blob: 189ee42cea457d5569b29bf9d8a69ae14dbb95a5 [file] [log] [blame]
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001// Copyright 2011 the V8 project authors. All rights reserved.
Steve Blocka7e24c12009-10-30 11:49:00 +00002// Redistribution and use in source and binary forms, with or without
3// modification, are permitted provided that the following conditions are
4// met:
5//
6// * Redistributions of source code must retain the above copyright
7// notice, this list of conditions and the following disclaimer.
8// * Redistributions in binary form must reproduce the above
9// copyright notice, this list of conditions and the following
10// disclaimer in the documentation and/or other materials provided
11// with the distribution.
12// * Neither the name of Google Inc. nor the names of its
13// contributors may be used to endorse or promote products derived
14// from this software without specific prior written permission.
15//
16// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28#include <assert.h>
29#include <stdio.h>
30#include <stdarg.h>
31
32#include "v8.h"
Leon Clarkef7060e22010-06-03 12:02:55 +010033
34#if defined(V8_TARGET_ARCH_X64)
35
Steve Blocka7e24c12009-10-30 11:49:00 +000036#include "disasm.h"
37
38namespace disasm {
39
40enum OperandType {
41 UNSET_OP_ORDER = 0,
42 // Operand size decides between 16, 32 and 64 bit operands.
43 REG_OPER_OP_ORDER = 1, // Register destination, operand source.
44 OPER_REG_OP_ORDER = 2, // Operand destination, register source.
45 // Fixed 8-bit operands.
46 BYTE_SIZE_OPERAND_FLAG = 4,
47 BYTE_REG_OPER_OP_ORDER = REG_OPER_OP_ORDER | BYTE_SIZE_OPERAND_FLAG,
48 BYTE_OPER_REG_OP_ORDER = OPER_REG_OP_ORDER | BYTE_SIZE_OPERAND_FLAG
49};
50
51//------------------------------------------------------------------
52// Tables
53//------------------------------------------------------------------
54struct ByteMnemonic {
55 int b; // -1 terminates, otherwise must be in range (0..255)
56 OperandType op_order_;
57 const char* mnem;
58};
59
60
61static ByteMnemonic two_operands_instr[] = {
62 { 0x00, BYTE_OPER_REG_OP_ORDER, "add" },
63 { 0x01, OPER_REG_OP_ORDER, "add" },
64 { 0x02, BYTE_REG_OPER_OP_ORDER, "add" },
65 { 0x03, REG_OPER_OP_ORDER, "add" },
66 { 0x08, BYTE_OPER_REG_OP_ORDER, "or" },
67 { 0x09, OPER_REG_OP_ORDER, "or" },
68 { 0x0A, BYTE_REG_OPER_OP_ORDER, "or" },
69 { 0x0B, REG_OPER_OP_ORDER, "or" },
70 { 0x10, BYTE_OPER_REG_OP_ORDER, "adc" },
71 { 0x11, OPER_REG_OP_ORDER, "adc" },
72 { 0x12, BYTE_REG_OPER_OP_ORDER, "adc" },
73 { 0x13, REG_OPER_OP_ORDER, "adc" },
74 { 0x18, BYTE_OPER_REG_OP_ORDER, "sbb" },
75 { 0x19, OPER_REG_OP_ORDER, "sbb" },
76 { 0x1A, BYTE_REG_OPER_OP_ORDER, "sbb" },
77 { 0x1B, REG_OPER_OP_ORDER, "sbb" },
78 { 0x20, BYTE_OPER_REG_OP_ORDER, "and" },
79 { 0x21, OPER_REG_OP_ORDER, "and" },
80 { 0x22, BYTE_REG_OPER_OP_ORDER, "and" },
81 { 0x23, REG_OPER_OP_ORDER, "and" },
82 { 0x28, BYTE_OPER_REG_OP_ORDER, "sub" },
83 { 0x29, OPER_REG_OP_ORDER, "sub" },
84 { 0x2A, BYTE_REG_OPER_OP_ORDER, "sub" },
85 { 0x2B, REG_OPER_OP_ORDER, "sub" },
86 { 0x30, BYTE_OPER_REG_OP_ORDER, "xor" },
87 { 0x31, OPER_REG_OP_ORDER, "xor" },
88 { 0x32, BYTE_REG_OPER_OP_ORDER, "xor" },
89 { 0x33, REG_OPER_OP_ORDER, "xor" },
90 { 0x38, BYTE_OPER_REG_OP_ORDER, "cmp" },
91 { 0x39, OPER_REG_OP_ORDER, "cmp" },
92 { 0x3A, BYTE_REG_OPER_OP_ORDER, "cmp" },
93 { 0x3B, REG_OPER_OP_ORDER, "cmp" },
94 { 0x63, REG_OPER_OP_ORDER, "movsxlq" },
95 { 0x84, BYTE_REG_OPER_OP_ORDER, "test" },
96 { 0x85, REG_OPER_OP_ORDER, "test" },
97 { 0x86, BYTE_REG_OPER_OP_ORDER, "xchg" },
98 { 0x87, REG_OPER_OP_ORDER, "xchg" },
99 { 0x88, BYTE_OPER_REG_OP_ORDER, "mov" },
100 { 0x89, OPER_REG_OP_ORDER, "mov" },
101 { 0x8A, BYTE_REG_OPER_OP_ORDER, "mov" },
102 { 0x8B, REG_OPER_OP_ORDER, "mov" },
103 { 0x8D, REG_OPER_OP_ORDER, "lea" },
104 { -1, UNSET_OP_ORDER, "" }
105};
106
107
108static ByteMnemonic zero_operands_instr[] = {
109 { 0xC3, UNSET_OP_ORDER, "ret" },
110 { 0xC9, UNSET_OP_ORDER, "leave" },
111 { 0xF4, UNSET_OP_ORDER, "hlt" },
112 { 0xCC, UNSET_OP_ORDER, "int3" },
113 { 0x60, UNSET_OP_ORDER, "pushad" },
114 { 0x61, UNSET_OP_ORDER, "popad" },
115 { 0x9C, UNSET_OP_ORDER, "pushfd" },
116 { 0x9D, UNSET_OP_ORDER, "popfd" },
117 { 0x9E, UNSET_OP_ORDER, "sahf" },
118 { 0x99, UNSET_OP_ORDER, "cdq" },
119 { 0x9B, UNSET_OP_ORDER, "fwait" },
Leon Clarked91b9f72010-01-27 17:25:45 +0000120 { 0xA4, UNSET_OP_ORDER, "movs" },
121 { 0xA5, UNSET_OP_ORDER, "movs" },
122 { 0xA6, UNSET_OP_ORDER, "cmps" },
123 { 0xA7, UNSET_OP_ORDER, "cmps" },
Steve Blocka7e24c12009-10-30 11:49:00 +0000124 { -1, UNSET_OP_ORDER, "" }
125};
126
127
128static ByteMnemonic call_jump_instr[] = {
129 { 0xE8, UNSET_OP_ORDER, "call" },
130 { 0xE9, UNSET_OP_ORDER, "jmp" },
131 { -1, UNSET_OP_ORDER, "" }
132};
133
134
135static ByteMnemonic short_immediate_instr[] = {
136 { 0x05, UNSET_OP_ORDER, "add" },
137 { 0x0D, UNSET_OP_ORDER, "or" },
138 { 0x15, UNSET_OP_ORDER, "adc" },
139 { 0x1D, UNSET_OP_ORDER, "sbb" },
140 { 0x25, UNSET_OP_ORDER, "and" },
141 { 0x2D, UNSET_OP_ORDER, "sub" },
142 { 0x35, UNSET_OP_ORDER, "xor" },
143 { 0x3D, UNSET_OP_ORDER, "cmp" },
144 { -1, UNSET_OP_ORDER, "" }
145};
146
147
148static const char* conditional_code_suffix[] = {
149 "o", "no", "c", "nc", "z", "nz", "na", "a",
150 "s", "ns", "pe", "po", "l", "ge", "le", "g"
151};
152
153
154enum InstructionType {
155 NO_INSTR,
156 ZERO_OPERANDS_INSTR,
157 TWO_OPERANDS_INSTR,
158 JUMP_CONDITIONAL_SHORT_INSTR,
159 REGISTER_INSTR,
160 PUSHPOP_INSTR, // Has implicit 64-bit operand size.
161 MOVE_REG_INSTR,
162 CALL_JUMP_INSTR,
163 SHORT_IMMEDIATE_INSTR
164};
165
166
Leon Clarked91b9f72010-01-27 17:25:45 +0000167enum Prefixes {
168 ESCAPE_PREFIX = 0x0F,
169 OPERAND_SIZE_OVERRIDE_PREFIX = 0x66,
170 ADDRESS_SIZE_OVERRIDE_PREFIX = 0x67,
171 REPNE_PREFIX = 0xF2,
172 REP_PREFIX = 0xF3,
173 REPEQ_PREFIX = REP_PREFIX
174};
175
176
Steve Blocka7e24c12009-10-30 11:49:00 +0000177struct InstructionDesc {
178 const char* mnem;
179 InstructionType type;
180 OperandType op_order_;
181 bool byte_size_operation; // Fixed 8-bit operation.
