator->Generate();
2650 } else {
2651 ASSERT(flags == JUMP_JS);
2652 Jump(t9);
2653 }
2654}
2655
2656
2657void MacroAssembler::GetBuiltinFunction(Register target,
2658 Builtins::JavaScript id) {
2659 // Load the builtins object into target register.
2660 lw(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
2661 lw(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset));
2662 // Load the JavaScript builtin function from the builtins object.
2663 lw(target, FieldMemOperand(target,
2664 JSBuiltinsObject::OffsetOfFunctionWithId(id)));
Andrei Popescu31002712010-02-23 13:46:05 +00002665}
2666
2667
2668void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) {
Steve Block44f0eee2011-05-26 01:26:41 +01002669 ASSERT(!target.is(a1));
2670 GetBuiltinFunction(a1, id);
2671 // Load the code entry point from the builtins object.
2672 lw(target, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
Andrei Popescu31002712010-02-23 13:46:05 +00002673}
2674
2675
2676void MacroAssembler::SetCounter(StatsCounter* counter, int value,
2677 Register scratch1, Register scratch2) {
Steve Block44f0eee2011-05-26 01:26:41 +01002678 if (FLAG_native_code_counters && counter->Enabled()) {
2679 li(scratch1, Operand(value));
2680 li(scratch2, Operand(ExternalReference(counter)));
2681 sw(scratch1, MemOperand(scratch2));
2682 }
Andrei Popescu31002712010-02-23 13:46:05 +00002683}
2684
2685
2686void MacroAssembler::IncrementCounter(StatsCounter* counter, int value,
2687 Register scratch1, Register scratch2) {
Steve Block44f0eee2011-05-26 01:26:41 +01002688 ASSERT(value > 0);
2689 if (FLAG_native_code_counters && counter->Enabled()) {
2690 li(scratch2, Operand(ExternalReference(counter)));
2691 lw(scratch1, MemOperand(scratch2));
2692 Addu(scratch1, scratch1, Operand(value));
2693 sw(scratch1, MemOperand(scratch2));
2694 }
Andrei Popescu31002712010-02-23 13:46:05 +00002695}
2696
2697
2698void MacroAssembler::DecrementCounter(StatsCounter* counter, int value,
2699 Register scratch1, Register scratch2) {
Steve Block44f0eee2011-05-26 01:26:41 +01002700 ASSERT(value > 0);
2701 if (FLAG_native_code_counters && counter->Enabled()) {
2702 li(scratch2, Operand(ExternalReference(counter)));
2703 lw(scratch1, MemOperand(scratch2));
2704 Subu(scratch1, scratch1, Operand(value));
2705 sw(scratch1, MemOperand(scratch2));
2706 }
Andrei Popescu31002712010-02-23 13:46:05 +00002707}
2708
2709
Steve Block6ded16b2010-05-10 14:33:55 +01002710// -----------------------------------------------------------------------------
2711// Debugging
Andrei Popescu31002712010-02-23 13:46:05 +00002712
2713void MacroAssembler::Assert(Condition cc, const char* msg,
2714 Register rs, Operand rt) {
Steve Block44f0eee2011-05-26 01:26:41 +01002715 if (FLAG_debug_code)
2716 Check(cc, msg, rs, rt);
2717}
2718
2719
2720void MacroAssembler::AssertRegisterIsRoot(Register reg,
2721 Heap::RootListIndex index) {
2722 if (FLAG_debug_code) {
2723 LoadRoot(at, index);
2724 Check(eq, "Register did not match expected root", reg, Operand(at));
2725 }
2726}
2727
2728
2729void MacroAssembler::AssertFastElements(Register elements) {
2730 if (FLAG_debug_code) {
2731 ASSERT(!elements.is(at));
2732 Label ok;
2733 Push(elements);
2734 lw(elements, FieldMemOperand(elements, HeapObject::kMapOffset));
2735 LoadRoot(at, Heap::kFixedArrayMapRootIndex);
2736 Branch(&ok, eq, elements, Operand(at));