182};
183
184
185class InstructionTable {
186 public:
187 InstructionTable();
188 const InstructionDesc& Get(byte x) const {
189 return instructions_[x];
190 }
191
192 private:
193 InstructionDesc instructions_[256];
194 void Clear();
195 void Init();
196 void CopyTable(ByteMnemonic bm[], InstructionType type);
197 void SetTableRange(InstructionType type, byte start, byte end, bool byte_size,
198 const char* mnem);
199 void AddJumpConditionalShort();
200};
201
202
203InstructionTable::InstructionTable() {
204 Clear();
205 Init();
206}
207
208
209void InstructionTable::Clear() {
210 for (int i = 0; i < 256; i++) {
211 instructions_[i].mnem = "(bad)";
212 instructions_[i].type = NO_INSTR;
213 instructions_[i].op_order_ = UNSET_OP_ORDER;
214 instructions_[i].byte_size_operation = false;
215 }
216}
217
218
219void InstructionTable::Init() {
220 CopyTable(two_operands_instr, TWO_OPERANDS_INSTR);
221 CopyTable(zero_operands_instr, ZERO_OPERANDS_INSTR);
222 CopyTable(call_jump_instr, CALL_JUMP_INSTR);
223 CopyTable(short_immediate_instr, SHORT_IMMEDIATE_INSTR);
224 AddJumpConditionalShort();
225 SetTableRange(PUSHPOP_INSTR, 0x50, 0x57, false, "push");
226 SetTableRange(PUSHPOP_INSTR, 0x58, 0x5F, false, "pop");
227 SetTableRange(MOVE_REG_INSTR, 0xB8, 0xBF, false, "mov");
228}
229
230
231void InstructionTable::CopyTable(ByteMnemonic bm[], InstructionType type) {
232 for (int i = 0; bm[i].b >= 0; i++) {
233 InstructionDesc* id = &instructions_[bm[i].b];
234 id->mnem = bm[i].mnem;
235 OperandType op_order = bm[i].op_order_;
236 id->op_order_ =
237 static_cast<OperandType>(op_order & ~BYTE_SIZE_OPERAND_FLAG);
Steve Blockd0582a62009-12-15 09:54:21 +0000238 ASSERT_EQ(NO_INSTR, id->type); // Information not already entered
Steve Blocka7e24c12009-10-30 11:49:00 +0000239 id->type = type;
240 id->byte_size_operation = ((op_order & BYTE_SIZE_OPERAND_FLAG) != 0);
241 }
242}
243
244
245void InstructionTable::SetTableRange(InstructionType type,
246 byte start,
247 byte end,
248 bool byte_size,
249 const char* mnem) {
250 for (byte b = start; b <= end; b++) {
251 InstructionDesc* id = &instructions_[b];
Steve Blockd0582a62009-12-15 09:54:21 +0000252 ASSERT_EQ(NO_INSTR, id->type); // Information not already entered
Steve Blocka7e24c12009-10-30 11:49:00 +0000253 id->mnem = mnem;
254 id->type = type;
255 id->byte_size_operation = byte_size;
256 }
257}
258
259
260void InstructionTable::AddJumpConditionalShort() {
261 for (byte b = 0x70; b <= 0x7F; b++) {
262 InstructionDesc* id = &instructions_[b];
Steve Blockd0582a62009-12-15 09:54:21 +0000263 ASSERT_EQ(NO_INSTR, id->type); // Information not already entered
Steve Blocka7e24c12009-10-30 11:49:00 +0000264 id->mnem = NULL; // Computed depending on condition code.
265 id->type = JUMP_CONDITIONAL_SHORT_INSTR;
266 }
267}
268
269
270static InstructionTable instruction_table;
271
Steve Block44f0eee2011-05-26 01:26:41 +0100272
Steve Blocka7e24c12009-10-30 11:49:00 +0000273static InstructionDesc cmov_instructions[16] = {
274 {"cmovo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
275 {"cmovno", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
276 {"cmovc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
277 {"cmovnc", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
278 {"cmovz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
279 {"cmovnz", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
280 {"cmovna", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
281 {"cmova", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
282 {"cmovs", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
283 {"cmovns", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
284 {"cmovpe", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
285 {"cmovpo", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
286 {"cmovl", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
287 {"cmovge", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
288 {"cmovle", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false},
289 {"cmovg", TWO_OPERANDS_INSTR, REG_OPER_OP_ORDER, false}
290};
291
292//------------------------------------------------------------------------------
293// DisassemblerX64 implementation.
294
295enum UnimplementedOpcodeAction {
296 CONTINUE_ON_UNIMPLEMENTED_OPCODE,
297 ABORT_ON_UNIMPLEMENTED_OPCODE
298};
299
300// A new DisassemblerX64 object is created to disassemble each instruction.
301// The object can only disassemble a single instruction.
302class DisassemblerX64 {
303 public:
304 DisassemblerX64(const NameConverter& converter,
305 UnimplementedOpcodeAction unimplemented_action =
306 ABORT_ON_UNIMPLEMENTED_OPCODE)
307 : converter_(converter),
308 tmp_buffer_pos_(0),
309 abort_on_unimplemented_(
310 unimplemented_action == ABORT_ON_UNIMPLEMENTED_OPCODE),
311 rex_(0),
312 operand_size_(0),
313 group_1_prefix_(0),
314 byte_size_operand_(false) {
315 tmp_buffer_[0] = '\0';
316 }
317
318 virtual ~DisassemblerX64() {
319 }
320
321 // Writes one disassembled instruction into 'buffer' (0-terminated).
322 // Returns the length of the disassembled machine instruction in bytes.
323 int InstructionDecode(v8::internal::Vector<char> buffer, byte* instruction);
324
325 private:
326 enum OperandSize {
327 BYTE_SIZE = 0,
328 WORD_SIZE = 1,
329 DOUBLEWORD_SIZE = 2,
330 QUADWORD_SIZE = 3
331 };
332
333 const NameConverter& converter_;
334 v8::internal::EmbeddedVector<char, 128> tmp_buffer_;
335 unsigned int tmp_buffer_pos_;
336 bool abort_on_unimplemented_;
337 // Prefixes parsed
338 byte rex_;
339 byte operand_size_; // 0x66 or (if no group 3 prefix is present) 0x0.
340 byte group_1_prefix_; // 0xF2, 0xF3, or (if no group 1 prefix is present) 0.
341 // Byte size operand override.
342 bool byte_size_operand_;
343
344 void setRex(byte rex) {
345 ASSERT_EQ(0x40, rex & 0xF0);
346 rex_ = rex;
347 }
348
349 bool rex() { return rex_ != 0; }
350
351 bool rex_b() { return (rex_ & 0x01) != 0; }
352
353 // Actual number of base register given the low bits and the rex.b state.
354 int base_reg(int low_bits) { return low_bits | ((rex_ & 0x01) << 3); }
355
356 bool rex_x() { return (rex_ & 0x02) != 0; }
357
358 bool rex_r() { return (rex_ & 0x04) != 0; }
359
360 bool rex_w() { return (rex_ & 0x08) != 0; }
361
362 OperandSize operand_size() {
363 if (byte_size_operand_) return BYTE_SIZE;
364 if (rex_w()) return QUADWORD_SIZE;
365 if (operand_size_ != 0) return WORD_SIZE;
366 return DOUBLEWORD_SIZE;
367 }
368
369 char operand_size_code() {
370 return "bwlq"[operand_size()];
371 }
372
373 const char* NameOfCPURegister(int reg) const {
374 return converter_.NameOfCPURegister(reg);
375 }
376
377 const char* NameOfByteCPURegister(int reg) const {
378 return converter_.NameOfByteCPURegister(reg);
379 }
380
381 const char* NameOfXMMRegister(int reg) const {
382 return converter_.NameOfXMMRegister(reg);
383 }
384
385 const char* NameOfAddress(byte* addr) const {
386 return converter_.NameOfAddress(addr);
387 }
388
389 // Disassembler helper functions.
390 void get_modrm(byte data,
391 int* mod,
392 int* regop,
393 int* rm) {
394 *mod = (data >> 6) & 3;
395 *regop = ((data & 0x38) >> 3) | (rex_r() ? 8 : 0);
396 *rm = (data & 7) | (rex_b() ? 8 : 0);
397 }
398
399 void get_sib(byte data,
400 int* scale,
401 int* index,
402 int* base) {
403 *scale = (data >> 6) & 3;
404 *index = ((data >> 3) & 7) | (rex_x() ? 8 : 0);
405 *base = (data & 7) | (rex_b() ? 8 : 0);
406 }
407
408 typedef const char* (DisassemblerX64::*RegisterNameMapping)(int reg) const;
409
410 int PrintRightOperandHelper(byte* modrmp,
411 RegisterNameMapping register_name);
412 int PrintRightOperand(byte* modrmp);
413 int PrintRightByteOperand(byte* modrmp);
Steve Blockd0582a62009-12-15 09:54:21 +0000414 int PrintRightXMMOperand(byte* modrmp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000415 int PrintOperands(const char* mnem,
416 OperandType op_order,
417 byte* data);
418 int PrintImmediate(byte* data, OperandSize size);
419 int PrintImmediateOp(byte* data);
420 const char* TwoByteMnemonic(byte opcode);
421 int TwoByteOpcodeInstruction(byte* data);
Steve Blockd0582a62009-12-15 09:54:21 +0000422 int F6F7Instruction(byte* data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000423 int ShiftInstruction(byte* data);
424 int JumpShort(byte* data);
425 int JumpConditional(byte* data);
426 int JumpConditionalShort(byte* data);
427 int SetCC(byte* data);
428 int FPUInstruction(byte* data);
Steve Blockd0582a62009-12-15 09:54:21 +0000429 int MemoryFPUInstruction(int escape_opcode, int regop, byte* modrm_start);
430 int RegisterFPUInstruction(int escape_opcode, byte modrm_byte);
Steve Blocka7e24c12009-10-30 11:49:00 +0000431 void AppendToBuffer(const char* format, ...);
432
433 void UnimplementedInstruction() {
434 if (abort_on_unimplemented_) {
435 CHECK(false);
436 } else {
437 AppendToBuffer("'Unimplemented Instruction'");
438 }
439 }
440};
441
442
443void DisassemblerX64::AppendToBuffer(const char* format, ...) {
444 v8::internal::Vector<char> buf = tmp_buffer_ + tmp_buffer_pos_;
445 va_list args;
446 va_start(args, format);
447 int result = v8::internal::OS::VSNPrintF(buf, format, args);
448 va_end(args);
449 tmp_buffer_pos_ += result;
450}
451
452
453int DisassemblerX64::PrintRightOperandHelper(
454 byte* modrmp,
Steve Block44f0eee2011-05-26 01:26:41 +0100455 RegisterNameMapping direct_register_name) {
Steve Blocka7e24c12009-10-30 11:49:00 +0000456 int mod, regop, rm;
457 get_modrm(*modrmp, &mod, &regop, &rm);
Steve Block44f0eee2011-05-26 01:26:41 +0100458 RegisterNameMapping register_name = (mod == 3) ? direct_register_name :
459 &DisassemblerX64::NameOfCPURegister;
Steve Blocka7e24c12009-10-30 11:49:00 +0000460 switch (mod) {
461 case 0:
462 if ((rm & 7) == 5) {
463 int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 1);
464 AppendToBuffer("[0x%x]", disp);
465 return 5;
466 } else if ((rm & 7) == 4) {
467 // Codes for SIB byte.
468 byte sib = *(modrmp + 1);
469 int scale, index, base;
470 get_sib(sib, &scale, &index, &base);
471 if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
472 // index == rsp means no index. Only use sib byte with no index for
473 // rsp and r12 base.
Steve Block8defd9f2010-07-08 12:39:36 +0100474 AppendToBuffer("[%s]", NameOfCPURegister(base));
Steve Blocka7e24c12009-10-30 11:49:00 +0000475 return 2;
476 } else if (base == 5) {
477 // base == rbp means no base register (when mod == 0).
478 int32_t disp = *reinterpret_cast<int32_t*>(modrmp + 2);
479 AppendToBuffer("[%s*%d+0x%x]",
Steve Block8defd9f2010-07-08 12:39:36 +0100480 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000481 1 << scale, disp);
482 return 6;
483 } else if (index != 4 && base != 5) {
484 // [base+index*scale]
485 AppendToBuffer("[%s+%s*%d]",
Steve Block8defd9f2010-07-08 12:39:36 +0100486 NameOfCPURegister(base),
487 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000488 1 << scale);
489 return 2;
490 } else {
491 UnimplementedInstruction();
492 return 1;
493 }
494 } else {
Steve Block8defd9f2010-07-08 12:39:36 +0100495 AppendToBuffer("[%s]", NameOfCPURegister(rm));
Steve Blocka7e24c12009-10-30 11:49:00 +0000496 return 1;
497 }
498 break;
499 case 1: // fall through
500 case 2:
501 if ((rm & 7) == 4) {
502 byte sib = *(modrmp + 1);
503 int scale, index, base;
504 get_sib(sib, &scale, &index, &base);
505 int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 2)
506 : *reinterpret_cast<char*>(modrmp + 2);
507 if (index == 4 && (base & 7) == 4 && scale == 0 /*times_1*/) {
508 if (-disp > 0) {
Steve Block8defd9f2010-07-08 12:39:36 +0100509 AppendToBuffer("[%s-0x%x]", NameOfCPURegister(base), -disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000510 } else {
Steve Block8defd9f2010-07-08 12:39:36 +0100511 AppendToBuffer("[%s+0x%x]", NameOfCPURegister(base), disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000512 }
513 } else {
514 if (-disp > 0) {
515 AppendToBuffer("[%s+%s*%d-0x%x]",
Steve Block8defd9f2010-07-08 12:39:36 +0100516 NameOfCPURegister(base),
517 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000518 1 << scale,
519 -disp);
520 } else {
521 AppendToBuffer("[%s+%s*%d+0x%x]",
Steve Block8defd9f2010-07-08 12:39:36 +0100522 NameOfCPURegister(base),
523 NameOfCPURegister(index),
Steve Blocka7e24c12009-10-30 11:49:00 +0000524 1 << scale,
525 disp);
526 }
527 }
528 return mod == 2 ? 6 : 3;
529 } else {
530 // No sib.
531 int disp = (mod == 2) ? *reinterpret_cast<int32_t*>(modrmp + 1)
532 : *reinterpret_cast<char*>(modrmp + 1);
533 if (-disp > 0) {
Steve Block8defd9f2010-07-08 12:39:36 +0100534 AppendToBuffer("[%s-0x%x]", NameOfCPURegister(rm), -disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000535 } else {
Steve Block8defd9f2010-07-08 12:39:36 +0100536 AppendToBuffer("[%s+0x%x]", NameOfCPURegister(rm), disp);
Steve Blocka7e24c12009-10-30 11:49:00 +0000537 }
538 return (mod == 2) ? 5 : 2;
539 }
540 break;
541 case 3:
542 AppendToBuffer("%s", (this->*register_name)(rm));
543 return 1;
544 default:
545 UnimplementedInstruction();
546 return 1;
547 }
548 UNREACHABLE();
549}
550
551
552int DisassemblerX64::PrintImmediate(byte* data, OperandSize size) {
553 int64_t value;
554 int count;
555 switch (size) {
556 case BYTE_SIZE:
557 value = *data;
558 count = 1;
559 break;
560 case WORD_SIZE:
561 value = *reinterpret_cast<int16_t*>(data);
562 count = 2;
563 break;
564 case DOUBLEWORD_SIZE:
565 value = *reinterpret_cast<uint32_t*>(data);
566 count = 4;
567 break;
568 case QUADWORD_SIZE:
569 value = *reinterpret_cast<int32_t*>(data);
570 count = 4;
571 break;
572 default:
573 UNREACHABLE();
574 value = 0; // Initialize variables on all paths to satisfy the compiler.
575 count = 0;
576 }
577 AppendToBuffer("%" V8_PTR_PREFIX "x", value);
578 return count;
579}
580
581
582int DisassemblerX64::PrintRightOperand(byte* modrmp) {
583 return PrintRightOperandHelper(modrmp,
584 &DisassemblerX64::NameOfCPURegister);
585}
586
587
588int DisassemblerX64::PrintRightByteOperand(byte* modrmp) {
589 return PrintRightOperandHelper(modrmp,
590 &DisassemblerX64::NameOfByteCPURegister);
591}
592
593
Steve Blockd0582a62009-12-15 09:54:21 +0000594int DisassemblerX64::PrintRightXMMOperand(byte* modrmp) {
595 return PrintRightOperandHelper(modrmp,
596 &DisassemblerX64::NameOfXMMRegister);
597}
598
599
Steve Blocka7e24c12009-10-30 11:49:00 +0000600// Returns number of bytes used including the current *data.
601// Writes instruction's mnemonic, left and right operands to 'tmp_buffer_'.
602int DisassemblerX64::PrintOperands(const char* mnem,
603 OperandType op_order,
604 byte* data) {
605 byte modrm = *data;
606 int mod, regop, rm;
607 get_modrm(modrm, &mod, &regop, &rm);
608 int advance = 0;
609 const char* register_name =
610 byte_size_operand_ ? NameOfByteCPURegister(regop)
611 : NameOfCPURegister(regop);
612 switch (op_order) {
613 case REG_OPER_OP_ORDER: {
614 AppendToBuffer("%s%c %s,",
615 mnem,
616 operand_size_code(),
617 register_name);
618 advance = byte_size_operand_ ? PrintRightByteOperand(data)
619 : PrintRightOperand(data);
620 break;
621 }
622 case OPER_REG_OP_ORDER: {
623 AppendToBuffer("%s%c ", mnem, operand_size_code());
624 advance = byte_size_operand_ ? PrintRightByteOperand(data)
625 : PrintRightOperand(data);
626 AppendToBuffer(",%s", register_name);
627 break;
628 }
629 default:
630 UNREACHABLE();
631 break;
632 }
633 return advance;
634}
635
636
637// Returns number of bytes used by machine instruction, including *data byte.