2737 LoadRoot(at, Heap::kFixedCOWArrayMapRootIndex);
2738 Branch(&ok, eq, elements, Operand(at));
2739 Abort("JSObject with fast elements map has slow elements");
2740 bind(&ok);
2741 Pop(elements);
2742 }
Andrei Popescu31002712010-02-23 13:46:05 +00002743}
2744
2745
2746void MacroAssembler::Check(Condition cc, const char* msg,
2747 Register rs, Operand rt) {
Steve Block44f0eee2011-05-26 01:26:41 +01002748 Label L;
2749 Branch(&L, cc, rs, rt);
2750 Abort(msg);
2751 // will not return here
2752 bind(&L);
Andrei Popescu31002712010-02-23 13:46:05 +00002753}
2754
2755
2756void MacroAssembler::Abort(const char* msg) {
Steve Block44f0eee2011-05-26 01:26:41 +01002757 Label abort_start;
2758 bind(&abort_start);
2759 // We want to pass the msg string like a smi to avoid GC
2760 // problems, however msg is not guaranteed to be aligned
2761 // properly. Instead, we pass an aligned pointer that is
2762 // a proper v8 smi, but also pass the alignment difference
2763 // from the real pointer as a smi.
2764 intptr_t p1 = reinterpret_cast<intptr_t>(msg);
2765 intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag;
2766 ASSERT(reinterpret_cast<Object*>(p0)->IsSmi());
2767#ifdef DEBUG
2768 if (msg != NULL) {
2769 RecordComment("Abort message: ");
2770 RecordComment(msg);
2771 }
2772#endif
2773 // Disable stub call restrictions to always allow calls to abort.
2774 AllowStubCallsScope allow_scope(this, true);
2775
2776 li(a0, Operand(p0));
2777 Push(a0);
2778 li(a0, Operand(Smi::FromInt(p1 - p0)));
2779 Push(a0);
2780 CallRuntime(Runtime::kAbort, 2);
2781 // will not return here
2782 if (is_trampoline_pool_blocked()) {
2783 // If the calling code cares about the exact number of
2784 // instructions generated, we insert padding here to keep the size
2785 // of the Abort macro constant.
2786 // Currently in debug mode with debug_code enabled the number of
2787 // generated instructions is 14, so we use this as a maximum value.
2788 static const int kExpectedAbortInstructions = 14;
2789 int abort_instructions = InstructionsGeneratedSince(&abort_start);
2790 ASSERT(abort_instructions <= kExpectedAbortInstructions);
2791 while (abort_instructions++ < kExpectedAbortInstructions) {
2792 nop();
2793 }
2794 }
2795}
2796
2797
2798void MacroAssembler::LoadContext(Register dst, int context_chain_length) {
2799 if (context_chain_length > 0) {
2800 // Move up the chain of contexts to the context containing the slot.
2801 lw(dst, MemOperand(cp, Context::SlotOffset(Context::CLOSURE_INDEX)));
2802 // Load the function context (which is the incoming, outer context).
2803 lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
2804 for (int i = 1; i < context_chain_length; i++) {
2805 lw(dst, MemOperand(dst, Context::SlotOffset(Context::CLOSURE_INDEX)));
2806 lw(dst, FieldMemOperand(dst, JSFunction::kContextOffset));
2807 }
2808 // The context may be an intermediate context, not a function context.
2809 lw(dst, MemOperand(dst, Context::SlotOffset(Context::FCONTEXT_INDEX)));
2810 } else { // Slot is in the current function context.
2811 // The context may be an intermediate context, not a function context.
2812 lw(dst, MemOperand(cp, Context::SlotOffset(Context::FCONTEXT_INDEX)));
2813 }
2814}
2815
2816
2817void MacroAssembler::LoadGlobalFunction(int index, Register function) {
2818 // Load the global or builtins object from the current context.