638// Writes immediate instructions to 'tmp_buffer_'.
639int DisassemblerX64::PrintImmediateOp(byte* data) {
640 bool byte_size_immediate = (*data & 0x02) != 0;
641 byte modrm = *(data + 1);
642 int mod, regop, rm;
643 get_modrm(modrm, &mod, &regop, &rm);
644 const char* mnem = "Imm???";
645 switch (regop) {
646 case 0:
647 mnem = "add";
648 break;
649 case 1:
650 mnem = "or";
651 break;
652 case 2:
653 mnem = "adc";
654 break;
655 case 4:
656 mnem = "and";
657 break;
658 case 5:
659 mnem = "sub";
660 break;
661 case 6:
662 mnem = "xor";
663 break;
664 case 7:
665 mnem = "cmp";
666 break;
667 default:
668 UnimplementedInstruction();
669 }
670 AppendToBuffer("%s%c ", mnem, operand_size_code());
671 int count = PrintRightOperand(data + 1);
672 AppendToBuffer(",0x");
673 OperandSize immediate_size = byte_size_immediate ? BYTE_SIZE : operand_size();
674 count += PrintImmediate(data + 1 + count, immediate_size);
675 return 1 + count;
676}
677
678
679// Returns number of bytes used, including *data.
Steve Blockd0582a62009-12-15 09:54:21 +0000680int DisassemblerX64::F6F7Instruction(byte* data) {
681 ASSERT(*data == 0xF7 || *data == 0xF6);
Steve Blocka7e24c12009-10-30 11:49:00 +0000682 byte modrm = *(data + 1);
683 int mod, regop, rm;
684 get_modrm(modrm, &mod, &regop, &rm);
685 if (mod == 3 && regop != 0) {
686 const char* mnem = NULL;
687 switch (regop) {
688 case 2:
689 mnem = "not";
690 break;
691 case 3:
692 mnem = "neg";
693 break;
694 case 4:
695 mnem = "mul";
696 break;
697 case 7:
698 mnem = "idiv";
699 break;
700 default:
701 UnimplementedInstruction();
702 }
703 AppendToBuffer("%s%c %s",
704 mnem,
705 operand_size_code(),
706 NameOfCPURegister(rm));
707 return 2;
Steve Blocka7e24c12009-10-30 11:49:00 +0000708 } else if (regop == 0) {
709 AppendToBuffer("test%c ", operand_size_code());
Steve Blockd0582a62009-12-15 09:54:21 +0000710 int count = PrintRightOperand(data + 1); // Use name of 64-bit register.
711 AppendToBuffer(",0x");
712 count += PrintImmediate(data + 1 + count, operand_size());
713 return 1 + count;
Steve Blocka7e24c12009-10-30 11:49:00 +0000714 } else {
715 UnimplementedInstruction();
716 return 2;
717 }
718}
719
720
721int DisassemblerX64::ShiftInstruction(byte* data) {
722 byte op = *data & (~1);
723 if (op != 0xD0 && op != 0xD2 && op != 0xC0) {
724 UnimplementedInstruction();
725 return 1;
726 }
727 byte modrm = *(data + 1);
728 int mod, regop, rm;
729 get_modrm(modrm, &mod, &regop, &rm);
730 regop &= 0x7; // The REX.R bit does not affect the operation.
731 int imm8 = -1;
732 int num_bytes = 2;
733 if (mod != 3) {
734 UnimplementedInstruction();
735 return num_bytes;
736 }
737 const char* mnem = NULL;
738 switch (regop) {
739 case 0:
740 mnem = "rol";
741 break;
742 case 1:
743 mnem = "ror";
744 break;
745 case 2:
746 mnem = "rcl";
747 break;
748 case 3:
749 mnem = "rcr";
750 break;
751 case 4:
752 mnem = "shl";
753 break;
754 case 5:
755 mnem = "shr";
756 break;
757 case 7:
758 mnem = "sar";
759 break;
760 default:
761 UnimplementedInstruction();
762 return num_bytes;
763 }
Steve Blockd0582a62009-12-15 09:54:21 +0000764 ASSERT_NE(NULL, mnem);
Steve Blocka7e24c12009-10-30 11:49:00 +0000765 if (op == 0xD0) {
766 imm8 = 1;
767 } else if (op == 0xC0) {
768 imm8 = *(data + 2);
769 num_bytes = 3;
770 }
771 AppendToBuffer("%s%c %s,",
772 mnem,
773 operand_size_code(),
774 byte_size_operand_ ? NameOfByteCPURegister(rm)
775 : NameOfCPURegister(rm));
776 if (op == 0xD2) {
777 AppendToBuffer("cl");
778 } else {
779 AppendToBuffer("%d", imm8);
780 }
781 return num_bytes;
782}
783
784
785// Returns number of bytes used, including *data.
786int DisassemblerX64::JumpShort(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000787 ASSERT_EQ(0xEB, *data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000788 byte b = *(data + 1);
789 byte* dest = data + static_cast<int8_t>(b) + 2;
790 AppendToBuffer("jmp %s", NameOfAddress(dest));
791 return 2;
792}
793
794
795// Returns number of bytes used, including *data.
796int DisassemblerX64::JumpConditional(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000797 ASSERT_EQ(0x0F, *data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000798 byte cond = *(data + 1) & 0x0F;
799 byte* dest = data + *reinterpret_cast<int32_t*>(data + 2) + 6;
800 const char* mnem = conditional_code_suffix[cond];
801 AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
802 return 6; // includes 0x0F
803}
804
805
806// Returns number of bytes used, including *data.
807int DisassemblerX64::JumpConditionalShort(byte* data) {
808 byte cond = *data & 0x0F;
809 byte b = *(data + 1);
810 byte* dest = data + static_cast<int8_t>(b) + 2;
811 const char* mnem = conditional_code_suffix[cond];
812 AppendToBuffer("j%s %s", mnem, NameOfAddress(dest));
813 return 2;
814}
815
816
817// Returns number of bytes used, including *data.
818int DisassemblerX64::SetCC(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000819 ASSERT_EQ(0x0F, *data);
Steve Blocka7e24c12009-10-30 11:49:00 +0000820 byte cond = *(data + 1) & 0x0F;
821 const char* mnem = conditional_code_suffix[cond];
822 AppendToBuffer("set%s%c ", mnem, operand_size_code());
823 PrintRightByteOperand(data + 2);
824 return 3; // includes 0x0F
825}
826
827
828// Returns number of bytes used, including *data.
829int DisassemblerX64::FPUInstruction(byte* data) {
Steve Blockd0582a62009-12-15 09:54:21 +0000830 byte escape_opcode = *data;
831 ASSERT_EQ(0xD8, escape_opcode & 0xF8);
832 byte modrm_byte = *(data+1);
833
834 if (modrm_byte >= 0xC0) {
835 return RegisterFPUInstruction(escape_opcode, modrm_byte);
836 } else {
837 return MemoryFPUInstruction(escape_opcode, modrm_byte, data+1);
Steve Blocka7e24c12009-10-30 11:49:00 +0000838 }
Steve Blockd0582a62009-12-15 09:54:21 +0000839}
840
841int DisassemblerX64::MemoryFPUInstruction(int escape_opcode,
842 int modrm_byte,
843 byte* modrm_start) {
844 const char* mnem = "?";
845 int regop = (modrm_byte >> 3) & 0x7; // reg/op field of modrm byte.
846 switch (escape_opcode) {
847 case 0xD9: switch (regop) {
848 case 0: mnem = "fld_s"; break;
849 case 3: mnem = "fstp_s"; break;
850 case 7: mnem = "fstcw"; break;
851 default: UnimplementedInstruction();
852 }
853 break;
854
855 case 0xDB: switch (regop) {
856 case 0: mnem = "fild_s"; break;
857 case 1: mnem = "fisttp_s"; break;
858 case 2: mnem = "fist_s"; break;
859 case 3: mnem = "fistp_s"; break;
860 default: UnimplementedInstruction();
861 }
862 break;
863
864 case 0xDD: switch (regop) {
865 case 0: mnem = "fld_d"; break;
866 case 3: mnem = "fstp_d"; break;
867 default: UnimplementedInstruction();
868 }
869 break;
870
871 case 0xDF: switch (regop) {
872 case 5: mnem = "fild_d"; break;
873 case 7: mnem = "fistp_d"; break;
874 default: UnimplementedInstruction();
875 }
876 break;
877
878 default: UnimplementedInstruction();
879 }
880 AppendToBuffer("%s ", mnem);
881 int count = PrintRightOperand(modrm_start);
882 return count + 1;
883}
884
885int DisassemblerX64::RegisterFPUInstruction(int escape_opcode,
886 byte modrm_byte) {
887 bool has_register = false; // Is the FPU register encoded in modrm_byte?
888 const char* mnem = "?";
889
890 switch (escape_opcode) {
891 case 0xD8:
892 UnimplementedInstruction();
893 break;
894
895 case 0xD9:
896 switch (modrm_byte & 0xF8) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100897 case 0xC0:
898 mnem = "fld";
899 has_register = true;
900 break;
Steve Blockd0582a62009-12-15 09:54:21 +0000901 case 0xC8:
902 mnem = "fxch";
903 has_register = true;
904 break;
905 default:
906 switch (modrm_byte) {
907 case 0xE0: mnem = "fchs"; break;
908 case 0xE1: mnem = "fabs"; break;
909 case 0xE4: mnem = "ftst"; break;
910 case 0xE8: mnem = "fld1"; break;
Kristian Monsen0d5e1162010-09-30 15:31:59 +0100911 case 0xEB: mnem = "fldpi"; break;
Ben Murdochb0fe1622011-05-05 13:52:32 +0100912 case 0xED: mnem = "fldln2"; break;
Steve Blockd0582a62009-12-15 09:54:21 +0000913 case 0xEE: mnem = "fldz"; break;
Ben Murdochb0fe1622011-05-05 13:52:32 +0100914 case 0xF1: mnem = "fyl2x"; break;
Steve Blockd0582a62009-12-15 09:54:21 +0000915 case 0xF5: mnem = "fprem1"; break;
916 case 0xF7: mnem = "fincstp"; break;
917 case 0xF8: mnem = "fprem"; break;
918 case 0xFE: mnem = "fsin"; break;
919 case 0xFF: mnem = "fcos"; break;
920 default: UnimplementedInstruction();
921 }
922 }
923 break;
924
925 case 0xDA:
926 if (modrm_byte == 0xE9) {
927 mnem = "fucompp";
928 } else {
929 UnimplementedInstruction();
930 }
931 break;
932
933 case 0xDB:
934 if ((modrm_byte & 0xF8) == 0xE8) {
935 mnem = "fucomi";
936 has_register = true;
937 } else if (modrm_byte == 0xE2) {
938 mnem = "fclex";
939 } else {
940 UnimplementedInstruction();
941 }
942 break;
943
944 case 0xDC:
945 has_register = true;
946 switch (modrm_byte & 0xF8) {
947 case 0xC0: mnem = "fadd"; break;
948 case 0xE8: mnem = "fsub"; break;
949 case 0xC8: mnem = "fmul"; break;
950 case 0xF8: mnem = "fdiv"; break;
951 default: UnimplementedInstruction();
952 }
953 break;
954
955 case 0xDD:
956 has_register = true;
957 switch (modrm_byte & 0xF8) {
958 case 0xC0: mnem = "ffree"; break;
959 case 0xD8: mnem = "fstp"; break;
960 default: UnimplementedInstruction();
961 }
962 break;
963
964 case 0xDE:
965 if (modrm_byte == 0xD9) {
966 mnem = "fcompp";
967 } else {
968 has_register = true;
969 switch (modrm_byte & 0xF8) {
970 case 0xC0: mnem = "faddp"; break;
971 case 0xE8: mnem = "fsubp"; break;
972 case 0xC8: mnem = "fmulp"; break;
973 case 0xF8: mnem = "fdivp"; break;
974 default: UnimplementedInstruction();
975 }
976 }
977 break;
978
979 case 0xDF:
980 if (modrm_byte == 0xE0) {
981 mnem = "fnstsw_ax";
982 } else if ((modrm_byte & 0xF8) == 0xE8) {
983 mnem = "fucomip";
984 has_register = true;
985 }
986 break;
987
988 default: UnimplementedInstruction();
989 }
990
991 if (has_register) {
992 AppendToBuffer("%s st%d", mnem, modrm_byte & 0x7);
993 } else {
994 AppendToBuffer("%s", mnem);
995 }
Steve Blocka7e24c12009-10-30 11:49:00 +0000996 return 2;
997}
998
999
Steve Blockd0582a62009-12-15 09:54:21 +00001000
Steve Blocka7e24c12009-10-30 11:49:00 +00001001// Handle all two-byte opcodes, which start with 0x0F.
1002// These instructions may be affected by an 0x66, 0xF2, or 0xF3 prefix.
1003// We do not use any three-byte opcodes, which start with 0x0F38 or 0x0F3A.
1004int DisassemblerX64::TwoByteOpcodeInstruction(byte* data) {
1005 byte opcode = *(data + 1);
1006 byte* current = data + 2;
1007 // At return, "current" points to the start of the next instruction.
1008 const char* mnemonic = TwoByteMnemonic(opcode);
Andrei Popescu402d9372010-02-26 13:31:12 +00001009 if (operand_size_ == 0x66) {
1010 // 0x66 0x0F prefix.
Steve Blocka7e24c12009-10-30 11:49:00 +00001011 int mod, regop, rm;
Steve Block6ded16b2010-05-10 14:33:55 +01001012 if (opcode == 0x3A) {
1013 byte third_byte = *current;
1014 current = data + 3;
1015 if (third_byte == 0x17) {
1016 get_modrm(*current, &mod, &regop, &rm);
1017 AppendToBuffer("extractps "); // reg/m32, xmm, imm8
1018 current += PrintRightOperand(current);
1019 AppendToBuffer(", %s, %d", NameOfCPURegister(regop), (*current) & 3);
1020 current += 1;
1021 } else {
1022 UnimplementedInstruction();
1023 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001024 } else {
Steve Block6ded16b2010-05-10 14:33:55 +01001025 get_modrm(*current, &mod, &regop, &rm);
1026 if (opcode == 0x6E) {
1027 AppendToBuffer("mov%c %s,",
1028 rex_w() ? 'q' : 'd',
1029 NameOfXMMRegister(regop));
1030 current += PrintRightOperand(current);
Steve Block1e0659c2011-05-24 12:43:12 +01001031 } else if (opcode == 0x6F) {
1032 AppendToBuffer("movdqa %s,",
1033 NameOfXMMRegister(regop));
Steve Block44f0eee2011-05-26 01:26:41 +01001034 current += PrintRightXMMOperand(current);
Steve Block6ded16b2010-05-10 14:33:55 +01001035 } else if (opcode == 0x7E) {
Ben Murdochbb769b22010-08-11 14:56:33 +01001036 AppendToBuffer("mov%c ",
1037 rex_w() ? 'q' : 'd');
1038 current += PrintRightOperand(current);
1039 AppendToBuffer(", %s", NameOfXMMRegister(regop));
Steve Block1e0659c2011-05-24 12:43:12 +01001040 } else if (opcode == 0x7F) {
1041 AppendToBuffer("movdqa ");
Steve Block44f0eee2011-05-26 01:26:41 +01001042 current += PrintRightXMMOperand(current);
Steve Block1e0659c2011-05-24 12:43:12 +01001043 AppendToBuffer(", %s", NameOfXMMRegister(regop));
Steve Block6ded16b2010-05-10 14:33:55 +01001044 } else {
1045 const char* mnemonic = "?";
Ben Murdoche0cee9b2011-05-25 10:26:03 +01001046 if (opcode == 0x50) {
1047 mnemonic = "movmskpd";
1048 } else if (opcode == 0x54) {
1049 mnemonic = "andpd";
1050 } else if (opcode == 0x56) {
1051 mnemonic = "orpd";
1052 } else if (opcode == 0x57) {
Steve Block6ded16b2010-05-10 14:33:55 +01001053 mnemonic = "xorpd";
1054 } else if (opcode == 0x2E) {
Steve Block6ded16b2010-05-10 14:33:55 +01001055 mnemonic = "ucomisd";
Steve Block8defd9f2010-07-08 12:39:36 +01001056 } else if (opcode == 0x2F) {
1057 mnemonic = "comisd";
Steve Block6ded16b2010-05-10 14:33:55 +01001058 } else {
1059 UnimplementedInstruction();
1060 }
1061 AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1062 current += PrintRightXMMOperand(current);
1063 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001064 }
1065 } else if (group_1_prefix_ == 0xF2) {
1066 // Beginning of instructions with prefix 0xF2.
1067
1068 if (opcode == 0x11 || opcode == 0x10) {
1069 // MOVSD: Move scalar double-precision fp to/from/between XMM registers.
1070 AppendToBuffer("movsd ");
1071 int mod, regop, rm;
1072 get_modrm(*current, &mod, &regop, &rm);
1073 if (opcode == 0x11) {
Steve Block44f0eee2011-05-26 01:26:41 +01001074 current += PrintRightXMMOperand(current);
Steve Blocka7e24c12009-10-30 11:49:00 +00001075 AppendToBuffer(",%s", NameOfXMMRegister(regop));
1076 } else {
1077 AppendToBuffer("%s,", NameOfXMMRegister(regop));
Steve Block44f0eee2011-05-26 01:26:41 +01001078 current += PrintRightXMMOperand(current);
Steve Blocka7e24c12009-10-30 11:49:00 +00001079 }
1080 } else if (opcode == 0x2A) {
1081 // CVTSI2SD: integer to XMM double conversion.