2819 lw(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
2820 // Load the global context from the global or builtins object.
2821 lw(function, FieldMemOperand(function,
2822 GlobalObject::kGlobalContextOffset));
2823 // Load the function from the global context.
2824 lw(function, MemOperand(function, Context::SlotOffset(index)));
2825}
2826
2827
2828void MacroAssembler::LoadGlobalFunctionInitialMap(Register function,
2829 Register map,
2830 Register scratch) {
2831 // Load the initial map. The global functions all have initial maps.
2832 lw(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
2833 if (FLAG_debug_code) {
2834 Label ok, fail;
2835 CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, false);
2836 Branch(&ok);
2837 bind(&fail);
2838 Abort("Global functions must have initial map");
2839 bind(&ok);
2840 }
Andrei Popescu31002712010-02-23 13:46:05 +00002841}
2842
Steve Block6ded16b2010-05-10 14:33:55 +01002843
2844void MacroAssembler::EnterFrame(StackFrame::Type type) {
2845 addiu(sp, sp, -5 * kPointerSize);
Steve Block44f0eee2011-05-26 01:26:41 +01002846 li(t8, Operand(Smi::FromInt(type)));
2847 li(t9, Operand(CodeObject()));
Steve Block6ded16b2010-05-10 14:33:55 +01002848 sw(ra, MemOperand(sp, 4 * kPointerSize));
2849 sw(fp, MemOperand(sp, 3 * kPointerSize));
2850 sw(cp, MemOperand(sp, 2 * kPointerSize));
Steve Block44f0eee2011-05-26 01:26:41 +01002851 sw(t8, MemOperand(sp, 1 * kPointerSize));
2852 sw(t9, MemOperand(sp, 0 * kPointerSize));
Steve Block6ded16b2010-05-10 14:33:55 +01002853 addiu(fp, sp, 3 * kPointerSize);
2854}
2855
2856
2857void MacroAssembler::LeaveFrame(StackFrame::Type type) {
2858 mov(sp, fp);
2859 lw(fp, MemOperand(sp, 0 * kPointerSize));
2860 lw(ra, MemOperand(sp, 1 * kPointerSize));
2861 addiu(sp, sp, 2 * kPointerSize);
2862}
2863
2864
Steve Block44f0eee2011-05-26 01:26:41 +01002865void MacroAssembler::EnterExitFrame(Register hold_argc,
Steve Block6ded16b2010-05-10 14:33:55 +01002866 Register hold_argv,
Steve Block44f0eee2011-05-26 01:26:41 +01002867 Register hold_function,
2868 bool save_doubles) {
Steve Block6ded16b2010-05-10 14:33:55 +01002869 // a0 is argc.
Steve Block44f0eee2011-05-26 01:26:41 +01002870 sll(t8, a0, kPointerSizeLog2);
2871 addu(hold_argv, sp, t8);
2872 addiu(hold_argv, hold_argv, -kPointerSize);
Steve Block6ded16b2010-05-10 14:33:55 +01002873
2874 // Compute callee's stack pointer before making changes and save it as
Steve Block44f0eee2011-05-26 01:26:41 +01002875 // t9 register so that it is restored as sp register on exit, thereby
Steve Block6ded16b2010-05-10 14:33:55 +01002876 // popping the args.
Steve Block44f0eee2011-05-26 01:26:41 +01002877 // t9 = sp + kPointerSize * #args
2878 addu(t9, sp, t8);
2879
2880 // Compute the argv pointer and keep it in a callee-saved register.
2881 // This only seems to be needed for crankshaft and may cause problems
2882 // so it's disabled for now.
2883 // Subu(s6, t9, Operand(kPointerSize));
Steve Block6ded16b2010-05-10 14:33:55 +01002884
2885 // Align the stack at this point.
2886 AlignStack(0);
2887
2888 // Save registers.