1082 int mod, regop, rm;
1083 get_modrm(*current, &mod, &regop, &rm);
Steve Block8defd9f2010-07-08 12:39:36 +01001084 AppendToBuffer("%sd %s,", mnemonic, NameOfXMMRegister(regop));
Steve Blockd0582a62009-12-15 09:54:21 +00001085 current += PrintRightOperand(current);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001086 } else if (opcode == 0x2C) {
1087 // CVTTSD2SI:
1088 // Convert with truncation scalar double-precision FP to integer.
1089 int mod, regop, rm;
1090 get_modrm(*current, &mod, &regop, &rm);
1091 AppendToBuffer("cvttsd2si%c %s,",
1092 operand_size_code(), NameOfCPURegister(regop));
1093 current += PrintRightXMMOperand(current);
1094 } else if (opcode == 0x2D) {
1095 // CVTSD2SI: Convert scalar double-precision FP to integer.
1096 int mod, regop, rm;
1097 get_modrm(*current, &mod, &regop, &rm);
1098 AppendToBuffer("cvtsd2si%c %s,",
1099 operand_size_code(), NameOfCPURegister(regop));
1100 current += PrintRightXMMOperand(current);
Steve Block6ded16b2010-05-10 14:33:55 +01001101 } else if ((opcode & 0xF8) == 0x58 || opcode == 0x51) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001102 // XMM arithmetic. Mnemonic was retrieved at the start of this function.
1103 int mod, regop, rm;
1104 get_modrm(*current, &mod, &regop, &rm);
Steve Blockd0582a62009-12-15 09:54:21 +00001105 AppendToBuffer("%s %s,", mnemonic, NameOfXMMRegister(regop));
1106 current += PrintRightXMMOperand(current);
Steve Blocka7e24c12009-10-30 11:49:00 +00001107 } else {
1108 UnimplementedInstruction();
1109 }
Steve Block6ded16b2010-05-10 14:33:55 +01001110 } else if (group_1_prefix_ == 0xF3) {
1111 // Instructions with prefix 0xF3.
Steve Block8defd9f2010-07-08 12:39:36 +01001112 if (opcode == 0x11 || opcode == 0x10) {
1113 // MOVSS: Move scalar double-precision fp to/from/between XMM registers.
1114 AppendToBuffer("movss ");
1115 int mod, regop, rm;
1116 get_modrm(*current, &mod, &regop, &rm);
1117 if (opcode == 0x11) {
1118 current += PrintRightOperand(current);
1119 AppendToBuffer(",%s", NameOfXMMRegister(regop));
1120 } else {
1121 AppendToBuffer("%s,", NameOfXMMRegister(regop));
1122 current += PrintRightOperand(current);
1123 }
1124 } else if (opcode == 0x2A) {
1125 // CVTSI2SS: integer to XMM single conversion.
1126 int mod, regop, rm;
1127 get_modrm(*current, &mod, &regop, &rm);
1128 AppendToBuffer("%ss %s,", mnemonic, NameOfXMMRegister(regop));
1129 current += PrintRightOperand(current);
1130 } else if (opcode == 0x2C) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001131 // CVTTSS2SI:
1132 // Convert with truncation scalar single-precision FP to dword integer.
Steve Block1e0659c2011-05-24 12:43:12 +01001133 int mod, regop, rm;
1134 get_modrm(*current, &mod, &regop, &rm);
1135 AppendToBuffer("cvttss2si%c %s,",
1136 operand_size_code(), NameOfCPURegister(regop));
1137 current += PrintRightXMMOperand(current);
Steve Block6ded16b2010-05-10 14:33:55 +01001138 } else if (opcode == 0x5A) {
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001139 // CVTSS2SD:
1140 // Convert scalar single-precision FP to scalar double-precision FP.
Steve Block6ded16b2010-05-10 14:33:55 +01001141 int mod, regop, rm;
1142 get_modrm(*current, &mod, &regop, &rm);
1143 AppendToBuffer("cvtss2sd %s,", NameOfXMMRegister(regop));
1144 current += PrintRightXMMOperand(current);
1145 } else {
1146 UnimplementedInstruction();
1147 }
Andrei Popescu402d9372010-02-26 13:31:12 +00001148 } else if (opcode == 0x1F) {
1149 // NOP
1150 int mod, regop, rm;
1151 get_modrm(*current, &mod, &regop, &rm);
1152 current++;
1153 if (regop == 4) { // SIB byte present.
1154 current++;
1155 }
1156 if (mod == 1) { // Byte displacement.
1157 current += 1;
1158 } else if (mod == 2) { // 32-bit displacement.
1159 current += 4;
1160 } // else no immediate displacement.
1161 AppendToBuffer("nop");
1162 } else if (opcode == 0xA2 || opcode == 0x31) {
1163 // RDTSC or CPUID
1164 AppendToBuffer("%s", mnemonic);
1165
1166 } else if ((opcode & 0xF0) == 0x40) {
1167 // CMOVcc: conditional move.
1168 int condition = opcode & 0x0F;
1169 const InstructionDesc& idesc = cmov_instructions[condition];
1170 byte_size_operand_ = idesc.byte_size_operation;
1171 current += PrintOperands(idesc.mnem, idesc.op_order_, current);
1172
1173 } else if ((opcode & 0xF0) == 0x80) {
1174 // Jcc: Conditional jump (branch).
1175 current = data + JumpConditional(data);
1176
1177 } else if (opcode == 0xBE || opcode == 0xBF || opcode == 0xB6 ||
1178 opcode == 0xB7 || opcode == 0xAF) {
1179 // Size-extending moves, IMUL.
1180 current += PrintOperands(mnemonic, REG_OPER_OP_ORDER, current);
1181
1182 } else if ((opcode & 0xF0) == 0x90) {
1183 // SETcc: Set byte on condition. Needs pointer to beginning of instruction.
1184 current = data + SetCC(data);
1185
1186 } else if (opcode == 0xAB || opcode == 0xA5 || opcode == 0xAD) {
1187 // SHLD, SHRD (double-precision shift), BTS (bit set).
1188 AppendToBuffer("%s ", mnemonic);
1189 int mod, regop, rm;
1190 get_modrm(*current, &mod, &regop, &rm);
1191 current += PrintRightOperand(current);
1192 if (opcode == 0xAB) {
1193 AppendToBuffer(",%s", NameOfCPURegister(regop));
1194 } else {
1195 AppendToBuffer(",%s,cl", NameOfCPURegister(regop));
1196 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001197 } else {
1198 UnimplementedInstruction();
1199 }
Steve Blockd0582a62009-12-15 09:54:21 +00001200 return static_cast<int>(current - data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001201}
1202
1203
1204// Mnemonics for two-byte opcode instructions starting with 0x0F.
1205// The argument is the second byte of the two-byte opcode.
1206// Returns NULL if the instruction is not handled here.
1207const char* DisassemblerX64::TwoByteMnemonic(byte opcode) {
1208 switch (opcode) {
1209 case 0x1F:
1210 return "nop";
Steve Block8defd9f2010-07-08 12:39:36 +01001211 case 0x2A: // F2/F3 prefix.
1212 return "cvtsi2s";
Steve Blocka7e24c12009-10-30 11:49:00 +00001213 case 0x31:
1214 return "rdtsc";
Steve Block6ded16b2010-05-10 14:33:55 +01001215 case 0x51: // F2 prefix.
1216 return "sqrtsd";
Steve Blocka7e24c12009-10-30 11:49:00 +00001217 case 0x58: // F2 prefix.
1218 return "addsd";
1219 case 0x59: // F2 prefix.
1220 return "mulsd";
1221 case 0x5C: // F2 prefix.
1222 return "subsd";
1223 case 0x5E: // F2 prefix.
1224 return "divsd";
1225 case 0xA2:
1226 return "cpuid";
1227 case 0xA5:
1228 return "shld";
1229 case 0xAB:
1230 return "bts";
1231 case 0xAD:
1232 return "shrd";
1233 case 0xAF:
1234 return "imul";
1235 case 0xB6:
1236 return "movzxb";
1237 case 0xB7:
1238 return "movzxw";
1239 case 0xBE:
1240 return "movsxb";
1241 case 0xBF:
1242 return "movsxw";
1243 default:
1244 return NULL;
1245 }
1246}
1247
1248
1249// Disassembles the instruction at instr, and writes it into out_buffer.
1250int DisassemblerX64::InstructionDecode(v8::internal::Vector<char> out_buffer,
1251 byte* instr) {
1252 tmp_buffer_pos_ = 0; // starting to write as position 0
1253 byte* data = instr;
1254 bool processed = true; // Will be set to false if the current instruction
1255 // is not in 'instructions' table.
1256 byte current;
1257
1258 // Scan for prefixes.
1259 while (true) {
1260 current = *data;
Leon Clarked91b9f72010-01-27 17:25:45 +00001261 if (current == OPERAND_SIZE_OVERRIDE_PREFIX) { // Group 3 prefix.
Steve Blocka7e24c12009-10-30 11:49:00 +00001262 operand_size_ = current;
1263 } else if ((current & 0xF0) == 0x40) { // REX prefix.