2889 addiu(sp, sp, -12);
Steve Block44f0eee2011-05-26 01:26:41 +01002890 sw(t9, MemOperand(sp, 8));
Steve Block6ded16b2010-05-10 14:33:55 +01002891 sw(ra, MemOperand(sp, 4));
2892 sw(fp, MemOperand(sp, 0));
2893 mov(fp, sp); // Setup new frame pointer.
2894
Steve Block44f0eee2011-05-26 01:26:41 +01002895 li(t8, Operand(CodeObject()));
2896 Push(t8); // Accessed from ExitFrame::code_slot.
Steve Block6ded16b2010-05-10 14:33:55 +01002897
2898 // Save the frame pointer and the context in top.
Steve Block44f0eee2011-05-26 01:26:41 +01002899 li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
2900 sw(fp, MemOperand(t8));
2901 li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate())));
2902 sw(cp, MemOperand(t8));
Steve Block6ded16b2010-05-10 14:33:55 +01002903
2904 // Setup argc and the builtin function in callee-saved registers.
2905 mov(hold_argc, a0);
2906 mov(hold_function, a1);
Steve Block44f0eee2011-05-26 01:26:41 +01002907
2908 // Optionally save all double registers.
2909 if (save_doubles) {
2910#ifdef DEBUG
2911 int frame_alignment = ActivationFrameAlignment();
2912#endif
2913 // The stack alignment code above made sp unaligned, so add space for one
2914 // more double register and use aligned addresses.
2915 ASSERT(kDoubleSize == frame_alignment);
2916 // Mark the frame as containing doubles by pushing a non-valid return
2917 // address, i.e. 0.
2918 ASSERT(ExitFrameConstants::kMarkerOffset == -2 * kPointerSize);
2919 push(zero_reg); // Marker and alignment word.
2920 int space = FPURegister::kNumRegisters * kDoubleSize + kPointerSize;
2921 Subu(sp, sp, Operand(space));
2922 // Remember: we only need to save every 2nd double FPU value.
2923 for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
2924 FPURegister reg = FPURegister::from_code(i);
2925 sdc1(reg, MemOperand(sp, i * kDoubleSize + kPointerSize));
2926 }
2927 // Note that f0 will be accessible at fp - 2*kPointerSize -
2928 // FPURegister::kNumRegisters * kDoubleSize, since the code slot and the
2929 // alignment word were pushed after the fp.
2930 }
Steve Block6ded16b2010-05-10 14:33:55 +01002931}
2932
2933
Steve Block44f0eee2011-05-26 01:26:41 +01002934void MacroAssembler::LeaveExitFrame(bool save_doubles) {
2935 // Optionally restore all double registers.
2936 if (save_doubles) {
2937 // TODO(regis): Use vldrm instruction.
2938 // Remember: we only need to restore every 2nd double FPU value.
2939 for (int i = 0; i < FPURegister::kNumRegisters; i+=2) {
2940 FPURegister reg = FPURegister::from_code(i);
2941 // Register f30-f31 is just below the marker.
2942 const int offset = ExitFrameConstants::kMarkerOffset;
2943 ldc1(reg, MemOperand(fp,
2944 (i - FPURegister::kNumRegisters) * kDoubleSize + offset));
2945 }
2946 }
2947
Steve Block6ded16b2010-05-10 14:33:55 +01002948 // Clear top frame.
Steve Block44f0eee2011-05-26 01:26:41 +01002949 li(t8, Operand(ExternalReference(Isolate::k_c_entry_fp_address, isolate())));
2950 sw(zero_reg, MemOperand(t8));
Steve Block6ded16b2010-05-10 14:33:55 +01002951
2952 // Restore current context from top and clear it in debug mode.
Steve Block44f0eee2011-05-26 01:26:41 +01002953 li(t8, Operand(ExternalReference(Isolate::k_context_address, isolate())));
2954 lw(cp, MemOperand(t8));
Steve Block6ded16b2010-05-10 14:33:55 +01002955#ifdef DEBUG
Steve Block44f0eee2011-05-26 01:26:41 +01002956 sw(a3, MemOperand(t8));
Steve Block6ded16b2010-05-10 14:33:55 +01002957#endif
2958
2959 // Pop the arguments, restore registers, and return.
2960 mov(sp, fp); // Respect ABI stack constraint.
2961 lw(fp, MemOperand(sp, 0));
2962 lw(ra, MemOperand(sp, 4));
2963 lw(sp, MemOperand(sp, 8));
2964 jr(ra);
2965 nop(); // Branch delay slot nop.
2966}
2967
2968
Steve Block44f0eee2011-05-26 01:26:41 +01002969void MacroAssembler::InitializeNewString(Register string,
2970 Register length,
2971 Heap::RootListIndex map_index,
2972 Register scratch1,
2973 Register scratch2) {
2974 sll(scratch1, length, kSmiTagSize);
2975 LoadRoot(scratch2, map_index);
2976 sw(scratch1, FieldMemOperand(string, String::kLengthOffset));
2977 li(scratch1, Operand(String::kEmptyHashField));
2978 sw(scratch2, FieldMemOperand(string, HeapObject::kMapOffset));
2979 sw(scratch1, FieldMemOperand(string, String::kHashFieldOffset));
2980}
2981
2982
2983int MacroAssembler::ActivationFrameAlignment() {
2984#if defined(V8_HOST_ARCH_MIPS)
2985 // Running on the real platform. Use the alignment as mandated by the local
2986 // environment.
2987 // Note: This will break if we ever start generating snapshots on one Mips
2988 // platform for another Mips platform with a different alignment.
2989 return OS::ActivationFrameAlignment();
2990#else // defined(V8_HOST_ARCH_MIPS)
2991 // If we are using the simulator then we should always align to the expected
2992 // alignment. As the simulator is used to generate snapshots we do not know
2993 // if the target platform will need alignment, so this is controlled from a
2994 // flag.
2995 return FLAG_sim_stack_alignment;
2996#endif // defined(V8_HOST_ARCH_MIPS)
2997}
2998
2999
Steve Block6ded16b2010-05-10 14:33:55 +01003000void MacroAssembler::AlignStack(int offset) {
3001 // On MIPS an offset of 0 aligns to 0 modulo 8 bytes,
3002 // and an offset of 1 aligns to 4 modulo 8 bytes.
Steve Block44f0eee2011-05-26 01:26:41 +01003003#if defined(V8_HOST_ARCH_MIPS)
3004 // Running on the real platform. Use the alignment as mandated by the local
3005 // environment.
3006 // Note: This will break if we ever start generating snapshots on one MIPS
3007 // platform for another MIPS platform with a different alignment.
Steve Block6ded16b2010-05-10 14:33:55 +01003008 int activation_frame_alignment = OS::ActivationFrameAlignment();
Steve Block44f0eee2011-05-26 01:26:41 +01003009#else // defined(V8_HOST_ARCH_MIPS)
3010 // If we are using the simulator then we should always align to the expected
3011 // alignment. As the simulator is used to generate snapshots we do not know
3012 // if the target platform will need alignment, so we will always align at
3013 // this point here.
3014 int activation_frame_alignment = 2 * kPointerSize;
3015#endif // defined(V8_HOST_ARCH_MIPS)
Steve Block6ded16b2010-05-10 14:33:55 +01003016 if (activation_frame_alignment != kPointerSize) {
3017 // This code needs to be made more general if this assert doesn't hold.