1264 setRex(current);
1265 if (rex_w()) AppendToBuffer("REX.W ");
Leon Clarked91b9f72010-01-27 17:25:45 +00001266 } else if ((current & 0xFE) == 0xF2) { // Group 1 prefix (0xF2 or 0xF3).
Steve Blocka7e24c12009-10-30 11:49:00 +00001267 group_1_prefix_ = current;
1268 } else { // Not a prefix - an opcode.
1269 break;
1270 }
1271 data++;
1272 }
1273
1274 const InstructionDesc& idesc = instruction_table.Get(current);
1275 byte_size_operand_ = idesc.byte_size_operation;
1276 switch (idesc.type) {
1277 case ZERO_OPERANDS_INSTR:
Leon Clarked91b9f72010-01-27 17:25:45 +00001278 if (current >= 0xA4 && current <= 0xA7) {
1279 // String move or compare operations.
1280 if (group_1_prefix_ == REP_PREFIX) {
1281 // REP.
1282 AppendToBuffer("rep ");
1283 }
1284 if (rex_w()) AppendToBuffer("REX.W ");
1285 AppendToBuffer("%s%c", idesc.mnem, operand_size_code());
1286 } else {
1287 AppendToBuffer("%s", idesc.mnem, operand_size_code());
1288 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001289 data++;
1290 break;
1291
1292 case TWO_OPERANDS_INSTR:
1293 data++;
1294 data += PrintOperands(idesc.mnem, idesc.op_order_, data);
1295 break;
1296
1297 case JUMP_CONDITIONAL_SHORT_INSTR:
1298 data += JumpConditionalShort(data);
1299 break;
1300
1301 case REGISTER_INSTR:
1302 AppendToBuffer("%s%c %s",
1303 idesc.mnem,
1304 operand_size_code(),
1305 NameOfCPURegister(base_reg(current & 0x07)));
1306 data++;
1307 break;
1308 case PUSHPOP_INSTR:
1309 AppendToBuffer("%s %s",
1310 idesc.mnem,
1311 NameOfCPURegister(base_reg(current & 0x07)));
1312 data++;
1313 break;
1314 case MOVE_REG_INSTR: {
1315 byte* addr = NULL;
1316 switch (operand_size()) {
1317 case WORD_SIZE:
1318 addr = reinterpret_cast<byte*>(*reinterpret_cast<int16_t*>(data + 1));
1319 data += 3;
1320 break;
1321 case DOUBLEWORD_SIZE:
1322 addr = reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1));
1323 data += 5;
1324 break;
1325 case QUADWORD_SIZE:
1326 addr = reinterpret_cast<byte*>(*reinterpret_cast<int64_t*>(data + 1));
1327 data += 9;
1328 break;
1329 default:
1330 UNREACHABLE();
1331 }
1332 AppendToBuffer("mov%c %s,%s",
1333 operand_size_code(),
1334 NameOfCPURegister(base_reg(current & 0x07)),
1335 NameOfAddress(addr));
1336 break;
1337 }
1338
1339 case CALL_JUMP_INSTR: {
1340 byte* addr = data + *reinterpret_cast<int32_t*>(data + 1) + 5;
1341 AppendToBuffer("%s %s", idesc.mnem, NameOfAddress(addr));
1342 data += 5;
1343 break;
1344 }
1345
1346 case SHORT_IMMEDIATE_INSTR: {
1347 byte* addr =
1348 reinterpret_cast<byte*>(*reinterpret_cast<int32_t*>(data + 1));
1349 AppendToBuffer("%s rax, %s", idesc.mnem, NameOfAddress(addr));
1350 data += 5;
1351 break;
1352 }
1353
1354 case NO_INSTR:
1355 processed = false;
1356 break;
1357
1358 default:
1359 UNIMPLEMENTED(); // This type is not implemented.
1360 }
1361
1362 // The first byte didn't match any of the simple opcodes, so we
1363 // need to do special processing on it.
1364 if (!processed) {
1365 switch (*data) {
1366 case 0xC2:
1367 AppendToBuffer("ret 0x%x", *reinterpret_cast<uint16_t*>(data + 1));
1368 data += 3;
1369 break;
1370
1371 case 0x69: // fall through
1372 case 0x6B: {
1373 int mod, regop, rm;
1374 get_modrm(*(data + 1), &mod, &regop, &rm);
1375 int32_t imm = *data == 0x6B ? *(data + 2)
1376 : *reinterpret_cast<int32_t*>(data + 2);
Steve Block6ded16b2010-05-10 14:33:55 +01001377 AppendToBuffer("imul%c %s,%s,0x%x",
1378 operand_size_code(),
1379 NameOfCPURegister(regop),
Steve Blocka7e24c12009-10-30 11:49:00 +00001380 NameOfCPURegister(rm), imm);
1381 data += 2 + (*data == 0x6B ? 1 : 4);
1382 break;
1383 }
1384
Steve Blocka7e24c12009-10-30 11:49:00 +00001385 case 0x81: // fall through
1386 case 0x83: // 0x81 with sign extension bit set
1387 data += PrintImmediateOp(data);
1388 break;
1389
1390 case 0x0F:
1391 data += TwoByteOpcodeInstruction(data);
1392 break;
1393
1394 case 0x8F: {
1395 data++;
1396 int mod, regop, rm;
1397 get_modrm(*data, &mod, &regop, &rm);
1398 if (regop == 0) {
1399 AppendToBuffer("pop ");
1400 data += PrintRightOperand(data);
1401 }
1402 }
1403 break;
1404
1405 case 0xFF: {
1406 data++;
1407 int mod, regop, rm;
1408 get_modrm(*data, &mod, &regop, &rm);
1409 const char* mnem = NULL;
1410 switch (regop) {
1411 case 0:
1412 mnem = "inc";
1413 break;
1414 case 1:
1415 mnem = "dec";
1416 break;
1417 case 2:
1418 mnem = "call";
1419 break;
1420 case 4:
1421 mnem = "jmp";
1422 break;
1423 case 6:
1424 mnem = "push";
1425 break;
1426 default:
1427 mnem = "???";
1428 }
1429 AppendToBuffer(((regop <= 1) ? "%s%c " : "%s "),
1430 mnem,
1431 operand_size_code());
1432 data += PrintRightOperand(data);
1433 }
1434 break;
1435
1436 case 0xC7: // imm32, fall through
1437 case 0xC6: // imm8
1438 {
1439 bool is_byte = *data == 0xC6;
1440 data++;
Steve Block44f0eee2011-05-26 01:26:41 +01001441 if (is_byte) {
1442 AppendToBuffer("movb ");
1443 data += PrintRightByteOperand(data);
1444 int32_t imm = *data;
1445 AppendToBuffer(",0x%x", imm);
1446 data++;
1447 } else {
1448 AppendToBuffer("mov%c ", operand_size_code());
1449 data += PrintRightOperand(data);
1450 int32_t imm = *reinterpret_cast<int32_t*>(data);
1451 AppendToBuffer(",0x%x", imm);
1452 data += 4;
1453 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001454 }
1455 break;
1456
1457 case 0x80: {
1458 data++;
1459 AppendToBuffer("cmpb ");
Steve Block44f0eee2011-05-26 01:26:41 +01001460 data += PrintRightByteOperand(data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001461 int32_t imm = *data;
1462 AppendToBuffer(",0x%x", imm);
1463 data++;
1464 }
1465 break;
1466
1467 case 0x88: // 8bit, fall through
1468 case 0x89: // 32bit
1469 {
1470 bool is_byte = *data == 0x88;
1471 int mod, regop, rm;
1472 data++;
1473 get_modrm(*data, &mod, &regop, &rm);
Steve Block44f0eee2011-05-26 01:26:41 +01001474 if (is_byte) {
1475 AppendToBuffer("movb ");
1476 data += PrintRightByteOperand(data);
1477 AppendToBuffer(",%s", NameOfByteCPURegister(regop));
1478 } else {
1479 AppendToBuffer("mov%c ", operand_size_code());
1480 data += PrintRightOperand(data);
1481 AppendToBuffer(",%s", NameOfCPURegister(regop));
1482 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001483 }
1484 break;
1485
1486 case 0x90:
1487 case 0x91:
1488 case 0x92:
1489 case 0x93:
1490 case 0x94:
1491 case 0x95:
1492 case 0x96:
1493 case 0x97: {
Steve Blockd0582a62009-12-15 09:54:21 +00001494 int reg = (*data & 0x7) | (rex_b() ? 8 : 0);
Steve Blocka7e24c12009-10-30 11:49:00 +00001495 if (reg == 0) {
1496 AppendToBuffer("nop"); // Common name for xchg rax,rax.
1497 } else {
1498 AppendToBuffer("xchg%c rax, %s",
1499 operand_size_code(),
1500 NameOfCPURegister(reg));
1501 }
Steve Blockd0582a62009-12-15 09:54:21 +00001502 data++;
Steve Blocka7e24c12009-10-30 11:49:00 +00001503 }
Steve Blockd0582a62009-12-15 09:54:21 +00001504 break;
Steve Blocka7e24c12009-10-30 11:49:00 +00001505
1506 case 0xFE: {
1507 data++;
1508 int mod, regop, rm;
1509 get_modrm(*data, &mod, &regop, &rm);
Kristian Monsen0d5e1162010-09-30 15:31:59 +01001510 if (regop == 1) {
1511 AppendToBuffer("decb ");
Steve Block44f0eee2011-05-26 01:26:41 +01001512 data += PrintRightByteOperand(data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001513 } else {
1514 UnimplementedInstruction();
1515 }
Steve Blocka7e24c12009-10-30 11:49:00 +00001516 }
1517 break;
1518
1519 case 0x68:
1520 AppendToBuffer("push 0x%x", *reinterpret_cast<int32_t*>(data + 1));
1521 data += 5;
1522 break;
1523
1524 case 0x6A:
1525 AppendToBuffer("push 0x%x", *reinterpret_cast<int8_t*>(data + 1));
1526 data += 2;
1527 break;
1528
1529 case 0xA1: // Fall through.