3018 ASSERT(activation_frame_alignment == 2 * kPointerSize);
3019 if (offset == 0) {
Steve Block44f0eee2011-05-26 01:26:41 +01003020 andi(t8, sp, activation_frame_alignment - 1);
3021 Push(zero_reg, eq, t8, zero_reg);
Steve Block6ded16b2010-05-10 14:33:55 +01003022 } else {
Steve Block44f0eee2011-05-26 01:26:41 +01003023 andi(t8, sp, activation_frame_alignment - 1);
3024 addiu(t8, t8, -4);
3025 Push(zero_reg, eq, t8, zero_reg);
Steve Block6ded16b2010-05-10 14:33:55 +01003026 }
3027 }
3028}
3029
Steve Block44f0eee2011-05-26 01:26:41 +01003030
3031
3032void MacroAssembler::JumpIfNotPowerOfTwoOrZero(
3033 Register reg,
3034 Register scratch,
3035 Label* not_power_of_two_or_zero) {
3036 Subu(scratch, reg, Operand(1));
3037 Branch(USE_DELAY_SLOT, not_power_of_two_or_zero, lt,
3038 scratch, Operand(zero_reg));
3039 and_(at, scratch, reg); // In the delay slot.
3040 Branch(not_power_of_two_or_zero, ne, at, Operand(zero_reg));
3041}
3042
3043
3044void MacroAssembler::JumpIfNotBothSmi(Register reg1,
3045 Register reg2,
3046 Label* on_not_both_smi) {
3047 STATIC_ASSERT(kSmiTag == 0);
3048 ASSERT_EQ(1, kSmiTagMask);
3049 or_(at, reg1, reg2);
3050 andi(at, at, kSmiTagMask);
3051 Branch(on_not_both_smi, ne, at, Operand(zero_reg));
3052}
3053
3054
3055void MacroAssembler::JumpIfEitherSmi(Register reg1,
3056 Register reg2,
3057 Label* on_either_smi) {
3058 STATIC_ASSERT(kSmiTag == 0);
3059 ASSERT_EQ(1, kSmiTagMask);
3060 // Both Smi tags must be 1 (not Smi).
3061 and_(at, reg1, reg2);
3062 andi(at, at, kSmiTagMask);
3063 Branch(on_either_smi, eq, at, Operand(zero_reg));
3064}
3065
3066
3067void MacroAssembler::AbortIfSmi(Register object) {
3068 STATIC_ASSERT(kSmiTag == 0);
3069 andi(at, object, kSmiTagMask);
3070 Assert(ne, "Operand is a smi", at, Operand(zero_reg));
3071}
3072
3073
3074void MacroAssembler::AbortIfNotSmi(Register object) {
3075 STATIC_ASSERT(kSmiTag == 0);
3076 andi(at, object, kSmiTagMask);
3077 Assert(eq, "Operand is a smi", at, Operand(zero_reg));
3078}
3079
3080
3081void MacroAssembler::AbortIfNotRootValue(Register src,
3082 Heap::RootListIndex root_value_index,
3083 const char* message) {
3084 ASSERT(!src.is(at));
3085 LoadRoot(at, root_value_index);
3086 Assert(eq, message, src, Operand(at));
3087}
3088
3089
3090void MacroAssembler::JumpIfNotHeapNumber(Register object,
3091 Register heap_number_map,
3092 Register scratch,
3093 Label* on_not_heap_number) {
3094 lw(scratch, FieldMemOperand(object, HeapObject::kMapOffset));
3095 AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
3096 Branch(on_not_heap_number, ne, scratch, Operand(heap_number_map));
3097}
3098
3099
3100void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings(
3101 Register first,
3102 Register second,
3103 Register scratch1,
3104 Register scratch2,
3105 Label* failure) {
3106 // Test that both first and second are sequential ASCII strings.
3107 // Assume that they are non-smis.
3108 lw(scratch1, FieldMemOperand(first, HeapObject::kMapOffset));
3109 lw(scratch2, FieldMemOperand(second, HeapObject::kMapOffset));
3110 lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset));
3111 lbu(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset));
3112
3113 JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1,
3114 scratch2,
3115 scratch1,
3116 scratch2,
3117 failure);
3118}
3119
3120
3121void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first,
3122 Register second,
3123 Register scratch1,
3124 Register scratch2,
3125 Label* failure) {
3126 // Check that neither is a smi.
3127 STATIC_ASSERT(kSmiTag == 0);
3128 And(scratch1, first, Operand(second));
3129 And(scratch1, scratch1, Operand(kSmiTagMask));
3130 Branch(failure, eq, scratch1, Operand(zero_reg));
3131 JumpIfNonSmisNotBothSequentialAsciiStrings(first,
3132 second,
3133 scratch1,
3134 scratch2,
3135 failure);
3136}
3137
3138
3139void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii(
3140 Register first,
3141 Register second,
3142 Register scratch1,
3143 Register scratch2,
3144 Label* failure) {
3145 int kFlatAsciiStringMask =
3146 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3147 int kFlatAsciiStringTag = ASCII_STRING_TYPE;
3148 ASSERT(kFlatAsciiStringTag <= 0xffff); // Ensure this fits 16-bit immed.
3149 andi(scratch1, first, kFlatAsciiStringMask);
3150 Branch(failure, ne, scratch1, Operand(kFlatAsciiStringTag));
3151 andi(scratch2, second, kFlatAsciiStringMask);
3152 Branch(failure, ne, scratch2, Operand(kFlatAsciiStringTag));
3153}
3154
3155
3156void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type,
3157 Register scratch,
3158 Label* failure) {
3159 int kFlatAsciiStringMask =
3160 kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask;
3161 int kFlatAsciiStringTag = ASCII_STRING_TYPE;
3162 And(scratch, type, Operand(kFlatAsciiStringMask));
3163 Branch(failure, ne, scratch, Operand(kFlatAsciiStringTag));
3164}
3165
3166
3167static const int kRegisterPassedArguments = 4;
3168
3169void MacroAssembler::PrepareCallCFunction(int num_arguments, Register scratch) {
3170 int frame_alignment = ActivationFrameAlignment();
3171
3172 // Reserve space for Isolate address which is always passed as last parameter
3173 num_arguments += 1;
3174
3175 // Up to four simple arguments are passed in registers a0..a3.
3176 // Those four arguments must have reserved argument slots on the stack for
3177 // mips, even though those argument slots are not normally used.
3178 // Remaining arguments are pushed on the stack, above (higher address than)
3179 // the argument slots.
3180 ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0);
3181 int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ?
3182 0 : num_arguments - kRegisterPassedArguments) +
3183 (StandardFrameConstants::kCArgsSlotsSize /
3184 kPointerSize);
3185 if (frame_alignment > kPointerSize) {
3186 // Make stack end at alignment and make room for num_arguments - 4 words
3187 // and the original value of sp.
3188 mov(scratch, sp);
3189 Subu(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize));
3190 ASSERT(IsPowerOf2(frame_alignment));
3191 And(sp, sp, Operand(-frame_alignment));
3192 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
3193 } else {
3194 Subu(sp, sp, Operand(stack_passed_arguments * kPointerSize));
3195 }
3196}
3197
3198
3199void MacroAssembler::CallCFunction(ExternalReference function,
3200 int num_arguments) {
3201 CallCFunctionHelper(no_reg, function, at, num_arguments);
3202}
3203
3204
3205void MacroAssembler::CallCFunction(Register function,
3206 Register scratch,
3207 int num_arguments) {
3208 CallCFunctionHelper(function,
3209 ExternalReference::the_hole_value_location(isolate()),
3210 scratch,
3211 num_arguments);
3212}
3213
3214
3215void MacroAssembler::CallCFunctionHelper(Register function,
3216 ExternalReference function_reference,
3217 Register scratch,
3218 int num_arguments) {
3219 // Push Isolate address as the last argument.
3220 if (num_arguments < kRegisterPassedArguments) {
3221 Register arg_to_reg[] = {a0, a1, a2, a3};
3222 Register r = arg_to_reg[num_arguments];
3223 li(r, Operand(ExternalReference::isolate_address()));
3224 } else {
3225 int stack_passed_arguments = num_arguments - kRegisterPassedArguments +
3226 (StandardFrameConstants::kCArgsSlotsSize /
3227 kPointerSize);
3228 // Push Isolate address on the stack after the arguments.