1530 case 0xA3:
1531 switch (operand_size()) {
1532 case DOUBLEWORD_SIZE: {
1533 const char* memory_location = NameOfAddress(
1534 reinterpret_cast<byte*>(
1535 *reinterpret_cast<int32_t*>(data + 1)));
1536 if (*data == 0xA1) { // Opcode 0xA1
1537 AppendToBuffer("movzxlq rax,(%s)", memory_location);
1538 } else { // Opcode 0xA3
1539 AppendToBuffer("movzxlq (%s),rax", memory_location);
1540 }
1541 data += 5;
1542 break;
1543 }
1544 case QUADWORD_SIZE: {
1545 // New x64 instruction mov rax,(imm_64).
1546 const char* memory_location = NameOfAddress(
1547 *reinterpret_cast<byte**>(data + 1));
1548 if (*data == 0xA1) { // Opcode 0xA1
1549 AppendToBuffer("movq rax,(%s)", memory_location);
1550 } else { // Opcode 0xA3
1551 AppendToBuffer("movq (%s),rax", memory_location);
1552 }
1553 data += 9;
1554 break;
1555 }
1556 default:
1557 UnimplementedInstruction();
1558 data += 2;
1559 }
1560 break;
1561
1562 case 0xA8:
1563 AppendToBuffer("test al,0x%x", *reinterpret_cast<uint8_t*>(data + 1));
1564 data += 2;
1565 break;
1566
1567 case 0xA9: {
1568 int64_t value = 0;
1569 switch (operand_size()) {
1570 case WORD_SIZE:
1571 value = *reinterpret_cast<uint16_t*>(data + 1);
1572 data += 3;
1573 break;
1574 case DOUBLEWORD_SIZE:
1575 value = *reinterpret_cast<uint32_t*>(data + 1);
1576 data += 5;
1577 break;
1578 case QUADWORD_SIZE:
1579 value = *reinterpret_cast<int32_t*>(data + 1);
1580 data += 5;
1581 break;
1582 default:
1583 UNREACHABLE();
1584 }
1585 AppendToBuffer("test%c rax,0x%"V8_PTR_PREFIX"x",
1586 operand_size_code(),
1587 value);
1588 break;
1589 }
1590 case 0xD1: // fall through
1591 case 0xD3: // fall through
1592 case 0xC1:
1593 data += ShiftInstruction(data);
1594 break;
1595 case 0xD0: // fall through
1596 case 0xD2: // fall through
1597 case 0xC0:
1598 byte_size_operand_ = true;
1599 data += ShiftInstruction(data);
1600 break;
1601
1602 case 0xD9: // fall through
1603 case 0xDA: // fall through
1604 case 0xDB: // fall through
1605 case 0xDC: // fall through
1606 case 0xDD: // fall through
1607 case 0xDE: // fall through
1608 case 0xDF:
1609 data += FPUInstruction(data);
1610 break;
1611
1612 case 0xEB:
1613 data += JumpShort(data);
1614 break;
1615
Steve Blockd0582a62009-12-15 09:54:21 +00001616 case 0xF6:
1617 byte_size_operand_ = true; // fall through
Steve Blocka7e24c12009-10-30 11:49:00 +00001618 case 0xF7:
Steve Blockd0582a62009-12-15 09:54:21 +00001619 data += F6F7Instruction(data);
Steve Blocka7e24c12009-10-30 11:49:00 +00001620 break;
1621
1622 default:
1623 UnimplementedInstruction();
1624 data += 1;
1625 }
1626 } // !processed
1627
1628 if (tmp_buffer_pos_ < sizeof tmp_buffer_) {
1629 tmp_buffer_[tmp_buffer_pos_] = '\0';
1630 }
1631
Steve Blockd0582a62009-12-15 09:54:21 +00001632 int instr_len = static_cast<int>(data - instr);
Steve Blocka7e24c12009-10-30 11:49:00 +00001633 ASSERT(instr_len > 0); // Ensure progress.
1634
1635 int outp = 0;
1636 // Instruction bytes.
1637 for (byte* bp = instr; bp < data; bp++) {
1638 outp += v8::internal::OS::SNPrintF(out_buffer + outp, "%02x", *bp);
1639 }
1640 for (int i = 6 - instr_len; i >= 0; i--) {
1641 outp += v8::internal::OS::SNPrintF(out_buffer + outp, " ");
1642 }
1643
1644 outp += v8::internal::OS::SNPrintF(out_buffer + outp, " %s",
1645 tmp_buffer_.start());
1646 return instr_len;
1647}
1648
1649//------------------------------------------------------------------------------
1650
1651
1652static const char* cpu_regs[16] = {
1653 "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
1654 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
1655};
1656
1657
1658static const char* byte_cpu_regs[16] = {
1659 "al", "cl", "dl", "bl", "spl", "bpl", "sil", "dil",
1660 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l"
1661};
1662
1663
1664static const char* xmm_regs[16] = {
1665 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
1666 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15"
1667};
1668
1669
1670const char* NameConverter::NameOfAddress(byte* addr) const {
Steve Block44f0eee2011-05-26 01:26:41 +01001671 v8::internal::OS::SNPrintF(tmp_buffer_, "%p", addr);
1672 return tmp_buffer_.start();
Steve Blocka7e24c12009-10-30 11:49:00 +00001673}
1674
1675
1676const char* NameConverter::NameOfConstant(byte* addr) const {
1677 return NameOfAddress(addr);
1678}
1679
1680
1681const char* NameConverter::NameOfCPURegister(int reg) const {
1682 if (0 <= reg && reg < 16)
1683 return cpu_regs[reg];
1684 return "noreg";
1685}
1686
1687
1688const char* NameConverter::NameOfByteCPURegister(int reg) const {
1689 if (0 <= reg && reg < 16)
1690 return byte_cpu_regs[reg];
1691 return "noreg";
1692}
1693
1694
1695const char* NameConverter::NameOfXMMRegister(int reg) const {
1696 if (0 <= reg && reg < 16)
1697 return xmm_regs[reg];
1698 return "noxmmreg";
1699}
1700
1701
1702const char* NameConverter::NameInCode(byte* addr) const {
1703 // X64 does not embed debug strings at the moment.
1704 UNREACHABLE();
1705 return "";
1706}
1707
1708//------------------------------------------------------------------------------
1709
1710Disassembler::Disassembler(const NameConverter& converter)
1711 : converter_(converter) { }
1712
1713Disassembler::~Disassembler() { }
1714
1715
1716int Disassembler::InstructionDecode(v8::internal::Vector<char> buffer,
1717 byte* instruction) {
1718 DisassemblerX64 d(converter_, CONTINUE_ON_UNIMPLEMENTED_OPCODE);
1719 return d.InstructionDecode(buffer, instruction);
1720}
1721
1722
1723// The X64 assembler does not use constant pools.
1724int Disassembler::ConstantPoolSizeAt(byte* instruction) {
1725 return -1;
1726}
1727
1728
1729void Disassembler::Disassemble(FILE* f, byte* begin, byte* end) {
1730 NameConverter converter;
1731 Disassembler d(converter);
1732 for (byte* pc = begin; pc < end;) {
1733 v8::internal::EmbeddedVector<char, 128> buffer;
1734 buffer[0] = '\0';
1735 byte* prev_pc = pc;
1736 pc += d.InstructionDecode(buffer, pc);
1737 fprintf(f, "%p", prev_pc);
1738 fprintf(f, " ");
1739
1740 for (byte* bp = prev_pc; bp < pc; bp++) {
1741 fprintf(f, "%02x", *bp);
1742 }
Steve Blockd0582a62009-12-15 09:54:21 +00001743 for (int i = 6 - static_cast<int>(pc - prev_pc); i >= 0; i--) {
Steve Blocka7e24c12009-10-30 11:49:00 +00001744 fprintf(f, " ");
1745 }
1746 fprintf(f, " %s\n", buffer.start());
1747 }
1748}
1749
1750} // namespace disasm
Leon Clarkef7060e22010-06-03 12:02:55 +01001751
1752#endif // V8_TARGET_ARCH_X64