3229 li(scratch, Operand(ExternalReference::isolate_address()));
3230 sw(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize));
3231 }
3232 num_arguments += 1;
3233
3234 // Make sure that the stack is aligned before calling a C function unless
3235 // running in the simulator. The simulator has its own alignment check which
3236 // provides more information.
3237 // The argument stots are presumed to have been set up by
3238 // PrepareCallCFunction. The C function must be called via t9, for mips ABI.
3239
3240#if defined(V8_HOST_ARCH_MIPS)
3241 if (emit_debug_code()) {
3242 int frame_alignment = OS::ActivationFrameAlignment();
3243 int frame_alignment_mask = frame_alignment - 1;
3244 if (frame_alignment > kPointerSize) {
3245 ASSERT(IsPowerOf2(frame_alignment));
3246 Label alignment_as_expected;
3247 And(at, sp, Operand(frame_alignment_mask));
3248 Branch(&alignment_as_expected, eq, at, Operand(zero_reg));
3249 // Don't use Check here, as it will call Runtime_Abort possibly
3250 // re-entering here.
3251 stop("Unexpected alignment in CallCFunction");
3252 bind(&alignment_as_expected);
3253 }
3254 }
3255#endif // V8_HOST_ARCH_MIPS
3256
3257 // Just call directly. The function called cannot cause a GC, or
3258 // allow preemption, so the return address in the link register
3259 // stays correct.
3260 if (!function.is(t9)) {
3261 mov(t9, function);
3262 function = t9;
3263 }
3264
3265 if (function.is(no_reg)) {
3266 li(t9, Operand(function_reference));
3267 function = t9;
3268 }
3269
3270 Call(function);
3271
3272 ASSERT(StandardFrameConstants::kCArgsSlotsSize % kPointerSize == 0);
3273 int stack_passed_arguments = ((num_arguments <= kRegisterPassedArguments) ?
3274 0 : num_arguments - kRegisterPassedArguments) +
3275 (StandardFrameConstants::kCArgsSlotsSize /
3276 kPointerSize);
3277
3278 if (OS::ActivationFrameAlignment() > kPointerSize) {
3279 lw(sp, MemOperand(sp, stack_passed_arguments * kPointerSize));
3280 } else {
3281 Addu(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize)));
3282 }
3283}
3284
3285
3286#undef BRANCH_ARGS_CHECK
3287
3288
3289#ifdef ENABLE_DEBUGGER_SUPPORT
3290CodePatcher::CodePatcher(byte* address, int instructions)
3291 : address_(address),
3292 instructions_(instructions),
3293 size_(instructions * Assembler::kInstrSize),
3294 masm_(address, size_ + Assembler::kGap) {
3295 // Create a new macro assembler pointing to the address of the code to patch.
3296 // The size is adjusted with kGap on order for the assembler to generate size
3297 // bytes of instructions without failing with buffer size constraints.
3298 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3299}
3300
3301
3302CodePatcher::~CodePatcher() {
3303 // Indicate that code has changed.
3304 CPU::FlushICache(address_, size_);
3305
3306 // Check that the code was patched as expected.
3307 ASSERT(masm_.pc_ == address_ + size_);
3308 ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap);
3309}
3310
3311
3312void CodePatcher::Emit(Instr x) {
3313 masm()->emit(x);
3314}
3315
3316
3317void CodePatcher::Emit(Address addr) {
3318 masm()->emit(reinterpret_cast<Instr>(addr));
3319}
3320
3321
3322#endif // ENABLE_DEBUGGER_SUPPORT
3323
3324
Andrei Popescu31002712010-02-23 13:46:05 +00003325} } // namespace v8::internal
3326
Leon Clarkef7060e22010-06-03 12:02:55 +01003327#endif // V8_TARGET_ARCH_MIPS